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Abstract—Clustering has emerged as a critical tool in diverse
fields. Nevertheless, its high computational cost has been a
persistent challenge, particularly for large-scale datasets. To
address this, various compute-in-memory (CiM) approaches have
been proposed, including the use of Ferroelectric FET (FeFET)
technology due to its ultra-efficient and compact CiM architec-
ture. However, non-idealities resulting from cell thickness and
device temperature have impeded the scaling of FeFETs and thus
hindered their potential to be used for clustering. In light of this,
we propose a Hyper-Dimensional Computing (HDC) framework
specifically for FeFET technology in the context of clustering.
Our approach involves a cross-layer FeFET reliability model that
captures the effects of scaling on multi-bit FeFETs, taking into
account the impact of process variation and inherent stochasticity.
We use two models in our HDC framework, a full-precision, ideal
model for training, and a quantized error-impacted version for
validation and inference. This iterative adaptation strategy helps
to overcome the challenges associated with the non-idealities of
FeFET technology.

Our results demonstrate the proposed HDC framework per-
forms better than traditional algorithms such as k-means and
BIRCH. Moreover, our model can function as its ideal coun-
terpart without noise, proving its potential to scale FeFET
technology for clustering applications.

Index Terms—clustering, data science, computing in memory,
FeFET, hyperdimensional computing

I. INTRODUCTION

Clustering is a fundamental technique in unsupervised
machine learning and data analysis, which aims to parti-
tion data points with similar features into distinct clusters.
However, clustering in high-dimensional spaces presents sev-
eral challenges, including the difficulty of determining the
optimal number of clusters, sensitivity to noise and out-
liers, and the curse of dimensionality [1]-[3]. To address
these issues, emerging research has proposed new clustering
algorithms. Among these, hyperdimensional computing and
vector symbolic architectures have shown great promise for
clustering in high-dimensional spaces [4]. Hyperdimensional
computing provides a potent framework for high-dimensional
data representation and processing inspired by the way the
brain processes information [S]-[11]. The approach employs
high-dimensional vectors to represent patterns and concepts,
capable of encoding complex relationships between different
data points and handling noisy and incomplete data. Thus, it
is an ideal method for clustering tasks where the relationships
between data points are crucial and the data are imperfect.
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Vector symbolic architectures offer a way to represent
data as symbolic structures that can be manipulated and
processed through algebraic operations. This approach enables
the encoding of abstract and complex relationships between
data points, rendering it useful for clustering tasks where
higher-level concepts need identification. Additionally, vector
symbolic architectures can manage missing data and noise,
making them robust in the face of real-world data.

Hyperdimensional computing and vector symbolic archi-
tectures can further mitigate the curse of dimensionality,
a significant problem in high-dimensional clustering. These
methods can enhance clustering accuracy in high-dimensional
spaces by providing a means to represent high-dimensional
data as lower-dimensional symbolic structures that preserve
the critical relationships between data points.

Recent research has proposed novel clustering algorithms
that leverage innovative computing paradigms to overcome
these challenges. In particular, computing in memory (CiM)
has emerged as a promising approach, enabling efficient and
scalable processing of large-scale clustering tasks. Ferroelec-
tric field-effect transistor (FeFET) technology is a particularly
attractive candidate for implementing CiM due to its non-
volatile memory element, which can store and manipulate data
using electrical signals.

Clustering algorithms process the same data repeatedly.
With the rise of more and more data-heavy applications, CPU
caches are overloaded and cannot fit the whole dataset at
once. Thus, data has to be repeatedly transferred from lower
memory levels. Such transfers cost orders of magnitude more
energy than the computations themselves, highlighting a major
bottleneck of the traditional Von Neumann architecture. To
overcome this memory wall, the separation between comput-
ing and storage has to be resolved through novel computing
in memory (CiM) architectures. However, traditional SRAMs
consume a high chip area through their six or eight-transistor
design. Their leakage increases power consumption and makes
large SRAMs undesirable for low-power or embedded sys-
tems. FeFETs alleviate those concerns with their single-
transistor design and non-volatility (i.e., minimal leakage). A
ferroelectric (FE) layer is added to the transistor gate stack,
which can be polarized to change the threshold voltage and,
thus the current. Different logical states (i.e., bits) are encoded
with different currents.
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Combining FeFET technology with hyperdimensional com-
puting can enhance clustering performance further, particularly
in high-dimensional spaces. Hyperdimensional computing’s
ability to deal with most of the non-idealities introduced
by CiM architectures and CiM can significantly reduce the
memory and computation requirements for hyperdimensional
computing clustering tasks, generate an ideal symbiotic re-
lationship for several tasks [12], [13]. This paper aims
to investigate the potential of hyperdimensional computing
and vector symbolic architectures for clustering in high-
dimensional spaces. We will present an exhaustive review
of current clustering algorithms and their limitations given
several conditions of noise, followed by an analysis of our
framework’s performance when introduced to FeFET-modeled
non-idealities. The results are successful as traditional algo-
rithms such as k-means and BIRCH suffer losses of 11.83%
and 55.81% for the smallest noise probabilities, while our
algorithm presents almost no quality loss. Our objective is
to underscore the potential of hyperdimensional computing
and computing in-memory architectures to advance clustering
performance in high-dimensional spaces, opening avenues for
more sophisticated and efficient data analysis and machine
learning applications.

II. RELATED WORK

Besides traditional clustering algorithms that are based
on the distance or distribution of data points, a clustering
algorithm HDCluster [4] that uses Hyperdimensional Com-
puting (HDC) is also proposed. It encodes given data points
into high-dimensional vectors called hypervectors. And uses
a well-defined set of HD operations to perform clustering.
The HD operations are known for their robustness in the
presence of failures, making the HDCluster robust on any
noise during clustering computation [14]. It also has shown
higher robustness in terms of the dimensionality of given data
points compared to the k-means algorithm which indicates that
the HDCluster can efficiently handle complex datasets [4].

As for the traditional clustering algorithms in the literature,
k-means [15] is a distance-based clustering algorithm that
clusters given data points into k clusters by finding £ cluster
centers called centroids, which has a similar structure of
HDCluster but for lower dimensionality. It assigns a data
point to a cluster where the nearest centroid is located. Since
the k-means algorithm was first proposed, various heuristic
algorithms such as Lloyd’s algorithm have been proposed
that enable the k-means algorithm to be applied to large
datasets [16]. It is well-used in various domains [17], [18]
by today.

Another popular clustering algorithm is BIRCH (Balanced
Iterative Reducing and Clustering using Hierarchies) [19],
which also consists of a distance-based clustering algorithm
that was proposed to resolve issues of previous clustering
algorithms on computation inefficiency and outliers. BIRCH
makes clustering decisions without scanning all data points
which allows it to process a very large dataset that even cannot
load on main memory. Since it does not treat every data point

equally important, it also has the advantage of dealing with
outlier data points. Its strong advantage in processing a very
large dataset made it widely used in commercial products [20],
[21].

In [22], two implementations of the K-means clustering
algorithm are described: one on a Memristive Logic Array-
based CiM and the other on a Machine Learning-specific
Transport-Triggered Architecture (TTA) processor, which is
fabricated on 28nm FDSOI technology and operates at 0.35V.
The Memristive CiM implementation outperforms the TTA
processor, achieving a speedup of 5.7 times and using 2.3
times less energy. However, the average power consumption
of the Memristive Logic Array is 2.5 times higher than that of
the TTA processor. DUAL [23] is a digital-based processing-
in-memory (PIM) architecture that performs parallel encoding
and clustering computation over the encoded hypervectors
stored in memory. DUAL uses two computation blocks, a
data block, and a distance block, to support search-based
and arithmetic operations. The architecture maps hierarchical
clustering into PIM acceleration using row-parallel operations.
DUAL eliminates the use of large ADC/DAC blocks, resulting
in high throughput/area and scalability. The design also elimi-
nates internal data movement overheads by using interconnects
for bit-serial/row-parallel data transfer between the data and
distance blocks.

III. COMPUTING IN MEMORY WITH FEFET

FeFET technology is a promising candidate for on-chip
memories. Its full CMOS-compatibility [24] makes it easy
to integrate alongside regular transistors and tightly coupled
logic and memory. Compared to traditional SRAM, FeFET is
non-volatile and thus has very little leakage during idle and
compared to other NVMs low read/write energy, and a short
read latency [25], [26]. As depicted in Figure 1, a HfO- layer
is added to the traditional gate stack. This layer is typically
10nm thick, ferroelectric, and can be polarized by a voltage
pulse to the gate terminal. The voltage pulse flips the domains
inside the FE layer which, in turn, impacts the drain-source
current Ip. The difference in Ip is mapped to the low Vg
and high Vy, states and then to logical states of ‘0’ and ‘1’.

The FE layer is inherently stochastic and not all domains
flip at the same time. This creates a multi-bit storage device,
the intermediate Ip are mapped to intermediate logical val-
ues [27]. However, the stochasticity introduces a high variation
in addition to the process variation of the device itself. This
variation is further increased if the thickness of the FE layer
is scaled down to 3nm [27]. The highly-scaled FE layer
has fewer domains and each becomes more impactful. To
counteract the increase in variation, [28] proposed to extend
the gate stack with an additional back gate for read operations.
Such a design has two contradictory effects. On one hand,
the impact of variation is increased because of the increased
distance between the back gate and the FE layer. On the other
hand, the memory window (MW), the difference between the
most and least polarized states, is increased by up to 17V
as shown in Figure 2. A larger MW provides higher margins
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Fig. 1: A FeFET is based on a regular transistor but with an
additional ferroelectric (FE) layer. This layer comprises do-
mains, which can be polarized by a voltage pulse. The inherent
stochasticity of the polarization process causes variation and a
spread in the sensed current /p during a read operation [29].

against design-time and run-time variation. In summary, this
increase in the MW is more substantial than the other impact of
variation from the back gate. Hence, the overall robustness of
the read operation is increased. The improved robustness opens
the door for highly-scaled FeFET devices, which otherwise
would be too noisy [27].

A. Our FeFET modeling

To accurately model the reliability, we start with the multi-
physics simulator technology CAD (TCAD) at the device
level [29]. The device is a ferroelectric capacitor built from
the same materials as a transistor. Using TCAD, a model is
carefully calibrated [27] to reproduce experimental measure-
ments of a commercial 22nm FDSOI technology [30]. The
parameters of the TCAD models for the incorporated FE layer
are remnant polarization, saturation polarization, and coercive
field. Because these parameters describe the FE layer itself,
they can be extracted from a capacitor model and applied
to a transistor model. To model the reliability at different
temperatures (27°C and 80°C), the same methodology is
applied repeatedly. Only the parameters describing the FE
layer have to be adapted since the existing transistor models
already capture the effects of the underlying device. Hence,
our additional modeling is indispensable to account for the
degradation in the FE layer induced by an increased tempera-
ture. As described above, a FeFET can be used as a multi-bit
storage. To extract the different Ip, the gate voltage range is
swept. In addition, Monte Carlo simulations are performed to
capture process variation and the inherent stochasticity. As a
result, the Ip distributions for each logical state are known
and can be used for further modeling at the circuit level.

B. FeFET-based TCAM Cells

A FeFET-based TCAM cell comprises two FeFET de-
vices [31]. The left-hand FeFET is programmed into the
inverted state of the right-hand FeFET. The input value is

10° é_LOW VT "0 _ 10° ;'Low VT "0" 1
10° F 4 10 3
< 107k 1.8V memo 1 107k 5V memory,
2 window window
T 0%k ) 4 10°F .
High VTj"1" § ; HighV
10° E Line: Model 1 10° £ Line: Model
X Sym: TCAD b E Sym: TCAD
10-10 1 . 1 . 1 -10 1 L 1 L L
-1 0 1 -16.0 -8.0 0.0 8.0
Front gate read (V) Back gate read (V)

Fig. 2: Adding the back gate for read operations increases the
difference between the low Vy, and high Vy, states signifi-
cantly [29].

applied on the ‘A’ line and inverted on the ‘A’ line. If the
input value and the state match, both FeFET devices are in a
non-conducting state. For example, the stored value is a ‘1’,
i.e., the left-hand FeFET is in the high Vy, state whereas the
right-hand is in low Vy, state. If the input is a ‘1°, the ‘A’ line
(connected to the left-hand FeFET in high Vy,) activates the
FeFET but it does not conduct because of its high Vy, state.
On the right side, both state and input are opposite which leads
to the same result. However, if the input and state mismatch,
then the FeFETs conduct.

C. Circuit Design

Multiple TCAM cells are connected by a matching line
(ML) as shown in Figure 3a. This ML is charged before the in-
puts are applied and the bundle line (BL) is tied to the ground.
Depending on the number of conducting (mismatching) cells,
the ML is discharged fast (many mismatches) or slow (few
mismatches). The rate of this discharge can be measured, e.g.,
with a CSRSA [31] or a FeFET-based comparator [32]. The
impact of process variation and the resolution of a comparator
limits the number of TCAM cells attached to an ML. In [31],
15 TCAM cells were employed. To store and compare whole
hypervectors, multiple such arrays are combined. The partial
similarity scores are added through traditional CMOS logic.
The full similarity scores are then used by the clustering
algorithm to determine new centers.

The second major operation in the clustering algorithm is
the creation of new center vectors. This bundling operation is
very data intensive in a traditional von Neumann architecture
because for each dimension a counter has to be kept. In
addition, all vectors for the new center have to be processed,
i.e., transferred from the memory to the compute unit where
they compete with the counters for the limited caches. With the
proposed in-memory architecture, the new center vectors can
be derived without data transfers. For the bundling operation,
the states of the left-hand FeFETs have to be read and
averaged. To read, the read voltage is applied to the ‘A’ line,
which activates the left-hand FeFETs as shown in Figure 3b.
The ML is tied to the supply voltage and, depending on the
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(a) For a search operation, BL is set to ground, the match line (ML)
precharged, and the inputs are applied to the A lines. Each ML then
presents the similarity search result.
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(b) For a bundling operation, the match line (ML) is set to VDD,
the A lines are set with the read voltage, and the summation is done
on the bundle line (BL). If an ML is set to ground, the TCAM cells
do not contribute enabling the summation of vectors only belonging
to one cluster.

Fig. 3: Architecture for a FeFET-based TCAM array to facilitate search as well as bundling operations.
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Fig. 4: Architecture for the whole vector storage, which
comprises many TCAM arrays (only four shown here). The
storage can compute the similarity to a provided vector and
bundle a selectable number of stored vectors into a new vector.

Digital BL accumulators ‘

state of the FeFET, a smaller or larger current flows to the BL.
These currents are added through Kirchoff’s law on the BL and
sensed by the connected ADC. Since not all vectors are part
of the new center vector, only for the selected ones the ML is
tied to the supply voltage. The ML of the not selected vectors
is tied to a high impedance and no current flows. Similar to
the ML, the number of connected TCAM cells is limited and
requires multiple arrays to store a large amount of vectors.

D. Storage Design

Each individual TCAM array can only store a limited num-
ber of vector components. Multiple such arrays are combined
to form the whole storage as shown in Figure 4. The digital
output of the MLs for one vector is combined with accumu-

lators to get the total similarity of the stored vector to the
query. One such accumulator exists per vector and holds the
similarity score. A second set of accumulators combines the
digital bundle results for each component. After normalizing
the accumulated values, they return a new center vector.

IV. CLUSTERING WITH HYPERDIMENSIONAL COMPUTING

We propose a new brain-inspired clustering algorithm that
clusters input data into a high-dimensional space. There are
many properties in the hyperspace that are suitable for clus-
tering, most specifically the ability to maintain the distance
between inputs thanks to the precise kernel approximation
given by the clear HDC algebra. Also, having the information
of each feature spread through each one of the dimensions of
the vector and having the feature vectors be quasi-orthogonal
generates holographic hypervectors that are robust against
random noise, making it a suitable algorithm for Computing in
Memory with unreliable variations on its values. The algorithm
is broken down into different blocks, starting with encoding
the input data, generating the centroids, projecting them, and
adding some adaptability. Finally, we describe the updates to
the algorithm applied in order for the modeling to be faithful
to the technology being deployed, which consists of model
quantization, the introduction of noise, and retraining to make
the centroids learn to adapt to the non-idealities previously
described.

As described in Figure 5, we encode by associating each
feature of the input (@) with a feature hypervector that is ran-
domly generated from a Gaussian distribution (@), resulting
in several hypervectors each one containing the information
of one feature. The resulting hypervectors are combined by
bundling (sum element-wise). Next, a model is initialized with
5 given parameters: B, D, K, and M€, where B indicates
the number of bits, D indicates the number of dimensions,
K indicates the number of clusters, and M€ indicates current
matrix containing mapping values for computing similarities.
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Fig. 5: Architecture of our proposed framework. We begin by having an encoding block that associates the input features (@)
to each of the basis (@) and generates hypervectors for the whole dataset. Then we generate the centroid hypervectors (@),
adapt them to the CiM requirements (@), and update them adaptively (@).

The model generates K initial center hypervectors for each
cluster using a given train set X to generate the initial cen-
troids. In order to generate such hypervectors, the model first
encodes the given train set X into D dimensional hypervectors
¢(X). Then, the model applies the k-means++ algorithm on
the encoded train set ¢(X). The selected hypervectors are
used as initial cluster centroids {Hl,HQ, .. H K}, as seen
in Figure 5 (@).

Next, we need to adapt and update the centroids with new
data (@). Each adaptive centroid update step uses an encoded
train set ¢(X) that is also used in the initial centroid generation
step. For each hypervector fzj € ¢(X), it updates centroid
hypervectors as follows:

ﬁ- Ehaed’(X) a”h
2 i ep(x) Vi
where ai; — 1 ifi= z.lrgmax({é(lﬁh,hj)7 ...,0(Hg, hj)})
0  otherwise

M€ is used in §, computing the similarity between the given
hypervectors, which will be described later. At the end of each
adaptive centroid update, H 7 is computed from updated H; by
the centroid projection step.

A. Hyperdimensional Computing - Adaption to FeFET Frame-
work

We proceed to describe the adaptation of the hardware
modeling to our framework, which consists of a modified
similarity function based on our designed CAM, bit-precision
quantization, to convert our full-precision model to an N-bit
precision that fits the FeFET-based CiM used and the noise
introduction to the model.

In order to have a B-bit(s) precision model, the full pre-
cision cluster centroids ﬁi needed to be quantized (@). The

quantization is conducted by mapping each continuous value
of the component in the hypervectors to one of the B-bit(s)
symbols. Since feature values do not generally follow uniform
distribution, it calculates scores of the hypervector components
and uses the cumulative normal distribution function (CDF) to
quantize feature values. In formally, for the CDF of normal
distribution ®, each component h; in a hypervector H with
mean value of m and standard deviation value of o, each
component h; is quantized as [@(h%m) x 2B | Through this,
quantlzed cluster centroid hypervectors H 1 are computed from
H.

For the purpose of applying noise (@), the modeled prob-
ability is applied and defined as state shift probability. It
consists of making a value v increase or decrease to v + 1
or v — 1. Each value in the quantized hypervector has the
same probability of random value changing. For instance, if the
random changing probability is p, a value v in the hypervector
will be changed to the value of v + 1 in p/2 probability and
v — 1 in p/2 probability. But, if v — 1 is less than 0 or v 4+ 1
is greater than 2% — 1, only an increase or decrease will be
applied in p probability, respectively. The random value change
is conducted between the model projection and the inference
(for the test set) step. Changed values remain still until the
next model projection step. When the “noise-only inference”
option is set, value changes are not conducted on the model
currently in the training process. The noise will be applied to
the copied model during the iterative training.

Last but not least, we want to specify that traditional HDC
algorithms deal with the similarity between two hypervectors
with the inner product, i.e., the dot product. However, on most
CiM devices, that is not available; instead, we have a function
that discharges current depending on the two symbols being
compared (@). To apply this to our framework, we used the
following structure:
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Fig. 6: Testing the accuracy of the different algorithms given
different random bit flip probabilities.

o Given two B-bit(s) hypervectors H; and Hs, current
similarity 0(Hy, Hy) is computed using d = |Hy — Hy|
and M€ indicating current matrix containing mapping
values for computing similarities. Now, the similarity is
computed as follows:

i

S(Hy, Hy) =Y MS

d;

Il
=)

Note that 0 < d; < |M¢| = 2B.

V. EVALUATION

Computing in memory is a promising approach for the de-
velopment of high-performance computing systems with low
power consumption. However, its implementation is hindered
by several challenges, such as the presence of noise and non-
ideal conditions. Therefore, it is crucial to develop algorithms
that are able to handle such challenges and provide reliable
results. This is why we evaluated the performance of three
clustering algorithms for computing in memory: k-means,
birch, and our proposed solution, for different bit-precisions.

A. Robustness analysis of clustering algorithms against ran-
dom noise

To make the evaluation fair, we proceed to use random
noise applied equally to all the bits of the input features of
the models. Our results show in Figure 6 that under ideal
conditions, all three algorithms perform similarly. However,
once the smallest noise is introduced, k-means and birch fail to
keep up with performance, having the first one losing 11.83%
clustering quality and the latter 55.81%, while our framework
is able to handle noise and still providing accurate results with
0% quality loss. As we increase the noise, k-means begins
to close up to 50% quality loss, while in our best case, for
dimension 254, we only lose 15%.

B. Hollsitic FeFET non-ideal noise analysis

To further explore the performance of our algorithm under
different FeFET cell conditions. Table I reports the noise
values for different cases of the CiM FeFET cells, bit-precision
(3 or 4 bits), the gate of the cell (front or back), the thickness
of the cell (10 or 3 nm), and the temperature (27 or 80C). As
shown in Figures 7 and 8, we observe that our algorithms

TABLE I: Noise levels for different thicknesses of the ferro-
electric layer, bit precision, and temperatures.

HfO, Precision  Front/Back  Temepera- Modeled
Thickness (nm) (bit) Gate Read ture (°C) Noise (%)
10 3 B 27 0.04
10 3 B 80 0.74
10 3 F 27 0.10
10 3 F 80 1.36
10 4 B 27 8.88
10 4 B 80 20.44
10 4 F 27 11.13
10 4 F 80 24.21
3 3 B 27 0.73
3 3 B 27 5.88
3 3 F 27 4243
3 4 F 27 20.30
3 4 F 80 36.71

perform successfully and at a similar performance to its
full precision counterpart regardless of the non-ideal noise
that ranges from 0.1% to 42.43%. HDC algorithms tend
to be robust and consistent through dimensionality, meaning
that more than often, increasing the dimensionality does not
increase the quality or accuracy, which is shown in the figures.
Furthermore, we also introduce the noise during training, to
see if the model is able to learn to deal not only with the loss
of information by quantizing or reducing the bit-precision but
also with the noise. The results show that there is no need to
introduce the noise during training as there are no significant
improvements for higher bit-precisions.

C. Complete noise analysis

Next, we studied the effect of different noise probabilities,
bit precisions, and dimensionalities to test the effectiveness of
our algorithm that would result from different technologies.
Our findings in Figures 9 indicate that in order to tackle the
noise present in computing in memory, a bit precision of at
least 3 or 4 bits is necessary to perform as well as the full-
precision counterpart. Additionally, increasing the dimension-
ality of the hypervectors improves performance, but higher
bit precision can compensate for lower dimensionality. These
results highlight the importance of developing algorithms that
are robust to noise and non-ideal conditions in computing in
memory. By doing so, we can unlock the full potential of this
promising approach and pave the way for the development of
highly efficient computing systems.

VI. CONCLUSION

In this paper, we introduce a hyperdimensional clustering
algorithm into a framework able to perform FeFET-based
Computing in Memory. The algorithm was evaluated with
several FeFET non-idealities and conditions. Our outcomes
demonstrate that our approach provides the highest robustness
to random noise and is able to maintain performance on a
highly-scaled FeFET-based CiM. Our results demonstrate that
highly-scaled FeFET realizing 3-bit and even 4-bit, can with-
stand any noise given high dimensionality during inference.
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and MNIST datasets respectively.
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Fig. 8: Testing the quality of our framework on MNIST and ISOLET for several thicknesses and bit-precision for FeFET with
a back gate. We introduce the noise during training and during inference to test the ability of the model to learn to deal with

the noise.
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