
Hyperdimensional Computing for Robust and

Efficient Unsupervised Learning

Sanggeon Yun1, Hamza Errahmouni Barkam1, Paul R. Genssler2, Hugo Latapie3

Hussam Amrouch2,4,5 and Mohsen Imani1,⋆

1University of California Irvine, 2University of Stuttgart, 3CISCO Systems
4Munich Institute of Robotics and Machine Intelligence, 5Technical University of Munich

⋆Corresponding Author: m.imani@uci.edu

Abstract—Clustering has emerged as a critical tool in diverse
fields. Nevertheless, its high computational cost has been a
persistent challenge, particularly for large-scale datasets. To
address this, various compute-in-memory (CiM) approaches have
been proposed, including the use of Ferroelectric FET (FeFET)
technology due to its ultra-efficient and compact CiM architec-
ture. However, non-idealities resulting from cell thickness and
device temperature have impeded the scaling of FeFETs and thus
hindered their potential to be used for clustering. In light of this,
we propose a Hyper-Dimensional Computing (HDC) framework
specifically for FeFET technology in the context of clustering.
Our approach involves a cross-layer FeFET reliability model that
captures the effects of scaling on multi-bit FeFETs, taking into
account the impact of process variation and inherent stochasticity.
We use two models in our HDC framework, a full-precision, ideal
model for training, and a quantized error-impacted version for
validation and inference. This iterative adaptation strategy helps
to overcome the challenges associated with the non-idealities of
FeFET technology.

Our results demonstrate the proposed HDC framework per-
forms better than traditional algorithms such as k-means and
BIRCH. Moreover, our model can function as its ideal coun-
terpart without noise, proving its potential to scale FeFET
technology for clustering applications.

Index Terms—clustering, data science, computing in memory,
FeFET, hyperdimensional computing

I. INTRODUCTION

Clustering is a fundamental technique in unsupervised

machine learning and data analysis, which aims to parti-

tion data points with similar features into distinct clusters.

However, clustering in high-dimensional spaces presents sev-

eral challenges, including the difficulty of determining the

optimal number of clusters, sensitivity to noise and out-

liers, and the curse of dimensionality [1]–[3]. To address

these issues, emerging research has proposed new clustering

algorithms. Among these, hyperdimensional computing and

vector symbolic architectures have shown great promise for

clustering in high-dimensional spaces [4]. Hyperdimensional

computing provides a potent framework for high-dimensional

data representation and processing inspired by the way the

brain processes information [5]–[11]. The approach employs

high-dimensional vectors to represent patterns and concepts,

capable of encoding complex relationships between different

data points and handling noisy and incomplete data. Thus, it

is an ideal method for clustering tasks where the relationships

between data points are crucial and the data are imperfect.

Vector symbolic architectures offer a way to represent

data as symbolic structures that can be manipulated and

processed through algebraic operations. This approach enables

the encoding of abstract and complex relationships between

data points, rendering it useful for clustering tasks where

higher-level concepts need identification. Additionally, vector

symbolic architectures can manage missing data and noise,

making them robust in the face of real-world data.

Hyperdimensional computing and vector symbolic archi-

tectures can further mitigate the curse of dimensionality,

a significant problem in high-dimensional clustering. These

methods can enhance clustering accuracy in high-dimensional

spaces by providing a means to represent high-dimensional

data as lower-dimensional symbolic structures that preserve

the critical relationships between data points.

Recent research has proposed novel clustering algorithms

that leverage innovative computing paradigms to overcome

these challenges. In particular, computing in memory (CiM)

has emerged as a promising approach, enabling efficient and

scalable processing of large-scale clustering tasks. Ferroelec-

tric field-effect transistor (FeFET) technology is a particularly

attractive candidate for implementing CiM due to its non-

volatile memory element, which can store and manipulate data

using electrical signals.

Clustering algorithms process the same data repeatedly.

With the rise of more and more data-heavy applications, CPU

caches are overloaded and cannot fit the whole dataset at

once. Thus, data has to be repeatedly transferred from lower

memory levels. Such transfers cost orders of magnitude more

energy than the computations themselves, highlighting a major

bottleneck of the traditional Von Neumann architecture. To

overcome this memory wall, the separation between comput-

ing and storage has to be resolved through novel computing

in memory (CiM) architectures. However, traditional SRAMs

consume a high chip area through their six or eight-transistor

design. Their leakage increases power consumption and makes

large SRAMs undesirable for low-power or embedded sys-

tems. FeFETs alleviate those concerns with their single-

transistor design and non-volatility (i.e., minimal leakage). A

ferroelectric (FE) layer is added to the transistor gate stack,

which can be polarized to change the threshold voltage and,

thus the current. Different logical states (i.e., bits) are encoded

with different currents.

281979-8-3503-2574-4/23/$31.00 ©2023 IEEE Asilomar 2023

20
23

 5
7t

h
As

ilo
m

ar
 C

on
fe

re
nc

e
on

 S
ig

na
ls,

 S
ys

te
m

s,
 a

nd
 C

om
pu

te
rs

 |
 9

79
-8

-3
50

3-
25

74
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IE
EE

CO
N

F5
95

24
.2

02
3.

10
47

68
61

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:44:07 UTC from IEEE Xplore. Restrictions apply.

Combining FeFET technology with hyperdimensional com-

puting can enhance clustering performance further, particularly

in high-dimensional spaces. Hyperdimensional computing’s

ability to deal with most of the non-idealities introduced

by CiM architectures and CiM can significantly reduce the

memory and computation requirements for hyperdimensional

computing clustering tasks, generate an ideal symbiotic re-

lationship for several tasks [12], [13]. This paper aims

to investigate the potential of hyperdimensional computing

and vector symbolic architectures for clustering in high-

dimensional spaces. We will present an exhaustive review

of current clustering algorithms and their limitations given

several conditions of noise, followed by an analysis of our

framework’s performance when introduced to FeFET-modeled

non-idealities. The results are successful as traditional algo-

rithms such as k-means and BIRCH suffer losses of 11.83%

and 55.81% for the smallest noise probabilities, while our

algorithm presents almost no quality loss. Our objective is

to underscore the potential of hyperdimensional computing

and computing in-memory architectures to advance clustering

performance in high-dimensional spaces, opening avenues for

more sophisticated and efficient data analysis and machine

learning applications.

II. RELATED WORK

Besides traditional clustering algorithms that are based

on the distance or distribution of data points, a clustering

algorithm HDCluster [4] that uses Hyperdimensional Com-

puting (HDC) is also proposed. It encodes given data points

into high-dimensional vectors called hypervectors. And uses

a well-defined set of HD operations to perform clustering.

The HD operations are known for their robustness in the

presence of failures, making the HDCluster robust on any

noise during clustering computation [14]. It also has shown

higher robustness in terms of the dimensionality of given data

points compared to the k-means algorithm which indicates that

the HDCluster can efficiently handle complex datasets [4].

As for the traditional clustering algorithms in the literature,

k-means [15] is a distance-based clustering algorithm that

clusters given data points into k clusters by finding k cluster

centers called centroids, which has a similar structure of

HDCluster but for lower dimensionality. It assigns a data

point to a cluster where the nearest centroid is located. Since

the k-means algorithm was first proposed, various heuristic

algorithms such as Lloyd’s algorithm have been proposed

that enable the k-means algorithm to be applied to large

datasets [16]. It is well-used in various domains [17], [18]

by today.

Another popular clustering algorithm is BIRCH (Balanced

Iterative Reducing and Clustering using Hierarchies) [19],

which also consists of a distance-based clustering algorithm

that was proposed to resolve issues of previous clustering

algorithms on computation inefficiency and outliers. BIRCH

makes clustering decisions without scanning all data points

which allows it to process a very large dataset that even cannot

load on main memory. Since it does not treat every data point

equally important, it also has the advantage of dealing with

outlier data points. Its strong advantage in processing a very

large dataset made it widely used in commercial products [20],

[21].

In [22], two implementations of the K-means clustering

algorithm are described: one on a Memristive Logic Array-

based CiM and the other on a Machine Learning-specific

Transport-Triggered Architecture (TTA) processor, which is

fabricated on 28nm FDSOI technology and operates at 0.35V.

The Memristive CiM implementation outperforms the TTA

processor, achieving a speedup of 5.7 times and using 2.3

times less energy. However, the average power consumption

of the Memristive Logic Array is 2.5 times higher than that of

the TTA processor. DUAL [23] is a digital-based processing-

in-memory (PIM) architecture that performs parallel encoding

and clustering computation over the encoded hypervectors

stored in memory. DUAL uses two computation blocks, a

data block, and a distance block, to support search-based

and arithmetic operations. The architecture maps hierarchical

clustering into PIM acceleration using row-parallel operations.

DUAL eliminates the use of large ADC/DAC blocks, resulting

in high throughput/area and scalability. The design also elimi-

nates internal data movement overheads by using interconnects

for bit-serial/row-parallel data transfer between the data and

distance blocks.

III. COMPUTING IN MEMORY WITH FEFET

FeFET technology is a promising candidate for on-chip

memories. Its full CMOS-compatibility [24] makes it easy

to integrate alongside regular transistors and tightly coupled

logic and memory. Compared to traditional SRAM, FeFET is

non-volatile and thus has very little leakage during idle and

compared to other NVMs low read/write energy, and a short

read latency [25], [26]. As depicted in Figure 1, a HfO2 layer

is added to the traditional gate stack. This layer is typically

10nm thick, ferroelectric, and can be polarized by a voltage

pulse to the gate terminal. The voltage pulse flips the domains

inside the FE layer which, in turn, impacts the drain-source

current ID. The difference in ID is mapped to the low Vth

and high Vth states and then to logical states of ‘0’ and ‘1’.

The FE layer is inherently stochastic and not all domains

flip at the same time. This creates a multi-bit storage device,

the intermediate ID are mapped to intermediate logical val-

ues [27]. However, the stochasticity introduces a high variation

in addition to the process variation of the device itself. This

variation is further increased if the thickness of the FE layer

is scaled down to 3nm [27]. The highly-scaled FE layer

has fewer domains and each becomes more impactful. To

counteract the increase in variation, [28] proposed to extend

the gate stack with an additional back gate for read operations.

Such a design has two contradictory effects. On one hand,

the impact of variation is increased because of the increased

distance between the back gate and the FE layer. On the other

hand, the memory window (MW), the difference between the

most and least polarized states, is increased by up to 17V

as shown in Figure 2. A larger MW provides higher margins

282

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:44:07 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: A FeFET is based on a regular transistor but with an

additional ferroelectric (FE) layer. This layer comprises do-

mains, which can be polarized by a voltage pulse. The inherent

stochasticity of the polarization process causes variation and a

spread in the sensed current ID during a read operation [29].

against design-time and run-time variation. In summary, this

increase in the MW is more substantial than the other impact of

variation from the back gate. Hence, the overall robustness of

the read operation is increased. The improved robustness opens

the door for highly-scaled FeFET devices, which otherwise

would be too noisy [27].

A. Our FeFET modeling

To accurately model the reliability, we start with the multi-

physics simulator technology CAD (TCAD) at the device

level [29]. The device is a ferroelectric capacitor built from

the same materials as a transistor. Using TCAD, a model is

carefully calibrated [27] to reproduce experimental measure-

ments of a commercial 22nm FDSOI technology [30]. The

parameters of the TCAD models for the incorporated FE layer

are remnant polarization, saturation polarization, and coercive

field. Because these parameters describe the FE layer itself,

they can be extracted from a capacitor model and applied

to a transistor model. To model the reliability at different

temperatures (27°C and 80°C), the same methodology is

applied repeatedly. Only the parameters describing the FE

layer have to be adapted since the existing transistor models

already capture the effects of the underlying device. Hence,

our additional modeling is indispensable to account for the

degradation in the FE layer induced by an increased tempera-

ture. As described above, a FeFET can be used as a multi-bit

storage. To extract the different ID, the gate voltage range is

swept. In addition, Monte Carlo simulations are performed to

capture process variation and the inherent stochasticity. As a

result, the ID distributions for each logical state are known

and can be used for further modeling at the circuit level.

B. FeFET-based TCAM Cells

A FeFET-based TCAM cell comprises two FeFET de-

vices [31]. The left-hand FeFET is programmed into the

inverted state of the right-hand FeFET. The input value is

x
x

x

x

x

x

x

x

x
x
x
x

x
x
x

x

x

x

x

x

xxxxxxxxxxxxxxxxxxxxxx
x
x
x

x

x

x

x

x

xxxxxxxxxxxxxxxxxxxxxxxxxxx
x
x
x

x

x

x

x

x

x

Fig. 2: Adding the back gate for read operations increases the

difference between the low Vth and high Vth states signifi-

cantly [29].

applied on the ‘A’ line and inverted on the ‘A’ line. If the

input value and the state match, both FeFET devices are in a

non-conducting state. For example, the stored value is a ‘1’,

i.e., the left-hand FeFET is in the high Vth state whereas the

right-hand is in low Vth state. If the input is a ‘1’, the ‘A’ line

(connected to the left-hand FeFET in high Vth) activates the

FeFET but it does not conduct because of its high Vth state.

On the right side, both state and input are opposite which leads

to the same result. However, if the input and state mismatch,

then the FeFETs conduct.

C. Circuit Design

Multiple TCAM cells are connected by a matching line

(ML) as shown in Figure 3a. This ML is charged before the in-

puts are applied and the bundle line (BL) is tied to the ground.

Depending on the number of conducting (mismatching) cells,

the ML is discharged fast (many mismatches) or slow (few

mismatches). The rate of this discharge can be measured, e.g.,

with a CSRSA [31] or a FeFET-based comparator [32]. The

impact of process variation and the resolution of a comparator

limits the number of TCAM cells attached to an ML. In [31],

15 TCAM cells were employed. To store and compare whole

hypervectors, multiple such arrays are combined. The partial

similarity scores are added through traditional CMOS logic.

The full similarity scores are then used by the clustering

algorithm to determine new centers.

The second major operation in the clustering algorithm is

the creation of new center vectors. This bundling operation is

very data intensive in a traditional von Neumann architecture

because for each dimension a counter has to be kept. In

addition, all vectors for the new center have to be processed,

i.e., transferred from the memory to the compute unit where

they compete with the counters for the limited caches. With the

proposed in-memory architecture, the new center vectors can

be derived without data transfers. For the bundling operation,

the states of the left-hand FeFETs have to be read and

averaged. To read, the read voltage is applied to the ‘A’ line,

which activates the left-hand FeFETs as shown in Figure 3b.

The ML is tied to the supply voltage and, depending on the

283

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:44:07 UTC from IEEE Xplore. Restrictions apply.

T11

ML1

ADC

T12

ML2

ADC

A1 A1BL1

ADC

T21

T22

A2 A2BL2

ADC

(a) For a search operation, BL is set to ground, the match line (ML)
precharged, and the inputs are applied to the A lines. Each ML then
presents the similarity search result.

T11

ML1

ADC

T12

ML2

ADC

A1 A1BL1

ADC

T21

T22

A2 A2BL2

ADC

(b) For a bundling operation, the match line (ML) is set to VDD,
the A lines are set with the read voltage, and the summation is done
on the bundle line (BL). If an ML is set to ground, the TCAM cells
do not contribute enabling the summation of vectors only belonging
to one cluster.

Fig. 3: Architecture for a FeFET-based TCAM array to facilitate search as well as bundling operations.

TCAM
Array 11

TCAM
Array 12

TCAM
Array 21

TCAM
Array 22 D

ig
it

al
M

L
ac

cu
m

u
la

to
rs

Similarity
ScoresDigital BL accumulators

New center
vector

Vector for similarity

/
ML1

/
MLN

.
.
.

/
MLN+1

/
MLM

.
.
.

/
ML1

/
MLN

.
.
.

/
MLN+1

/
MLM

.
.
.

/
BL1 /

BLN
. . .

/
BLN+1 /

BLM
. . .

/
BL1

/
BLN

. . .

/
BLN+1

/
BLM

. . .

Fig. 4: Architecture for the whole vector storage, which

comprises many TCAM arrays (only four shown here). The

storage can compute the similarity to a provided vector and

bundle a selectable number of stored vectors into a new vector.

state of the FeFET, a smaller or larger current flows to the BL.

These currents are added through Kirchoff’s law on the BL and

sensed by the connected ADC. Since not all vectors are part

of the new center vector, only for the selected ones the ML is

tied to the supply voltage. The ML of the not selected vectors

is tied to a high impedance and no current flows. Similar to

the ML, the number of connected TCAM cells is limited and

requires multiple arrays to store a large amount of vectors.

D. Storage Design

Each individual TCAM array can only store a limited num-

ber of vector components. Multiple such arrays are combined

to form the whole storage as shown in Figure 4. The digital

output of the MLs for one vector is combined with accumu-

lators to get the total similarity of the stored vector to the

query. One such accumulator exists per vector and holds the

similarity score. A second set of accumulators combines the

digital bundle results for each component. After normalizing

the accumulated values, they return a new center vector.

IV. CLUSTERING WITH HYPERDIMENSIONAL COMPUTING

We propose a new brain-inspired clustering algorithm that

clusters input data into a high-dimensional space. There are

many properties in the hyperspace that are suitable for clus-

tering, most specifically the ability to maintain the distance

between inputs thanks to the precise kernel approximation

given by the clear HDC algebra. Also, having the information

of each feature spread through each one of the dimensions of

the vector and having the feature vectors be quasi-orthogonal

generates holographic hypervectors that are robust against

random noise, making it a suitable algorithm for Computing in

Memory with unreliable variations on its values. The algorithm

is broken down into different blocks, starting with encoding

the input data, generating the centroids, projecting them, and

adding some adaptability. Finally, we describe the updates to

the algorithm applied in order for the modeling to be faithful

to the technology being deployed, which consists of model

quantization, the introduction of noise, and retraining to make

the centroids learn to adapt to the non-idealities previously

described.

As described in Figure 5, we encode by associating each

feature of the input (•1) with a feature hypervector that is ran-

domly generated from a Gaussian distribution (•2), resulting

in several hypervectors each one containing the information

of one feature. The resulting hypervectors are combined by

bundling (sum element-wise). Next, a model is initialized with

5 given parameters: B, D, K, and M c, where B indicates

the number of bits, D indicates the number of dimensions,

K indicates the number of clusters, and M c indicates current

matrix containing mapping values for computing similarities.

284

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:44:07 UTC from IEEE Xplore. Restrictions apply.

Encoded Dataset

(High-Dimensional Space)
Input data Encoding module

:

f1
f2
f3

fn

y1

&
& & & & &

�
�"()

�
�"()

�
�"()

&

&
B11
B21
B31

B12
B22
B32

B13
B23
B33

B1D
B2D
B3D

Bn1 Bn2 Bn3 BnD

&

&

&

&

B bit quantization

1

Modeled Noise

CAM search

Inference

Given the error, we update the full-precision model

Full-precision model (32-bit) Deployed model (N-bit)

Generate

2

3

5

4

6

Fig. 5: Architecture of our proposed framework. We begin by having an encoding block that associates the input features (•1)

to each of the basis (•2) and generates hypervectors for the whole dataset. Then we generate the centroid hypervectors (•3),

adapt them to the CiM requirements (•4), and update them adaptively (•5).

The model generates K initial center hypervectors for each

cluster using a given train set X to generate the initial cen-

troids. In order to generate such hypervectors, the model first

encodes the given train set X into D dimensional hypervectors

ϕ(X). Then, the model applies the k-means++ algorithm on

the encoded train set ϕ(X). The selected hypervectors are

used as initial cluster centroids {H⃗1, H⃗2, . . . , H⃗K}, as seen

in Figure 5 (•3).

Next, we need to adapt and update the centroids with new

data (•5). Each adaptive centroid update step uses an encoded

train set ϕ(X) that is also used in the initial centroid generation

step. For each hypervector h⃗j ∈ ϕ(X), it updates centroid

hypervectors as follows:

H⃗i ←

∑

h⃗j∈ϕ(X) ³ij h⃗j
∑

h⃗j∈ϕ(X) ³ij

where ³ij =

{

1 if i = argmax({¶(H⃗1, h⃗j), . . . , ¶(H⃗K , h⃗j)})

0 otherwise

M c is used in ¶, computing the similarity between the given

hypervectors, which will be described later. At the end of each

adaptive centroid update, H⃗q
i is computed from updated H⃗i by

the centroid projection step.

A. Hyperdimensional Computing - Adaption to FeFET Frame-

work

We proceed to describe the adaptation of the hardware

modeling to our framework, which consists of a modified

similarity function based on our designed CAM, bit-precision

quantization, to convert our full-precision model to an N-bit

precision that fits the FeFET-based CiM used and the noise

introduction to the model.

In order to have a B-bit(s) precision model, the full pre-

cision cluster centroids H⃗i needed to be quantized (•4). The

quantization is conducted by mapping each continuous value

of the component in the hypervectors to one of the B-bit(s)

symbols. Since feature values do not generally follow uniform

distribution, it calculates scores of the hypervector components

and uses the cumulative normal distribution function (CDF) to

quantize feature values. In formally, for the CDF of normal

distribution Φ, each component hi in a hypervector H⃗ with

mean value of m and standard deviation value of Ã, each

component hi is quantized as
⌊

Φ(hi−m
Ã

)× 2B
⌋

. Through this,

quantized cluster centroid hypervectors H⃗q
i are computed from

H⃗i.

For the purpose of applying noise (•6), the modeled prob-

ability is applied and defined as state shift probability. It

consists of making a value v increase or decrease to v + 1
or v − 1. Each value in the quantized hypervector has the

same probability of random value changing. For instance, if the

random changing probability is p, a value v in the hypervector

will be changed to the value of v + 1 in p/2 probability and

v − 1 in p/2 probability. But, if v − 1 is less than 0 or v + 1
is greater than 2B − 1, only an increase or decrease will be

applied in p probability, respectively. The random value change

is conducted between the model projection and the inference

(for the test set) step. Changed values remain still until the

next model projection step. When the ”noise-only inference”

option is set, value changes are not conducted on the model

currently in the training process. The noise will be applied to

the copied model during the iterative training.

Last but not least, we want to specify that traditional HDC

algorithms deal with the similarity between two hypervectors

with the inner product, i.e., the dot product. However, on most

CiM devices, that is not available; instead, we have a function

that discharges current depending on the two symbols being

compared (•4). To apply this to our framework, we used the

following structure:

285

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:44:07 UTC from IEEE Xplore. Restrictions apply.

0

20

40

60

80

0.00 0.02 0.04 0.06 0.08 0.10

0

30

60

90

0.00 0.02 0.04 0.06 0.08 0.10

MNIST ISOLET

k-means BIRCH Our Framework (D = 512) Our Framework (D = 256)
Q

u
a

li
ty

 L
o

ss
 (

%
)

Bit Flip Probability (%)

Fig. 6: Testing the accuracy of the different algorithms given

different random bit flip probabilities.

• Given two B-bit(s) hypervectors H1 and H2, current

similarity ¶(H1, H2) is computed using d⃗ = |H1 − H2|
and M c indicating current matrix containing mapping

values for computing similarities. Now, the similarity is

computed as follows:

¶(H1, H2) =

D−1
∑

i=0

M c

d⃗i

Note that 0 ≤ d⃗i < |M
c| = 2B .

V. EVALUATION

Computing in memory is a promising approach for the de-

velopment of high-performance computing systems with low

power consumption. However, its implementation is hindered

by several challenges, such as the presence of noise and non-

ideal conditions. Therefore, it is crucial to develop algorithms

that are able to handle such challenges and provide reliable

results. This is why we evaluated the performance of three

clustering algorithms for computing in memory: k-means,

birch, and our proposed solution, for different bit-precisions.

A. Robustness analysis of clustering algorithms against ran-

dom noise

To make the evaluation fair, we proceed to use random

noise applied equally to all the bits of the input features of

the models. Our results show in Figure 6 that under ideal

conditions, all three algorithms perform similarly. However,

once the smallest noise is introduced, k-means and birch fail to

keep up with performance, having the first one losing 11.83%

clustering quality and the latter 55.81%, while our framework

is able to handle noise and still providing accurate results with

0% quality loss. As we increase the noise, k-means begins

to close up to 50% quality loss, while in our best case, for

dimension 254, we only lose 15%.

B. Hollsitic FeFET non-ideal noise analysis

To further explore the performance of our algorithm under

different FeFET cell conditions. Table I reports the noise

values for different cases of the CiM FeFET cells, bit-precision

(3 or 4 bits), the gate of the cell (front or back), the thickness

of the cell (10 or 3 nm), and the temperature (27 or 80C). As

shown in Figures 7 and 8, we observe that our algorithms

TABLE I: Noise levels for different thicknesses of the ferro-

electric layer, bit precision, and temperatures.

HfO2

Thickness (nm)
Precision

(bit)
Front/Back
Gate Read

Temepera-
ture (°C)

Modeled
Noise (%)

10 3 B 27 0.04
10 3 B 80 0.74
10 3 F 27 0.10
10 3 F 80 1.36
10 4 B 27 8.88
10 4 B 80 20.44
10 4 F 27 11.13
10 4 F 80 24.21

3 3 B 27 0.73
3 3 B 27 5.88
3 3 F 27 42.43
3 4 F 27 20.30
3 4 F 80 36.71

perform successfully and at a similar performance to its

full precision counterpart regardless of the non-ideal noise

that ranges from 0.1% to 42.43%. HDC algorithms tend

to be robust and consistent through dimensionality, meaning

that more than often, increasing the dimensionality does not

increase the quality or accuracy, which is shown in the figures.

Furthermore, we also introduce the noise during training, to

see if the model is able to learn to deal not only with the loss

of information by quantizing or reducing the bit-precision but

also with the noise. The results show that there is no need to

introduce the noise during training as there are no significant

improvements for higher bit-precisions.

C. Complete noise analysis

Next, we studied the effect of different noise probabilities,

bit precisions, and dimensionalities to test the effectiveness of

our algorithm that would result from different technologies.

Our findings in Figures 9 indicate that in order to tackle the

noise present in computing in memory, a bit precision of at

least 3 or 4 bits is necessary to perform as well as the full-

precision counterpart. Additionally, increasing the dimension-

ality of the hypervectors improves performance, but higher

bit precision can compensate for lower dimensionality. These

results highlight the importance of developing algorithms that

are robust to noise and non-ideal conditions in computing in

memory. By doing so, we can unlock the full potential of this

promising approach and pave the way for the development of

highly efficient computing systems.

VI. CONCLUSION

In this paper, we introduce a hyperdimensional clustering

algorithm into a framework able to perform FeFET-based

Computing in Memory. The algorithm was evaluated with

several FeFET non-idealities and conditions. Our outcomes

demonstrate that our approach provides the highest robustness

to random noise and is able to maintain performance on a

highly-scaled FeFET-based CiM. Our results demonstrate that

highly-scaled FeFET realizing 3-bit and even 4-bit, can with-

stand any noise given high dimensionality during inference.

286

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:44:07 UTC from IEEE Xplore. Restrictions apply.

(a) Noise during inference

Dimension of hypervectors

50

55

60

65

128
256

512
1024

2048
4096

10240

50

55

60

65

128
256

512
1024

2048
4096

10240

Q
u

a
li

ty
 o

f
C

lu
st

e
ri

n
g

 (
%

)
3-BIT 10nm 27C (00.10%) 3-BIT 10nm 80C (01.36%) 3-BIT 3nm 27C (42.43%) 4-BIT 10nm 27C (11.13%) 4-BIT 10nm 80C (24.21%)

(b) Noise during training

50

55

60

65

128
256

512
1024

2048
4096

10240

50

55

60

65

128
256

512
1024

2048
4096

10240

40

50

60

70

128
256

512
1024

2048
4096

10240

40

50

60

70

128
256

512
1024

2048
4096

10240

40

50

60

70

128
256

512
1024

2048
4096

10240

40

50

60

70

128
256

512
1024

2048
4096

10240

ISOLET

MNIST

Fig. 7: Testing the quality of our framework for several thicknesses and bit-precision for FeFET with a front gate for ISOLET

and MNIST datasets respectively.

Dimension of hypervectors Dimension of hypervectors

Q
u

a
li

ty
 o

f
C

lu
st

e
ri

n
g

 (
%

)

50

623-bit

12
8

25
6

51
2
10
24

20
48

10
24
0

10nm 27C (00.04%)

3nm 27C (00.73%)

10nm 80C (00.74%)

3nm 80C (05.88%)

40
96

4-bit

12
8

25
6

51
2
10
24

20
48

10
24
0

10nm 27C (08.88%)

3nm 27C (20.30%)

10nm 80C (20.44%)

3nm 80C (36.71%)

40
96

3-bit

12
8

25
6

51
2
10
24

20
48

10
24
0

10nm 27C (00.04%)

3nm 27C (00.73%)

10nm 80C (00.74%)

3nm 80C (05.88%)

40
96

4-bit

12
8

25
6

51
2
10
24

20
48

10
24
0

10nm 27C (08.88%)

3nm 27C (20.30%)

10nm 80C (20.44%)

3nm 80C (36.71%)

40
96

Q
u

a
li

ty
 o

f
C

lu
st

e
ri

n
g

 (
%

)

40

65

ISOLET MNIST

Fig. 8: Testing the quality of our framework on MNIST and ISOLET for several thicknesses and bit-precision for FeFET with

a back gate. We introduce the noise during training and during inference to test the ability of the model to learn to deal with

the noise.

ACKNOWLEDGMENT

The authors would like to thank Yogesh S. Chauhan, Shub-

ham Kumar, and Swetaki Chatterjee, Kai Ni, Albi Mema,

Simon Thomann, and Om Prakash for their support with the

FeFET and FDSOI device modeling and calibration as well

as for the insightful discussions. This work was supported in

part by National Science Foundation #2127780, #2319198,

#2321840 and #2312517, Semiconductor Research Corpo-

ration (SRC), Office of Naval Research, grants #N00014-

21-1-2225 and #N00014-22-1-2067, the Air Force Office of

Scientific Research under award #FA9550-22-1-0253, and a

generous gift from Cisco and Xilinx. This research was par-

tially supported by Advantest as part of the Graduate School

“Intelligent Methods for Test and Reliability” (GS-IMTR) at

the University of Stuttgart.

REFERENCES

[1] S. Im, M. M. Qaem, B. Moseley, X. Sun, and R. Zhou, “Fast noise
removal for k-means clustering,” 2020.

[2] A. M. Ikotun, A. E. Ezugwu, L. Abualigah, B. Abuhaija, and J. Hem-
ing, “K-means clustering algorithms: A comprehensive review, variants
analysis, and advances in the era of big data,” Information Sciences,
vol. 622, pp. 178–210, 2023.

[3] A. E. Ezugwu, A. M. Ikotun, O. O. Oyelade, L. Abualigah, J. O.
Agushaka, C. I. Eke, and A. A. Akinyelu, “A comprehensive survey
of clustering algorithms: State-of-the-art machine learning applications,
taxonomy, challenges, and future research prospects,” Engineering Ap-

plications of Artificial Intelligence, vol. 110, p. 104743, 2022.

[4] M. Imani, Y. Kim, T. Worley, S. Gupta, and T. Rosing, “Hdcluster: An
accurate clustering using brain-inspired high-dimensional computing,”
in 2019 Design, Automation & Test in Europe Conference & Exhibition

(DATE), pp. 1591–1594, IEEE, 2019.

[5] A. Hernandez-Cane, N. Matsumoto, E. Ping, and M. Imani, “Onlinehd:
Robust, efficient, and single-pass online learning using hyperdimensional
system,” in 2021 Design, Automation & Test in Europe Conference &

Exhibition (DATE), pp. 56–61, IEEE, 2021.

[6] M. Imani, A. Rahimi, D. Kong, T. Rosing, and J. M. Rabaey, “Ex-
ploring hyperdimensional associative memory,” in 2017 IEEE Interna-

tional Symposium on High Performance Computer Architecture (HPCA),
pp. 445–456, IEEE, 2017.

[7] M. Imani et al., “Control of gene regulatory networks using bayesian
inverse reinforcement learning,” IEEE/ACM transactions on computa-

tional biology and bioinformatics, vol. 16, no. 4, pp. 1250–1261, 2018.

[8] M. Imani, D. Kong, A. Rahimi, and T. Rosing, “Voicehd: Hyperdi-
mensional computing for efficient speech recognition,” in 2017 IEEE

international conference on rebooting computing (ICRC), pp. 1–8, IEEE,
2017.

[9] P. R. Genssler and H. Amrouch, “Brain-inspired computing for wafer
map defect pattern classification,” in IEEE International Test Conference

(ITC’21), 10 2021.

[10] P. R. Genssler and H. Amrouch, “Brain-inspired computing for circuit
reliability characterization,” IEEE Transactions on Computers, vol. 71,

287

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:44:07 UTC from IEEE Xplore. Restrictions apply.

D
im

e
n

si
o

n
 o

f
H

y
p

e
rv

e
ct

o
rs

128

256

512

1K

2K

4K

10K

70

10

Q
u

a
li

ty
 o

f
C

lu
st

e
ri

n
g

 (
%

)

1-BIT 2-BIT 3-BIT 4-BIT

128

256

512

1K

2K

4K

10K

ISOLET

MNIST

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

State Shift Probability

Fig. 9: Study of the clustering performance for different dimensionality and noise probabilities for the state shift error on the

MNIST and ISOLET datasets.

pp. 3336–3348, 2 2022.

[11] P. R. Genssler, H. E. Barkam, K. Pandaram, M. Imani, and H. Amrouch,
“Modeling and predicting transistor aging under workload dependency
using machine learning,” IEEE Transactions on Circuits and Systems I:

Regular Papers, pp. 1–13, 2023.

[12] H. E. Barkam et al., “Hdgim: Hyperdimensional genome sequence
matching on unreliable highly scaled fefet,” in 2023 Design, Automation

& Test in Europe Conference & Exhibition (DATE), pp. 1–6, 2023.

[13] A. Kazemi, F. Müller, M. M. Sharifi, H. Errahmouni, G. Gerlach,
T. Kämpfe, M. Imani, X. S. Hu, and M. Niemier, “Achieving software-
equivalent accuracy for hyperdimensional computing with ferroelectric-
based in-memory computing,” Scientific Reports, vol. 12, p. 19201, Nov
2022.

[14] G. Karunaratne, M. Le Gallo, G. Cherubini, L. Benini, A. Rahimi,
and A. Sebastian, “In-memory hyperdimensional computing,” Nature

Electronics, vol. 3, no. 6, pp. 327–337, 2020.

[15] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means
clustering algorithm,” Journal of the royal statistical society. series c

(applied statistics), vol. 28, no. 1, pp. 100–108, 1979.

[16] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, “An efficient k-means clustering algorithm: Analysis and
implementation,” IEEE transactions on pattern analysis and machine

intelligence, vol. 24, no. 7, pp. 881–892, 2002.

[17] O. J. Oyelade, O. O. Oladipupo, and I. C. Obagbuwa, “Application
of k means clustering algorithm for prediction of students academic
performance,” arXiv preprint arXiv:1002.2425, 2010.

[18] P. Govender and V. Sivakumar, “Application of k-means and hierarchical
clustering techniques for analysis of air pollution: A review (1980–
2019),” Atmospheric pollution research, vol. 11, no. 1, pp. 40–56, 2020.

[19] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an efficient data
clustering method for very large databases,” ACM sigmod record, vol. 25,
no. 2, pp. 103–114, 1996.

[20] G. Pitolli, L. Aniello, G. Laurenza, L. Querzoni, and R. Baldoni, “Mal-
ware family identification with birch clustering,” in 2017 International

Carnahan conference on security technology (ICCST), pp. 1–6, IEEE,
2017.

[21] J. Garcia and A. Brunstrom, “Clustering-based separation of media
transfers in dpi-classified cellular video and voip traffic,” in 2018 IEEE

Wireless Communications and Networking Conference (WCNC), pp. 1–
6, IEEE, 2018.

[22] L. Koskinen, J. Tissari, J. Teittinen, E. Lehtonen, M. Laiho, and J. H.
Poikonen, “A performance case-study on memristive computing-in-
memory versus von neumann architecture,” in 2016 Data Compression

Conference (DCC), pp. 613–613, 2016.
[23] M. Imani, S. Pampana, S. Gupta, M. Zhou, Y. Kim, and T. Rosing,

“Dual: Acceleration of clustering algorithms using digital-based pro-
cessing in-memory,” in 2020 53rd Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pp. 356–371, IEEE, 2020.
[24] S. Beyer et al., “Fefet: A versatile cmos compatible device with game-

changing potential,” in IEEE IMW, 2020.
[25] K. Ni et al., “Ferroelectric ternary content-addressable memory for one-

shot learning,” Nature Electronics, 2019.
[26] P. R. Genssler, V. Van Santen, J. Henkel, and H. Amrouch, “On the

reliability of fefet on-chip memory,” IEEE Transactions on Computers,
vol. 71, pp. 947–958, 3 2022.

[27] S. Chatterjee et al., “Comprehensive variability analysis in dual-port
fefet for reliable multi-level-cell storage,” IEEE TED, 2022.

[28] H. Mulaosmanovic, D. Kleimaier, S. Dünkel, S. Beyer, T. Mikolajick,
and S. Slesazeck, “Ferroelectric transistors with asymmetric double gate
for memory window exceeding 12 v and disturb-free read,” Nanoscale,
vol. 13, no. 38, pp. 16258–16266, 2021.

[29] H. E. Barkam, S. Yun, P. R. Genssler, Z. Zou, C.-K. Liu, H. Amrouch,
and M. Imani, “HDGIM: Hyperdimensional genome sequence matching
on unreliable highly-scaled FeFET,” in Design, Automation & Test in

Europe Conference & Exhibition, DATE 2023, 3 2023.
[30] K. Ni et al., “On the channel percolation in ferroelectric fet towards

proper analog states engineering,” in IEEE IEDM, 2021.
[31] S. Thomann, P. R. Genssler, and H. Amrouch, “HW/SW co-design for

reliable tcam-based in-memory brain-inspired hyperdimensional com-
puting,” IEEE Transactions on Computers, 2023.

[32] S. Thomann, H. L. G. Nguyen, P. R. Genssler, and H. Amrouch, “All-
in-memory brain-inspired computing using FeFET synapses,” Frontiers

in Electronics, vol. 3, 2 2022.

288

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:44:07 UTC from IEEE Xplore. Restrictions apply.

