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1. Introduction

The 6G network, the next-generation communication system, is
envisaged to provide unprecedented experience through hyper-

connectivity involving everything. Industries and academies have

envisioned that next-generation networks
will shift the paradigm in conventional
wireless communications.[1–3] It does not
mean just faster communication with the
developments of high-performance com-
munication links on terahertz bands and
novel antenna technology.[4] Still, it should
hold for artificial intelligence (AI)-centric
network infrastructures as interconnecting
a swarm of machines that are growing
exponentially to collect massive data from
environments.[5–9] This trend essentially
poses the following challenges: 1) Low
latency communication: To serve advanced
applications such as on-device AI, extended
reality, and real-time multimedia, 6G
should provide an ultralow user-
experienced latency of less than 10ms
while competing with a higher data rate
of around 1000 Gbps. However, state-of-
the-art network protocols are not ideal for
achieving such latency due to complex data
modulation/demodulation that involves
costly iterative procedures with error cor-
rection codes.[10–13] 2) Reliable networking:
Because of the tremendous volume of
data transferred, network interference

and noise are unavoidable and are rather significantly intensified
to realize future duplex technology.[14–16] 3) Learning integration:
Today’s communication systems rely on many layers of informa-
tion processing, from data compression andmodulation by send-
ers through demodulation and decompression by receivers to
data processing, e.g., machine learning (ML). Unfortunately,
the communication and learning processes are kept and
optimized separately in existing systems. Therefore, relying only
on the improvement of mobile devices’ battery life, which is not
fast enough given the rapid AI evolution, does not suffice to meet
their extensive demand for efficient processing.

Hyperdimensional modulation (HDM) is introduced as a new
modulation scheme designed for ultrareliable low-latency com-
munication.[13,17,18] HDM already showed more reliability than
binary phase-shift keying (BPSK), protected by state-of-the-art
low density parity check (LDPC) and polar error correction codes
for the same spectral efficiency.[13] In addition, HDM has a lower
complexity than LDPC, Polar, and convolutional codes. However,
there is a crucial challenge in the existing HDM modulations
when applying them to the IoT applications that involve both
communication and data assimilation on less powerful
devices—the HDM decoding or demodulation is a costly iterative
process that involves an extensive search for noise cancelation.
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The 6G network, the next-generation communication system, is envisaged to

provide unprecedented experience through hyperconnectivity involving every-

thing. The communication should hold artificial intelligence-centric network

infrastructures as interconnecting a swarm of machines. However, existing

network systems use orthogonal modulation and costly error correction code;

they are very sensitive to noise and rely on many processing layers. These

schemes impose significant overhead on low-power internet of things devices

connected to noisy networks. Herein, a hyperdimensional network-based system,

called NetHD, is proposed, which enables robust and efficient data communi-

cation/learning. NetHD exploits a redundant and holographic representation of

hyperdimensional computing (HDC) to design highly robust data modulation,

enabling two functionalities on transmitted data: 1) an iterative decoding method

that translates the vector back to the original data without error correction

mechanisms, or 2) a native hyperdimensional learning technique on transmitted

data with no need for costly data decoding. A hardware accelerator that supports

both data decoding and hyperdimensional learning using a unified accelerator is

also developed. The evaluation shows that NetHD provides a bit error rate

comparable to that of state-of-the-art modulation schemes while achieving 9.4 �
faster and 27.8 � higher energy efficiency compared to state-of-the-art deep

learning systems.
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It implies that end-to-end tasks should pay the enormous com-
putation cost for decoding data even before starting the learning
process, which generates a higher computational complexity.

In this work, we focus on advanced technology for communi-
cation, which integrates data modulation with ML on the same
horizon toward hyper-reliable communication and efficient AI
processing. Our solution is based on hyperdimensional comput-
ing (HDC), which is an alternative computing paradigm inspired

by neurological human memory models.[19] Many academic and
industry works have examined HDC to utilize high-dimensional
data representation, which is known to be the way the human
brain operates.[20–28] They showed that HDC offers high robust-

ness in data processing and effectively realizes ML by imitating
human cognition with mathematically rigorous vector operations
that describe humanmemory capabilities to store, load, and com-
pare various information. HDC is well suited to address commu-

nication and learning challenges in networking systems, as
1) HDC representation is holographic in that it spreads informa-
tion over high-dimensional components, thus providing strong
robustness to noise[27,29–32]—a key strength to realize reliable

communication, 2) it offers an intuitive and human-interpretable
learning process[23] which is computationally efficient to train
and highly parallel at heart,[33–36] and 3) HDC can naturally
enable lightweight privacy and security.[21,37]

Utilizing the advantages of HDC, we propose NetHD, a HDC-
based network system for robust and efficient data communica-

tion and learning. NetHD develops novel encoding methods that
map data into high-dimensional space and transmit the encoded
data through the network. The transmitted data can be accurately
decoded back to the original space at the destination node, or

more importantly, it can be directly used to perform learning
tasks. The main contributions of the article are listed below:

We design a novel encoding method that exploits redundant
and holographic HDC representation for ultraefficient and
robust data communication. Our encoder utilizes a symbolic

HDC representation to distribute information among long vec-
tors. We also propose a decoding method that recovers originally
transmitted data. As HDC encoding spreads the data over a large
hypervector, we can preserve sufficient information even when a

substantial number of bits can be corrupted, resulting in high
noise robustness for low signal–noise ratio (SNR) scenarios.

Unlike existing learning solutions that aim to optimize com-
putation and communication separately, we introduce a novel
approach that fundamentally merges data modulation and learn-
ing. NetHD implements hyperdimensional learning directly on
transmitted data without costly iterative data decoding. In
addition, NetHD exploits the robustness of hyperdimensional
learning to enable holographic and highly compressed data com-
munication. We show how NetHD can enable classification/
clustering over compressed transmitted data, thus significantly
improving total system efficiency.

To enable fast and efficient data decoding/learning, we design
a hardware accelerator based on ferroelectric memory devices. It
offloads search-based operations of our decoding mechanism to
content addressable memory (CAM), supporting row parallel
search operations. Our CAM supports the nearest search
over complex-valued hypervector variables, resulting in high
efficiency.

We evaluated NetHD over a wide range of network conditions
and under various SNR scenarios. Our evaluation shows that
NetHD provides a bit error rate comparable to that of the
state-of-the-art modulation schemes while fundamentally merg-
ing HDM and learning. Our evaluation shows that NetHD
achieves 9.4� and 27.8� faster and higher energy efficiency
compared to deep neural network (DNN), respectively. Our
proposed CAM-based hardware accelerator results in 108.3�
and 27.1� (35.8� and 22.0�) faster and higher energy
efficiency during data decoding (learning) than embedded graph-
ical processing unit (GPU).

2. NetHD Design

2.1. Overview

Figure 1a shows an overview of the existing systems using non-
integrated communication and ML. The processing pipeline at
the transmitter starts with data compression and data encoding.
The channel can often be an interference channel that adds both

(a)

(b)

Figure 1. a) An overview of existing systems using a deep communication-learning pipeline. b) Our proposed NetHD integrates communication and ML
using HDC.
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noise and interference to the encoded signal. In the receiver, the
system first decodes the received signal using costly iterative
decoding coupled with an error correction mechanism. The
decoded data will then be decompressed back before being proc-
essed by ML. Unfortunately, existing communication protocols
use layered processing for data communication isolated from
ML.

Envisioning that future network should involve both commu-
nication and learning infrastructures, we will exploit rigorous
mathematics which describes data representation during the
communication and computation during learning procedures
based on high-dimensional vectors. We propose a hyperdimen-
sional network-based system, called NetHD, that enables robust
and efficient data communication/learning. Unlike existing com-
munication protocols that use layered processing for data com-
munication, NetHD fundamentally integrates communication
with ML. Figure 1b shows an overview of the NetHD framework.
The first step of NetHD is to encode the data in a redundant
high-dimensional representation. This high-dimensional repre-
sentation stores information in a holographic manner, preserv-
ing sufficient information even when a substantial number of
hypervector elements are corrupted. NetHD uses the encoded
data to transfer them through the network. The network is often
a noisy channel that adds both noise and interference to the
encoded signal. The receiver gets noisy data and has two options.
First, we can decode the data back to the original space. We pro-
pose a lightweight iterative method that decodes the transmitted
data without using any error correction. Our decoding solution is
significantly robust against low SNR networks and interference.
Second, we can also directly operate hyperdimensional learning
over the encoded data without the need for costly data decoding.
NetHD enables various hyperdimensional learning over trans-
mitted data, including classification and clustering. We also
introduce the idea of dynamic data compression in NetHD
encoding to trade accuracy and communication cost.

2.2. Preliminary of HDC

Brain-inspired HDC uses distributed high-dimensional repre-
sentations of data called “hypervectors” as its fundamental units
of computation, based on the observation that the human brain
operates in a similar way.[19] These hypervectors are constructed
using an encoding procedure, and there are many nearly orthog-
onal options with thousands of dimensions, allowing the repre-
sentation of target data with different points in hyperspace.[38–40]

2.2.1. Hyperdimensional Arithmetic

The HDC learning utilizes well-defined vector space operations
to combine hypervectors into a new hypervector while keeping

the information with high probability. Assume that ~ℋ1

and ~ℋ2 are two randomly generated hypervectors

(~ℋ ∈ �1, þ 1f gD). The following are the hypervector operations
commonly used for implementing HDC-based learning.

1) Binding (*) operation of two hypervectors ~ℋ1 and ~ℋ2 is done
by component-wise multiplication (XOR in binary) and is

denoted as ~ℋ1 * ~ℋ2. The result of the operation is a new

hypervector that is dissimilar to its constituent vectors, that is,

δ ~ℋ1 � ~ℋ2, ~ℋ1

� �

≈ 0; thus, binding is well suited for associat-

ing information stored in the two hypervectors. Binding is used
for variable-value association and, more generally, for mapping.

2) Bundling (þ) operation is done via component-wise addition

of hypervectors, denoted as ~ℋ1 þ ~ℋ2. The bundling is a mem-

orization function that keeps the information of input data in a
bundled vector. The bundled hypervectors preserve similarity to

its component hypervectors, i.e., δ ~ℋ1 þ ~ℋ2, ~ℋ1

� �

>> 0.

3) Similarity measure between two vectors ~ℋ1 and ~ℋ2 is defined

as: δ ~ℋ1, ~ℋ2

� �

¼ ~ℋ†

1 ⋅
~ℋ2=D. For example, if the two hypervec-

tors are randomly generated, δ ~ℋ1, ~ℋ2

� �

≈ 0 because the dot

product measures the high-dimensional similarity of the two

near-orthogonal hypervectors. If we assume that ~ℋ1 and ~ℋ2

are two complex-valued vectors, we can use the operation †,

which transposes the column vector and takes the conjugate

of all components. This similarity operation gives us a complex
scalar value.

3. NetHD Encoding

In this work, we propose a novel encoding scheme that maps an

arbitrary bitstream to a high-dimensional space. NetHD encod-
ing exploits HDCmathematics to preserve all information of data

in an encoded hypervector. Figure 2 shows the NetHD encoding
functionality. Let us assume that a bitstream is stored as an array
~S with a length of L (~S ∈ 0, 1f gn). Our goal is to map this bit-

stream into a hypervector ~ℋ of D dimension. Our encoding

occurs using the following steps:

3.1. Chunk Mapping

We divide an input bitstream into V chunks of length L=V each

(Figure 2a). Define the ith chunk to be Ci ¼ S i� 1ð Þ ⋅ L
V ∶i ⋅

L
V

� �

for i ¼ 1, 2, 3, ..,V . We construct a mapping table for every L
V �

digit binary vector to represent each with a random hypervector.

We denote this mapping table by ~ℱ xð Þ where x is a vector of L
V

digits. This function maps different chunks to high-dimensional
points with a nearly orthogonal distribution, which means that

δ ~ℱ Cið Þ, ~ℱ Cj

� �� �

≃ 0 for i 6¼ j. The orthogonality of hypervec-

tors is ensured as long as the hypervector dimension, D, is large
enough compared to the number of features, V, in the original

data, i.e., D ≫ V .

3.2. Preserving Position

To differentiate between feature locations, we also associate

a random hypervector to each chunk position, i.e.,

~P1,~P2, · · · ,~Pv

n o

, where δ ~Pi,~Pj

� �

≃ 0 for i 6¼ j. These posi-

tion hypervectors identify the chunk to which the input belongs.
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3.3. Encoding

We encode the signal by associating each chunk hypervector with

the corresponding position hypervector. For example, ~ℐ1 � ~ℱ P1ð Þ
associates the value and position of the first chunk as a new
hypervector. The bundling of all associated hypervectors over all

chunks memorizes the entire bitstream

~ℋ ¼ 1
ffiffiffiffi
V

p
XV

i¼1

~Pi � ~ℱ Cið Þ (1)

The result of the equation creates a single hypervector ~ℋ,

which preserves the value and position information of all chunks
with holographic representation and signal normalization. As the

encoding spreads information over hypervector elements, a
substantial number of bits can be corrupted while preserving suf-

ficient information.
Here, we explain the functionality of NetHD using an

example. Let us assume a stream of length L ¼ 16,
S ¼ 0110111001011000. We divide this bitstream into V ¼ 4

chunks, C1 ¼ 0110, C2 ¼ 1110, C3 ¼ 0101, and C4 ¼ 1000,
where each chunk has length L=V ¼ 4. We construct a function

or lookup table that maps each 4� digit binary number to a ran-

domly generated hypervector ( ~ℱ C1ð Þ, ~ℱ C2ð Þ, ~ℱ C3ð Þ, ~ℱ C4ð Þ
n o

).

Similarly, we generate a position hypervector, ~P1,~P2,~P3,~P4

n o

,

for each chunk. Using these two bases, we encode our

bitstream as

~ℋ ¼ 1
ffiffiffi
4

p ~P1 � ~ℱ C1ð Þ þ ~P2 � ~ℱ C2ð Þþ · · · þ~P4 � ~ℱ C4ð Þ
� �

(2)

In our example, the encoded hypervectors will have

dimensionality ranging from D ¼ 128 to D ¼ 512.
One method of further optimizing our algorithm is through

binding together more chunks of hypervectors, and using the

resonator network technique to factorize the binded vectors.

For example, we could bind together 3 subchuncks at position

1 as P1
	! � ~ℱ C1ð Þ � ~ℱ C2ð Þ � ~ℱ C3ð Þ. This will allow us to store

more information in an efficient manner without adding much
noise. However, the main problem occurs when we bundle

together multiple such binded vectors.[24,41] The noise level

increases, due to whichmany factorization techniques fail to con-
verge. Moreover, even increasing the codebook size can result in

many factorization methods to fail simply due to the large search
space size, without enough dimensions. The optimal trade-off

between the number of factors that can be binded versus the
number of such terms that can be bundled together is a current

topic of intense research.

3.4. Random Hypervector Generation with Complex Bases

Traditionally, HDC randomly chooses binary ( 0, 1f g), or polar-
ized vectors ( �1, þ 1f g) with uniformly distributed compo-
nents. One key point to keep in the note is that the bundling

must be an invertible operation to recover the associations.

(e) (f)

Figure 2. NetHD encoding process: a) chunk hypervector generation, b) split a bitstream to small chunks, c) assign a base hypervector to each chunk
position, and d) encode the bitstream by associating the position and chunk hypervectors and memorizing them in high dimension. e) Symbol set
selection and f ) similarity distribution using different real and complex symbols.
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For example, assuming ~ℬ ¼ ~ℋ1 � ~ℋ2, we can recover

components using ~ℬ � ~ℋ1 ¼ ~ℋ2. It mathematically restricts
the capacity of HDC vectors due to a lower number of possible

hypervectors when using the conventional polarized
vectors.[42–44]

In this work, we unleash and expand the capacity of

HDC vectors by sending hypervectors with complex
phases. The most general and common HD encoding used

is the Fourier holographic reduced representation (FHRR),
which encodes d� dimensional feature vector ~x into a

D� dimensional HD vector ~ℋx , such that the similarity between

HD vector reproduces an underlying kernel over the data
space as follows

δ ~ℋx , ~ℋy

� �

¼ k α~x �~y½ �ð Þ (3)

The encoding can be constructed by choosing a D�
d -dimensional random matrix from a probability distribution

p ωð Þ, where p ωð Þ is the Fourier transform of k ~xð Þ, and then

defining the encoding as ~ℋx ¼ exp iαM~xð Þ.
Our inspiration for choosing complex bases is the FHRR

representation, where we can represent general correlated

elements. The correlation between the hypervectors can be con-
trolled by tuning the value of α— if α is small, then the hyper-

vectors are more correlated, and if α is large, then the
hypervectors are more orthogonal. In this way, FHRR allows

us more flexibility in choosing the encoding process. For exam-
ple, in cases where we require learning to be performed over the

data, we can directly learn over the encoded data by choosing a

more correlative encoder. However, as hardware implementa-
tions require quantized bits, we quantize the generic phase val-

ues components of the hypervector into uniform points along the
unit complex circle.

In the generation of random orthogonal hypervectors for the

chunk/positionmapping, we can choose the vector component to
be any complex phase value with amagnitude of 1. If the memory

vector is now ~ℬ ¼ ~ℋ1 � ~ℋ2, the unbinding operation would be

given by ~ℬ � ~ℋ1 ¼ ~ℋ2, where ~ℋ1 is the vector with each com-

ponent of ~ℋ1 conjugated. It increases the capacity of the random
vectors because the possible random vectors increase exponen-

tially with the size of the symbol set. We call the set of possible
symbols S. In this work, the set S is mainly chosen to be

�1, � if g. We will study the effect of different sets of hypervec-

tor capacity.
Figure 2e shows NetHD choices in the selection of polarized

or complex bases. Figure 2f presents the similarity distribution of

randomly generated hypervectors using bipolar and complex
bases. Our results indicate that random complex vectors have

a higher chance of orthogonality, thus showing a narrower dis-
tribution. In Section 4.2, we show how the orthogonality of com-

plex bases can reduce the cross-interference noise and increase
the memorization capacity.

4. NetHD Demodulation

4.1. NetHD Decoding

For a given signal ~ℋ, NetHD uses an iterative decoding to recon-
struct the bitstream that successively cancels the predicted noise
and attains more accurate guesses.[41,45] In the first iteration, we

find the guess values of the chunks C
0ð Þ
i by binding the encoded

hypervector with the position hypervector (Figure 3a)

Pk
	! � ~ℋ ¼ ~Pk � ~Pk

|fflfflfflfflffl{zfflfflfflfflffl}

1

0

@

1

A � ~ℱ Ckð Þ þ
XN

i¼1

~Pk � Pi
	!

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Noise≃0

0

@

1

A � ~ℱ Cið Þ

(4)

This equation gives us a noisy estimate of ~ℱ Ckð Þ. We use this
estimation to recover actual chunk original value, using

C
1ð Þ
i ¼ argmax∀C Re δ ~ℱ Cð Þ,~Pi � ~ℋ

� �� �

(5)

As shown in Figure 3b, this equation searches through pre-

stored lookup table entries to find a chunk hypervector that
has the highest similarity to our noisy estimation. The search
is performed using dot product operation. A lookup table entry
with the highest similarity (real part) is our first estimation of the
chunk value. This process continues for all chunks to get the first

estimation. In Section 6, we explain how this similarity search
can be simplified to Hamming distance computation and
accelerated in hardware.

We exploit all estimated chunk hypervectors to reduce the
noise term in Equation (6). For the nth iteration, the less noisy
chunk can be computed using (Figure 3c)

~ℋ n�1ð Þ ¼ ~ℋ� 1
ffiffiffiffi
V

p
X

i 6¼j

~Pi � ~ℱ C
n�1ð Þ
i

� �

(6)

We iteratively continue this process to find a better chunk

estimation (Figure 3d). For the nth iteration, we find C
nð Þ
i by

C
nð Þ
i ¼ argmax∀C Re δ ~ℱ Cð Þ,~Pi � ~ℋ n�1ð Þ

� �� �

(7)

We repeat the above iterative process until convergence.
In Section 7, we show our study for NetHD decoding, which
converges quickly.

4.2. Noise and Error Recovery

In this work, we normalize the signal vector ~ℋ0 to

δ ~ℋ0, ~ℋ0

� �

¼ 1. In the signal vector, we may have a complex

Gaussian noise vector overlayed ~N , whose magnitude is distrib-
uted with a normal distribution with mean 0 and variance 1=n.

The total transmitted signal is given by ~ℋ ¼ ~ℋ0 þ ~N . In this
case, the SNR is defined as 10log10n. The error due to cross-
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interference of the primary terms depends on the dimension
of the HD vectors D, the number of layers V and the symbol

set used. The error terms would be given by

1ffiffiffi
V

p
P

i6¼j
~Pi � ~F C

n�1ð Þ
i

� �

¼ 1ffiffiffi
V

p
P

V�1
i¼1

~V i, where ~V i are random

uncorrelated vectors. Given a vector representing a value ~ℛ,

we are interested in calculating Re δ ~ℛ, 1ffiffiffi
V

p
P

V�1
i¼1

~V i

� �� �

¼
1ffiffiffi
V

p
P

V�1
i¼1 Re δ ~ℛ,~V i

� �� �

.

The problem is now reduced to estimating the real similarity

distribution between two random vectors ~A and ~ℬ. The similar-

ity can be written as δ ~A, ~ℬ
� �

¼PD
i¼1

~A
� �

i

~ℬ
� �

i
. Here, ~A

� �

i

denotes the ith component of the vector ~A. Note that if ~A and
~ℬ are random with components from the set S, then

~A
� �

i

~ℬ
� �

i
is also a random element of the set S. The set S

is, in general, parametrized by e
2πk
Q i

n o

, where k ¼ 0, 1, 2, : : : ,Q � 1

and Q is an integer. The real parts of the set S are given by

Sr ¼ cos 2πk
Q

n o

. Thus, Re ~A
� �

i

~ℬ
� �

i

� �

is a random element of

the set Sr . Sr has mean μ ¼ 0 and standard distribution of

σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XQ�1

k¼0

cos2 2πk
Q

Q

v
u
u
t (8)

As the dimension increases, the real similarity between two
random vectors will be distributed as a Gaussian with mean 0

and standard deviation σffiffiffi
D

p by the central limit theorem. Thus,

(e)

(g)

(f)

Figure 3. NetHD iterative decoding: a) computes the first estimation of each chunk hypervector, b) mapping estimated hypervector to the closest chunk
value, c) exploits the estimated chunk values to re-encoded data, and d) computes the distance of reconstructed data with original encoded hypervector.
e) Random base generation used for encoding, f ) correlative base generation, and g) visual of correlative mapping of NetHD chunks.
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Re δ ~A, ~ℬ
� �

� N 0, σffiffiffi
D

p
� �� �

. Therefore, for the more general

cases, we have

Re δ ~ℛ,
1
ffiffiffiffi
V

p
XV�1

i¼1

~V i

 !

� N 0,
σ
ffiffiffiffi
D

p
� � !

(9)

This equation shows that the contribution from the
cross-interference is independent of V. However, note that the

term matching ~ℛ is normalized by the weight of 1ffiffiffi
V

p . Thus,

the SNR of the cross-terms is given by 10log10
ffiffiffi
D

p

σ
ffiffiffi
V

p . Note that

σ decreases with increasing Q. Thus, the three ways to decrease
noise are by increasing D, increasing Q, and decreasing V.
However, each method has its own trade-off. Increasing D
reduces the coding rate because a larger number of packets must
be transmitted. Increasing Q would make the symbols more
closely spaced, resulting in the need for the receiver equipment
to distinguish between closely spaced symbols. Decreasing V
would increase the size of the chunks, resulting in a larger mem-
ory requirement to store all possible bit sequences.

5. Learning in High Dimension

For many IoT applications, the system efficiency depends on
both communication and computation, which are separated,
unfortunately, in today’s systems. For example, to learn the pat-
tern of transmitted data, we still need to pay the cost of iterative
decoding. Here, we introduce a solution that incorporates the
distance between learning and communication. Instead of pay-
ing the cost of iterative data decoding, NetHD enables hyperdi-
mensional learning to operate directly on transmitted data,
without the need for costly iterative decoding. In particular,
we enable HDC classification and clustering of transmitted data
with a choice of data compression.

5.1. Learning Encoding

NetHD encoding module maps data points to a high-dimen-
sional space. The goal of this encoder is to represent each data
as an orthogonal point, unless they are identical (shown in
Figure 3e). This feature is essential for accurate data decoding.
However, this encoder is not ideal for some learning tasks. HDC
learning fundamentally works by clustering data points that are
nonlinearly mapped into high-dimensional space. To simplify
data clustering, the encoding module needs to preserve the
correlation between input data.

5.1.1. Correlative Bases

As we explained in Section 3, chunk hypervectors, ~ℱ Cð Þ, have
been selected to uniquely map each binary vector (chunk) of L

V

digits to an orthogonal point in a high-dimensional space. To pre-
serve correlation, our function needs to map physically correlated
chunks to similar vectors. We use a quantization method as a
map function that generates correlated hypervectors for chunks.
As shown in Figure 3f, our map function generates a random

hypervector for the first chunk, ~ℱ C1ð Þ. The rest of the chunk
hypervectors are generated by transforming the random dimen-

sions of ~ℋ1. For example, ~ℋi is generated by flipping D=2L=Vþ1

dimensions of ~ℋi�1. As HDC learning is approximate, to ease

the encoding module, a group of neighboring chunks can also
be assigned to a single-chunk hypervector. For example, to rep-

resent L ¼ 8-bit chunks, we ideally require 256 chunk hypervec-
tors. However, this precision is not required thanks to the

statistical nature of ML; thus, we can quantize the chunk values
to a much smaller value, for example, 16 or 8 chunk

hypervectors.

5.1.2. Data Structured Encoding

Using a newmapping function, we can use the same encoding as

in Equation (1). The size of the chunk and the correlation of posi-
tion hypervectors may change depending on the data structure.
For example, if the encoded data correspond to a time series with

8-bit precision values, we can use the chunk size equal to 8-bit. In
addition, the position hypervector can be correlated for data with

a structure. For example, for time series, the neighbor position
hypervectors should have a higher correlation. An important note

is that HDC learning will work accurately even with random posi-
tion hypervectors. Using the correlative position hypervector only

decreases the required dimensionality to achieve the maximum
quality of HDC learning.

Figure 3g visually shows the similarity of the encoded chunks

using random and correlative bases. Each axis shows an
encoded 30-bit chunk, where chunks are of the form

Cj ¼ 00..0011..11(31� j 0s and j 1s) from j ¼ 1, 2, 3, .., 30. We

chose this representation because Cj and Cjþ1 would then have

exactly a one-bit difference and would be able to demonstrate the

similarity of the correlated encoder conveniently. As the heatmap
shows, using both random and correlative bases, the diagonal

has the highest similarity, indicating that each encoded chunk
has full similarity to itself. Our evaluation shows how our correl-
ative mapping keeps the similarity of encoded chunks with a

closer physical distance in the original space. In contrast, using
random bases, the encoded chunks cannot preserve similarity to

any other chunks, even if they are highly correlative (e.g., a single
bit difference). Note that NetHD can quantize floating point or

even complex values into discrete levels that can be a represen-
tation of our encoder. For example, a 32-bit floating-point

representation can be quantized to 8-bit before encoding.

5.2. NetHD Classification

Training starts with accumulating all encoded hypervectors cor-
responding to each class. As shown in Figure 4b, the result will

be k class hypervectors, where k is the number of classes.
Assuming there are J inputs that have the label l, the class

hypervector is computed by ~Cl ¼
P

J
j
~ℋl

j. Retraining examines

if the model correctly returns the label l for an encoded query
~ℋ. If the model mispredicts it as label l

0
, the model is updated

as follows
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~Cl ← ~Cl þ η δ
l
0 � δl

� �
� ~ℋ

~C
l
0 ← ~C

l
0 � η δ

l
0 � δl

� �
� ~ℋ

(10)

The retraining continues for multiple iterations until the
classification accuracy (over validation data) has small changes

during the last few iterations.
Inference starts by encoding the test data to a high-

dimensional space using the same encoding module used for

training. The encoded data are called the query hypervector ~ℋ

(Figure 4a). Next, we compare the similarity (δ) of ~ℋ and all
the class hypervectors to find the class with the highest similarity.

5.3. NetHD Clustering

Clustering is a native functionality supported by high-
dimensional models. In high dimension, HDC separates data
points while still preserving their correlative distances. This
enables low complexity and transparent separation of encoded
data points. We exploit the similarity search in high-dimensional
space to cluster data points in different centers.

Figure 4. a) Dimensional classification steps, b) single-pass training in hyperspace, and c) CAM array can parallelly calculate the Hamming distance
between the query and each stored entry in memory by sensing the discharge current. d) FeFET can realize an ultracompact CAM by utilizing its two VTH

states. e) The ML voltage discharge rate increases with the hamming distance. f ) The discharge rate is actually proportional to the hamming distance.
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Assume ~ℋ as a new training data point. NetHD generates k
random hypervectors as the initial cluster centers in the high-
dimensional space. HDC stores original nonbinary clusters

(~Ci) and a binarized version (~Cbi ). The encoder module generates

both nonbinary (~ℋ) and binary (~ℋb) hypervectors. Each cluster
center is updated using all data points assigned to the center, as
well as their corresponding confidence level. After assigning each

encoding hypervector ~H of inputs belonging to the center/label l,

the center hypervector ~Cl can be obtained by bundling (adding)

all ~Hs. Assuming that there are J inputs that have label l, the

cluster update happens using: ~Cl←
~Cl þ

PJ
j αj

~Hj, where ~Hi is

the encoded query data. All cluster updates are performed over
the nonbinary copy of the centers.

5.4. Data Compression

HDC learning is mainly a bundling of encoded hypervectors.
This bundling aims to create a compressed and representative
model of all train data. In practice, bundling can happen before
or after sending the encoded data. However, bundling on the
receiver is equivalent to a higher communication cost.
Instead, NetHD can perform a part of those bundling operations
during encoding to ensure holographic and compressed data
communication. NetHD encoder bundles a batch of data into
a single packet and transmits compressed data to a receiver.
Without the need for decompression or data decoding,
NetHD starts learning a model over compressed transmitted
data. Although this technique overloads the theoretical capacity
of a hypervector, our goal is only to learn the pattern (and not
accurately decode the data). NetHD learning can preserve a gen-
eral pattern of compressed data. The data compression rate, or in
general the coding rate, creates a trade-off between the accuracy
of the learning and the cost of communication. A larger compres-
sion reduces the communication cost while it may affect the
quality of learning. In Section 7.6, we show that HDC learning
is surprisingly robust to data compression.

6. Hardware Acceleration

NetHD decoding and learning involve many nearest search oper-
ations that we accelerate by exploiting CAM.[46] During learning,
the CAM can store the trained clustering or classification models
and use them to compute the distance similarity of a query. In
this section, we answer the following questions: (1) How to sup-
port the nearest search in CAM and (2) How to deal with vectors
with complex components.

6.1. In-Memory Search Operation

The exact search is one of the native operations supported by a
conventional CAM. The conventional CAM consists of two mem-
ory cells that store complementary values (Figure 4). During a
search, the row driver of the CAM block precharges all CAM rows
(matchlines:MLs) to supply voltage. The search operation starts
by loading the input query into the vertical bitlines (BLs) con-
nected to all CAM rows. The CAM based on ferroelectric

field-effect transistor (FeFET) has been shown to be ultracom-
pact, high performance, and energy-efficient, representing an
almost ideal solution for the associative search applications.[47]

FeFET based on ferroelectric HfO2 is an emerging memory that
exhibits high density, great performance, and superior energy
efficiency.[48,49] It replaces a typical high-k gate dielectric with
a ferroelectric thin film. By applying a positive/negative gate
pulse, the ferroelectric polarization direction can be set to point
at the channel/gate metal, setting the FeFET to be low-VTH

(LVT)/high-VTH state (HVT), respectively.
As shown in Figure 4d, a CAM cell can be constructed with

two FeFETs, where complementary VTH states are stored to
encode a bit of information. As an example, a bit “0” is stored
as the low-VTH state/high-VTH state for the left/right FeFET,
respectively. The query information is encoded as the search volt-

age applied to the SL and SL such that when the search matches
the stored information, a negligible discharge current flows
through the ML; otherwise, the ML rapidly discharges. For exam-

ple, the query “0” is encoded as the condition where the SL/SL is
applied with a low and high voltage such that both FeFETs are cut
off, contributing negligible current for the match condition, as
demonstrated in Figure 4e. Due to its large ON/OFF ratio, when
arranging multiple CAM cells into a CAM word, it is possible to
detect the Hamming distance between the query and the stored
entry by sensing the discharge current flowing through the ML,
as shown in Figure 4c. As each CAMword is independent of each
other, parallel calculation of the Hamming distance can be
achieved directly inside the memory without the necessity of
moving the data around.

Figure 4e,f shows our experimental results. A small FeFET
CAM word (i.e., 1� 6 array) fabricated on a 28 nm industrial
FeFET process has been tested, where all the CAM cells are writ-
ten in bit “0,” and then the query information with an increasing
number of mismatched bits is applied. The results capturing the
ML voltage waveforms clearly show that the increase in the
Hamming distance accelerates the discharge of the ML voltage.
The extracted discharge rate is shown to be linearly proportional
to the Hamming distance, as shown in Figure 4f, which verifies
the functionality of the ferroelectric CAM array.

6.2. Search with Complex Hypervectors

As we explained in Section 3, NetHD uses vectors with complex-
valued components. Here, we introduce a technique that exploits
our CAM block to store complex values and compute distance
similarity. Let us assume Q ¼ qr þ qci and A ¼ ar þ aci as two
complex numbers, indicating the single dimension of query
and stored CAM pattern. The dot product between these two val-
ues defines as

C ¼ Q ⋅ A ¼ qr ⊕ ar þ qi ⊕ aið Þ þ qi ⊕ ar � qr ⊕ aið Þi (11)

Although this similarity involves the inner product between
complex numbers, in practice, we only require a real portion
of the dot product result. This simplifies the similarity metric
to the Hamming distance, where each dimension stores real
and imaginary values as two adjacent cells. During the search,
the CAM computes the Hamming distance of both real and
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imaginary parts and accumulates its result as discharging current
on the ML. In other words, using the complex number, we can
use the same CAM block with double dimensionality.

7. Evaluation

7.1. Experimental Setup

NetHD has been implemented and evaluated using software,
hardware, and system modules. In software, we verified
NetHD encoding, decoding, and learning functionalities using
our Cþþ implementation. In hardware, we implement
NetHD on multiple embedded platforms: field programmable
gate arrays (FPGA), GPU, and the proposed CAM-based acceler-
ator. For FPGA, we describe the NetHD functionality using
Verilog and synthesize it using the Xilinx Vivado Design
Suite.[50] The synthesis code has been implemented on the
Kintex-7 FPGA KC705 Evaluation Kit using 5ns clock frequency.
We also create an optimized implementation ofNetHD on Jetson
AGX Xavier.

We perform circuit simulations based on an experimentally
calibrated FeFET compact model in ref. [51] We also tested
NetHD functionality over an experimental and fully functional
2� 2 CAM array. We exploit our CAM-based architecture to
accelerate the decoding and learning process. For system evalu-
ation, we implement an in-house simulation framework based
on NS3[52] to evaluate how NetHD performs on distributed learn-
ing in internet of things (IoT). The simulation framework eval-
uates NetHD in a hardware-in-the-loop fashion. We use NS-3 to
simulate communications on distributed network topologies
with diverse network mediums. During the simulation loop,
the simulator invokes the NetHD learning procedures (wrapped
with ApplicationContainer of NS3) on actual platforms that rep-
resent different nodes in the IoT hierarchy. NetHD is added as
the plugin module while testing data are streamed as inputs of
sensing nodes within NS3. This allows us to analyze how well
HDC can work with missing (lost packets in transmission) or
incorrect (bit errors) data.

Table 1 summarizes the practical datasets evaluated for clas-
sification. The benchmarks tested consist of large data for smart
cities, physical monitoring, and performance/power prediction.

7.1.1. PECAN

This dataset focuses on urban electricity prediction, featuring 312
attributes to model and forecast electricity usage in urban set-
tings, classified into three distinct groups. With 312 end nodes,
the dataset provides a robust framework for understanding and

predicting energy consumption with a substantial training size of

22 290 instances and a test set of 5,574 instances.

7.1.2. PAMAP2

Tailored for activity recognition using inertial measurement
units (IMUs), PAMAP2 contains 75 features across five classes,

designed to distinguish between different types of physical
activities. The dataset, divided into three end nodes, includes

a vast training set of 611 142 samples and a test set of

101 582 samples, offering extensive data for creating detailed
activity recognition models.

7.1.3. APRI

Aimed at performance identification, this dataset involves

36 features and two classes, covering a spectrum of performance

metrics. With three end nodes, APRI provides a training dataset
comprising 67 017 instances and a smaller test set of 1,241

instances, facilitating the development of models to identify
and evaluate performance outcomes effectively.

7.1.4. PDP

Designed for power demand prediction, the dataset includes

60 features across two classes, intended for modeling and fore-

casting power demand. Containing five end nodes, it offers a
training set of 17 385 instances alongside a test set of 7,334,

enabling detailed analysis and prediction of power consumption
patterns.

We also evaluate the quality of NetHD clustering on four data-

sets listed in Table 2. To measure cluster quality, we rely on cor-
rect labels of data points and find out how many points were

classified in a cluster that does not reflect the label associated
with the point.

Table 1. Classification datasets (n: feature size, K: # of classes).

n K # End nodes Train size Test size Description

PECAN 312 3 312 22 290 5574 Urban electricity prediction[66]

PAMAP2 75 5 3 611 142 10 1582 Activity recognition (IMU)[67]

APRI 36 2 3 67 017 1241 Performance identification[68]

PDP 60 2 5 17 385 7334 Power demand prediction[69]

Table 2. Clustering Datasets (n: feature size, K: # of clusters).

Data size n k Description

MNIST 70 000 784 10 Handwritten digit recognition[70]

UCIHAR 10 299 561 6 Human activity recognition[71]

SYNTHET I 1000 100 25 Synthetic data

SYNTHET II 100 000 100 25 Synthetic data
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7.1.5. MNIST

A classic benchmark for handwritten digit recognition, MNIST
contains 70 000 images with 784 features each, categorized into
ten clusters corresponding to the digits 0 through 9. This dataset
serves as a prime example for testing clustering algorithms in
image classification.

7.1.6. UCIHAR

Utilized for human activity recognition, this dataset includes
10 299 instances with 561 features each, organized into six clus-
ters. These represent different human activities, providing a
comprehensive dataset for evaluating clustering in the context
of wearable computing data.

7.1.7. SYNTHET I and SYNTHET II

These synthetic data sets are designed to test clustering
algorithms under controlled, yet challenging conditions. Both
datasets consist of 100 features with SYNTHET I containing
1,000 instances across 25 clusters and SYNTHET II encompass-
ing a larger scale with 100 000 instances also across 25 clusters.
They serve as valuable tools for assessing the scalability and effec-
tiveness of clustering methods.

In these evaluations, the focus is on the practicality and
efficiency of the NetHD clustering method, analyzing how well
it groups data points into clusters that accurately reflect the asso-
ciated labels, thereby providing insight into the algorithm’s capa-
bility to handle real-world data complexities.

NetHD has primarily three parameters: the size of the chunk
C, the dimension D, and the number of layers V. The chunk size
is the number of bits encoded in each layer. The D denotes the
number of channels being transmitted (dimensions), and V
denotes the number of layers encoded in a single series transmit-
ted. The total number of bits being transmitted is C � V , and so
the coding rate is given by R ¼ C � V=D. For example, in our
typical setting, each layer would transmit C ¼ 8 bits of informa-
tion. If we chose the number of layers to be V ¼ 8 and the
dimension to be D ¼ 128, then the coding rate is equal to
R ¼ 64=128 ¼ 0.5.

7.2. Bit Error Rate and Noise

We report various bit error rates for arbitrary bitstreams as a
function of dimensions D, layers V, and SNR (dB). Figure 5a
shows the decoding accuracy of NetHD as a function of dimen-
sion and layers for three different SNR values: �3, 0, and 5 dB.
Regardless of the number of layers and SNR values, the decoding
accuracy increases with the dimensionality of the channel. This
is due to the increasing pseudo-orthogonality of random hyper-
vectors in high-dimensional space. In other words, the
dimensionality increases the chance of randomly generated
chunk hypervectors to have distinct and orthogonal distribution,
thus decreasing the noise from cross-interference terms in
Equation (6).

As explained in Section 4.2, each hypervector has a limited
capacity to memorize information. Increasing the number of

layers, V, lowers the coding rate, as the transmitted hypervector
stores more chunk hypervectors. This increases the number of
terms that contribute to cross-interference noise during iterative
content recovery. As a result, our iterative data decoding can yield
lower accuracy. Figure 5a also shows that a lower SNR value can
increase the relative magnitude of the noise. This causes errors
in the recovery cycle, which causes a higher bit error rate. In a
fixed number of layers, NetHD with low SNR requires a higher
dimensionality to ensure highly accurate data decoding. For
example, for V ¼ 8, NetHD requires a dimensionality of 256,
128, and 64 to ensure a fully accurate data decoding for SNR
of �3 dB, 0 dB, and 5 dB.

Figure 5b shows the decoding accuracy as a function of a num-
ber of layers, V, and SNR at D ¼ 128. Increasing the SNR makes
the main signal stronger, which reduces the cross-correlation
errors in the iterative decoding method. Therefore, it results
in an increase in the decoding accuracy. Similarly, a larger num-
ber of layers, V, increases the cross-correlation noise and NetHD
decoding accuracy. Figure 5b also shows the decoding accuracy
as a function of dimension and SNR for V ¼ 6 layers. With a
larger D value, it increases the chance of orthogonality of ran-
domly generated hypervectors. It translates to lower decoding
noise during data recovery.

7.3. Decoding Iterations

Figure 5c shows the number of iterations required for conver-
gence as a function of SNR for different NetHD configurations.
The results are the average number of iterations reported for 20
evaluation runs. NetHD with large SNR has smaller noise; this
can accurately decode data with a lower number of iterations. As
the SNR decreases, the transmitted signal gets higher noises
from the network; thus, NetHD requires more iterations for data
decoding. As shown in Figure 5c,NetHD requires the maximum
number of iterations for SNRs in the range of �2 to þ2 dB.
Lowering the SNR below �2 dB, NetHD decoding can recover
information with a few iterations. This happens as NetHD can-
not ensure accurate data decoding in a highly noisy network. This
causes the converged decoded signal to be high error and ran-
dom, which requires a lower number of iterations to attain.
As a result, we observe higher variations in the number of iter-
ations as the signal strength decreases. NetHD with a larger
number of layers gets higher cross-interference noise, resulting
in a higher variation and the number of decoding iterations.

Figure 6a,b visually shows NetHD quality of decoding during
different decoding iterations and using the network with various
SNR values (V ¼ 6,D ¼ 64). Our result indicates that, regardless
of the SNR value, the decoding accuracy ofNetHD increases with
the number of iterations. However, the decoding accuracy at the
final iteration can still be imperfect when an image is transmitted
over a low-SNR network. For example, a decoded image under
SNR=�2dB has a small amount of noise, while an image
can be perfectly decoded under SNR= 0 dB.

7.4. NetHD Versus State-of-the-Art

We compare the decoding accuracy of NetHD with the state-of-
the-art HDM.[13] Figure 6c shows the difference between NetHD
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and HDM decoding accuracy under various SNR values and
using a different number of layers. All results are reported when
both NetHD and HDM have the same coding rate (R ¼ 0.5). The
results indicate that in most configurations, NetHD outperforms
HDM in terms of decoding accuracy, specifically in regions of
low noise and a small number of layers. As we showed in
Figure 6, NetHD has a 100% accuracy in these regions, while
the HDM enables approximate decoding. This is because the
HDM model encodes the vectors in a nonrandom way, while
our model generates all the lookup bases randomly, thus ensur-
ing pseudo-orthogonal chunk representation. As a result, our
model essentially does an exact search over all the layers, result-
ing in perfect data decoding.

The HDM accuracy of decoding is better than NetHD under
conditions of low SNR and a large number of layers, resulting

in large noise in the iterative decoding step. In these config-
urations, NetHD has a higher vulnerability, as noise can mod-
ify similarity so that two different random vectors that might
have larger similarities can be confused with each other. In
addition, NetHD fundamentally works based on the nearly
orthogonal distribution of patterns in a high-dimensional
space. In low-dimensional space, the vector cannot ensure
the orthogonality of hypervectors, thus increasing the cross-
interference noise. As shown in Figure 6c, for low SNR sig-
nals, NetHD should use a larger dimensionality to reduce
the impact of interference noise, thus improving the quality
of decoding. Similarly, using a large number of layers,
NetHD requires a higher dimensionality to ensure that the
capacity of an encoded hypervector does not exceed the V value
(shown in Figure 6d).

(a)

(b)

(c)

Figure 5. a) NetHD decoding as a function of number of layers and dimensionality. b) NetHD iterative decoding: a) average number of iterations,
b)NetHD decoding in fixed dimensionality and the number of layers, and c)NetHD iterative decoding (left) average number of iterations, (right) standard
deviation over 20 experiments.
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7.5. NetHD Learning Accuracy

7.5.1. NetHD Learning Accuracy

Figure 7a compares NetHD classification accuracy with the
state-of-the-art classification algorithms, including DNN in
TensorFlow,[53] support vector machine, and AdaBoost on
Scikit-learn.[54] The results are reported when all algorithms
are performing in a central node that considers all features given
in the dataset. We exploit the common practice of grid search to
identify the best hyperparameters for each model. Our evaluation
shows that NetHD provides accuracy comparable to state-of-the-
art learning solutions while operating over noisy encoded data.

Figure 7a also shows NetHD quality of clustering with the
state-of-the-art clustering approaches: k-means and locality sen-
sitive hashing (LSH cluster)[55] that clusters data after mapping
data into high-dimensional space. K-means algorithm works on
original data and uses the Euclidean distance as a similarity met-
ric. Other approaches map data points to dimensions D ¼ 4k
before clustering. For LSH- and HDC-based clustering, the
results are reported using both cosine metrics. Our evaluation
shows that NetHD provides a clustering quality comparable to
k-means, which is significantly higher than the LSH-based
approach.

7.5.2. Coding Rate

We also compare NetHD accuracy in different configurations.
NetHD accuracy depends on both dimensionality and the num-
ber of chunks. An increase in dimensionality improves hypervec-
tor capacity, thus resulting in a higher quality of learning. On the
other hand, increasing the number of chunks results in higher
data compression by storing more encoded data in each class
hypervector. As explained in Section 7.2, to ensure nearly accu-
rate data decoding, the coding rate should be around R ¼ 0.5 or

lower. However, learning algorithms are approximate and do not
require to ensure accurate data decoding. Our results indicate
that NetHD can enable accurate learning of highly compressed
data with a high coding rate. The high robustness of NetHD
learning to compression comes from two factors: (1) data com-
pression is holographic, where compressed data sufficiently
memorize the information of the individual encoded data. (2)
The compression uses the same bundling operation used for
model training. Our evaluation indicates that NetHD can ensure
maximum classification accuracy using 16� smaller data
(R ¼ 8). Even aggressive model compression of 32� (R ¼ 16)
and 64� (R ¼ 32) only adds 0.7% and 3.9% quality loss to
HDC classification.

As shown in Figure 7a (right), the HDC clustering algorithm
has a robustness similar to that of data compression. Clustering a
batch of encoded data results in the generation of a model with
similar quality to baseline clustering. Our evaluation shows that
NetHD ensures no quality loss (less than 0. 4%) for clustering
with 16� (32�) data compression, thus resulting in a significant
reduction in data communication.

7.6. NetHD Efficiency

7.6.1. NetHD Learning Efficiency

Figure 7b compares NetHD training efficiency with DNN in dif-
ferent configurations. The results are reported for both FPGA
and Jetson Xavier. The results include both communication cost
and computation cost. Although DNN training always performs
on decoded data in the receiver, NetHD learning can be per-
formed in two configurations: 1) NetHD after decoding: trans-
mitted data first become demodulated, and then we perform
the learning task over the data and 2) NetHD after encoding:
directly learning over transmitted data without need for decod-
ing. Our evaluation shows that NetHD without decoding (after

(a)

(c)

(d)(b)

Figure 6. a,b) NetHD visual decoding during different decoding iterations and under different SNR values. c,d) Difference in decoding accuracy between
NetHD and the state-of-the-art modulation. In green regions NetHD outperforms state-of-the-art.
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decoding) can provide 7.3� and 10.5� (2.8� and 4.2�) faster

and higher energy efficiency compared to DNN. As NetHD
learning without decoding eliminates significant computational

overhead, we observe higher efficiency.

7.6.2. Efficiency with Compression

Figure 7b shows the impact of coding rate (data compression) on

NetHD learning efficiency. The efficiency values are averaged
among the classification and clustering applications. Our evalu-

ation shows that the learning efficiency of NetHD improves with
increasing coding rate. This efficiency comes from: 1) a larger

coding rate reduces the communication cost by transferring

more compressed information through the network. The reduc-
tion in communication cost is linear with the coding rate. 2) A

high coding rate also improves learning efficiency because HDC
models can be trained using fewer train data in compressed

form. NetHD FPGA using R ¼ 8 (R ¼ 32) results in 5.1� and
3.8� (9.5� and 6.7�) speedup and energy efficiency improve-

ment, respectively, compared to baseline NetHD operating on

decoded data.

7.6.3. NetHD Efficiency Under Different Network Conditions

Table 3 explores the impact of network bandwidth on NetHD
computational efficiency. We have evaluated the efficiency of
NetHD performance on five network mediums: a wired network
of 1 Gbps, a wired network of 500Mbps, WiFi 802.11ac, WiFi
802.11n, and Bluetooth 4.0. The results for Jetson Xavier are
reported using R ¼ 8, ensuring no quality loss. The results show
that when the network bandwidth is more limited, NetHD
achieves higher speedup. For example, using 802.11ac with
46.5Mbps, NetHD achieves on average 4.8� speedup compared
toNetHD operating over decoded data. This speedup increases to
18.1� when we use even lower bandwidth networks such as
Bluetooth 4. In practical IoT systems, the bandwidth of the net-
work can usually be limited. The recent embedded devices, i.e.,

Table 3. NetHD efficiency using different network bandwidth.

Bluetooth 802.11n 802.11ac 500Mbps 1 Gbps

Speedup 13.2� 6.7� 4.8� 3.4� 1.9�
Energy efficiency 18.1� 7.9� 4.4� 3.1� 1.7�

(a)

(b)

(c)

Figure 7. a)NetHD quality of classification (left) and clustering (right) versus state-of-the-art and during different coding rate, b)NetHD learning speedup
and energy efficiency in different configurations and over different platforms (normalized to DNN running on Xavier), c) NetHD decoding efficiency on
different platforms.
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Raspberry Pi 3 Model Bþ, uses WiFi 802.11ac and Bluetooth 4.0,
which practically provide 23.5Mbps and 1MBps bandwidth,
respectively. Therefore, NetHD is a suitable solution for IoT sys-
tems that typically have limited bandwidth.

7.7. NetHD Acceleration on CAM

NetHD decoding and learning rely on highly parallel nearest
search operations, which can be significantly accelerated using
CAM blocks. To ensure scalability, we limit our CAM size to
1k rows, and for configurations that require larger hypervectors,
we exploit multiple CAM blocks for a parallel search. Our evalu-
ation in Figure 7c shows that our CAM outperforms the GPU
and FPGA in terms of decoding speed and energy efficiency.
The CAM capability of NetHD in offloading the search operation
is the key to its efficiency, which increases depending on the
chunk size. Our evaluation demonstrates that the CAM acceler-
ator provides faster and more energy-efficient decoding than
GPU/FPGA, especially for larger chunk sizes. For example,
our CAM provides 108.3� and 27.1� (247.4� and 4.5�) faster
and more energy efficient than GPU (FPGA).

Table 4 summarizes the improvements in performance
acceleration and energy efficiency for learning using CAM with
R ¼ 16. All results are normalized to the execution time and
energy consumption of DNN running on Jetson Xavier. Our
results indicate that the CAM accelerator can significantly
enhance NetHD computation efficiency by accelerating costly
associative search. Our evaluation shows that NetHD clustering
achieves 23.4� and 28.8� (35.8� and 22.0�) faster and higher
energy efficiency as compared to NetHD running on Jetson
Xavier (FPGA), respectively.

8. Related Work

Prior research have applied the idea of HDC to diverse cognitive
tasks, such as robotics,[23,56] latent semantic analysis,[57] language
recognition,[58] gesture recognition,[59] biosignal processing,[60,61]

and distributed sensors.[62,63] Several recent works have focused
on designing a novel hyperdimensional encoding for different
data types.[25,64] However, the encoding methods used in the pre-
vious work are mostly for specific data types and learning appli-
cations. In contrast, NetHD introduces a general encoding
scheme that deals with any arbitrary bitstream while preserving
spatial–temporal information.

Recent research in HDC mainly focused on the classification
task, aiming to design HDC learning modules for low-power
embedded devices.[22,34,65] However, all existing solutions
consider the computation power, while communication often

dominates the entire energy consumption in IoT systems with
low-bandwidth networks.[21] On the other hand, HDM is devel-
oped for ultrareliable low-latency communication.[13,17,18] HDM
already showed higher reliability than BPSK, LDPC, Polar, and
convolutional codes. However, there are multiple challenges with
existing HDM modulations: 1) HDM decoding or demodulation
is a costly iterative process that involves an extensive search for
noise cancellation. 2) the HDM is only focused on modulation
and does not get the benefits of HDC. On the contrary,
NetHD introduces an iterative demodulation technique that uses
a hardware accelerator for fast and reliable data decoding. Unlike
prior work, which focused only on communication, NetHD fun-
damentally merges HDM and learning to maximize the benefit
with a new demodulation technique and hardware design.

9. Feasibility and Future Directions

To study the feasibility and scalability of NetHD in large-scale
systems, a comprehensive approach is needed. First, evaluating
NetHD’s performance under various network conditions, includ-
ing fluctuating SNRs and bandwidth constraints, is crucial.
Understanding its resilience to different types of interference
and adaptability to changing network environments ensures reli-
ability and consistent performance. Additionally, assessing how
NetHD integrates with existing network infrastructures and
protocols is vital. It is important to determine the necessary hard-
ware and software modifications for seamless deployment and
identify potential compatibility issues with current systems.
This helps in facilitating smooth integration without substantial
overhauls to existing infrastructure. As our model works with
simple low precision operations, it is naturally robust against
noise as we show in our evaluations.

Second, conducting detailed performance benchmarks against
state-of-the-art systems is essential for gauging NetHD’s effi-
ciency. Comparisons should be made in terms of processing
speed, energy consumption, and error rates across various hard-
ware platforms. Investigating the trade-offs between data trans-
mission rates, accuracy, and computational demands,
particularly focusing on the effects of data compression and cod-
ing rates, will help in optimizing NetHD for different use cases.

Furthermore, NetHD’s learning and adaptation capabilities
warrant thorough examination. Its efficacy in processing and
classifying high-dimensional data across diverse applications
needs to be evaluated. Additionally, its ability to adapt to new data
patterns and update its models in response to changing environ-
mental inputs or requirements is critical for maintaining rele-
vance and utility in dynamic settings. Like we show in our
work, and many other work, HDC can easily learn information
from large dimensional data using kernel encodings.

Security and privacy also pose significant concerns, especially
given the high-dimensional nature of the data NetHD handles.
Strategies must be developed to ensure the integrity and confi-
dentiality of transmitted data, safeguarding against unauthorized
access or tampering. This involves assessing potential vulnerabil-
ities and implementing robust security measures tailored to
HDC environments. Due to the large dimensional random
encoding nature of HD algorithms, it can be often hard to decode
them without access to the random matrix or the codebook.

Table 4. NetHD efficiency on different platforms.

Speedup Energy efficiency

Classification Clustering Classification Clustering

GPU 14.8� 10.3� 21.4� 15.5�
FPGA 11.3 6.7� 28.9� 20.3�
CAM 183.7 242.4� 338.4� 448.6�
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Finally, understanding the diversity of users and devices that
NetHD will serve is imperative. The system must cater to a wide
range of devices, from low-power IoT sensors to high-end serv-
ers, and meet varied application-specific requirements. This
ensures that NetHD delivers optimal performance and energy
efficiency across different scenarios. Moreover, our designs
can be directly implemented in low power microcontrollers like
Arduinos and Rasberry Pi, though to utilize the full hardware
efficiency of our algorithms, it is better to equip the sensors with
specialized HD softwares. Additionally, the long-term viability,
maintenance, and upgrade paths for NetHD should be consid-
ered, alongside economic and logistical aspects, to ensure its
practical deployment and sustained operation in large-scale sys-
tems. Addressing these areas will provide a holistic understand-
ing of NetHD’s deployment potentials and practical applications.

10. Conclusion and Discussion

In this article, we introduced NetHD, a novel framework that lev-
erages HDC to enable robust and efficient data communication
and learning. NetHD integrates data modulation and learning
processes by exploiting the redundant and holographic represen-
tation of HDC vectors. NetHD encodes data into high-
dimensional vectors that can be transmitted through noisy
channels with high reliability. NetHD also enables various
HDC-based learning tasks to be performed directly over the
encoded data without costly decoding. Moreover, NetHD intro-
duces a complex-valued representation for HDC vectors that
enhances the capacity and orthogonality of the encoding scheme.
NetHD also designs a hardware accelerator based on ferroelectric
memory devices that supports fast and efficient data decoding
and learning using CAM.

NetHD addresses the challenges and opportunities of next-
generation communication systems, such as 6G networks, that
require ultralow latency, high reliability, and AI integration.
NetHD offers several advantages over existing solutions, such as:

Providing comparable bit error rate to state-of-the-art modula-
tion schemes while fundamentally merging HDM and learning.
Unlike conventional modulation schemes that require separate
modules for data encoding, decoding, and learning, NetHD uni-
fies these steps into a single pipeline by using HDC vectors as
both data carriers and feature representations for learning.
NetHD also achieves a bit error rate similar to or lower than exist-
ing modulation schemes, such as LDPC, Polar, and HDM, by
exploiting the error correction capability of HDC vectors.

Achieving significant speedup and energy efficiency improve-
ments compared to state-of-the-art deep learning systems for
both data communication and learning tasks. This is because
HDC operations use simple arithmetic functions that can be
efficiently implemented on the ferroelectric hardware.

Enabling lightweight privacy and security by exploiting the
holographic and compressed representation of HDC vectors.
NetHD encodes data into high-dimensional vectors that are
distributed over multiple symbols and channels. This makes it
difficult for eavesdroppers or adversaries to intercept or tamper
with the transmitted data without knowing the encoding param-
eters and the symbol set. NetHD also compresses the data into
lower dimensional vectors that preserve only the essential

information for learning tasks. This reduces the exposure of sen-
sitive or personal data to potential privacy breaches or attacks.

NetHD is scalable and adaptable to different network condi-
tions, data types, and learning objectives by tuning the encoding
parameters and the symbol set. NetHD allows users to adjust the
encoding parameters, such as the dimensionality, sparsity, or
orthogonality of HDC vectors, to optimize the trade-off between
performance, accuracy, and efficiency. NetHD also enables users
to select different symbol sets, such as binary, complex-valued, or
frequency domain symbols, to suit different channel character-
istics, data formats, or modulation schemes. NetHD can also
support different learning objectives, such as supervised, unsu-
pervised, or reinforcement learning, by using different HDC
operations or algorithms.

Moreover, we additionally introduce the correlative HDC
encoder, which can be used for noisy but holistic signal encoding
in cases where the data share some amount of correlations. By
using base hypervectors that are correlated, the resulting encod-
ing ensures that correlated data points are encoded into similar
data points at the cost of noise decoding. The advantage of this
process is that the encoded hypervectors can be fed directly into
different deep learning frameworks without going through
decoding, thus providing added privacy toward the original signal
values.

Some drawbacks of our work are that HDC works best on
accelerated hardware, which makes full use of the limited preci-
sion arithmetic required to minimize the number of operations
and lower energy usage. These hardware devices are not com-
monly available for use in low power sensor devices and commu-
nication nodes. Therefore, one direction of future work is trying
to accelerate HDC algorithm on traditional hardware (where
HDC is still faster than traditional deep learning methods).
Moreover, another challenge is in extending the algorithm for
longer data streams and to perform more accurate decoding with
correlated representations because this will allow us to compress
larger data sizes within the same HD space. In large-scale
systems, one aspect to be studied is studying the effects of
cross-network interference, where multiple HDC nodes are
broadcasting which can cause interference in the symbols
received. Therefore, another direction is designing methods
for coordinated communications and synchronization within
the HDC transmission framework (e.g., methods inspired by
ALOHA or Paxos).

We have evaluated NetHD using various datasets and
benchmarks and demonstrated its performance, accuracy, and
efficiency. We have also implemented NetHD on multiple
embedded platforms, such as FPGA, GPU, and CAM-based
accelerators, and showed its hardware feasibility and benefits.
We believe that NetHD is a promising technology that can revo-
lutionize IoT efficiency by providing a bioinspired framework for
intelligent and selective sensor data transmission, and will soon
find usage in multiple domains in the future.

Acknowledgements

This work was supported in part by DARPA Young Faculty Award, National
Science Foundation #2127780, #2319198, #2321840, and #2312517,
Semiconductor Research Corporation (SRC), Office of Naval Research,
grants #N00014-21-1-2225 and #N00014-22-1-2067, the Air Force

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300841 2300841 (16 of 18) © 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 2
6
4
0
4
5
6
7
, 2

0
2
4
, 7

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/aisy

.2
0
2
3
0
0
8
4
1
 b

y
 U

n
iv

ersity
 O

f C
alifo

rn
ia - Irv

in
e, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [0

6
/0

8
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o
n
s L

icen
se



Office of Scientific Research under award #FA9550-22-1-0253, and
generous gifts from Xilinx and Cisco.

Conflict of Interest

The authors declare no conflict of interest.

Author Contributions

P.P. and M.I. conceived the research. P.P., Y.Z., Z.Z., K.N., and M.I.
conducted the research and analyzed the data. All authors wrote and
reviewed the manuscript and agreed on the content of the article.

Data Availability Statement

The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Keywords

artificial intelligent, channel computing, energy efficiency,
hyperdimensional computing

Received: December 4, 2023
Revised: March 31, 2024

Published online: May 26, 2024

[1] Samsung Research, 6G: The Next Hyper Connected Experience for All,
Codeground 2020.

[2] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, Y.-J. A. Zhang, IEEE Commun.

Mag. 2019, 57, 84.
[3] Y. Zhao, G. Yu, H. Xu, arXiv:1905.04983, 2019.
[4] H. Viswanathan, P. E. Mogensen, IEEE Access 2020, 8 57063.
[5] C. Yizhan, W. Zhong, H. Da, L. Ruosen, in 2020 International Conf. on

Computer Communication and Network Security (CCNS), IEEE,
Piscataway, NJ 2020, pp. 59–62.

[6] S. Ilager, R. Muralidhar, R. Buyya, in 2020 IEEE Cloud Summit, IEEE,
Piscataway, NJ 2020 pp. 1–10.

[7] M. Iansiti, K. R. Lakhani, in Competing in the Age of AI: Strategy and

Leadership When Algorithms and Networks Run the World, Harvard
Business Press, Brighton, MA 2020.

[8] W. Sun, J. Liu, Y. Yue, IEEE Network 2019, 33, 68.
[9] P. Yang, Y. Xiao, M. Xiao, S. Li, IEEE Network 2019, 33, 70.
[10] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, H. Dai, IEEE Commun.

Surv. Tutor. 2018, 20, 3098.
[11] B. Montazeri, Y. Li, M. Alizadeh, J. Ousterhout, in Proc. of the 2018

Conf. of the ACM Special Interest Group on Data Communication,
Association for Computing Machinery, New York, NY, United
States 2018, pp. 221–235.

[12] J. Sachs, G. Wikstrom, T. Dudda, R. Baldemair, K. Kittichokechai, IEEE
Network 2018, 32, 24.

[13] H.-S. Kim, in 2018 IEEE International Conf. on Communications (ICC),
IEEE, Piscataway, NJ 2018, pp. 1–6.

[14] S. Yi, Z. Hao, Z. Qin, Q. Li, in 2015 Third IEEE Workshop on Hot Topics

in Web Systems and Technologies (HotWeb), IEEE, Piscataway, NJ
2015, pp. 73–78.

[15] F. Tang, Y. Kawamoto, N. Kato, J. Liu, Proc. IEEE 2019, 108, 292.
[16] I. Tomkos, D. Klonidis, E. Pikasis, S. Theodoridis, IT Professional 2020,

22, 34.

[17] C.-W. Hsu, H.-S. Kim, in GLOBECOM 2020-2020 IEEE Global

Communications Conf. IEEE, Piscataway, NJ 2020 pp. 1–6.
[18] C.-W. Hsu, H.-S. Kim, in 2019 IEEE Global Communications

Conference (GLOBECOM), IEEE, Piscataway, NJ 2019 pp. 1–6.
[19] P. Kanerva, Cogn. Comput. 2009, 1, 139.
[20] A. Rahimi, et al., in ISLPED, ACM, New York, NY 2016, pp. 64–69.
[21] M. Imani, Y. Kim, S. Riazi, J. Messerly, P. Liu, F. Koushanfar,

T. Rosing, in 2019 IEEE 12th International Conf. on Cloud

Computing (CLOUD), IEEE, Piscataway, NJ 2019 pp. 435–446.
[22] M. Nazemi, A. Esmaili, A. Fayyazi, M. Pedram, in 2020 IEEE/ACM

International Conference On Computer Aided Design (ICCAD), IEEE,
Piscataway, NJ 2020, pp. 1–9.

[23] A. Mitrokhin, P. Sutor, C. Fermüller, Y. Aloimonos, Sci. Robot. 2019, 4,
30.

[24] E. P. Frady, S. J. Kent, B. A. Olshausen, F. T. Sommer,Neural Comput.

2020, 32, 2311.
[25] E. P. Frady, D. Kleyko, F. T. Sommer, Neural Comput. 2018, 30, 1449.
[26] Y. Ni, H. Chen, P. Poduval, Z. Zou, P. Mercati, M. Imani, in 2023

IEEE/ACM International Conference on Computer Aided Design

(ICCAD), IEEE, Piscataway, NJ 2023, pp. 01–09.
[27] P. Poduval, M. Issa, F. Imani, C. Zhuo, X. Yin, H. Najafi, M. Imani, in

2021 IEEE/ACM International Symposium on Nanoscale Architectures

(NANOARCH), IEEE, Piscataway, NJ 2021, pp. 1–6.
[28] M. Imani, A. Zakeri, H. Chen, T. Kim, P. Poduval, H. Lee, Y. Kim,

E. Sadredini, F. Imani, in Proc. of the 59th ACM/IEEE Design

Automation Conf., IEEE, Piscataway, NJ 2022, pp. 31–36.
[29] A. Cano, N. Matsumoto, E. Ping, M. Imani, in Design, Automation &

Test in Europe Conference & Exhibition (DATE), IEEE, Piscataway, NJ
2021.

[30] D. Kleyko, M. Davies, E. P. Frady, P. Kanerva, S. J. Kent,
B. A. Olshausen, E. Osipov, J. M. Rabaey, D. A. Rachkovskij,
A. Rahimi, F. T. Sommer, arXiv:2106.05268, 2021.

[31] P. Poduval, Z. Zou, H. Najafi, H. Homayoun, M. Imani, in 2021 58th

ACM/IEEE Design Automation Conf. (DAC), IEEE, Piscataway, NJ
2021, pp. 1195–1200.

[32] P. Poduval, Y. Ni, Y. Kim, K. Ni, R. Kumar, R. Cammarota, M. Imani,
in IEEE/ACM International Conference on Computer-Aided Design

(ICCAD), IEEE, Piscataway, NJ 2021.
[33] M. Imani, A. Rahimi, D. Kong, T. Rosing, J. M. Rabaey, in 2017 IEEE

Int. Symp. on High Performance Computer Architecture (HPCA), IEEE,
Piscataway, NJ 2017, pp. 445–456.

[34] A. Moin, A. Zhou, A. Rahimi, A. Menon, S. Benatti, G. Alexandrov,
S. Tamakloe, J. Ting, N. Yamamoto, Y. Khan, F. Burghardt,
L. Benini, A. C. Arias, J. M. Rabaey, Nat. Electron. 2021, 4, 54.

[35] G. Karunaratne, M. Schmuck, M. Le Gallo, G. Cherubini, L. Benini,
A. Sebastian, A. Rahimi, Nat. Commun. 2021, 12, 2468.

[36] P. Poduval, Y. Ni, Y. Kim, K. Ni, R. Kumar, R. Cammarota, M. Imani,
in Proc. of the 59th ACM/IEEE Design Automation Conf., IEEE,
Piscataway, NJ 2022, pp. 367–372.

[37] B. Khaleghi, M. Imani, T. Rosing, arXiv:2005.06716, 2020.
[38] P. Kanerva, in ICANN 98, Springer, New York, NY 1998, pp. 387–392.
[39] M. Imani, D. Kong, A. Rahimi, T. Rosing, in 2017 IEEE International

Conf. on Rebooting Computing (ICRC), IEEE, Piscataway, NJ 2017

pp. 1–8.
[40] P. Neubert, S. Schubert, P. Protzel, KI 2019, 33, 319.
[41] C. Yeung, P. Poduval, M. Imani, arXiv:2403.13218, 2024.
[42] Y. Kim, M. Imani, N. Moshiri, T. Rosing, in 2020 Design, Automation &

Test in Europe Conf. & Exhibition (DATE), IEEE, Piscataway, NJ 2020,
pp. 115–120.

[43] Z. Zou, H. Chen, P. Poduval, Y. Kim, M. Imani, E. Sadredini,
R. Cammarota, M. Imani, in Proc. of the 49th Annual International

Symp. on Computer Architecture, Association for Computing
Machinery, New York, NY, United States 2022, pp. 656–669.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300841 2300841 (17 of 18) © 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 2
6
4
0
4
5
6
7
, 2

0
2
4
, 7

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/aisy

.2
0
2
3
0
0
8
4
1
 b

y
 U

n
iv

ersity
 O

f C
alifo

rn
ia - Irv

in
e, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [0

6
/0

8
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o
n
s L

icen
se



[44] P. Poduval, Z. Zou, X. Yin, E. Sadredini, M. Imani, in 2021 58th ACM/

IEEE Design Automation Conference (DAC), IEEE, Piscataway, NJ 2021,
pp. 781–786.

[45] P. Poduval, H. Alimohamadi, A. Zakeri, F. Imani, M. H. Najafi,
T. Givargis, M. Imani, Front. Neurosci. 2022, 16 757125.

[46] K. Pagiamtzis, A. Sheikholeslami, IEEE J. Solid-State Circuits 2006, 41,
712.

[47] X. Yin, K. Ni, D. Reis, S. Datta, M. Niemier, X. S. Hu, IEEE Trans.

Circuits Syst. II: Express Briefs 2018, 66, 1577.
[48] S. Salahuddin, K. Ni, S. Datta, Nat. Electron. 2018, 1, 442.
[49] T. Mikolajick, U. Schroeder, S. Slesazeck, IEEE Trans. Electron Dev.

2020, 67, 1434.
[50] T. Feist, White Paper 2012, 5.
[51] K. Ni, M. Jerry, J. A. Smith, S. Datta, in 2018 IEEE Symposium on VLSI

Technology, IEEE, Piscataway, NJ 2018, pp. 131–132.
[52] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, J. Kopena,

SIGCOMM Demonstr. 2008, 14, 527.
[53] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,

G. S. Corrado, S. Ghemawat, J. Dean, M. Devin, S. Ghemawat,
I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,
L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore,
D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, et al., arXiv:1603.04467, 2016.

[54] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
É. Duchesnay, J. Mach. Learn. Res. 2011, 12, 2825.

[55] X. Shen, W. Liu, I. Tsang, F. Shen, Q.-S. Sun, in Proceedings of the

AAAI Conference on Artificial Intelligence, Vol. 31, AAAI Press,
Washington, DC, USA 2017.

[56] S. Jockel, Crossmodal learning and prediction of autobiographical

episodic experiences using a sparse distributed memory 2010.

[57] P. Kanerva, J. Kristofersson, A. Holst, in Proceedings of the 22nd

Annual Conference of the Cognitive Science Society, Vol. 1036.
Citeseer 2000.

[58] A. Joshi, J. Halseth, P. Kanerva, Quantum Interaction 2016 Conf.

Proceedings, in Press.
[59] A. Rahimi, S. Benatti, P. Kanerva, L. Benini, J. M. Rabaeyet, in ICRC,

IEEE, Piscataway, NJ 2016, pp. 1–8.
[60] A. Burrello, K. Schindler, L. Benini, A. Rahimi, in 2018 IEEE Biomedical

Circuits and Systems Conference (BioCAS), IEEE, Piscataway, NJ 2018,
pp. 1–4.

[61] D. Kleyko, A. Rahimi, D. A. Rachkovskij, E. Osipov, J. M. Rabaey, IEEE
Trans. Neural Netw. Learn. Syst. 2018, 99, 1.

[62] D. Kleyko, E. Osipov, in 2014 International Conference on Computer and

Information Sciences (ICCOINS), IEEE, Piscataway, NJ 2014, pp. 1–6.
[63] D. Kleyko, E. Osipov, N. Papakonstantinou, V. Vyatkin, IEEE Access

2018, 6 30766.
[64] E. P. Frady, D. Kleyko, C. J. Kymn, B. A. Olshausen, F. T. Sommer,

arXiv:2109.03429, 2021.
[65] M. Imani, J. Morris, J. Messerly, H. Shu, Y. Deng, T. Rosing, in

Proceedings of the 56th Annual Design Automation Conf. 2019, IEEE
Press 2019, pp. 1–6.

[66] Pecan Street Dataport, https://dataport.cloud/ (accessed: December
2022).

[67] A. Reiss, D. Stricker, in ISWC, IEEE, Piscataway, NJ 2012, pp. 108–109.
[68] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,

X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, I. Stoica, Commun. ACM 2016, 59, 56.

[69] Y. Kim, P. Mercati, A. More, E. Shriver, T. Rosing, in 2017 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), IEEE,
Piscataway, NJ 2017, pp. 683–690.

[70] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Proc. IEEE 1998, 86, 2278.
[71] D. Anguita, et al., in AAL Springer, New York, NY 2012 pp. 216–223.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300841 2300841 (18 of 18) © 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 2
6
4
0
4
5
6
7
, 2

0
2
4
, 7

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/aisy

.2
0
2
3
0
0
8
4
1
 b

y
 U

n
iv

ersity
 O

f C
alifo

rn
ia - Irv

in
e, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [0

6
/0

8
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o
n
s L

icen
se


	NetHD: Neurally Inspired Integration of Communication and Learning in Hyperspace
	1. Introduction
	2. NetHD Design
	2.1. Overview
	2.2. Preliminary of HDC
	2.2.1. Hyperdimensional Arithmetic


	3. NetHD Encoding
	3.1. Chunk Mapping
	3.2. Preserving Position
	3.3. Encoding
	3.4. Random Hypervector Generation with Complex Bases

	4. NetHD Demodulation
	4.1. NetHD Decoding
	4.2. Noise and Error Recovery

	5. Learning in High Dimension
	5.1. Learning Encoding
	5.1.1. Correlative Bases
	5.1.2. Data Structured Encoding

	5.2. NetHD Classification
	5.3. NetHD Clustering
	5.4. Data Compression

	6. Hardware Acceleration
	6.1. In-Memory Search Operation
	6.2. Search with Complex Hypervectors

	7. Evaluation
	7.1. Experimental Setup
	7.1.1. PECAN
	7.1.2. PAMAP2
	7.1.3. APRI
	7.1.4. PDP
	7.1.5. MNIST
	7.1.6. UCIHAR
	7.1.7. SYNTHET I and SYNTHET II

	7.2. Bit Error Rate and Noise
	7.3. Decoding Iterations
	7.4. NetHD Versus State-of-the-Art
	7.5. NetHD Learning Accuracy
	7.5.1. NetHD Learning Accuracy
	7.5.2. Coding Rate

	7.6. NetHD Efficiency
	7.6.1. NetHD Learning Efficiency
	7.6.2. Efficiency with Compression
	7.6.3. NetHD Efficiency Under Different Network Conditions

	7.7. NetHD Acceleration on CAM

	8. Related Work
	9. Feasibility and Future Directions
	10. Conclusion and Discussion


