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Abstract

We present an extension of several results on pairs and varieties to foliated
surface pairs. We prove the boundedness of local complements, the local index
theorem, and the uniform boundedness of minimal log discrepancies (mlds), as
well as establishing the existence of uniform rational lc polytopes. Furthermore,
we address two questions posed by P. Cascini and C. Spicer on foliations, provid-
ing negative responses. We also demonstrate that the Grauert-Riemenschneider
type vanishing theorem generally fails for lc foliations on surfaces. In addition,
we determine the set of minimal log discrepancies for foliated surface pairs with
specific coefficients, which leads to the recovery of Y.-A. Chen’s proof on the
ascending chain condition conjecture for mlds for foliated surfaces.
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1 Introduction

We work over the field of complex numbers C.

The study of foliations is a major topic in birational geometry. In recent years,
there has been significant progress on the minimal model program for foliated varieties
in dimension < 3, as seen in [15, 16, 54, 55]. While the global structures for foliations
of dimension < 3 are mostly settled from the point of view of the minimal model
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program, there is still much to be explored regarding the local structure of foliations,
i.e. the singularities of foliations.

A recent important contribution to the study of singularities of foliations is Y.-
A. Chen’s classification of Q-Gorenstein lc foliated surface singularities [19, Theorem
0.1]. As an application, Y.-A. Chen shows that the minimal log discrepancies (mlds)
of foliated surface pairs with DCC coefficients satisfy the ascending chain condition
(ACC) [19, Theorem 0.2]. It then becomes interesting to ask whether other stan-
dard conjectures in birational geometry, such as the boundedness of complements and
Shokurov’s local index conjecture, will also hold for foliations. In this paper, we study
the analogues of these conjectures for surfaces.

Local complements for foliated surfaces. Complements theory is an essential tool
in modern birational geometry. Birkar famously proved the existence of complements
for any Fano type variety [7, Theorem 1.8], which was later used in the proof of the
BAB conjecture [8]. This theory can be naturally applied to foliations as well. For
example, foliated 1-complements have played a crucial role in proving the existence of
flips for rank 1 foliated threefolds [15].

It is natural to ask whether the boundedness of complements also holds for foli-
ations. In this paper, we prove the boundedness of local complements for foliated
surfaces:

Theorem 1.1. Let ¢ be a non-negative real number and I' C [0,1] be DCC' set. Then
there exists a positive integer N depending only on € and I' satisfying the following.

Assume that (X 3 x,F, B) is an e-lc foliated surface germ such that B € T'. Then
(X 3 @, F,B) has an (¢, N)-complement (X > x,F,B7T), i.e. an e-lc foliated germ
(X 5>, F,B") such that NBT™ > N|B| + | (N +1){B}] and N(Kr+ B%) is Cartier
near .

Moreover, if I' C Q, then we may take BT > B.

Theorem 1.1 provides positive evidence supporting the boundedness of comple-
ments for foliations. We refer the reader to Definition 2.9 for a formal definition of
complements for surfaces and to Conjecture 5.1 for a formal statement on the conjec-
ture of the boundedness of complements for foliations. We plan to prove the global and
relative cases of the boundedness of complements for foliated surfaces in future work.

In the special case when I' = 0, [14, Question 4] inquires about whether a 1-
complement for a (relatively) Fano-type foliation always exists. For the local case of
foliated surfaces, we have the following result, which provides a negative answer to
[14, Question 4]:

Theorem 1.2. Let (X > xz,F) be a foliated lc surface germ such that rank F = 1.
Then (X 3 x, F) has a 2-complement. Moreover, there are cases when (X 3 x,F) do
not have a 1-complement.

Theorem 1.2 suggests that even for rank 1 foliations on surfaces, the existence
of a 1-complement may be too optimistic, despite the expectation of boundedness
of complements for foliations. We also note that non-exceptional surface singularities
always have either a 1-complement or a 2-complement. Therefore, it is possible that
the explicit values of n in the boundedness of foliated n-complements are related to
the explicit values of n in the boundedness of n-complements for non-exceptional pairs
of the same dimension.



Shokurov’s local index theorem. An immediate application of Theorem 1.1 is the
local index theorem for foliated surfaces:

Theorem 1.3. Let a be a non-negative rational number and T' C [0,1]NQ a DCC
set. Then there exists a positive integer I depending only on a and I satisfying the
following.

Assume that (X > z,F,B) is a foliated surface germ, such that B € T and
mld(X >z, F,B) = a. Then I(Kr + B) is Cartier near x.

Theorem 1.3 can be interpreted as a result in the direction of solving Shokurov’s
local index conjecture for foliated surfaces, which was posed in [17, Conjecture 6.3].
This conjecture is an important open problem in the study of foliations and has
attracted significant attention in recent years. We provide a formal statement of the
conjecture and its background in Conjecture 5.2 below.

Minimal log discrepancies. In this paper, we provide a characterization of the set
of minimal log discrepancies of foliated surface singularities.
Theorem 1.4. Let T' C [0,1] be a set. Then

{mld(X 32, F,B) | dimX =2,rank F =1,B €T’}

1-) cvi
:{O,Q|n€N+,ci€N,%€F}ﬂ[O,1].
n

Theorem 1.4 implies the the following two results in [19)].
Corollary 1.5 (=[19, Remark 4.9]).

1
{mld(X >z, F) |dim X = 2,rank F =1} = {0,— |ne N+}.
n

Corollary 1.6 (=[19, Theorem 0.2]). LetI' C [0,1] be a DCC set. Then
{mld(X 32, F,B) | dimX = 2,rank F =1,B €T’}

satisfies the ACC.

In addition to considering the possible values of mlds, it is also natural to
investigate the structure of divisors that compute the mlds. We have the following
result:

Theorem 1.7. Let I' C [0,1] a DCC set. Then there exists a positive real number
depending only on I' satisfying the following.

Assume that (X 3 x, F, B) is an lc foliated surface germ such that B € T'. Then
there exists a prime divisor E over X 3 x, such that a(E,F,B) = mld(X > z, F, B)
and a(E,F,0) <.

We remark that the condition “Kz is Q-Cartier” is not necessary in Theorem 1.7,
as mld is well-defined for numerically lc foliations, as defined in Definition 3.12.

Theorem 1.7 is a foliated surface case of the uniform boundedness conjecture for
mlds, which can be found in [29, Conjecture 8.2] (with an earlier form presented in
[44, Conjecture 1.1]). More details on the conjecture and its background are provided
in Conjecture 5.8 below.



Uniform rational lc polytopes. The last result in our paper is the existence of a
uniform rational lc polytope for foliated surfaces. The theorem statement is as follows:
Theorem 1.8. Let v?,...,09 be positive integers and vo := (v9,...,00,). Then there
ezists an open set U 3 vg of the rational envelope of vo satisfying the following.

Let (X, F,B =Y ", v?B;) be any lc foliated triple of dimension < 2, where B; > 0
are distinct Weil divisors. Then (X, F,B = >_"" v;B;) is lc for any (v1,...,vm) € U.

Theorem 1.8 provides a positive answer to [40, Conjecture 1.6] in dimension 2,
and it will be a key ingredient in our future work on the complete version (the real
coefficients case) of the global ACC for foliated threefolds. Additionally, Theorem
1.8 can be viewed as the foliated surface case of the existence of uniform rational lc
polytopes for usual pairs [28, Theorem 5.6].
Sketch of the paper. In Section 2 we introduce some preliminaries for foliations and also
define complements for foliations. In Section 3 we recall the knowledge of foliations on
surfaces, introduce and classify numerically lc foliated surface singularities. In Section
4 we prove all the other main theorems. In Section 5, we formally state the foliated
version of some standard conjectures in the minimal model program and discuss their
background.

2 Preliminaries

We work over the field of complex numbers C. Our notation and definitions for alge-
braic geometry follow the standard references [9, 37]. For foliations, we adopt the
notation and definitions introduced in [40], which are based on those in [4, 15, 16].

2.1 Foliations

Definition 2.1 (Foliations, cf. [16, Section 2.1]). Let X be a normal variety. A
foliation on X is a coherent sheaf 7 C T'x such that

1. F is saturated in Tx, i.e. Tx/F is torsion free, and
2. F is closed under the Lie bracket.

The rank of the foliation F is the rank of F as a sheaf and is denoted by rank F. The
co-rank of F is dim X —rank F. The canonical divisor of F is a divisor K such that
Ox(—KgF) = det(F).

Definition 2.2 (Singular locus). Let X be a normal variety and let F be a rank r
foliation on X. We can associate to F a morphism

¢: QY - Ox(Kx)

defined by taking the double dual of the r-wedge product of the map QY — F*,
induced by the inclusion F — T’x. This yields a map

¢ () @ Ox(—K7))VY — Ox

and we define the singular locus, denoted as Sing F, to be the co-support of the image
of ¢'.



Definition 2.3 (Pullback and pushforward, cf. [4, 3.1]). Let X be a normal variety,
F a foliation on X, f:Y --» X a dominant map, and g : X --+ X’ a birational map.
We denote f~1F the pullback of F on Y as constructed in [22, 3.2]. We also say that
f~LF is the induced foliation of F on Y. We define g,F := (¢g7!)~1F and denote it
by g..F.

Definition 2.4 (Invariant subvarieties, cf. [4, 3.1]). Let X be a normal variety, F a
foliation on X, and S C X a subvariety. We say that S is F-invariant if and only if
for any open subset U C X and any section 9 € H°(U, F), we have

0(Zsnv) C Isnu

where Zgny is the ideal sheaf of SNU.
Definition 2.5 (Non-dicritical singularities, cf. [16, Definition 2.10]). Let X be a
normal variety and F a foliation of co-rank 1 on X. We say that F has non-dicritical
singularities if for any closed point # € X and any birational morphism f: X’ — X
such that f=1({z}) is a divisor, each component of f~!({z}) is f~!F-invariant.
Definition 2.6 (Special divisors on foliations, cf. [16, Definition 2.2]). Let X be a
normal variety and F a foliation on X. For any prime divisor C' on X, we define
er(C) :=11if C is not F-invariant, and ex(C) := 0 if C' is F-invariant. If F is clear
from the context, then we may use ¢(C) instead of ¢x(C'). For any R-divisor D on X,
we define

D7 = > er(0) - C.

C'is a component of D

Let E be a prime divisor over X and f : ¥ — X a projective birational morphism
such that £ on Y. We define ez (E) := e;-17(E). It is clear that ex(F) is independent
of the choice of f.
Definition 2.7. A foliated sub-triple (X/Z > z,F, B) consists of a normal quasi-
projective variety X, a foliation F on X, an R-divisor B on X, and a projective
morphism X — Z, and a (not necessarily closed) point z € Z, such that Kr + B is
R-Cartier over a neighborhood of z.

If F = Tx, then we may drop F and denote (X/Z > z, F, B) by (X/Z > z, B), and
say that (X/Z 3 z, B) is a sub-pair. If B > 0 over a neighborhood of z, then we say
that (X/Z 3 z,F, B) is a foliated triple. If F = Tx and B > 0 over a neighborhood
of z, then we say that (X/Z > z, B) is a pair.

Let (X/Z 3 z, F, B) be a foliated (sub-)triple. If X — Z is the identity morphism,
then we may drop Z and denote (X/Z > z,F,B) by (X > z,F,B), and say that
(X 3 z,B) is a foliated (sub-)germ. If F = Tx and X — Z is the identity morphism,
we may drop Z and say that (X > z, B) is a (sub-)germ.

If (X/Z > z,F,B) (resp. (X 3 2, F,B), (X/Z 3 z,B), (X > z,B)) is an foliated
(sub-)triple (resp. foliated (sub-)germ, (sub-)pair, (sub-)germ) for any z € Z, then
we say that (X/Z,F,B) (resp. (X,F,B), (X/Z,B), (X, B)) is a foliated (sub-)triple
(resp. foliated (sub-)triple, (sub-)pair, (sub-)pair).

Definition 2.8. Let (X/Z > z, F, B) be a foliated (sub-)triple. For any prime divisor
E over X, let f:Y — X be a birational morphism such that E is on Y, and suppose
that

Kr, + By = f"(Kr + B)



over a neighborhood of z, where Fy := f~1F. We define a(E, F, B) := —multg By
to be the discrepancy of E with respect to (X, F, B). It is clear that a(E,F,B) is
independent of the choice of Y. If F = Tx, then we let a(E, X, B) := o(E, F, B).

Let 0 be a non-negative real number and (X/Z 5 z, F, B) a foliated (sub-)triple,
We say that (X/Z > z,F, B) is (sub-)lc (resp. (sub-)klt, (sub-)d-lc, (sub-)o-kit, (sub-
)eanonical, (sub-)terminal) it a(E,F,B) > —exr(E) (resp. > —exr(E), > —er(E) + 9,
> —ex(E)+ 9, >0, > 0) for any prime divisor F over z, i.e. the closure of the image
of £ on Z is z. We define

mld(X/Z > z, F,B) :=inf{a(E, F,B) + ¢x(E) | E is over z}

to be the minimal log discrepancy (mld for short) of mld(X/Z > z, F, B).

Let (X, F,B) be a foliated (sub-)triple. We say that (X, F, B) is (sub-)lc (resp.
(sub- )klt, (sub-)d-le, (sub-)o-kit) if (X > x, F,B) is (sub-)lc (vesp. (sub-)klt, (sub-)d-
le, (sub-)d-kit) for any point x € X. We say that (X, F, B) is (sub-)canonical (resp.
(sub-)terminal) if (X > x,F,B) is (sub-)canonical (resp. (sub-)terminal) for any
codimension > 2 point z € X.

2.2 Complements

Definition 2.9. Let n be a positive integer, ¢ a non-negative real number, T’y C (0, 1]
a finite set, and (X/Z 3 2, F,B) and (X/Z > z,F, B™) two foliated triples. We say
that (X/Z 3 2z, F, B") is an (¢, R)-complement of (X/Z > z,F, B) if

® (X/Z >z, F,B7) is elc,

e Bt > B, and

e Kr+ BT ~p 0 over a neighborhood of z.

We say that (X/Z 3 2, F, BT) is an (¢,n)-complement of (X/Z > z, F, B) if
* (X/Z > 2, F,B7) is elc,

e nBT > [(n+1){B}|+n|B], and
e n(Kx+ BT) ~ 0 over a neighborhood of z.

We say that (X/Z > z,F,B) is (e, R)-complementary if (X/Z > z,F,B) has an
(€, R)-complement. We say that (X/Z > z,F, BT) is a monotonic (e, n)-complement
of (X/Z 3 2, F,B) if (X/Z > z,F,B7) is an (¢,n)-complement of (X/Z > z, F, B)
and Bt > B.

(0,R)-complement  (resp. (0,n)-complement, (0,R)-complementary, (0,n)-
complementary) is also called R-complement (resp. n-complement, R-complementary,
n-complementary).

3 Foliations on surfaces

3.1 Resolution of foliated surfaces

Definition 3.1. Let X be a normal surface, F a foliation on X, and 2 € X a closed
point such that = ¢ Sing(X) and x € Sing(F). Let v be a vector field generating F



near z. By [13, Page 2, Line 17-18], v(z) = 0 and (Dv)|, has exactly two eigenvalues
)\1 and )\2.

We say that x is a reduced singularity of F if at least one of A\; and Ay is not 0
(say, A2) and :\\—; Z QT. We say that z is a non-degenerate reduced singularity of F if =

is a reduced singularity of F and i—; ¢ {0, 00}, i.e. Ay and Ay are both not equal to 0.
We say that F has at most reduced singularities if for any closed point p € X, F
is either non-singular at p or p is a reduced singularity of F.
An F-exceptional curve is a non-singular rational curve £ on X such that

1. X is smooth near F and E? = —1,
2. there exists a divisorial contraction f: X — Y of E, and
3. f(E) is a reduced singularity of f..F.

Definition 3.2 (Minimal resolution). Let X be a normal surface, F a foliation on X,
f:Y — X a projective birational morphism, and Fy := f~1F.

We say that f is a resolution of F if Y is smooth and Fy has at most reduced
singularities. We say that f is the minimal resolution of F if for any resolution g :
W — X of F, g factors through f, i.e. there exists a projective birational morphism
h: W — Y such that g = f o h. By definition, the minimal resolution of F is unique
if it exists.

For any closed point x € X, the minimal resolution of F > z is the minimal
resolution of F for any sufficiently small neighborhood of x.

Proposition 3.3 ([19, Proposition 1.17]). Let X be a normal surface and F a foliation
on X. Then the minimal resolution of F exists.

3.2 Invariants of curves on foliated surfaces

Definition 3.4. Let X be a normal surface with at most cyclic quotient singularities,
F a foliation on X, and C' a reduced curve on X such that no component of C is
F-invariant. For any closed point 2 € X, we define tang(F, C, x) in the following way.

o If z ¢ Sing(X), then we let v be a vector field generating F around z, and f a
holomorphic function defining C' around z. We define

Oxa
tang(F, C, z) := dim¢ m

e If z € Sing(X), then z is a cyclic quotient singularity of index r for some integer
r>2 Let p: X — X be an index 1 cover of X 3, & := p~Y(z), C := p*C, and F
the foliation induced by the sheaf p*F near z. Then Z is a smooth point of X, and
we define

1 -
tang(F,C, x) := ;tang(}“, C, 7).

We define
tang(F,C) := Z tang(F, C, x).
reX
By [12, Section 2], tang(F, C) is well-defined.



Definition 3.5. Let X be a smooth surface, F a foliation on X, and C' a reduced
curve on X such that all components of C' are F-invariant. For any closed point x € X,
we define Z(F,C, ) in the following way.

Let w be a 1-form generating F around z, and f a holomorphic function generating
C around z. Then there are uniquely determined holomorphic functions g,h and a
holomorphic 1-form 1 on X near z, such that gw = hdf + fn and f,h are coprime.
We define

h
Z(F,C,z) := the vanishing order of —|¢ at x.
)

By [13, Chapter 2, Page 15], Z(F, C,x) is independent of the choice of w.
We define
Z(F,C) =Y Z(F,C,ux).
zeC
Theorem 3.6 (cf. [13, Chapter 2]). Let X be a smooth quasi-projective surface, F a
foliation on X, and C' a compact reduced curve on X .

1. If no components of C is F-invariant, then
Kz - C+ C? = tang(F,O).
2. 1If all components of C are F-invariant, then
Kr-C=Z(F,C)—x(C)

where x(C) == —Kx - C — C?.

The following lemma is a variation of Theorem 3.6(1).
Lemma 3.7 (cf. [13, Proposition 2.2]). Let X be a smooth surface, F a foliation
on X, and C a compact reduced curve on X such that no component of C is F-
invariant. Then there exists a Weil divisor D > 0 on C such that (Kr + C)|c ~ D
and deg D = tang(F,C).

Proof. We choose an open covering {U;} of X , holomorphic vector field v; on U;
generating F, and holomorphic functions f; on U; defining C. On the intersections
U; NU; we have v; = g;;v; and f; = fi;f;, where g; ; are cocycles representing
TY = Ox(Kz)and f; j are cocycles representing Ox (C'). Hence the functions {v;(f;)}
restricted to C' give a section of (T% ® Ox(C))|c, because by Leibniz’s rule,

vi(fi) = 9ijvi(fij f5) = 9i,5 fi5vi(f5) + 9i5fi05(fiz)

and g; ; f;v;(fi;) = 0 on C. We let D be a section of (T ® Ox(C))|c, then (Kr +
C)|c ~ D > 0. Moreover, D vanishes at the points of C' where F is not transverse to
C, and the vanishing order is nothing but that tang(F,C). In other words, deg D =
tang(F, C). O



3.3 Dual graphs

Definition 3.8 (Dual graph). Let n be a non-negative integer, and C' = U ;C; a
collection of irreducible curves contained in the non-singular locus of a normal surface

X. We define the dual graph D(C) of C as follows.

1. The vertices v; = v;(C;) of D(C') correspond to the curves C;.

2. For i # j, the vertices v; and v; are connected by C; - C; edges.

3. Each vertex v; is labeled by w(C;) := —C?. The integer w(C;) is called the weight
of Cz

We sometimes write the name of the curve C; near the vertex v;. We say that D(C)
is a cycle if

® cither n =2 and C; - Cy = 2, or
® n > 3, and possibly reordering indices, we have

-C-Cyj=1if|i—jl=1or {i,j} ={1,n}, and
fCi-Cj:Oif|i—j|22and{i,j}7é{1,n}.

We say that D(C) contains a cycle if there exists a sub-dual graph of D(C') that is a
cycle. We say that D(C) is a tree if

e D(C') does not contain a cycle, and
e C;-C; <1foranyi#j.

The intersection matriz of D(C) is defined as the matrix (C; - Cj)1<i j<n if C # 0.
The determinant of D(C) is defined as

det(D(C)) := det(—(C; - Cj)1<ij<n)

if C # 0, and det(D(C)) :=1if C = 0.

A fork of D(C) is a curve C; such that C; - C; > 1 for at least three different j # 1,
and we also say that v; is a fork. A tail of D(C) is a curve C; such that C; - C; > 1
for at most one j # i, and we also say that v; is a tail. A chain is a dual graph that
is a tree which does not contain a fork.

For any 4, j, we say that C; and C; are adjacent if i # j and C; - C; > 1.

For any projective birational morphism f : Y — X between surfaces, let F =
U, E; be the reduced exceptional divisor for some non-negative integer n. Suppose
that E is contained in the non-singular locus of Y. Then we define D(f) := D(E).
Definition 3.9 (Dual graph on a foliated surface). Let n be a positive integer, X a
normal surface, F a foliation on X, and C' = U}, C; a collection of irreducible curves
contained in the non-singular locus of X.

1. We say that C' = U}, C} is a string if
(a) for any i, C; is a smooth rational curve, and
(b) for any 1, 7,



2. We say that C = U} C; is a Hirzebruch-Jung string if C' = U], C; is a string and
C? < —2 for any 1.
3. We say that C = U}, C; is an F-chain if
(a) C =UP_,C; is a Hirzebruch-Jung string,
(b) C; is F-invariant for any i,
(c) for any closed point x € C, either x ¢ Sing(F), or z is a non-degenerate reduced
singularity of F, and
(d) Z(F,Cy) =1, and Z(F,C;) =2 for any i > 2.

3.4 Surface foliated numerical triples

[43, Fact 1.2.4] have classified all foliated surface singularities (X 3 z, F) such that F
is canonical at x, while [19, Theorem 0.1] has classified all foliated surface singularities
(X 3z, F) such that F is lc at . However, in practice, we may usually come up with
the structure of lc foliated germs (X > z, F, B). If B # 0, then we don’t know whether
K7 is Q-Cartier near x or not, so the forementioned classification results cannot be
directly applied. To resolve this issue, we need to introduce the concept of numerical
surface singularities of foliations and provide the classification of numerically lc surface
singularities of foliations.

From now until the end of this section, we present a detailed characterization of

lc foliated surface singularities. We define numerically lc (num-lc for short) foliated
surface singularities similar to the definition of num-lc singularities for usual surface
singularities. We then classify all num-lc foliated surface singularities. Although the
result is very similar to [19, Theorem 0.1], for the reader’s convenience, we provide a
complete and detailed proof in this section.
Definition 3.10. A surface foliated numerical sub-triple (surface foliated num-sub-
triple for short) (X, F, B) consists of a normal surface X, a rank 1 foliation F on X,
and an R-divisor B on X. We say that (X, F, B) is a surface foliated numerical triple
(surface foliated num-triple for short) if (X, F, B) is a surface foliated num-sub-triple
and B > 0. A surface foliated numerical germ (surface foliated num-germ for short)
(X >z, F, B) consists of a surface foliated num-triple (X, F, B) and a closed point
reX.

Let (X, F,B) be a surface foliated num-sub-triple. Let f : ¥ — X of X be a
resolution of X with prime f-exceptional divisors Ei,..., E, for some non-negative
integer n such that centery E is a divisor. Since {(E; - E;)}nxn is negative definite,
the equation

(Ev - Er) - (B Ep) a — (K7, + By) - Ey

has a unique solution (a1, ..., a,), where Fy := f~1F and By := f_!B. We define

num, f(E, F, B) := —multg (By +Y° aiEi> :

i=1

10



As in the pair case [37, Chapter 4], it is easy to see that anum,f(E,F,B) =
a(E,F,B) when Kr + B is R-Cartier and anum,f(E, F, B) does not depend on the
resolution f. This enable us to define a(F,F, B) when Kz + B is not necessarily
R-Cartier.

Definition 3.11. Let (X, F,B) be a surface foliated num-sub-triple. We define
a(E,F,B) := anum,f(E, F, B) for an arbitrary resolution f : Y — X of X such that
FE is a divisor on Y.

Let (X 3 «,F, B) be a surface foliated num-germ. We say that (X > z, F, B) is
num-lc (resp. num-klt, num-canonical, num-terminal) if a(E,F,B) > —e(E) (resp.
> —€(F),> 0,> 0) for any prime divisor E over X > z. If Kz + B is R-Cartier at x,
then num-lc (resp. num-klt, num-canonical, num-terminal) is equivalent to lc (resp.
klt, canonical, terminal).

Definition 3.12. Let (X > z, F, B) be a surface foliated num-germ. The minimal log
discrepancy (mld for short) of (X > x, F, B) is defined as

mld(X >z, F,B) := inf{a(E, F,B) + ¢x(E) | E is a prime divisor over X > z}.

We define mld(X > z,F) := mld(X > z, F,0). Notice that this definition coincides
with the mld defined in Definition 2.8 for foliated germs.

Lemma 3.13. Let (X > z,F,B) be a surface foliated num-germ. Then either
mld(X 3z, F,B) = —o0, or

mld(X >z, F,B) = min{a(E,F,B) +ex(E) | E is a prime divisor over X > z} > 0.

Proof. First suppose that mld(X > x,F, B) < 0. Then there exists a resolution f :
Y — X of X > z with prime f-exceptional divisors Ey,..., FE,, and a prime divisor
E on Y, such that centery F = x and multg By > ex(E), where By = f 1B —
S a(E;, F,B)- E;. Then (Y, Fy, By) is not sub-lc near E and by [19, Proposition
3.4] mld(Y, Fy, By) = —o0, hence we also have mld(X > z, F, B) = —oo.

Now we suppose that mld(X > =z, F,B) > 0. Let f : ¥ — X of X > z be a
resolution of X with prime f-exceptional divisors Fi,...,E,, and let By := f. !B —
S a(E;, F,B)- E;. Since (Y, Fy,By) is a foliated sub-triple over a neighborhood
of x, then by [19, Corollary 3.6] we have

mld(X 3z, F, B) = inf{a(E, Fy, By) + €x(E) | E is a prime divisor over X > z}
=min{a(E, Fy,By) + €x(E) | E is a prime divisor over X > z}
=min{a(E, F,B) + ex(F) | E is a prime divisor over X > z}.

O

Lemma 3.14. Let (X > x,F, B) be a surface num-Ic foliated num-germ. Suppose that
all components of B pass through x. Then mld(X > z, F, B) < mld(X >z, F,0), and
mld(X 3z, F,B) < mld(X >z, F) if B#0. In particular, (X > z, F) is num-lc.
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Proof. By Definition 3.10 and [37, Lemma 3.41], «(E, F, B) < a(E, F,0) for any prime
divisor FE over X > z, and a(F,F, B) < a(E, F,0) for any prime divisor E over X > z
if B#0. O

Definition 3.15. Let (X > z, F, B) be a surface foliated num-germ and f:Y — X
the minimal resolution of F 3 x such that f is not the identity morphism. The partial
log discrepancy (pld for short) of (X 3 x, F, B) is defined as

pld(X >z, F, B) := min{a(E, F, B) + ex(E) | E is a f-exceptional prime divisor}.

We define pld(X > z, F) := pld(X > «,F,0).

Finally, we are ready to state and prove the main theorem of this section, which is
a generalization of the classification theorems in [43] and [19], but with more details:
Theorem 3.16. Let (X > z,F,B) be a numerically lc surface foliated numerical
germ such that all components of B pass through x and rank F = 1. Let f: Y — X
be the minimal resolution of F > x (cf. Definition 3.2), D the dual graph of f, and
Fy := f~LF. Suppose that f is not the identity morphism. Then one of the following
cases holds.

(Case 1) D = U™, E; is an Fy-chain. Moreover, in this case,
(a) X > x is a cyclic quotient singularity and F is non-dicritical near x. In
particular, X > x is kit and Kx is Q-Cartier near x,
(b) for any 1 <i<m,
(Er, ) = SO D)
det(D)
(¢) pld(X 5 2, F) = a(Ep, F) = ﬁ(p) >0, and (X 3z, F) is terminal, and
(d) there is a unique F-invariant curve C passing through x and C is smooth at x.
(Case 2) D = U3_|E; is a Hirzebruch-Jung string such that Z(Fy,Er) = Z(Fy,E3) =
1,Z(Fy,Eqy) =3, E? = E2 = =2, and E3 < —2. Moreover, in this case,
(a) X > x is a cyclic quotient singularity and F is non-dicritical near . In
particular, X > x is kit and Kr is Q-Cartier near z,
(b) a(Ey,F)=a(E3, F) =% and a(E>, F) =0,
(c) pld(X 5 2,F) =0, B=0, and (X > x,F) is canonical but not terminal,and
(d) 2K r is Cartier near x.
(Case 3) D =UI | E; is a string such that E; is Fy-invariant and Z(Fy, E;) = 2 for any i.
Moreover, in this case,
(a) X > x is either a smooth point or a cyclic quotient singularity and F is non-
dicritical near x. In particular, X 3 x is klt and K is Q-Cartier,
(b) a(Ei, F) =0 for any 1,
(c) pld(X 52, F) =0, B=0, and (X 2z, F) is canonical but not terminal, and
(d) Kr is Cartier near x.
(Case 4) D(f) = U} E; U UJ_1 Fy for some positive integer n is the following:

Ey
Fn Fy
Oo----- Es

Es
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such that

o U?:1Fj is a Hirzebruch-Jung string and Z(Fy, Fj) =2 for any j, and
e D =} | E; is a Hirzebruch-Jung string such that Z(Fy,E1) = Z(Fy, E3) =
1,Z(.7:Y,E2) = 3, E12 = Eg = _27 and E22 < —2.

Moreover, in this case,
(a) X 3 x is a D-type singularity and F is non-dicritical near x. In particular,
X >z is kit and Kx is Q-Cartier near x,
(b) a(E1,F)=a(Es,F) =1, a(Es, F) =0, and a(F;, F) =0 for any j,
(c) pld(X 32, F)=0, B=0, and (X > z, F) is canonical but not terminal, and
(d) 2K x is Cartier near x.
(Case 5) o FEither D = U | E; is a cycle such that each E; is Fy -invariant and Z(Fy, E;) =
2 for any i, or
e D = E is an Fy-invariant rational curve with a unique nodal singularity z,
such that x is a reduced singularity of Fy and Z(Fy,E1) = 0.
Moreover, in this case,
(a) X > x is an elliptic singularity, F is non-dicritical near x, and Kr is not
Q-Cartier near x.
(b) a(E;, F) =0 for any i, and
(c) pld(X > z,F) =0, B=0, and (X > z,F) is num-canonical but not num-
terminal.
(Case 6) D= U} E; UDUI, F; for some non-negative integers m,n is the following:
O ----0—0—0----0
E, E. D F Frm

)

such that

e D is not Fy-invariant and tang(Fy, D) =0,
® eithern =0 or U E; is an Fy-chain,
e cither m =0 or U}”Zle is an Fy-chain, and

Moreover, in this case,
(a) F is dicritical near x, and one of the following holds:
(Case 6.1) D is a rational curve. Then X > x is a cyclic quotient singularity. In
particular, X > x is kit and Kr is Q-Cartier near x.
(Case 6.2) D is an elliptic curve and m =n = 0. Then X > x is an elliptic singularity.
In particular, X 3 x is lc but not klt.
(Case 6.3) D is not a rational curve, and either m > 0, orn > 0, or pa(D) > 2. Then
X > x s not lc,
(b) a(D,F)= -1, a(E;, F) =0 for any i, and a(F;, F) =0 for any j,
(¢) Pld(X 2 2,F) =0, B=0, and (X 3 z,F) is num-lc but neither num-canonical
nor num-klt, and
(d) if Kr is Q-Cartier near x, then Kx is Cartier near x.
(Case 7) D(f) = DU, U;;lEm- for some integer n > 3 and positive integers ri,..., 7y,
such that

e D is not Fy-invariant and tang(Fy, D) =0, and
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e for any i, Ui E; ; is an Fy-chain.

Moreover in this case,
(a) F is dicritical near x, and one of the following holds:
(Case 7.1) If D is a rational curve, then X > x is kit (resp. lc) if and only if

n

Z(l — di) <2, (resp. < 2),

i=1 v

where d; = det(D(U}L, B 5)) -
(Case 7.2) If D is not a rational curve, then X > x is not kit,
(b) a(D,F)= -1, and a(E; ;,F) =0 for any i, 7,
(c) pld(X 5 2,F) =0, B=0, and (X > z,F) is num-lc but neither num-canonical
nor num-klt, and
(d) if Kr is Q-Cartier near x, then Kx is Cartier near x.

Proof. By Lemma 3.14, (X > z,F) is num-lc. Now the main part of the theorem
follows immediately from [19, Theorem 2.4]. More precisely, the only difference of
the main part of our theorem from [19, Theorem 2.4] is that we do not assume that
K7 is Q-Cartier near x. Nevertheless, since [19, Proof of Theorem 2.4] only relies on
the structure of D and Fy, the same arguments of [19, Proof of Theorem 2.4] will
provides the classification of D in our situation as well. We remark that there is a
small difference for Case 6 comparing to [19, Theroem 2.4]: although [19, Theorem
2.4(6)] states that U, Fy,4+1—; is an Fy-chain in this case, it is actually U, E; that
is an Fy-chain. To see this, we may simply apply [19, Theorem 2.4, (17) Claim)].
In the following, we only prove the moreover part for each case of our theorem.

(Case 1) Since all curves in D are Fy-invariant, F is non-dicritical near . Since D is
a chain of rational curves, X 3 x is a cyclic quotient singularity, which implies (a). By
Theorem 3.6(2) and computing intersection numbers of Kr, + > .- (—a(E;, F)) - E;
with E;, we get (b). (c) follows from (b). Since D is an Fy-chain, there exists a unique
Fy-invariant curve Cy ¢ SuppD on Y which intersects D, and Cy intersects E,,.
We let y := Cy N E,,, then Fy has a reduced singularity at y and hence Cy + E,,
is snc at y. Let C' = f,.Cy, then by [37, Theorem 4.15(3)] we know (X > z,C) is plt.
Therefore C' is normal at z € X.

(Case 2) Since all curves in D are Fy-invariant, F is non-dicritical near z. Since D is
a chain of rational curves, X 3 z is a cyclic quotient singularity, which implies (a). By
Theorem 3.6(2) and computing intersection numbers of Kr, + Zle(fa(Ei, F)) - E;
with E;, we get (b). (c) follows from (b) and Lemma 3.14. (d) follows from (a) and (b).

(Case 3) Since all curves in D are Fy-invariant, F is non-dicritical near z. Since D is
a chain of rational curves, X 3 x is a cyclic quotient singularity, which implies (a). By
Theorem 3.6(2), K, - E; for any j. Thus (3.}, a(E;, F) - E;) - E; = 0 for any j. By
the negativity lemma, we get (b). (c) follows from (b) and Lemma 3.14. (d) follows
from (a) and (b).

(Case 4) Since all curves in D are Fy-invariant, F is non-dicritical near x. Since all
components of D is are rational curves, X > x is a D-type singularity, which implies
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(a). Let
_ZZ a(F;, F) - Fj + a(Ey, F) - (E1 + 2E> + E3).

By Theorem 3.6(2) and by computing intersection numbers, we know a(Ep,F) =
a(Es, F) = %,and G =x 0. By the negativity lemma, we get (b). (c) follows
from (b) and Lemma 3.14. (d) follows from (a) and (b).

(Case 5) Since all curves in D are Fy-invariant, F is non-dicritical near x. By clas-
sification of surface singularities, X > z is an elliptic singularity. By [43, Theorem
IV.2.2], K7 is not Q-Cartier near x. This implies (a). By Theorem 3.6, K7, - F; =0
for any ¢. This implies (b). (c) follows from (b) and Lemma 3.14.

(Case 6 (a-c)) Since D is not Fy-invariant, F is dicritical near x. (a) follows from the
classification of surface singularities. Let

G:iaEz,]:) E;+(1+a(D,F)) i a(F;,F)-
i=1 j=1

By Theorem 3.6, G =x 0. By the negativity lemma, we get (b). (c) follows from (b)
and Lemma 3.14. We

(Case 7 (a-c)) Since D is not Fy-invariant, F is dicritical near x. (a) follows from the
classification of surface singularities. Let

G = iia(Ei,ja]:)'Ei,j +(1+4a(D,F))-D

i=1 j=1

By Theorem 3.6, G =x 0. By the negativity lemma, we get (b). (c) follows from (b)
and Lemma 3.14. By Lemma 3.7, we have (Kz, + D)|p = 0.

(Case 6(d) and Case 7(d)) By Lemma 3.7, (Kz, + D)|p ~ 0. We let C be the reduced
f-exceptional divisor. Then since D is a tree, E;, F; are smooth rational curves in Case
6, and F; ; are smooth rational curves in Case 7, by [41, Proposition 7.5.4],

H'(C,0¢) = pa(C) = pa(D) = H' (D, Op).
Therefore, [41, Theorem 7.5.19] implies that the canonical homomorphism
Pic’(C) — Pic’(D)
is an isomorphism. Since Kz, +D =x 0 and (Kz, +D)|p ~ 0, we have (Kr, +D)|c ~
" If Kr is Q-Cartier, then f*Kr = Kz, + D. Next we can choose a contractible

stein neighborhood V of x € X such that U = f~(V) deformation retracts to C,
then Pic(V) is trivial by the following exact sequence

-— HY(V,0y) = H (V,0%) ~ Pic(V) = H*(V,Z) —
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Moreover, the canonical homomorphisms H*(U,Z) — H*(C,Z) induced by the inclu-
sion are isomorphisms. Suppose that K is Cartier, then rK |y is trivial and hence
r(Krz, +D)|v is also trivial. This implies that (K, +D)|y is a torsion in Pic(U), then
by [36, 11.3.6 Lemma] we know that (K r, + D)|y ~ 0 and hence its pushforward Kz
is also trivial in Pic(V). Therefore Kr is Cartier, and we get (d) for both cases. O

Corollary 3.17. Let (X, F,B) be a dlt (cf. [16, Definition 3.6]) foliated triple such
that dim X = 2 and rank F = 1. Then for any closed point x € X,

1. if x is a singular point of X, then (X 2 x, F, B) is as in Case 1 of Theorem 3.16.
In particular, x is a non-singular point of F, mld(X > =, F,B) > 0, and z is a
cyclic quotient singularity of X, and

2. if © is a non-singular point of X, then one of the following cases hold:

(a) x is a non-singular point of F.
(b) x is a reduced singularity of F.

Proof. Tt immediately follows from Theorem 3.16. |

3.5 Examples

Example-Remark 3.18. We remark that for each singularity listed in Theorem 3.16,
there are corresponding examples. Indeed, it is very easy to construct those example
by considering the foliation induced by the natural P'-bundle structure P(E) — E
for some curve E. Examples for Case 1-4 of Theorem 3.16 can be constructed by
constructing a sequence of blow-ups along a general fiber of P(E) — E. Examples for
Case 6 and 7 of Theorem 3.16 can be constructed by taking blow-ups along a negative
section of P(E) — E or P! x P!, then keep blowing up at the reduced singularities
and blow-down the strict transform of the negative section along with some chain of
rational curves. Examples for Case 5 can be constructed by considering a family of
elliptic curves X — Z with a singular fiber Xy, blowing up a point on Xy, and contract
the strict transform of Xy. We also remark that Examples for Cases 1-4 can be found
in [43, Fact 1.2.4].

In particular, the examples for Case 7.1 provide a negative answer to a question
of P. Cascini and C. Spicer [14, Question 3] on whether rational lc foliated surface
germs are quotient singularities: when » . (1 — di) >2, X >zisnot klt,so X >z is
no longer a quotient singularity. All we need to guarantee is that x € X is a rational
singularity simultaneously. Fortunately, examples arise from [23, Chapter 3, Exercise
13], where we have D(f) = D U}, E; and z € X is a rational singularity as long as
D? < -3.

Next we present a example showing that Grauert-Riemenschneider type vanishing
theorem fails for surface foliations in general. This example may be well-known to
experts, but can also be a good exercise for beginners in the foliation theories.
Example 3.19. Let C be a smooth curve of genus g > 2 and S := C x C. Let
pi S — C i =1,2 be the corresponding projections. If A : £ — S is the diagonal
morphism, then E is isomorphic to C' and we have E? = 2 — 2g < 0. Let F be the
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foliation on S determines by
0—Tr:=piTc — Ts — p5Tc — 0,

which is exactly the foliation induced by the fibration py : § = C and Kr = piKc¢ .
By [35, 3.0 Theorem], we have

® p*Kc + E is nef and big but not semi-ample, and
® Kg + 2F is semi-ample and defines a birational morphism f : S — Z which only
contracts E.

Let Fz := f..F be the pushforward foliation on Z which is determined by Fz|z\ (.} =
Flx\g, where z = f(E). Then Kr, = f.Kr and it is easy to see that (Z,Fz) is a
num-lc foliated surface (Case 6 or 7 of Theorem 3.16). Notice that Fy is dicritical at
z € Z and the minimal resolution of Fz is f: S — Z.

We claim that

1. (Kr+ E)|g ~0but Kz, = f.Kr is not Q-Cartier.
2. Kr + E is not semi-ample over Z and R'f,Og(Kz) # 0. In particular, Grauert-
Riemenschneider type vanishing theorem fails for f: (S, F) — (Z, Fz).

For (1), notice that (pf K¢ )|r = (p; 0o A)*Ke = Kg. By adjunction we have
Kg = (Ks+ E)|g = (piKc + p3Kc + E)|p = 2Kp + Elg,

therefore Og(FE)|p ~ —Kg and (Kr + E)|g = (pi K¢ + E)|g ~ 0.

If Kz, is Q-Cartier, then f*Kr, = Kr + aF and a must be 1 by the previous
statement. Let C’ be any irreducible curve on Z and let C' be its strict transform on
S. Since C # E, C-E > 0. Then we can see that Kz, -C' = (Kz+E)-C > 0. Indeed,
either
® p1(C) =C sothat Kr-C >0, or

e p1(C) is a single point so that C'- E > 0.
Therefore the big divisor K r, is actually ample, which implies that Kr+F = f*Kr,
is semi-ample and we reach a contradiction.

Next we prove (2). If Kr + E is semi-ample over Z, then there exists a morphism
g:S — Y over Z defined by Kr + E. Since K + E is not ample over Z, g is not an
isomorphism so that Y = Z. Therefore K x4+ FE is a pullback of a Q-Cartier divisor on Z
and this divisor is necessarily the pushforward f.(Kr+ E) = Kx,, which contradicts
(1). Hence K7 + E is not semi-ample over Z. Consider the long exact sequence

0= £.0s(Kr) < f.O0s(Kr+ E) -5 (.05 2 R* . Os(KF) = --- .

Since f.Op = H°(E,Op) ~ C, we only need to show that « is surjective, so that 3 is
zero, vy is injective, and R!f,Og(KF) # 0.

If « is not surjective, then there exists an effective divisor D ~z K+ F such that
E is not in the support of D. Notice that D|g ~ 0 so D must be disjoint from E. This
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is impossible since then f.D is a Cartier divisor on Z, so f.(Kr+ E) ~z D is also a
Cartier divisor on Z, contradicting (1).

Remark 3.20. We note that the Grauert-Riemenschneider type vanishing theorem
for foliated surfaces has been established for canonical singularities according to [24,
Theorem 5]. Furthermore, it has been extended to “good log canonical” singularities
as defined in [19, Definition 5.1] through [19, Theorem 0.3].

A. Langer has informed us that M. Lupinski [48, 49] has independently found
another counterexample to the Grauert-Riemenschneider type vanishing theorem for
contractions between foliated surfaces with lc singularities by considering the minimal
resolution of the foliation F as described in [43, Example 1.2.5]. Specifically, in [48],
Lupinski has discovered the minimal resolution f : (Y, Fy) — (X, F) of F, while [49,
1.2 Grauert-Riemenschneider type vanishing theorem] demonstrates that the Grauert-
Riemenschneider type vanishing theorem fails for the morphism f : (Y, Fy) — (X, F),
ie. le*Oy(K]:Y) 7& 0.

However, it remains an open question whether the Grauert-Riemenschneider type
vanishing theorem holds for foliations with canonical singularities in higher dimensions
(see [24, Question 6]).

4 Proof of the main theorems

The following theorem is important for the proof of our main results.
Theorem 4.1. Let (X 2z, F) be a surface foliated germ such that either both X and
F are smooth near x or (X > x,F) is as in Case 1 of Theorem 3.16. Then:

1. There exists a unique F-invariant irreducible curve L passing through x.
2. For any B >0 on X and any prime divisor E over X 3 x,

a(E,F,B)=a(E,X,B+L)+1.

Note that although L may not be algebraic, it is at least locally analytically well-defined.

Proof. Let f : Y — X be the minimal resolution of F > z, Fy := f~'F, and
Ey,..., By f-exceptional prime divisors, such that either m = 0 or U”, F; is an
Fy-chain.

(1) If X and F are both smooth near x then there is nothing left to prove. So we
may assume that (X > z, F) is as in Case 1 of Theorem 3.16. Then it follows from
Theorem 3.16 (Case 1.d) and we let L be that curve.

(2) We only need to prove the case when B = 0. For any prime divisor E over
X > z, there exists a sequence of blow-ups

such that

e FisonY, but notonY,_ 1,
e Fo:=Fy and F; := h; ' F,_; for each i,
e [, := Exc(h;) is a prime h;-exceptional divisor for each i, and
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® h; is the blow-up of a closed point y;,_1 € Y;_; such that y;_; is contained in the
union of the strict transforms of Fy,..., F;_1, FE1,..., FEy, and L.

We prove (2) by applying induction on the number n. When n = 0, (2) follows from
Theorem 3.16(Case 1.c). Suppose that n > 0. There are two cases.

Case 1. y,_1 is contained in exactly two curves Ci,Cs of the strict transforms of
Fi,...,F,_1,F,...,E, and L. By the induction, a(C1,F,0) = a(C1,X,L) + 1 and
a(Cq, F,0) = a(Ce, X, L)+ 1. So

a(E,F,0) = a(E, Fp-1,—a(C1,F,0)Cy — a(Ca, F,0)Cs) = a(C1,F,0) + a(Cs, F,0)
(C1, X, L)+ a(Ce, X, L)+ 2
(
(

a

C, X, L multg C; +a(CQ,X L)multE CQ+G(E Y,._ 0)+1
aE Yn 1, — (Cl,X,L)Cl7&(CQ,X,L)02)+1:a(E,X,L)+1

a

and we are done.
Case 2. y,—1 is contained in exactly one curve C of the strict transforms of
Fi,...,F;_1,F,...,E, and L. By the induction, a(C,F,0) = a(C, X, L) + 1. So

a(E, F,0) = a(E, Fn-1,—a(C, F,0)C) = a(C, F,0) + 1
= a(C,X,L) +2 = a(E, Y1, —a(C,X,L)C) + 1 = a(E, X, L) + 1

and we are done. O

4.1 Boundedness of complements

The following lemma might be well-known to experts, and is a standard technique
when one are tackling between the algebraic setting and the analytic setting.
Lemma 4.2. Let (X 3 x, B) be an lc germ with Q-factorial singularity. Assume that
there exists an N-complement By, for (Xan > x, Ban) in the analytic setting, then
there exists an N-complement BJr for (X >z, B) in the algebraic setting.

Proof. We may assume that © € X ~ Spec(R,m) and z € X,,, ~ Spec(f%,ﬁi), where
R is a localization of certain finite generated C-algebra. Let

D= NI_BJ + \_(N'i_ 1){B}Ja Dy = Nl_BanJ + \_(N"" 1){Ban}Ja

then Ox(—~NKx — D), Ox,, (—NKx,, — Dgy) are rank one reflexive sheaves on X,
Xan- Moreover, we have the relation:

Ox,, (-NKx, — D) =Ox(—NKx — D) ®r R.
Notice that Ox(—Nx — D) = {f € K(R) |Div(f) - NKx — D > 0} and

Ox,,(—NKx,, — Duon) ={f € K(R )|D1V() NKx,, — Dan >0}
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Therefore by our assumption the effective Weil divisor NB}, — D,,, corresponds to
certain non-zero element f in Ox, (—~NKx, — Dgyn) such that

Div(f) = NKx,, — Dan = NB},, — Dan.
In particular, Ox (—NKx — D) is not zero since R — R is faithfully flat. Recall that
| - NKx — D|={Div(f) —NKx —D >0 |f € K(R)}.

Let ¢ : X’ — X be a log resolution such that

1. ¢*| = NKx — D| = F 4 |M]|, where F is the fixed part and M is base point free.
2. ¢;'B + Exc(¢) + F is snc.

Here we explain why the pullback in (1) makes sense: Since —NKx — D is Q-Cartier,
we can define D' := ¢*(—NKx — D) as a Q-divisor on X', then we have

Div(f) — NKx — D >0« Div(f) + D' >0

and we can set |D'| := {Div(f) + D’ > 0 |f € K(R)}. Then we can define the fixed
part F of |D’'| as an effective Q-divisor, possibly replaced by a higher resolution, we
can assume that |D’| — F is base point free.

Next we prove that the fixed part of |D7,,| is F,,. It is easy to see that Fix| D/, | <
Fyp, 50 we just need to check multz |D'| = mult, | Dy,,| for any irreducible component

F; of F and any irreducible component F; of (F})an- Notice that F; corresponds to a
discrete valuation v; of K(R) and F; corresponds to a discrete valuation 7; of K(R)
that extends v;. Then we have

multg, |D'| = min{multg, (Div(f) + D’) | f € Ox(—NKx — D) C K(R)}.

Since Ox(—NKx — D) is coherent, we can find finite generators f; as an R-module,
which will also be generators of Ox,, (~NKx,, — Dan) = Ox(~NKx — D) ®r R as
an R-module. By the properties of valuations, we get

multy, | Doy | = min{mult g, (Div(f;) + Doy )}
= min{zi(f;)} = %(Dan)
= min{wi(f;)} —vi(D')
= multp, |D’|

Notice that @ @ X, — Xan is also a log resolution. Since |M]|,|M,n| is base point
free, a general element in |Ox(—NKx — D)| (resp. |Ox,, (—NKx,, — Dayn)|) induces
an N-complement iff some inequality multp, F' < a; (resp. mult £ Fan < a;) hold for
all i. Therefore we are done by the existence of BJ,,.

O
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Remark 4.3. The general principle is that an algebraic linear system |D’| behaves
as good as its corresponding analytic linear system |D/, | over the germ X > x. This
attributes to the relation between Ox (D’) and Ox,, (D.,,) at x € X. One can easily
check that the proof works for “(e, N)-complement” since the only difference would
be the inequalities conditions for the coefficients of F' and F,,,.

Proof of Theorem 1.1. If pld(X 2 z,F) = 0, then ¢ = 0. By Theorem 3.16, we may
take N = 2 and we are done. So we may assume that pld(X > z, F) > 0. By Theorem
3.16, (X > z, F, B) is either smooth or as in Case 1 of Theorem 3.16. In particular,
X 3 z is either smooth or a cyclic quotient singularity. By Theorem 4.1, there exists
a unique prime F-invariant curve L passing through x, such that (X 3 «,B + L) is
(analytically locally) e-lc.

Since X 3 z isklt, by [17, Theorem 1.1], there exists a positive integer N depending
only on I, such that analytically locally, (X > z, B+ L) has an (¢, N)-complement
(X 32,BT+L),and if T C Q, then we may take BT > B. Here we remark that since
L may not be algebraic, BT may also not be algebraic. We also remark that although
[17, Theorem 1.1] only deals with algebraic pairs, the same lines of the proof works in
the analytic setting.

By Theorem 4.1(2), (X 3 z,F, B") is analytically locally e-lc. Let f : ¥ — X
be the minimal resolution of X > z and E the reduced f-exceptional divisor. Let
Ly := f7'L and Kz, + By := f*(Kz + B*t). By Theorem 4.1(2),

Ky + By + Ly = f*(Kx + BY + L) - E.

Thus N (Ky -+ By +Ly) is Cartier over a neighborhood of z, so N (K 7, +By’) is Cartier
over a neighborhood of z. Since X 3 z is a cyclic quotient singularity, N(Kr + B*‘)
is Cartier near . Thus, analytically locally, (X > z, F, B*) is an (e, N)-complement
of (X 3z, F,B).

Notice that for any resolution (of singularity) ¢ : X’ — X € z, assume that
(X 3 2, F,C) is ele for some boundary C, then (X', Fx,,C’ + A) is also sub-e-lc
over z € X, where Kz, + C' = ¢*(K7 + C) and A is a general element of a base
point free system |M| over X > z. This is because the exceptional curves are all
invariant, A N ¢, 1C = 0 over (a neighborhood of) z, and A intersect the exceptional
locus transversally at general smooth points of Fx/. Since Kr is algebraic, we can
apply exactly the same proof of Lemma 4.2 by simply replacing Kx with Kr. As a
consequence, we prove the existence of algebraic (e, N)-complement of (X 3 z, F, B).

O

Theorem 4.4. Let (X > x,F) be a foliated lc surface germ such that rank F = 1.
Then (X 3 z,F) has a 2-complement. Moreover, (X > x,F) has a 1-complement if
and only if (X 3 x,F) is not of Case 2 or Case J of Theorem 3.16.

Proof of Theorem 4.4. It suffices to consider the case x € X is not smooth, otherwise
we are done. By Theorem 3.16, if pld(X > z, F) = 0 then (X > x, F) is a 2-complement
of itself, and is a 1-complement of itself if and only if (X > x, F) is not of Case 2 or
Case 4 of Theorem 3.16. So we may assume that pld(X > z,F) > 0 and (X > z, F)
is of Case 1 of Theorem 3.16. Let f : Y — X be the minimal resolution of X > x and
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let 1 be the unique f~!F-invariant f-exceptional curve such that Z(f~'F, E;) = 1.
We let Cy be any non-singular non- f ~! F-invariant curve such that Cy intersects F
and Cy U Exc(f) is snc. By computing intersection numbers, we know that (X >

z,F,C := f.Cy) is a 1-complement of (X > z, F). O
Proof of Theorem 1.2. 1t follows from Theorem 4.4. [l

4.2 The local index theorem

Proof of Theorem 1.3. By Theorem 1.2, there exists a positive integer I depending
only on a and T" such that (X > z,F, B) has a monotonic (a,I)-complement (X >
x, F,B%). Then B = B, so I(Kr + B) is Cartier near . O

4.3 Set of mlds

Proof of Theorem 1.4. First we show “C”. Let (X > z, F, B) be a foliated triple such
that dimX = 2, rankF = 1, and B € T. If pld(X > z,F) = 0, then mld(X >
z,F, B) = 0 and we are done. So we may assume that pld(X > z, F) > 0. By Theorem
3.16 (Case 1.d), there exists a unique prime F-invariant curve L passing through z,
such that mld(X > z, B+ L) = mld(X >z, F,B). Welet K+ By, := (Kx+B+L)|L.
Then
—1 i Yi
By e {w IneN*t,c;eN,y, € r} o, 1],
n

somld(L > z, Br,) € {0, # |ne Nt ¢; €N,y € T'}nJ0,1]. By precise inversion
of adjunction for surfaces,

mld(L 5 z,By) =mld(X 5 z,B+ L) =mld(X > z, F, B),

somld(X > z,F,B) € {0, % |neNt ¢, eNvy e F} N[0, 1]. We remark that
although L may not be algebraic, we may still apply adjunction and inversion of
adjunction to L (cf. [36, 16.6 Proposition]).

Now we show “D”. By Theorem 3.16, 0 = mld(X > z,F) for some (X > z,F)
such that dim X = 2 and rank F = 1. Let Fy be the foliation induced by the natural
fibration structure of Xy := P! x P! — Z := P!, 2y € X{ a closed point, F the fiber
of Xo — Z containing x, and B, ;o general horizontal/Z smooth rational curves. We
blow-up the intersection of (the birational transform of) F' with the inverse image of
xp n times and get a contraction h, : X/ — Xo. We let F, := (h,;}).Fy, B!

L,J,m T

(hy1)«Bi jo, and F, := h;' Fy. We let g, : X}, — X,, be the contraction of F,, z,, :=

centerx, F, Bijn = (gn)«Bj j,, and Fp := (gn)«F),. Let B == 3, 37" 7iBijn.
Then

1- i7Yi
a(Fy, Fu, B) = mld(Xy 3y, Fy, B) = 260
n

if Y eivi <1, and a(Fy,, Fp, B) = mld(X,, > zp, Fp, B) = —oo otherwise. Thus “D”
holds. O

Proof of Corollaries 1.5 and 1.6. They are immediately implied by Theorem 1.4. [
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Proof of Theorem 1.7. If pld(X 3 x, F) = 0, then we may take { = 0 and we are done.
So we may assume that pld(X > z, F) > 0. By Theorem 3.16, (X > z, F, B) is either
smooth or as in Case 1 of Theorem 3.16. By Theorem 3.16(Case 1.d), there exists a
unique prime F-invariant curve L passing through x, such that (X > x,B + L) is
lc. By [30, Theorem 1.2], there exists a positive integer [ depending only on I'" and
a prime divisor E over X 3 x, such that a(F,X,B + L) = mld(X 3 z,B + L) and
a(E, X,0) <. By Theorem 4.1(2), a(E,F,B) = mld(X > z,F, B) and a(E,F,0) =
a(E,X,L) <a(FE,X,0) <. Thus [ satisfies our requirements. O

4.4 Uniform rational polytopes

Proof of Theorem 1.8. The question is local, so we may work over an open neighbor-
hood of a closed point z € X. If pld(X > z,F) = 0, then B = 0 near z and there
is nothing left to prove. So we may assume that pld(X > =z, F) > 0. By Theorem
3.16, (X > z,F, B) is either smooth or as in Case 1 of Theorem 3.16. By Theorem
3.16(Case 1.d), there exists a unique prime F-invariant curve L passing through z,
such that (X > x, B+ L) is lc. By [28, Theorem 5.6], there exists an open set U 3 vq of
the rational polytope of vo, depending only on v, such that (X > z,>./", v;B; + L)
is Ic for any (vq,...,v) € U. By Theorem 4.1, (X > z, F,> i~ v;B;) is lc for any
(v1,...,0m) € U. The theorem immediately follows. O

5 Foliated version of some conjectures in the MMP

In this section, we formally introduce the foliated version of some standard conjectures
of the minimal model program and discuss their background. Since the foundations of
the minimal model program for foliations in dimension > 4 has not been established,
it may be too ambitious to tackle these conjectures in dimension > 4 at the moment.
Nevertheless, special cases of these conjectures may still be tackable in high dimen-
sions, e.g. algebraically intergrable foliations, or Property (x) foliations ([4, Definition
3.5]).

5.1 Complements

Conjecture 5.1 (Complement). Let € be a positive real number, d a positive integer,
and T' C [0,1] a DCC set.Then there exists a positive real number n depending only
on e,d and ' satisfying the following.

Assume that (X/Z > z,F, B) is an (¢,R)-complementary foliated triple such that
dim X = d and B € T'. Assume that either e = 0, or —Kr is big over Z. Then (X/Z >
2, F, B) has an (e,n)-complement. Moreover, if T C Q, then we (X/Z > z, F, B) has
a monotonic (e, n)-complement.

Conjecture 5.1 is an analogue of Shokurov’s boundedness of (e,n)-complement
conjecture [17, Conjecture 6.1]. When F = Tx, Conjecture 5.1 is generally known
when ¢ = 0 and X is of Fano type over Z ([7, 28, 53]) and when dim X = 2 [17].
We remark that the condition “—Kr is big over Z” is almost an empty condition
when Z = {pt} (cf. [6, Theorem 5.1], [21, Theorem 1.1]) since we have restrictions of
singularities. Therefore, the interesting cases of Conjecture 5.1 should appear when
either ¢ = 0 or dim Z > 0.
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Two special cases of Conjecture 5.1 are the local index conjecture and the global
index conjecture:

Conjecture 5.2 (Local index conjecture). Let d be a positive integer, a a rational
number, and T' C [0,1]NQ a DCC set. Then there exists a positive integer I depending
only on d,a and I" satisfying the following.

Assume that (X 3 x, F, B) is a foliated germ of dimension d, such that B € T' and
mld(X > z,F,B) = a. Then I(Kr + B) is Cartier near x.

Conjecture 5.2 is an analogue of Shokurov’s local index conjecture [33, Question
5.2]. Theorem 1.3 proves Conjecture 5.2 when dim X = 2. When F = T'x, Conjecture
5.2 is known for surfaces [17] (by classification [52] when B = 0), terminal threefolds
[29] (by classification [34] when B = 0), canonical threefolds when B = 0 [33], log
toric pairs [3], and quotient singularities when B = 0 [46].

Conjecture 5.3 (Global index conjecture). Let d be a positive integer and T' C
[0,1]NQ a DCC set. Then there exists a positive integer I depending only on d and
T' satisfying the following.

Assume that (X, F, B) is a projective lc foliated triple of dimension d, such that
BeTl and Kr + B=0. Then I(Kr + B) ~ 0.

Conjecture 5.3 is an analogue of Shokurov’s glocal index conjecture [17, Conjecture
6.2]. [40] proves Conjecture 5.3 when d = 3 and B # 0 or when d = 2. When F = T¥,
Conjecture 5.2 is known for surfaces [50] (see also [11, 57, 58]), threefolds [56] (see also
[32]), and when —Kx is big [26] (see also [7]).

Proposition 5.4. Conjecture 5.1 for foliations in dimension d of rank r implies
Conjectures 5.2 and 5.3 for foliations in dimension d of rank r.

Proof. Under the setting of Conjecture 5.2, by Conjecture 5.1, (X 3 z,F,B) has a
monotonic (a, I)-complement (X > x, F, BT) for some I depending only on a,d and
I'. Then BT = B, so I(Kr + B) is Cartier near x.

Under the setting of Conjecture 5.3, (X, F, B) has a monotonic I-complement
(X, F,BT) for some I depending only on d and T'. Thus BT = B, so I(Kr + B) ~
0. O

It is also worth to mention the global ACC conjecture for foliations.

Conjecture 5.5 (Global ACC). Let d be a positive integer and ' C [0,1] a DCC set.
Then there exists a finite set 'y C I' satisfying the following.

Assume that (X, F, B) is a projective lc foliated triple of dimension d, such that
Bel and Kr + B=0. Then B € 1.

Conjecture 5.5 is an analogue of the global ACC for usual pairs [25, Theorem 1.5].
[18] proves Conjecture 5.5 when d = 2, while [40] proves Conjecture 5.5 when d = 3
and I' C Q. We remark that it is clear that Conjecture 5.3 for foliations in dimension
d of rank r implies Conjecture 5.5 for foliations in dimension d of rank r such that
Ir'cQ.

Finally, we recall the following conjecture on the boundedness of Fano foliations:
Conjecture 5.6 (cf. [5, Page 5, Problem|). Let d be a positive integer. Then Fano
foliations on smooth projective varieties of dimension d form a bounded family.

Since the boundedness of complements [7] is the key to prove the BAB conjecture
[8], we expect 5.1 to be useful for the solution of Conjecture 5.6.
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5.2 Minimal log discrepancies

We have two additional conjectures related to the mlds of foliations.
Conjecture 5.7 (ACC for mlds). Let d be a positive integer and T' C [0,1] a DCC
set. Then

{mld(X >2,F,B) | (X >z, F,B) islc,dm X =d,B T}

satisfies the ACC.

Conjecture 5.7 is an analogue of Shokurov’s ACC conjecture for minimal log dis-
crepancies [51, Problem 5]. Conjecture 5.7 is known when d = 2 ([19, Theorem 0.2],
Corollary 1.6). When F = T'x, Conjecture 5.7 is known for surfaces [1], log toric pairs
[2], exceptional singularities [28], quotient singularities when B = 0 [47], and many
cases in dimension 3 [27, 29, 32-34, 38, 39, 42, 45, 47].

Conjecture 5.8 (Uniform boundedness of mlds). Let d be a positive integer and
' € [0,1] a DCC set. Then there exists a positive real number | depending only on d
and T satisfying the following.

Assume that (X 3 x,F,B) is an lc foliated germ of dimension d such that Kr
is Q-Cartier and B € T'. Then there exists a prime divisor E over X 3 x, such that
a(E,F,B) =mld(X >z, F,B) and o(E, F,0) <.

Conjecture 5.8 is an analogue of the uniform boundedness conjecture for mlds [29,
Conjecture 8.2] (see [44, Conjecture 1.1] for an embryonic form). Theorem 1.7 proves
Conjecture 5.8 when d = 2. When F = T, Conjecture 5.8 is known for surfaces [30]
(see [44] for the ideal-adic case when I' is a finite set), terminal threefold pairs [29)],
and log toric pairs [29].

Finally, we remark that we expect the generalized pair version [10, 31] (more

precisely, the generalized foliated quadruple version [20, 40]) of the conjectures we
have mentioned in this section to hold as well. For the reader’s convenience, we omit
the details of these conjectures.
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