

On the fixed part of pluricanonical systems for surfaces

Jihao Liu¹ | Lingyao Xie²

¹Department of Mathematics,
Northwestern University, Evanston, IL,
USA

²Department of Mathematics, University
of Utah, Salt Lake City, Utah, USA

Correspondence

Jihao Liu, Department of Mathematics,
Northwestern University, Evanston, IL,
USA.

Email: jliu@northwestern.edu

Funding information

National Science Foundation,
Grant/Award Numbers: DMS-1801851,
DMS-1952522; Simons Foundation,
Grant/Award Number: 256202

Abstract

We show that $|mK_X|$ defines a birational map and has no fixed part for some bounded positive integer m for any $\frac{1}{2}$ -lc surface X such that K_X is big and nef. For every positive integer $n \geq 3$, we construct a sequence of projective surfaces $X_{n,i}$, such that $K_{X_{n,i}}$ is ample, $\text{mld}(X_{n,i}) > \frac{1}{n}$ for every i , $\lim_{i \rightarrow +\infty} \text{mld}(X_{n,i}) = \frac{1}{n}$, and for any positive integer m , there exists i such that $|mK_{X_{n,i}}|$ has nonzero fixed part. These results answer the surface case of a question of Xu.

KEY WORDS

effective birationality, minimal model program, singularity, surface, Xu's conjecture

MSC (2020)

14E30, 14B05

1 | INTRODUCTION

We work over the field of complex numbers \mathbb{C} .

Pluricanonical systems are central objects in the study of birational geometry. More precisely, given a normal projective variety X such that K_X is effective, we would like to study the behavior of the linear systems $|mK_X|$ for any positive integer m .

It is well known that for any sufficiently divisible $m \gg 0$, the rational map given by $|mK_X|$ is birationally equivalent to the Iitaka fibration of K_X . In 2014, Hacon–M^cKernan–Xu proved that for any lc projective variety X of general type and of fixed dimension, there exists a uniform positive integer m such that $|mK_X|$ defines a birational map [8, Theorem 1.3] (see also [7, 15, 16]). In other words, $|mK_X|$ defines a birational morphism $X \setminus \text{Bs}(|mK_X|) \rightarrow \mathbb{P}(|mK_X|)$ for some uniform positive integer m , where $\text{Bs}(|mK_X|)$ is the base locus of $|mK_X|$.

It is then natural to ask whether the behavior $|mK_X|$ can be described more accurately. Since we already have a birational morphism $X \setminus \text{Bs}(|mK_X|) \rightarrow \mathbb{P}(|mK_X|)$ for some uniform positive integer m , one would like to focus on the asymptotic behavior of $\text{Bs}(|mK_X|)$. As the very first step, we have the following question proposed by Prof. C. Xu to the first author in 2018:

Question 1 (Xu). Assume that X is a klt projective variety of fixed dimension such that K_X is big and nef. When will we have a uniform positive integer m , such that $|mK_X|$ defines a birational map and does not have a fixed part?

Note that it is natural to assume K_X to be nef as we can always run an MMP with scaling and reach a minimal model for varieties of general type (cf. [3, Corollary 1.4.2]).

This is an open access article under the terms of the [Creative Commons Attribution-NonCommercial-NoDerivs](#) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2023 The Authors. *Mathematische Nachrichten* published by Wiley-VCH GmbH.

Question 1 naturally arises as a combination of [8, Theorem 1.3] and the effective base-point-freeness theorem [9, 1.1 Theorem]. Note that when the Cartier index is bounded, $|mK_X|$ not only defines a birational map but is also base-point-free for some uniform positive integer m . The interesting cases of Question 1 appear when the Cartier index of K_X is unbounded, in which case, the uniform base-point-freeness cannot be guaranteed.

Question 1 is trivial in dimension 1 but remained widely open in dimension ≥ 2 . In this paper, we study Question 1 when $\dim X = 2$. The main theorem of this paper is the following:

Theorem 1.1. *There exists a uniform positive integer m satisfying the following. Assume that X is a $\frac{1}{2}$ -lc projective surface and K_X is big and nef. Then, $|mK_X|$ defines a birational map and does not have a fixed part.*

The following theorem is a complementary statement for Theorem 1.1, which shows that if the Cartier index of K_X is not bounded and X is not $\frac{1}{2}$ -lc, then Theorem 1.1 is not expected to hold.

Theorem 1.2. *For any integer $n \geq 3$, there exists a sequence of projective surfaces $\{X_i\}_{i=1}^{+\infty}$, such that*

1. $\text{mld}(X_i) > \frac{1}{n}$ for each i and $\lim_{i \rightarrow +\infty} \text{mld}(X_i) = \frac{1}{n}$,
2. K_{X_i} is ample, and
3. if m_i is the minimal positive integer such that $|m_i K_{X_i}|$ defines a birational map and has no fixed part, then $\lim_{i \rightarrow +\infty} m_i = +\infty$.

Note that the assumptions on $\text{mld}(X)$ in Theorem 1.1 and Theorem 1.2 are natural assumptions: We are only interested in varieties such that the Cartier index of K_X is not bounded, and if we consider a family of singularities $\{(X \ni x)\}$ such that the index of K_X is unbounded, then $\{\text{mld}(X \ni x)\}$ is an infinite set (cf. [4, Proposition 7.4]) and the accumulation points of $\{\text{mld}(X \ni x)\}$ belong to $\{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{Z}_{\geq 2}\}$ (cf. [1, Corollary 3.4]). The $\frac{1}{2}$ accumulation point case is resolved by Theorem 1.1 and the remaining cases are resolved by Theorem 1.2.

It is also interesting to ask whether Question 1 has a positive answer for canonical or terminal threefolds in dimension 3, as 1 is the largest accumulation points of $\text{mld}(X \ni x)$ in dimension 3 (cf. [13, Appendix, Theorem]). We will not address this question in this paper, but we will provide a related example (cf. Theorem 5.7).

2 | PRELIMINARIES

We adopt the standard notation and definitions in [11], and will freely use them.

Definition 2.1 (Pairs and singularities). A pair (X, B) consists of a normal quasi-projective variety X and an \mathbb{R} -divisor $B \geq 0$ such that $K_X + B$ is \mathbb{R} -Cartier. Moreover, if the coefficients of B are ≤ 1 , then B is called a boundary of X .

Let E be a prime divisor on X and D an \mathbb{R} -divisor on X . We define $\text{mult}_E D$ to be the multiplicity of E along D . Let $\phi : W \rightarrow X$ be any log resolution of (X, B) and let

$$K_W + B_W := \phi^*(K_X + B).$$

The *log discrepancy* of a prime divisor D on W with respect to (X, B) is $1 - \text{mult}_D B_W$ and it is denoted by $a(D, X, B)$. For any positive real number ϵ , we say that (X, B) is lc (resp. klt, ϵ -lc, ϵ -klt) if $a(D, X, B) \geq 0$ (resp. $> 0, \geq \epsilon, > \epsilon$) for every log resolution $\phi : W \rightarrow X$ as above and every prime divisor D on W . We say that X is lc (resp. klt, ϵ -lc, ϵ -klt) if $(X, 0)$ is lc (resp. klt, ϵ -lc, ϵ -klt).

A germ $(X \ni x, B)$ consists of a pair (X, B) and a closed point $x \in X$. $(X \ni x, B)$ is called an lc (resp. a klt, an ϵ -lc) germ if (X, B) is lc (resp. klt, ϵ -lc) near x . $(X \ni x, B)$ is called ϵ -lc at x if $a(D, X, B) \geq \epsilon$ for any prime divisor D over $X \ni x$ (i.e., $\text{center}_X D = x$).

Definition 2.2. Let \mathcal{I} be a set of real numbers. We say that \mathcal{I} satisfies the *descending chain condition* (DCC) if any decreasing sequence $a_1 \geq a_2 \geq \dots \geq a_k \geq \dots$ in \mathcal{I} stabilizes. We say that \mathcal{I} satisfies the *ascending chain condition* (ACC) if any increasing sequence in \mathcal{I} stabilizes.

Definition 2.3 (Minimal log discrepancies). Let (X, B) be a pair and $x \in X$ a closed point. The *minimal log discrepancy* of (X, B) is defined as

$$\text{mld}(X, B) := \inf\{a(E, X, B) \mid E \text{ is an exceptional prime divisor over } X\}.$$

The *minimal log discrepancy* of $(X \ni x, B)$ is defined as

$$\text{mld}(X \ni x, B) := \inf\{a(E, X, B) \mid E \text{ is a prime divisor over } X \ni x\}.$$

If X is \mathbb{Q} -Gorenstein, we define $\text{mld}(X) := \text{mld}(X, 0)$. If X is \mathbb{Q} -Gorenstein near x , we define $\text{mld}(X \ni x) := \text{mld}(X \ni x, 0)$. For any positive integer d , we define

$$\text{mld}(d) := \{\text{mld}(X \ni x) \mid (X \ni x, 0) \text{ is lc, } \dim X = d\}.$$

Definition 2.4. Let X be a normal projective variety and D an \mathbb{R} -divisor on X . We define

$$|D| := \{D' \mid 0 \leq D' \sim \lfloor D \rfloor\}.$$

For any \mathbb{R} -divisor D such that $|D| \neq \emptyset$, the *base locus* of D is

$$\text{Bs}(D) := \cap_{D' \sim D} \text{Supp } D',$$

the *fixed part* of D is the unique \mathbb{R} -divisor $F \geq 0$, such that

- (1) for any $D' \in |D|$, $D' \geq F$, and
- (2) $\text{Bs}(|D - F|)$ does not contain any divisor,

and the *movable part* of D is $D - F$. We also say that F is the *fixed part* of $|D|$.

We denote by $\rho(X)$ the Picard number of X .

Definition 2.5. A *surface* is a variety of dimension 2. A *rational surface* is a projective surface that is birational to \mathbb{P}^2 . For every nonnegative integer k , the *Hirzebruch surface* \mathbb{F}_k is $\mathbb{P}_{\mathbb{P}^1}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(k))$.

Definition 2.6. Let n be a nonnegative integer, and $C = \cup_{i=1}^n C_i$ a collection of proper curves on a smooth surface U . The *determinant* of C is defined as $\det(C) := \det(\{-(C_i \cdot C_j)\}_{1 \leq i, j \leq n})$ if $C \neq \emptyset$, and we define $\det(\emptyset) = 1$. We define the dual graph $\mathcal{DG}(C)$ of C as follows.

1. The vertices $v_i = v_i(C_i)$ of $\mathcal{DG}(C)$ correspond to the curves C_i .
2. For each i , v_i is labeled by the integer $e_i := -(C_i^2)$. e_i is called the *weight* of v_i .
3. For $i \neq j$, the vertices v_i and v_j are connected by $C_i \cdot C_j$ edges.

The *determinant* of $\mathcal{DG}(C)$ is defined as $\det(C)$. For any birational morphism $f : Y \rightarrow X$ between normal surfaces, let $E = \cup_{i=1}^n E_i$ be the reduced exceptional divisor for some nonnegative integer n . We define $\mathcal{DG}(f) := \mathcal{DG}(E)$. If f is the minimal resolution of X (resp. the minimal resolution of $(X \ni x, 0)$ for some closed point $x \in X$), we define $\mathcal{DG}(X) := \mathcal{DG}(f)$ (resp. $\mathcal{DG}(X \ni x) := \mathcal{DG}(f)$).

Theorem 2.7 (cf. [1, Theorem 3.2, Corollary 3.4], [14]). $\text{mld}(2)$ satisfies the ACC, and the set of accumulation points of $\text{mld}(2)$ is $\{\frac{1}{n} \mid n \geq 2\} \cup \{0\}$.

Proposition 2.8 (cf. [4, Proposition A.5]). Let $\mathcal{I}_0 \subset [0, 1]$ be a finite set. Then, there exists a positive integer I depending only on \mathcal{I}_0 satisfying the following. Assume that $(X \ni x, 0)$ is an lc surface germ such that $\text{mld}(X \ni x) \in \mathcal{I}_0$. Then, IK_X is Cartier near x .

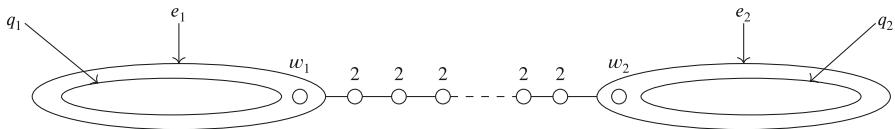


FIGURE 1 .

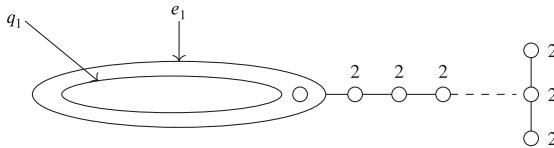


FIGURE 2 .

Lemma 2.9. Let ϵ be a positive real number and $(X \ni x, 0)$ an ϵ -lc (resp. ϵ -klt) surface germ. Then, for any vertex v of $DG(X \ni x)$, the weight of v is $\leq \frac{2}{\epsilon}$ (resp. $< \frac{2}{\epsilon}$).

Proof. [1, Corollary 2.19] proves the ϵ -lc case and the ϵ -klt case immediately follow.

Lemma 2.10 (cf. [1, Lemma 3.3], [4, Lemma A.1]). *Let ϵ be a positive real number. Then, there exists a finite set $\mathcal{G} = \mathcal{G}(\epsilon)$ of dual graphs and a finite set $\mathcal{I}_0 = \mathcal{I}_0(\epsilon)$ of positive integers, such that for any ϵ -lc germ $(X \ni x, 0)$, one of the following holds:*

1. $DG(X \ni x, 0) \in \mathcal{G}$.
2. $DG(X \ni x, 0)$ is of the type as in Figure 1. Here, $e_1 = e_1(X \ni x)$, $q_1 = q_1(X \ni x)$ and $e_2 = e_2(X \ni x)$, $q_2 = q_2(X \ni x)$ are the determinants of the subdual graphs, such that $e_1, e_2, q_1, q_2 \in I_0$, and

$$\min \left\{ \frac{1}{e_1 - q_1}, \frac{1}{e_2 - q_2} \right\} \geq \epsilon.$$

Moreover, we may assume that

(a) either $e_1 = w_1 = 2$ and $q_1 = 1$, or $w_1 > 2$; and
 (b) either $e_2 = w_2 = 2$ and $q_2 = 1$, or $w_2 > 2$.

3. $DG(X \ni x, 0)$ is of the type as in Figure 2. Here, $e_1 = e_1(X \ni x)$ and $q_1 = q_1(X \ni x)$ are the determinants of the subdual graphs, such that $e_1, q_1 \in I_0$, and

$$\mathrm{mld}(X \ni x) = \frac{1}{e_1 - q_1} \geq \epsilon.$$

We remark that each oval in Figures 1 and 2 corresponds to a subdual graph, which is a chain, as shown in [1, Lemma 3.3, 2] and [4, Appendix, Notation].

Proof. The statement on the structure of the dual graphs are explained both in [1, Lemma 3.3] and in [4, Lemma A.1]. By taking the coefficient set $\Gamma = \{0\}$, the inequality $\min\left\{\frac{1}{e_1-q_1}, \frac{1}{e_2-q_2}\right\} \geq \epsilon$ in (2) follows from the moreover part of [4, Lemma A.1(2)], and the inequality $\frac{1}{e_1-q_1} \geq \epsilon$ follows from the moreover part of [4, Lemma A.1(3)].

For the moreover part of (2), note that if $w_1 \leq 2$, then we may add the vertex corresponding to w_1 to the 2-chains and repeat this process unless this vertex is the tail of the chain. This implies (2.a), and (2.b) is similar to (2.a). \square

Lemma 2.11 [10, 3.1.11]. *Let $(X \ni x, 0)$ be a klt surface germ such that $DG(X \ni x, 0)$ is a chain. Then, $X \ni x$ is a cyclic quotient singularity. Moreover, if the dual graph of $X \ni x$ is*

then $X \ni x$ is a cyclic quotient singularity of form $\frac{1}{r}(1, a)$, such that $\frac{r}{a} = a_1 - \frac{1}{a_2 - \frac{1}{a_3 - \frac{1}{\dots}}}$ and $\gcd(r, a) = 1$.

Lemma 2.12 (cf. [12, Lemma 2.11], [2, Theorem 1]). *Let $X \ni x$ be a cyclic quotient singularity of form $\frac{1}{r}(1, a)$ such that $\gcd(r, a) = 1$. Then,*

$$\text{mld}(X \ni x) = \min \left\{ \frac{k}{r} + \left\{ \frac{ka}{r} \right\} \mid 1 \leq k \leq r-1, k \in \mathbb{N}^+ \right\}.$$

Lemma 2.13. *Let $(X \ni x, 0)$ and $(Y \ni y, 0)$ be two klt surface germs such that $DG(X \ni x, 0)$ is a subgraph of $DG(Y \ni y, 0)$. Then, $\text{mld}(X \ni x) \geq \text{mld}(Y \ni y, 0)$.*

Proof. Let $f : W \rightarrow Y$ be a partial resolution, which extracts all divisors corresponding to vertices contained in $DG(Y \ni y, 0) \setminus DG(X \ni x, 0)$. Then, $(X \ni x) \cong (W \ni w)$ for some $w \in W$. Since $f^*K_Y = K_W + B_W$ for some $B_W \geq 0$, we have

$$\text{mld}(Y \ni y, 0) \leq \text{mld}(W \ni w, B_W) \leq \text{mld}(W \ni w, 0) = \text{mld}(X \ni x, 0). \quad \square$$

Lemma 2.14. *Let $(X \ni x, 0)$ be a $\frac{2}{5}$ -klt surface singularity. Then, either $(X \ni x) \cong \frac{1}{7}(1, 2)$, or $(X \ni x) \cong \frac{1}{4}(1, 1)$, or the weight of any vertex of $DG(X \ni x)$ is ≤ 3 .*

Proof. By Lemma 2.9, the weight of any vertex of $DG(X \ni x)$ is ≤ 4 . By [11, Theorem 4.7], $DG(X \ni x, 0)$ is connected and contains no cycle. We may assume that $DG(X \ni x)$ contains a vertex of weight 4. We have the following cases.

Case 1. $DG(X \ni x, 0)$ only contains one point. Then, $(X \ni x) \cong \frac{1}{4}(1, 1)$ and we are done.

Case 2. $DG(X \ni x, 0)$ contains the subgraph \mathcal{G}_n :

for some $n \geq 3$. By Lemma 2.11, the singularity corresponding to the dual graph \mathcal{G}_n is a cyclic quotient singularity of type $\frac{1}{4n-1}(1, 4)$. By Lemma 2.12, when $n \geq 4$,

$$\text{mld}\left(\frac{1}{4n-1}(1, 4)\right) \leq \frac{5}{4n-1} \leq \frac{1}{3} < \frac{2}{5},$$

and when $n = 3$,

$$\text{mld}\left(\frac{1}{11}(1, 4)\right) = \text{mld}\left(\frac{1}{11}(1, 4)\right) = \frac{4}{11} < \frac{2}{5}.$$

We get a contradiction to Lemma 2.13.

Case 3. $DG(X \ni x, 0)$ contains the subgraph \mathcal{G}_2 :

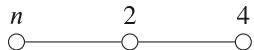
but does not contain the subgraph \mathcal{G}_n as in Case 1.2 for any $n \geq 3$. We have the following cases.

Case 3.1. $DG(X \ni x, 0) = \mathcal{G}_2$. By Lemma 2.11, $(X \ni x)$ is a cyclic quotient singularity of type $\frac{1}{7}(1, 2)$ and we are done.

Case 3.2. $DG(X \ni x, 0)$ contains a subgraph \mathcal{H} :

By Lemma 2.11, the singularity corresponds to \mathcal{H} , which is a cyclic quotient singularity of type $\frac{1}{12}(1, 7)$. Since $\text{mld}\left(\frac{1}{12}(1, 7)\right) = \frac{1}{3} < \frac{2}{5}$, we get a contradiction to Lemma 2.13.

Case 3.3. $DG(X \ni x, 0)$ contains a subgraph \mathcal{L}_n :



for some integer $n \geq 2$. By Lemma 2.11, singularity corresponds to \mathcal{L}_n , which is a cyclic quotient singularity of type $\frac{1}{7n-4}(1, 7)$. By Lemma 2.12, when $n \geq 4$,

$$\text{mld}\left(\frac{1}{7n-4}(1, 7)\right) \leq \frac{8}{7n-4} \leq \frac{1}{3} < \frac{2}{5}.$$

When $n = 3$,

$$\text{mld}\left(\frac{1}{7n-4}(1, 7)\right) = \text{mld}\left(\frac{1}{17}(1, 7)\right) = \text{mld}\left(\frac{1}{17}(5, 1)\right) = \frac{6}{17} < \frac{2}{5}.$$

When $n = 2$,

$$\text{mld}\left(\frac{1}{7n-4}(1, 7)\right) = \text{mld}\left(\frac{1}{10}(1, 7)\right) = \text{mld}\left(\frac{1}{10}(3, 1)\right) = \frac{2}{5}.$$

We get a contradiction to Lemma 2.13. □

Lemma 2.15. Let $(X \ni x)$ be a $\frac{2}{5}$ -klt surface germ and $f : Y \rightarrow X$ the minimal resolution of $X \ni x$. Suppose that

$$K_Y + \sum_{i=1}^n a_i E_i = f^* K_X,$$

where E_1, \dots, E_n are the prime exceptional divisors of f . Then, $K_Y \cdot \sum_{i=1}^n a_i E_i \leq n$.

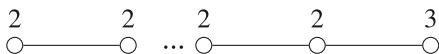
Proof. By Lemma 2.14, there are three cases.

Case 1. $E_i^2 \geq -3$ for each i . Since $(K_Y + E_i) \cdot E_i = -2$ for each i , $K_Y \cdot E_i \leq 1$ for each i . Since $a_i < 1$ for each i , the lemma follows.

Case 2. $n = 1$ and $E_1^2 = -4$. Then, $K_Y \cdot E_1 = 2$ and $(K_Y + a_1 E_1) \cdot E_1 = 0$, hence $a_1 = \frac{1}{2}$. We have $K_Y \cdot \sum_{i=1}^n a_i E_i = \frac{1}{2} K_Y \cdot E_1 = 1 = n$.

Case 3. $n = 2$, and possibly reordering indices, $E_1^2 = -2$ and $E_2^2 = -4$. Then, $K_Y \cdot E_1 = 0$, $K_Y \cdot E_2 = 2$, $(K_Y + a_1 E_1 + a_2 E_2) \cdot E_1 = 0$, and $(K_Y + a_1 E_1 + a_2 E_2) \cdot E_2 = 0$. Thus, $a_1 = \frac{2}{7}$ and $a_2 = \frac{4}{7}$, hence $K_Y \cdot \sum_{i=1}^n a_i E_i = \frac{8}{7} < 2 = n$. □

Lemma 2.16. Let $X \ni x$ be a cyclic quotient singularity of type $\frac{1}{2k+1}(1, k)$ for some positive integer k . Then, $DG(X \ni x)$ is the following graph, where there are $k - 1$ “2” in the graph.



Moreover, let E_1, \dots, E_k be the divisors corresponding to the vertices of $DG(X \ni x)$, such that $E_i^2 = -2$, when $1 \leq i \leq k - 1$, $E_k^2 = -3$, and $E_i \cdot E_j \neq 0$ if and only if $|i - j| \leq 1$. Then, $a(E_i, X, 0) = \frac{2k+1-i}{2k+1}$ for each i .

Proof. It is clear that the cyclic quotient singularity is uniquely determined by its dual graph. Since $\frac{2k+1}{k} = 3 - \frac{1}{2 - \frac{1}{2 - \frac{1}{\dots - \frac{1}{2}}}}$ where there are $k - 1$ “2” in the fraction, the first part of the lemma follows from Lemma 2.11. For the remaining part of the lemma, let $a_i := 1 - a(E_i, X, 0)$ for each i . Since $K_Y \cdot E_i = -2 - E_i^2$ for each i and $(K_Y + \sum_{i=1}^k a_i E_i) \cdot E_i = 0$ for each i , when $k = 1$, $a(E_1, X, 0) = \frac{2}{3}$ and we are done, and when $k \geq 2$, we have

- (1) $2a_1 = a_2$,
- (2) $2a_i = a_{i-1} + a_{i+1}$ for any $2 \leq i \leq k-1$, and
- (3) $3a_k = a_{k-1} + 1$.

Thus, $a_i = ia_1$ for each i , and we have

$$3ka_1 = 3a_k = a_{k-1} + 1 = (k-1)a_1 + 1,$$

hence $a_1 = \frac{1}{2k+1}$ and $a_i = \frac{i}{2k+1}$ for each i . The lemma follows. \square

3 | GLOBAL GEOMETRY OF SMOOTH SURFACES

3.1 | Some elementary lemmas

Lemma 3.1. *Let X be a smooth projective surface, D a pseudo-effective \mathbb{R} -divisor on X , and C an irreducible curve on X . If $D \cdot C < 0$, then $C^2 < 0$.*

Proof. Let $D = P + N$ be the Zariski decomposition of D such that P is the positive part and N is the negative part. Since $D \cdot C < 0$ and P is nef, $N \cdot C < 0$. Since $N \geq 0$, $C \subset \text{Supp } N$ and $C^2 < 0$. \square

Lemma 3.2. *Let X be a smooth projective surface such that K_X is pseudo-effective. Let C be an irreducible curve on X such that $K_X \cdot C < 0$. Then, $C^2 = K_X \cdot C = -1$. In particular, C is a smooth rational curve.*

Proof. By Lemma 3.1, $C^2 < 0$. Since X is smooth, $K_X \cdot C \leq -1$ and $C^2 \leq -1$. Thus, $(K_X + C) \cdot C \leq -2$, which implies that $(K_X + C) \cdot C = -2$, $C^2 = K_X \cdot C = -1$, and C is a smooth rational curve. \square

Lemma 3.3. *Let X be a smooth projective surface such that K_X is pseudo-effective, and C a smooth rational curve on X . Then, $C^2 \leq -1$.*

Proof. If not, then $C^2 \geq 0$. Since $(K_X + C) \cdot C = -2$, $K_X \cdot C \leq -2 < 0$. Since K_X is pseudo-effective, $C^2 < 0$, a contradiction. \square

Lemma 3.4. *Let X be a smooth projective surface, C an irreducible curve on X , $f : Y \rightarrow X$ a blow-up of a closed point, E the exceptional divisor of f , and C_Y the strict transform of C on Y . If $C_Y \cdot E \leq 1$ and C_Y is a smooth rational curve, then C is a smooth rational curve.*

Proof. Since X is smooth, Y is smooth. Thus, $C_Y \cdot E \in \{0, 1\}$. If $C_Y \cdot E = 0$, then f is an isomorphism near a neighborhood of C_Y and hence C is a smooth rational curve. If $C_Y \cdot E = 1$, then $K_X \cdot C = K_Y \cdot C_Y - 1$ and $C^2 = C_Y^2 + 1$, and hence $(K_X + C) \cdot C = (K_Y + C_Y) \cdot C_Y = -2$. Thus, C is a smooth rational curve. \square

Lemma 3.5. *Let X be a smooth projective surface such that K_X is pseudo-effective, and E_1, E_2 two different smooth rational curves on X such that $E_1^2 = E_2^2 = -1$. Then, $E_1 \cdot E_2 = 0$.*

Proof. Assume that $E_1 \cdot E_2 \neq 0$, then $E_1 \cdot E_2 = n \geq 1$ for some positive integer n . Let $f : X \rightarrow Y$ be the contraction of E_1 and $E_{2,Y} := f_* E_2$. Then, $E_{2,Y}^2 = -1 + n^2 \geq 0$ and $K_Y \cdot E_{2,Y} = -1 - n < 0$. Since K_X is pseudo-effective, K_Y is pseudo-effective, which contradicts Lemma 3.1. \square

Lemma 3.6. *Let X be a smooth projective surface such that K_X is pseudo-effective, and E_1, E_2, E_3 three different smooth rational curves on X . If $E_1^2 = E_3^2 = -2$ and $E_2^2 = -1$, then either $E_1 \cdot E_2 = 0$ or $E_2 \cdot E_3 = 0$.*

Proof. Assume that $E_1 \cdot E_2 = n_1 > 0$ and $E_2 \cdot E_3 = n_3 > 0$ for some positive integers n_1 and n_3 . Let $f : X \rightarrow Y$ be the contraction of E_2 . Then, Y is smooth and K_Y is pseudo-effective. Let $E_{1,Y} := f_* E_1$, and $E_{3,Y} := f_* E_3$. Then, $E_{1,Y}^2 = -2 +$

$n_1^2, E_{3,Y}^2 = -2 + n_3^2, K_Y \cdot E_{1,Y} = -n_1$, and $K_Y \cdot E_{3,Y} = -n_3$. Thus, by Lemma 3.1, $n_1 = n_3 = 1$, which implies that $E_{1,Y}^2 = E_{3,Y}^2 = -1$ and $E_{1,Y} \cdot E_{3,Y} > 0$. By Lemma 3.4, $E_{1,Y}$ and $E_{3,Y}$ are smooth rational curves, which contradicts Lemma 3.5. \square

Lemma 3.7. *Let X be a smooth rational surface. Then, $K_X^2 = 10 - \rho(X)$.*

Proof. We may run a K_X -MMP $f : X := X_0 \xrightarrow{f_1} X_1 \xrightarrow{f_2} \dots \xrightarrow{f_n} X_n$ such that either $X_n = \mathbb{F}_k$ for some nonnegative integer k or $X_n = \mathbb{P}^2$. For any $i \in \{0, 1, 2, \dots, n-1\}$, we have $K_{X_i}^2 = K_{X_{i+1}}^2 - 1$ and $\rho(X_i) = \rho(X_{i+1}) + 1$. Thus, $K_X^2 + \rho(X) = K_{X_n}^2 + \rho(X_n)$. If $X_n = \mathbb{F}_k$ for some nonnegative integer k , then $K_{X_n}^2 + \rho(X_n) = 8 + 2 = 10$. If $X_n = \mathbb{P}^2$, then $K_{X_n}^2 + \rho(X_n) = 9 + 1 = 10$. Thus, $K_X^2 = 10 - \rho(X)$. \square

3.2 | Zariski decomposition

Lemma 3.8. *Let X be a smooth projective surface, and D, \tilde{D} two \mathbb{Q} -divisors on X , such that $D \geq \tilde{D}$ and \tilde{D} is nef. Let $D = P + N$ be the Zariski decomposition of D , where P is the positive part and N is the negative part. Then, $P \geq \tilde{D}$.*

Proof. Assume that $N = \sum_{i=1}^n a_i C_i$ and $D - \tilde{D} = \sum_{i=1}^n b_i C_i + D_0$, where n is a nonnegative integer, C_i are distinct irreducible curves, $D_0 \geq 0$, and for each i , $a_i > 0$, $b_i \geq 0$, and $C_i \notin \text{Supp } D_0$. Then, for every $j \in \{1, 2, \dots, n\}$,

$$\begin{aligned} \sum_{i=1}^n a_i (C_i \cdot C_j) &= N \cdot C_j = D \cdot C_j = \tilde{D} \cdot C_j + (D - \tilde{D}) \cdot C_j \\ &\geq (D - \tilde{D}) \cdot C_j = \sum_{i=1}^n b_i (C_i \cdot C_j) + D_0 \cdot C_j \geq \sum_{i=1}^n b_i (C_i \cdot C_j), \end{aligned}$$

which implies that $\sum_{i=1}^n (a_i - b_i)(C_i \cdot C_j) \geq 0$ for every j . Since the intersection matrix $\{(C_i \cdot C_j)\}_{1 \leq i, j \leq n}$ is negative definite, $a_i \leq b_i$ for each i . Thus, $D - \tilde{D} \geq N$, hence $P \geq \tilde{D}$. \square

Lemma 3.9. *Let X be a smooth projective surface, D a big Weil divisor on X , \tilde{D} an nef Weil divisor on X , and E a Weil divisor on X , such that*

- (1) $D = P + N$ is the Zariski decomposition of D , where P is the positive part and $N \geq 0$ is the negative part,
- (2) $E = D - \tilde{D} \geq 0$, and
- (3) $|D|$ defines a birational map.

Then, there exist a big Weil divisor D_1 on X and a Weil divisor E_1 on X , such that

1. $D_1 = \lfloor P \rfloor$,
2. $E \geq E_1 = D_1 - \tilde{D} \geq 0$,
3. $|D_1|$ defines a birational map, and
4. either $N = 0$ and $D = P$, or there exists at least one irreducible component F of $\text{Supp } E$ such that $\text{mult}_F(E - E_1) \geq 1$.

Proof. We let $D_1 := \lfloor P \rfloor$, then (1) holds. Let $E_1 := D_1 - \tilde{D}$. Since \tilde{D} is nef and $D \geq \tilde{D}$, by Lemma 3.8, $P \geq \tilde{D}$. Thus, $P - \tilde{D} \geq 0$, and hence

$$E_1 = D_1 - \tilde{D} = \lfloor P \rfloor - \tilde{D} = \lfloor P - \tilde{D} \rfloor \geq 0.$$

Since

$$E - E_1 = D - D_1 = P + N - \lfloor P \rfloor = \{P\} + N \geq 0,$$

we deduce (2). Since $|D_1| = |\lfloor P \rfloor| = |P| \cong |D|$, $|D_1|$ defines a birational map, hence (3). Finally, if $E - E_1 \neq 0$, then we are done; otherwise, $E - E_1 = 0$, hence $\{P\} + N = 0$. Thus, $N = 0$, which implies that $D = P$, hence (4). \square

Proposition 3.10. *Let X be a smooth projective surface, D a big Weil divisor on X , and \tilde{D} an nef Weil divisor on X , such that*

- (1) $D = P + N$ is the Zariski decomposition of D , where P is the positive part and $N \geq 0$ is the negative part,
- (2) $D - \tilde{D} \geq 0$, and
- (3) $|D|$ defines a birational map.

Then, there exists a Weil divisor D' on X , such that

1. $D \geq D' \geq \tilde{D}$,
2. D' defines a birational map, and
3. D' is big and nef.

Proof. Let $D_0 := D$, $P_0 := P$, $N_0 := N$, and $E_0 := D - \tilde{D}$, and let r_0 be the sum of all the coefficients of E_0 . Then, r_0 is a nonnegative integer.

For any nonnegative integer k , assume that there exist big Weil divisors D_1, \dots, D_k on X , Weil divisors E_1, \dots, E_k on X , and nonnegative integers r_1, \dots, r_k , such that for every $i \in \{0, 1, \dots, k\}$,

- (1) $D_i = P_i + N_i$ is the Zariski decomposition of D_i , where P_i is the positive part and $N_i \geq 0$ is the negative part;
- (2) $E_0 \geq E_i = D_i - \tilde{D} \geq 0$;
- (3) $|D_i|$ defines a birational map;
- (4) r_k is the sum of all the coefficients of the components of E_i such that $0 \leq r_k \leq r_0 - k$; and
- (5) if $i \geq 1$, then $D_i = \lfloor P_{i-1} \rfloor$.

It is clear that these assumptions hold when $k = 0$. By Lemma 3.9, there are two cases:

Case 1. $N_k = 0$ and $D_k = P_k$. In this case, by our assumptions,

- (1) $D_k - \tilde{D} \geq 0$, hence $D_k \geq \tilde{D}$;
- (2) $E_0 \geq D_k - \tilde{D}$, hence $D \geq D_k$;
- (3) D_k is big and defines a birational map; and
- (4) $D_k = P_k$ is nef.

Thus, we may let $D' := D_k$.

Case 2. There exists a big Weil divisor D_{k+1} on X , a Weil divisor E_{k+1} on X , and a nonnegative integer r_{k+1} , such that

- (1) $D_{k+1} = \lfloor P_k \rfloor$,
- (2) $E_0 \geq E_{k+1} = D_{k+1} - \tilde{D} \geq 0$,
- (3) $|D_{k+1}|$ defines a birational map, and
- (4) $0 \leq r_{k+1} \leq r_k - 1$.

In this case, we may replace k with $k + 1$ and apply induction on k . Since $0 \leq r_k \leq r_0 - k$, we have $k \leq r_0$. Thus, this process must terminate and we are done. \square

3.3 | Effective birationality and existence of special nef \mathbb{Q} -divisors

Lemma 3.11. *Let X be a klt projective surface such that K_X is big and nef, $f : Y \rightarrow X$ the minimal resolution of X , and E_1, \dots, E_n the prime f -exceptional divisors. Assume that $K_Y + \sum_{i=1}^n a_i E_i = f^* K_X$. Then, for any positive integer m , if there exist integers r_1, \dots, r_n , such that*

1. $0 \leq r_i \leq \lfloor m a_i \rfloor$, and
2. $K_Y + \sum_{i=1}^n \frac{r_i}{m} E_i$ is big and nef,

then $|192mK_X|$ does not have a fixed part.

Proof. Let $\Delta := \sum_{i=1}^n \frac{r_i}{m} E_i$ and $L := m(K_Y + \Delta)$. Then, L is big and nef and Cartier. In particular, $2L - (K_Y + \Delta) \sim_{\mathbb{Q}} \left(2 - \frac{1}{m}\right)L$ is big and nef. By [6, Theorem 1.1, Remark 1.2] (see also [9, 1.1 Theorem]), $192L$ is base-point-free, which implies that the fixed part of $192m(K_Y + \sum_{i=1}^n a_i E_i)$ is supported on $\cup_{i=1}^n E_i$. Thus, $|192mK_X|$ does not have a fixed part. \square

Theorem 3.12 (cf. [8, Theorem 1.3]). *There exists a uniform positive integer m_1 , such that for any lc surface X such that K_X is big, $|m_1 K_X|$ defines a birational map.*

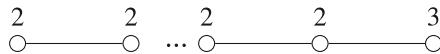
4 | $\frac{1}{3}$ -KLT SURFACES

In this section, we will prove Theorem 1.1. The structure of this section is as follows. In Section 4.1, we give a detailed classification of $\frac{1}{3}$ -klt surface singularities. In Section 4.2, we consider the intersection numbers of the form $K_X \cdot C$ where X is $\frac{1}{3}$ -klt, K_X is big and nef, and C is a curve satisfying special properties. For some lemmas and propositions, we need to restrict ourselves to $\frac{2}{5}$ -klt surfaces. With a good description of these intersection numbers and with the help of the results on Zariski decomposition in Section 3, in Section 4.3, we will construct special nef \mathbb{Q} -divisors on the minimal resolution of $\frac{2}{5}$ -klt surfaces. We will prove our main theorem in Section 4.4.

4.1 | Classification of $(\frac{1}{3} + \epsilon)$ -lc singularities

Lemma 4.1. *Let ϵ be a positive real number. Then, there exists a positive integer $n_0 = n_0(\epsilon)$ depending only on ϵ satisfying the following. Assume that $(X \ni x, 0)$ is a $(\frac{1}{3} + \epsilon)$ -lc surface germ. Then,*

1. either $n_0 K_X$ is Cartier near x , or
2. $X \ni x$ is a cyclic quotient singularity of type $\frac{1}{2k+1}(1, k)$ for some positive integer $k \geq 10$. In particular, $DG(X \ni x)$ is the following graph, where there are $k - 1$ “2” in the graph.



Proof. Assume that the lemma does not hold. Then, there exists a sequence of $(\frac{1}{3} + \epsilon)$ -lc surface germs $(X_i \ni x_i, 0)$, and a strictly increasing sequence of positive integer n_i , such that

- (1) $n_i K_{X_i}$ is not Cartier near x_i for any positive integer $n \leq n_i$, and
- (2) $X_i \ni x_i$ is not a cyclic quotient singularity of type $\frac{1}{2k+1}(1, k)$ for any i and any positive integer k .

We consider the set $\mathcal{A} := \{\text{mld}(X_i \ni x_i)\}_{i=1}^{+\infty}$. Since $\text{mld}(X_i \ni x_i) \geq \frac{1}{3} + \epsilon$, by Theorem 2.7, the only possible accumulation point of \mathcal{A} is $\frac{1}{2}$. If \mathcal{A} is a finite set, it contradicts Proposition 2.8. Thus, possibly passing to a subsequence and replacing \mathcal{A} , we may assume that $\text{mld}(X_i \ni x_i)$ is strictly decreasing and $\lim_{i \rightarrow +\infty} \text{mld}(X_i \ni x_i) = \frac{1}{2}$.

We let $\mathcal{G} := \mathcal{G}(\frac{1}{3} + \epsilon)$ be the finite set of dual graphs and $\mathcal{I}_0 := \mathcal{I}_0(\frac{1}{3} + \epsilon)$ be the finite set of real numbers as in Lemma 2.10. Then, for any $(X \ni x)$ such that $DG(X \ni x, 0) \in \mathcal{G}$, $\text{mld}(X \ni x)$ belongs to a finite set. Thus, possibly passing to a subsequence, by Lemma 2.10, we may assume that one of the following holds:

- (1) $(X_i \ni x_i)$ satisfies (2) of Lemma 2.10 for each i , and $e_1 = e_1(X_i \ni x_i)$, $q_1 = q_1(X_i \ni x_i)$, $e_2 = e_2(X_i \ni x_i)$, $q_2 = q_2(X_i \ni x_i) \in \mathcal{I}_0$ for each i . Since \mathcal{I}_0 is a finite set, possibly passing to a subsequence, we may assume that e_1, e_2, q_1, q_2 are constants for each i .

(2) $(X_i \ni x_i)$ satisfies (3) of Lemma 2.10 for each i , and $e_1 = e_1(X_i \ni x_i), q_1 = q_1(X_i \ni x_i) \in \mathcal{I}_0$ for each i . Since \mathcal{I}_0 is a finite set, possibly passing to a subsequence, we may assume that e_1, e_2, q_1, q_2 are constants for each i .

If $(X_i \ni x_i)$ satisfies (3) of Lemma 2.10 for each i , and $e_1 = e_1(X_i \ni x_i), q_1 = q_1(X_i \ni x_i)$ are constants for each i , then by Lemma 2.10(3), $\text{mld}(X_i \ni x_i) = \frac{1}{e_1 - q_1}$ is a constant, a contradiction.

If $(X_i \ni x_i)$ satisfies (2) of Lemma 2.10 for each i , and $e_1 = e_1(X_i \ni x_i), q_1 = q_1(X_i \ni x_i), e_2 = e_2(X_i \ni x_i), q_2 = q_2(X_i \ni x_i)$ are constants for each i , then by Lemma 2.10(2),

$$\min \left\{ \frac{1}{e_1 - q_1}, \frac{1}{e_2 - q_2} \right\} \geq \frac{1}{3} + \epsilon.$$

Thus, $e_1 - q_1 \leq 2$ and $e_2 - q_2 \leq 2$. We get a contradiction by enumerating possibilities as follows:

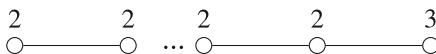
Case 1. $q_1 = 1$. Then $e_1 = 2$ or 3.

Case 1.1 $e_1 = 2$.

Case 1.1.1 $q_2 = 1$. Then $e_2 = 2$ or 3.

Case 1.1.1.1 $e_2 = 2$. In this case, all the weights in $DG(X_i \ni x_i)$ are 2. Thus, $\text{mld}(X_i \ni x_i) = 1$ for every i , a contradiction.

Case 1.1.1.2 $e_2 = 3$. In this case, for each i , the dual graph of $X_i \ni x_i$ is of the following form



By Lemma 2.11, $X_i \ni x_i$ is a cyclic quotient singularity of type $\frac{1}{2k_i+1}(1, k_i)$ for some positive integer k_i , and $k_i \rightarrow +\infty$ when $i \rightarrow +\infty$, a contradiction.

Case 1.1.2 $q_2 \geq 2$. In this case, there exist an integer $w_2 \geq 3$ and a nonnegative integer $d_2 < q_2$, such that $e_2 = w_2 q_2 - d_2$. Thus,

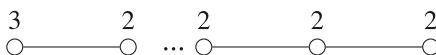
$$2 \geq e_2 - q_2 = (w_2 - 1)q_2 - d_2 \geq (w_2 - 2)q_2 + 1 \geq q_2 + 1 \geq 3,$$

a contradiction.

Case 1.2 $e_1 = 3$.

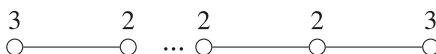
Case 1.2.1 $q_2 = 1$. Then, $e_2 = 2$ or 3.

Case 1.2.1.1 $e_2 = 2$. In this case, for each i , the dual graph of $X_i \ni x_i$ is of the following form



By Lemma 2.11, $X_i \ni x_i$ is a cyclic quotient singularity of type $\frac{1}{2k_i+1}(1, k_i)$ for some positive integer k_i , and $k_i \rightarrow +\infty$ when $i \rightarrow +\infty$, a contradiction.

Case 1.2.1.2 $e_2 = 3$. In this case, for each i , the dual graph of $X_i \ni x_i$ is of the following form:



By Lemma 2.11, $X_i \ni x_i$ is a cyclic quotient singularity of type $\frac{1}{4k_i+8}(1, 2k_i+3)$ for some nonnegative integer k_i . By Lemma 2.12, $\text{mld}(X_i \ni x_i) = \frac{1}{2}$, a contradiction.

Case 1.2.2 $q_2 \geq 2$. In this case, exactly the same argument as in Case 1.1.2 holds and we get a contradiction.

Case 2. $q_1 \geq 2$. In this case, there exists an integer $w_1 \geq 3$ and a nonnegative integer $d_1 < q_1$, such that $e_1 = w_1 q_1 - d_1$. Thus,

$$2 \geq e_1 - q_1 = (w_1 - 1)q_1 - d_1 \geq (w_1 - 2)q_1 + 1 \geq q_1 + 1 \geq 3,$$

a contradiction. □

4.2 | Intersection numbers

Lemma 4.2. *Let X be a projective klt surface such that K_X is nef and $f : Y \rightarrow X$ the minimal resolution of X . If X is not rational, then K_Y is pseudo-effective.*

Proof. If X is not rational, Y is not rational. If K_Y is not pseudo-effective, then there exists a birational morphism $g : Y \rightarrow W$ to a smooth projective surface W and a \mathbb{P}^1 -fibration $h : W \rightarrow R$. Since Y is not a rational surface, $g(R) \geq 0$. Thus, for any exceptional curve F of f , F does not dominate R . Pick a general h -vertical curve Σ and let Σ_Y, Σ_X be the strict transforms of Σ on Y and X , respectively. Then,

$$0 \leq K_X \cdot \Sigma_X = K_Y \cdot \Sigma_Y = K_W \cdot \Sigma = -2,$$

a contradiction. \square

Lemma 4.3. *Let X be a $\frac{1}{3}$ -klt surface such that K_X is big and nef, C an irreducible curve on X , $x \in C$ a closed point, $f : Y \rightarrow X$ the minimal resolution of X , and C_Y the strict transform of C on Y . Assume that*

- X is not a rational surface,
- $K_Y \cdot C_Y < 0$,
- $X \ni x$ is a cyclic quotient singularity of type $\frac{1}{2k+1}(1, k)$ for some integer $k \geq 5$, and
- E_1, \dots, E_k are prime f -exceptional divisors over $X \ni x$, such that
 1. $E_i^2 = -2$ when $1 \leq i \leq k-1$,
 2. $E_k^2 = -3$, and
 3. $E_i \cdot E_j \neq 0$ if and only if $|i - j| \leq 1$.

Then,

1. $C_Y \cdot E_i = 0$ when $1 \leq i \leq k-1$, and
2. $C_Y \cdot E_k = 1$.

Proof. By Lemma 4.2, K_Y is pseudo-effective. By Lemma 3.2, $K_Y \cdot C_Y = -1$ and $C_Y^2 = -1$. Moreover, each E_i is a smooth rational curve. Let $g : Y \rightarrow W$ be the contraction of C_Y and $E_{i,W} := g_* E_i$ for each i . Then, W is smooth and K_W is pseudo-effective. \square

Claim 4.4. $C_Y \cdot E_j \leq 1$ for every $j \in \{1, 2, \dots, k\}$.

Proof of Claim 4.4. Suppose this is not the case, then there exists an integer $n \geq 2$ and an integer $j \in \{1, 2, \dots, k\}$, such that $C_Y \cdot E_j = n$. We have

$$E_{j,W}^2 = E_j^2 + n^2 \geq -3 + 4 \geq 1$$

and

$$K_W \cdot E_{j,W} = K_Y \cdot E_j - n \leq -1,$$

which contradicts Lemma 3.1 as K_W is pseudo-effective. \square

Claim 4.5. $E_{i,W}$ are smooth rational curves for every i .

Proof of Claim 4.5. It immediately follows from Lemma 3.4 and Claim 4.4. \square

Claim 4.6. $C_Y \cdot E_j = 0$ for every $j \in \{2, 3, \dots, k-2\}$.

Proof of Claim 4.6. Suppose that the claim does not hold. Then, by Claim 4.4, there exists $j \in \{2, 3, \dots, k-2\}$ such that $C_Y \cdot E_j = 1$. There are three cases:

Case 1. $C_Y \cdot E_{j+1} = 1$. In this case, $E_{j,W}^2 = E_{j+1,W}^2 = -1$ and $E_{j,W} \cdot E_{j+1,W} = 2$. By Claim 4.5, $E_{j,W}$ and $E_{j+1,W}$ are smooth rational curves. Since K_W is pseudo-effective, this contradicts Lemma 3.5.

Case 2. $C_Y \cdot E_{j-1} = 1$. We get a contradiction by the same arguments as Case 1 except that we replace E_{j+1} with E_{j-1} .

Case 3. $C_Y \cdot E_{j-1} = C_Y \cdot E_{j+1} = 0$. In this case, $E_{j,W}^2 = -1, E_{j-1,W}^2 = E_{j+1,W}^2 = -2, E_{j,W} \cdot E_{j-1,W} = E_{j,W} \cdot E_{j+1,W} = 1$, which contradicts Lemma 3.6. \square

Claim 4.7. $C_Y \cdot E_{k-1} = 0$.

Proof of Claim 4.7. Suppose that the claim does not hold. Then, by Claim 4.4, $C_Y \cdot E_{k-1} = 1$. By Claim 4.6, $C_Y \cdot E_j = 0$ for every $j \in \{2, 3, \dots, k-2\}$. There are two cases:

Case 1. $C_Y \cdot E_k = 1$. In this case, $E_{k-1,W}^2 = -1, E_{k,W}^2 = -2, E_{k-2,W}^2 = -2, E_{k-1,W} \cdot E_{k,W} = 2$, and $E_{k-1,W} \cdot E_{k-2,W} = 1$. This contradicts Lemma 3.6.

Case 2. $C_Y \cdot E_k = 0$. In this case, $E_{k-1,W}^2 = -1, E_{k,W}^2 = -3, E_{k-2,W}^2 = E_{k-3,W}^2 = -2$, and for every $i, j \in \{k-3, k-2, k-1, k\}$, $E_i \cdot E_j = 1$ if $|i - j| = 1$ and $E_i \cdot E_j = 0$ if $|i - j| \geq 2$.

Let $h : W \rightarrow Z$ be the contraction of $E_{k-1,W}$ and $E_{i,Z} := h_* E_{i,W}$ for any $i \neq k-1$. Then, Z is smooth and K_Z is pseudo-effective. By Lemma 3.4, $E_{k-3,Z}, E_{k-2,Z}$, and $E_{k,Z}$ are smooth rational curves. Moreover, $E_{k-3,Z}^2 = E_{k,Z}^2 = -2, E_{k-2,Z}^2 = -1$, and $E_{k-3,Z} \cdot E_{k-2,Z} = E_{k-2,Z} \cdot E_{k,Z} = 1$. This contradicts Lemma 3.6. \square

Claim 4.8. $C_Y \cdot E_1 = 0$.

Proof of Claim 4.8. Suppose that the claim does not hold. Then, by Claim 4.4, $C_Y \cdot E_1 = 1$. By Claim 4.6 and Claim 4.7, $C_Y \cdot E_j = 0$ for every $j \in \{2, \dots, k-1\}$. By Claim 4.4, there are two cases:

Case 1. $C_Y \cdot E_k = 1$. In this case, $E_{1,W}^2 = -1, E_{2,W}^2 = E_{k,W}^2 = -2, E_{1,W} \cdot E_{2,W} = E_{1,W} \cdot E_{k,W} = 1$, which contradicts Lemma 3.6.

Case 2. $C_Y \cdot E_k = 0$. The are two subcases:

Case 2.1. For any closed point $y \in C$ such that $y \neq x, X$ is smooth near y . In this case, let $a := 1 - a(E_1, X, 0) = \frac{1}{2k+1}$. Since K_X is big and nef,

$$0 \leq K_X \cdot C = f^* K_X \cdot C_Y = (K_Y + (1 - a)E_1) \cdot C_Y = -1 + (1 - a) = -a < 0,$$

a contradiction.

Case 2.2. There exists a closed point $y \in C$ such that $y \neq x$ and X is not smooth near y . Then, there exists a prime divisor F on Y that is over $X \ni y$, such that $C_Y \cap F \neq \emptyset$. Moreover, F is a smooth rational curve. Since X is $\frac{1}{3}$ -klt, by Lemma 2.9, $F^2 \geq -5$. Let $F_W := g_* F$.

We have $F_W \cdot E_{i,W} = 0$ for every $i \neq 1, E_{1,W}^2 = -1, E_{2,W}^2 = E_{3,W}^2 = E_{4,W}^2 = -2$, and for every $i, j \in \{1, 2, 3, 4\}, E_{i,W} \cdot E_{j,W} = 1$ when $|i - j| = 1$ and $E_{i,W} \cdot E_{j,W} = 0$ when $|i - j| \geq 2$.

There are two subcases:

Case 2.2.1. $C_Y \cdot F = 1$. In this case, by Lemma 3.4, F_W is a smooth rational curve. Moreover, $F_W^2 \geq -4$ and $F_W \cdot E_{1,W} = 1$,

Let $h : W \rightarrow Z$ be the contraction of $E_{1,W}, E_{i,Z} := h_* E_{i,W}$ for each $i \neq 1$, and $F_Z := h_* F_W$. Then, Z is smooth and K_Z is pseudo-effective. By Lemma 3.4, $E_{2,Z}, E_{3,Z}, E_{4,Z}$, and F_Z are smooth rational curves. Moreover, $E_{2,Z}^2 = -1, E_{3,Z}^2 = E_{4,Z}^2 = -2, E_{2,Z} \cdot E_{3,Z} = E_{3,Z} \cdot E_{4,Z} = F_Z \cdot E_{2,Z} = 1, F_{2,Z} \cdot E_{3,Z} = F_{2,Z} \cdot E_{4,Z} = E_{2,Z} \cdot E_{4,Z} = 0$, and $F_Z^2 \geq -3$.

Let $p : Z \rightarrow T$ be the contraction of $E_{2,Z}, E_{i,T} := p_* E_{i,Z}$ for each $i \neq 1, 2$, and $F_T := p_* F_Z$. Then, T is smooth and K_T is pseudo-effective. By Lemma 3.4, $E_{3,T}, E_{4,T}$, and F_T are smooth rational curves. Moreover, $E_{3,T}^2 = -1, E_{4,T}^2 = -2, F_T^2 \geq -2$, and $E_{3,T} \cdot E_{4,T} = F_T \cdot E_{3,T} = 1$.

By Lemma 3.3, $F_T^2 \in \{-1, -2\}$. By Lemma 3.5, $F_T^2 = -2$. But this contradicts Lemma 3.6.

Case 2.2.2. $C_Y \cdot F \geq 2$. In this case, we let $b := F^2$ and $c := C_Y \cdot F$. Then, $F_W^2 = b + c^2, K_W \cdot F_W = K_Y \cdot F - c = -2 - b - c$, and $F_W \cdot E_{1,W} = c$.

Let $h : W \rightarrow Z$ be the contraction of $E_{1,W}$ and $F_Z := h_*F_W$. Then, Z is smooth and K_Z is pseudo-effective. Moreover, $F_Z^2 = F_W^2 + c^2 = b + 2c^2$, and $K_Z \cdot F_Z = K_W \cdot F_W - c = -2 - b - 2c$. Since $b \geq -5$ and $c \geq 2$, $F_Z^2 \geq 3 > 0$ and $K_Z \cdot F_Z \leq -1 < 0$, which contradicts Lemma 3.1. \square

Proof of Lemma 4.3 continued. By Claim 4.6, Claim 4.7, and Claim 4.8, we get (1). Since $x \in C$, C_Y intersects $\cup_{i=1}^k C_i$, which implies that C_Y intersects E_k . Thus, $C_Y \cdot E_k \geq 1$. (2) follows from Claim 4.4. \square

Lemma 4.9. *Let X be a rational $\frac{2}{5}$ -klt surface such that K_X is big and nef and $k \geq 10$ an integer. Then, X does not contain a cyclic quotient singularity of type $\frac{1}{2k+1}(1, k)$.*

Proof. Assume not. Then, there exists a closed point $x \in X$ such that x is a cyclic quotient singularity of type $\frac{1}{2k+1}(1, k)$. By Lemma 2.16, we may let $f : Y \rightarrow X$ be the minimal resolution of X and write

$$K_Y + \sum_{i=1}^k \frac{i}{2k+1} E_i + \sum_{i=1}^s b_i F_i = f^* K_X$$

where $E_1, \dots, E_k, F_1, \dots, F_s$ are the prime f -exceptional divisors, where

- (1) E_1, \dots, E_k are the prime f -exceptional divisors over $X \ni x$ such that $E_i^2 = -2$ when $1 \leq i \leq k-1$ and $E_k^2 = -3$, and
- (2) for every $i \in \{1, 2, \dots, s\}$, $\text{center}_X F_i = x_i$ for some closed point $x_i \in X$, such that $x_i \neq x$.

In particular, $K_Y \cdot E_i = 0$ when $i \neq k$ and $K_Y \cdot E_k = 1$. Since X is $\frac{2}{5}$ -klt, by Lemma 2.15, $K_Y \cdot \sum_{i=1}^s b_i F_i \leq s$. Since f extracts $k+s$ divisors, we have $\rho(Y) \geq 1+k+s$. Since K_X is big and nef, we have $K_X^2 > 0$, which implies that

$$K_Y^2 = K_X^2 - K_Y \cdot \left(\sum_{i=1}^k \frac{i}{2k+1} E_i + \sum_{i=1}^s b_i F_i \right) > -\frac{k}{2k+1} - s > -\frac{1}{2} - s.$$

Since X is rational, Y is rational. By Lemma 3.7, $K_Y^2 = 10 - \rho(Y)$. Thus,

$$-\frac{1}{2} - s < K_Y^2 = 10 - \rho(Y) \leq 10 - (1+k+s) = 9 - k - s,$$

which implies that $k < \frac{19}{2} < 10$, a contradiction. \square

Lemma 4.10. *Then, there exists a positive integer n_1 , a DCC set \mathcal{I} of nonnegative real numbers, and a positive real number γ_0 satisfying the following. Assume the following:*

- X is a $\frac{2}{5}$ -klt surface such that K_X is big and nef,
- C is an irreducible curve on X ,
- $f : Y \rightarrow X$ is the minimal resolution of X ,
- C_Y is the strict transform of C on Y , and
- $K_Y \cdot C_Y < 0$,

then

1. $K_X \cdot C \in \mathcal{I}$,
2. if $K_X \cdot C = 0$, then $n_1 K_X$ is Cartier near C , and
3. if $K_X \cdot C > 0$, then $K_X \cdot C \geq \gamma_0$.

Proof. By Lemma 4.1, there exists a positive integer $n_0 = n_0(\frac{1}{15})$, such that for any closed point $X \ni x$, either $n_0 K_X$ is Cartier near x , or x is a cyclic quotient singularity of type $\frac{1}{2k+1}(1, k)$ for some positive integer $k \geq 10$. Now we let

$$\mathcal{I} := \left\{ \gamma \mid \gamma \geq 0, \gamma = -1 + \sum_{i=1}^m \frac{k_i}{2k_i+1} + \frac{l}{n_0}, m, l, k_1, \dots, k_m \in \mathbb{N} \right\}.$$

Then, \mathcal{I} is a DCC set of nonnegative real numbers. Since \mathcal{I} satisfies the DCC, we may let $\gamma_0 := \min\{1, \gamma \in \mathcal{I} \mid \gamma > 0\}$.

Consider the equation

$$\sum_{i=1}^m \frac{k_i}{2k_i+1} + \frac{l}{n_0} = 1,$$

where $m, l, k_1, \dots, k_m \in \mathbb{N}$. Then, there exists a finite set $\mathcal{I}_0 \subset \mathbb{N}$ such that $k_i \in \mathcal{I}_0$ for each i : to see this, note that $\frac{k_i}{2k_i+1}$ belongs to a DCC set of positive real numbers and the sum $\sum_{i=1}^m \frac{k_i}{2k_i+1}$ belongs to the finite set $\{\frac{n_0-l}{n_0} \mid 1 \leq l \leq n_0\}$, which implies that $\frac{k_i}{2k_i+1}$ belongs to a finite set, hence k_i belongs to a finite set. We define

$$n_1 := n_0 \prod_{\gamma \in \mathcal{I}_0} (2\gamma + 1).$$

We show that n_1, \mathcal{I} , and γ_0 satisfy our requirements. For any curve C as in the assumption, there exists a nonnegative integer s , such that

- (1) there are closed points x_1, \dots, x_s on X , such that $x_i \in C$ and x_i is a cyclic quotient singularity of type $\frac{1}{2k_i+1}(1, k_i)$ for some positive integer $k_i \geq 10$ for each i , and
- (2) for any closed point $y \notin \{x_1, \dots, x_s\}$, $n_0 K_X$ is Cartier near y .

By Lemma 4.9, we may assume that X is not rational. By Lemma 4.3, we may write

$$K_Y + \sum_{i=1}^s \sum_{j=1}^{k_i} a_{i,j} E_{i,j} + \sum_{k=1}^t \frac{c_k}{n_0} F_k = f^* K_X,$$

where

- (1) $E_{i,j}$ and F_k are distinct prime f -exceptional divisors for every i, j, k ,
- (2) for any i, j , $\text{center}_X E_{i,j} = x_i$,
- (3) k_i, c_k are positive integers,
- (4) $a_{i,k_i} = \frac{k_i}{2k_i+1}$ for each i , and
- (5) $C_Y \cdot E_{i,u_i} = 1$ and $C_Y \cdot E_{i,j} = 0$ for every $j \neq u_i$.

By Lemma 3.2, $K_Y \cdot C_Y = -1$. Thus,

$$f^* K_X \cdot C_Y = \left(K_Y + \sum_{i=1}^s \sum_{j=1}^{k_i} a_{i,j} E_{i,j} + \sum_{k=1}^t \frac{c_k}{n_0} F_k \right) \cdot C_Y = -1 + \sum_{i=1}^s \frac{k_i}{2k_i+1} + \frac{l}{n_0}$$

for some nonnegative integer l . Moreover, since K_X is big and nef,

$$0 \leq K_X \cdot C = f^* K_X \cdot C_Y.$$

Thus, $K_X \cdot C = f^*K_X \cdot C_Y \in \mathcal{I}$, and we get (1). (3) follows from (1). Moreover, if $K_X \cdot C = 0$, then

$$0 = -1 + \sum_{i=1}^s \frac{k_i}{2k_i + 1} + \frac{l}{n_0},$$

which implies that $k_i \in \mathcal{I}_0$ for each i . Thus, $n_1 K_X$ is Cartier near C by construction of n_1 , and we get (2). \square

4.3 | Construction of nef \mathbb{Q} -divisors

Proposition 4.11. *There exists a positive integer m_0 satisfying the following. Assume the following:*

- (1) X a $\frac{2}{5}$ -klt surface such that K_X is big and nef,
- (2) $f : \bar{Y} \rightarrow X$ is the minimal resolution of X , and
- (3) $K_Y + \sum_{i=1}^s a_i E_i = f^*K_X$, where E_i are the prime f -exceptional divisors,

then $m_0 K_Y + \sum_{i=1}^s c_i E_i$ is nef for some nonnegative integers c_1, \dots, c_s , such that $c_i \leq \lfloor m_0 a_i \rfloor$ for each i .

Proof. Let n_1 and γ_0 be the numbers given by Lemma 4.10, n_0 the number given by Lemma 4.1, $n_2 := \max\{10, n_1, \lceil \frac{1}{\gamma_0} \rceil\}$, and

$$m_0 := n_0 n_1 \prod_{i=1}^{n_2} (2i + 1).$$

We show that m_0 satisfies our requirements.

We classify the singularities on X into three classes:

Class 1. Cyclic quotient singularities of type $\frac{1}{2k+1}(1, k)$ where $k \geq n_2$. Let these singularities be x_1, \dots, x_s for some non-negative integer s . We may assume that x_i is a cyclic quotient singularity of type $\frac{1}{2k_i+1}(1, k_i)$ for some integer $k_i \geq n_2$ for every $1 \leq i \leq s$.

Class 2. Singularities of type $\frac{1}{2k+1}(1, k)$ where $5 \leq k < n_2$. Let these singularities be x_{s+1}, \dots, x_t for some integer $t \geq s$. In particular, by the definition of m_0 , $m_0 K_X$ is Cartier near x_i for every $s+1 \leq i \leq t$.

Class 3. Other singularities. Let these singularities be x_{t+1}, \dots, x_r for some integer $r \geq t$. In particular, by Lemma 4.1, and the definition of m_0 , $m_0 K_X$ is Cartier near x_i for every $t+1 \leq i \leq r$.

Now we may write

$$K_Y + \sum_{i=1}^s \sum_{j=1}^{k_i} \frac{j}{2k_i + 1} E_{i,j} + \frac{1}{m_0} F = f^*K_X,$$

where

- (1) for every $1 \leq i \leq s$ and $1 \leq j \leq k_i$, $\text{center}_X E_{i,j} = x_i$;
- (2) for every $1 \leq i \leq s$ and $1 \leq j \leq k_i - 1$, $E_{i,j}^2 = -2$;
- (3) for every $1 \leq i \leq s$, $E_{i,k_i}^2 = -3$;
- (4) $F \geq 0$ is a f -exceptional Weil divisor, such that $x_i \notin \text{center}_X F$ for every $1 \leq i \leq s$.

We show that we may take

$$\sum_{i=1}^l c_i E_i := \sum_{i=1}^s \sum_{j=k_i-n_2+1}^{k_i} \frac{m_0(j - (k_i - n_2))}{2n_2 + 1} E_{i,j} + F.$$

Indeed, by our constructions, $0 \leq c_i \leq \lfloor m_0 a_i \rfloor$ for each i , and we only left to check that $(m_0 K_Y + \sum_{i=1}^l c_i E_i) \cdot C_Y \geq 0$ for any irreducible curve C_Y on Y . We have the following cases:

Case 1. K_Y is not pseudo-effective. In this case, by Lemma 4.2, X is rational. By Lemma 4.9, $s = 0$. Thus, $\sum_{i=1}^l c_i E_i = F$ and

$$\left(m_0 K_Y + \sum_{i=1}^l c_i E_i \right) = m_0 f^* K_X$$

is nef. Thus, $(m_0 K_Y + \sum_{i=1}^l c_i E_i) \cdot C_Y \geq 0$ for any irreducible curve C_Y on Y .

Case 2. K_Y is pseudo-effective.

Case 2.1. C_Y is not exceptional over X . Let $C := f_* C_Y$.

Case 2.1.1. $K_Y \cdot C_Y \geq 0$. In this case, $E_{i,j} \cdot C_Y \geq 0$ and $F \cdot C_Y \geq 0$, hence $(m_0 K_Y + \sum_{i=1}^l c_i E_i) \cdot C_Y \geq 0$.

Case 2.1.2. $K_Y \cdot C_Y < 0$. By Lemma 3.2, $K_Y \cdot C_Y = C_Y^2 = -1$. By Lemma 4.3, $C_Y \cdot E_{i,j} = 0$ for every i and every $j \leq k_i - 1$, and $C_Y \cdot E_{i,k_i} \in \{0, 1\}$ for every i . By Lemma 4.10, there are two possibilities.

Case 2.1.2.1. $n_1 K_X$ is Cartier near C . In this case, since $n_2 \geq n_1$, we have $2k_i + 1 \geq 2n_2 + 1 > n_1$ for every i . Since the Cartier index of K_X near x_i is $2k_i + 1$ and $n_1 K_X$ is Cartier near C , C does not pass through x_i . Thus, C_Y does not intersect $E_{i,j}$ for any i, j , and hence

$$\begin{aligned} \left(m_0 K_Y + \sum_{i=1}^l c_i E_i \right) \cdot C_Y &= (m_0 K_Y + F) \cdot C_Y \\ &= \left(m_0 K_Y + \sum_{i=1}^s \sum_{j=1}^{k_i} \frac{m_0 j}{2k_i + 1} E_{i,j} + F \right) \cdot C_Y = m_0 f^* K_X \cdot C_Y \geq 0. \end{aligned}$$

Case 2.1.2.2. $K_X \cdot C \geq \gamma_0$. Possibly reordering indices, we may assume that there exists an integer $t \in \{0, 1, 2, \dots, s\}$, such that $C_Y \cdot E_{i,k_i} = 1$ when $1 \leq i \leq t$ and $C_Y \cdot E_{i,k_i} = 0$ when $t + 1 \leq i \leq s$. There are two cases:

Case 2.1.2.2.1. $t \leq 2$. In this case, since $n_2 \geq \frac{1}{\gamma_0}$, $\gamma_0 > \frac{1}{2n_2 + 1}$. Thus,

$$\begin{aligned} \left(m_0 K_Y + \sum_{i=1}^l c_i E_i \right) \cdot C_Y &= m_0 f^* K_X \cdot C - \sum_{i=1}^t \left(\frac{m_0 k_i}{2k_i + 1} - \frac{m_0 n_2}{2n_2 + 1} \right) \\ &\geq m_0 \gamma_0 - m_0 \sum_{i=1}^t \left(\frac{1}{2} - \frac{n_2}{2n_2 + 1} \right) \geq m_0 \gamma_0 - \frac{m_0}{2n_2 + 1} > 0. \end{aligned}$$

Case 2.1.2.2.2. $t \geq 3$. In this case, we have

$$\begin{aligned} \left(m_0 K_Y + \sum_{i=1}^l c_i E_i \right) \cdot C_Y &\geq m_0 K_Y \cdot C_Y + \sum_{i=1}^t \frac{m_0 n_2}{2n_2 + 1} = m_0 \left(-1 + \sum_{i=1}^t \frac{n_2}{2n_2 + 1} \right) \\ &\geq m_0 \left(-1 + \frac{3n_2}{2n_2 + 1} \right) = \frac{m_0(n_2 - 1)}{2n_2 + 1} > 0. \end{aligned}$$

Case 2.2. C_Y is exceptional over X . Then, $C \subset \text{Supp} \left(\bigcup_{i=1}^s \bigcup_{j=1}^{k_i} E_{i,j} \right) \cup \text{Supp} F$.

Case 2.2.1 $C_Y \subset \text{Supp} F$. In this case, $C_Y \cdot E_{i,j} = 0$ for every i, j , and hence

$$\begin{aligned} \left(m_0 K_Y + \sum_{i=1}^l c_i E_i \right) \cdot C_Y &= (m_0 K_Y + F) \cdot C_Y \\ &= \left(m_0 K_Y + \sum_{i=1}^s \sum_{j=1}^{k_i} \frac{m_0 j}{2k_i + 1} E_{i,j} + F \right) \cdot C_Y = m_0 f^* K_X \cdot C_Y = 0. \end{aligned}$$

Case 2.2.2 $C_Y \subset \text{Supp} \left(\bigcup_{i=1}^s \bigcup_{j=1}^{k_i} E_{i,j} \right)$. We may assume that $C_Y = E_{i,j_0}$ for some i and some $1 \leq j_0 \leq k_i$. In this case,

$$\left(m_0 K_Y + \sum_{i=1}^l c_i E_i \right) \cdot C_Y = \left(m_0 K_Y + \sum_{j=k_i-n_2+1}^{k_i} \frac{m_0(j-(k_i-n_2))}{2n_2+1} E_{i,j} \right) \cdot C_Y.$$

There are four possibilities:

Case 2.2.2.1 $j_0 = k_i$. In this case, $\left(m_0 K_Y + \sum_{i=1}^l c_i E_i \right) \cdot C_Y = m_0 \left(1 + \frac{n_2-1}{2n_2+1} - \frac{3n_2}{2n_2+1} \right) = 0$.

Case 2.2.2.2 $k_i - n_2 + 1 \leq j_0 \leq k_i - 1$. In this case,

$$\left(m_0 K_Y + \sum_{i=1}^l c_i E_i \right) \cdot C_Y = m_0 \left(0 + \frac{j_0-1-(k_i-n_2)}{2n_2+1} - \frac{2(j_0-(k_i-n_2))}{2n_2+1} + \frac{j_0+1-(k_i-n_2)}{2n_2+1} \right) = 0.$$

Case 2.2.2.3 $j_0 = k_i - n_2$. In this case, $\left(m_0 K_Y + \sum_{i=1}^l c_i E_i \right) \cdot C_Y = \frac{m_0}{2n_2+1} > 0$.

Case 2.2.2.4 $1 \leq j_0 \leq k_i - n_2$. In this case, $\left(m_0 K_Y + \sum_{i=1}^l c_i E_i \right) \cdot C_Y = m_0 K_Y \cdot C_Y = 0$. \square

Proposition 4.12. *There exists a uniform positive integer m_2 satisfying the following. Assume that*

1. X a $\frac{2}{5}$ -klt surface such that K_X is big and nef,
2. $f : \tilde{Y} \rightarrow X$ is the minimal resolution of X , and
3. $K_Y + \sum_{i=1}^s a_i E_i = f^* K_X$, where E_i are the prime f -exceptional divisors,

then $m_2 K_Y + \sum_{i=1}^l r_i E_i$ is big and nef for some nonnegative integers r_1, \dots, r_l , such that $r_i \leq \lfloor m_2 a_i \rfloor$ for each i .

Proof. By Proposition 4.11, there exist a positive integer $m_0 = m_0$ which does not depend on X , and non-negative integers c_1, \dots, c_l , such that $m_0 K_Y + \sum_{i=1}^l c_i E_i$ is nef and $c_i \leq \lfloor m_0 a_i \rfloor$ for each i . By Theorem 3.12, there exists a uniform positive integer m_1 such that $|m_1 K_X|$ defines a birational map. Let $m_2 := m_0 m_1$. Then, $|m_2 K_X|$ defines a birational map, and hence

$$\left| m_2 K_Y + \sum_{i=1}^l \lfloor m_2 a_i \rfloor E_i \right| = \left| m_2 K_Y + \sum_{i=1}^l m_2 a_i E_i \right| = |f^*(m_2 K_X)|$$

defines a birational map.

Let $D := m_2 K_Y + \sum_{i=1}^l \lfloor m_2 a_i \rfloor E_i$ and $\tilde{D} := m_2 K_Y + \sum_{i=1}^l m_1 c_i E_i$. Since $c_i \leq \lfloor m_0 a_i \rfloor$,

$$m_1 c_i \leq m_1 \lfloor m_0 a_i \rfloor \leq \lfloor m_1 m_0 a_i \rfloor = \lfloor m_2 a_i \rfloor.$$

Thus, $D \geq \tilde{D}$. By Proposition 3.10, there exists a Weil divisor D' on X , such that $D \geq D' \geq \tilde{D}$ and D' is big and nef. In particular, we may write $D' = m_2 K_Y + \sum_{i=1}^l r_i E_i$ for some integers r_1, \dots, r_l such that $0 \leq c_i \leq r_i \leq \lfloor m_2 a_i \rfloor$ for each i . m_2 and r_1, \dots, r_l satisfy our requirements. \square

4.4 | Proof of the main theorem

Proof of Theorem 1.1. Let $f : Y \rightarrow X$ be the minimal resolution of X such that $K_Y + \sum_{i=1}^n a_i E_i = f^* K_X$, where E_1, \dots, E_n are the prime exceptional divisors of f . By Proposition 4.12, there exists a uniform positive integer m_2 , such that $K_Y + \sum_{i=1}^n \frac{r_i}{m_2} E_i$ is big and nef for some integers r_1, \dots, r_n such that $0 \leq r_i \leq \lfloor m_2 a_i \rfloor$ for each i . By Lemma 3.11, $|192m_2 K_X|$ defines a birational map and we may let $m := 192m_2$. \square

5 | EXAMPLES

In this section, we will provide two theorems where we construct some interesting examples. The first one is Theorem 5.3 (= Theorem 1.2), which shows that the $\frac{1}{2}$ -lc assumption in Theorem 1.1 is necessary. The second one is Theorem 5.7. It shows that, even if we only have a very strong control on $\text{mld}(X)$ (i.e., when X is a terminal threefold), “ $|mK_X|$ has no fixed part” is the best we may expect, as we cannot expect $|mK_X|$ to be free in codimension 2 for any bounded m .

Lemma 5.1. *Let X be an lc projective surface such that K_X is big and nef, $f : Y \rightarrow X$ the minimal resolution of X , and E_1, \dots, E_n the prime f -exceptional divisors of X . Assume that $K_Y + \sum_{i=1}^n a_i E_i = f^* K_X$, where $a_i := 1 - a(E_i, X, 0)$. Let m be a positive integer and c_1, \dots, c_n nonnegative integers, such that*

- $0 \leq c_1, \dots, c_n \leq \lfloor ma_i \rfloor$,
- $|mK_Y + \sum_{i=1}^n c_i E_i| \neq \emptyset$,
- the fixed part of $|mK_Y + \sum_{i=1}^n c_i E_i|$ is supported on $\cup_{i=1}^n E_i$, and
- $mK_Y + \sum_{i=1}^n c_i E_i$ is big but not nef,

then there exist nonnegative integers c'_1, \dots, c'_n , such that

1. $0 \leq c'_i \leq c_i$ for each i ,
2. there exists $j \in \{1, 2, \dots, n\}$ such that $c'_j < c_j$,
3. $|mK_Y + \sum_{i=1}^n c'_i E_i| \neq \emptyset$, and
4. the fixed part of $|mK_Y + \sum_{i=1}^n c'_i E_i|$ is supported on $\cup_{i=1}^n E_i$,

Proof. Since $0 \leq c_1, \dots, c_n \leq \lfloor ma_i \rfloor$, $\left(Y, \sum_{i=1}^n \frac{c_i}{m} E_i\right)$ is lc. Thus, we may run a $\left(K_Y + \sum_{i=1}^n \frac{c_i}{m} E_i\right)$ -MMP $h : Y \rightarrow W$. Since the fixed part of $|mK_Y + \sum_{i=1}^n c_i E_i|$ is supported on $\cup_{i=1}^n E_i$, h only contracts divisors supported on $\cup_{i=1}^n E_i$. Let $B := h_* \left(K_Y + \sum_{i=1}^n \frac{c_i}{m} E_i\right)$, then we have

$$K_Y + \sum_{i=1}^n \frac{c_i}{m} E_i = h^*(K_W + B) + \sum_{i=1}^n b_i E_i,$$

where $b_i \geq 0$ are real numbers. Moreover, since $mK_Y + \sum_{i=1}^n c_i E_i$ is big but not nef, $h \neq \text{id}_Y$. Thus, there exists $j \in \{1, 2, \dots, n\}$ such that $b_j > 0$. We have

$$mh^*(K_W + B) = mK_Y + \sum_{i=1}^n (c_i - mb_i) E_i.$$

Since f is the minimal resolution of X , $E_i^2 \leq -2$ for every i . Thus, h is the minimal resolution of W , which implies that $c_i - mb_i \geq 0$ for every i . Let $c'_i := \lfloor c_i - mb_i \rfloor$ for every i . Then, (1)(2) hold. Since

$$\left|mK_Y + \sum_{i=1}^n c_i E_i\right| \cong |m(K_W + B)| \cong |mh^*(K_W + B)| \cong \left|mK_Y + \sum_{i=1}^n c'_i E_i\right|,$$

(3)(4) hold. □

Theorem 5.2. *Let X be an lc projective surface such that K_X is big and nef, $f : Y \rightarrow X$ the minimal resolution of X , and E_1, \dots, E_n the prime f -exceptional divisors of X . Assume that $K_Y + \sum_{i=1}^n a_i E_i = f^* K_X$, where $a_i := 1 - a(E_i, X, 0)$. Then, for any positive integer m , if $|mK_X|$ defines a birational map and does not have fixed part, then there exist positive integers r_1, \dots, r_n , such that*

1. $0 \leq r_i \leq \lfloor ma_i \rfloor$, and
2. $K_Y + \sum_{i=1}^n \frac{r_i}{m} E_i$ is big and nef.

Proof. The fixed part of

$$|f^*(mK_X)| = \left| mK_Y + \sum_{i=1}^n ma_i E_i \right| = \left| mK_Y + \sum_{i=1}^n \lfloor ma_i \rfloor E_i \right|$$

is supported on $\cup_{i=1}^n E_i$. Since $|mK_X|$ defines a birational map, $|mK_Y + \sum_{i=1}^n \lfloor ma_i \rfloor E_i|$ defines a birational map. In particular, $mK_Y + \sum_{i=1}^n \lfloor ma_i \rfloor E_i$ is big.

We inductively define integers c_i^j for every $i \in \{1, 2, \dots, n\}$ for nonnegative integers j in the following way: Let $c_i^0 := \lfloor ma_i \rfloor$ for every i . If $K_Y + \sum_{i=1}^n \frac{c_i^j}{m} E_i$ is big and nef, then we let $r_i := c_i^j$ for every i and we are done. Otherwise, by Lemma 5.1, there exist integers c_i^{j+1} for every i , such that $0 \leq c_i^{j+1} \leq c_i^j$, $c_k^{j+1} < c_k^j$ for some $k \in \{1, 2, \dots, n\}$, $|mK_Y + \sum_{i=1}^n \lfloor c_i^{j+1} \rfloor E_i| \neq \emptyset$, and the fixed part of $|mK_Y + \sum_{i=1}^n \lfloor c_i^{j+1} \rfloor E_i|$ is supported on $\cup_{i=1}^n E_i$. This process must terminate after finitely many steps, and we get the desired r_i for every i . \square

Theorem 5.3 (= Theorem 1.2). *There exist normal projective surfaces $\{X_{n,k}\}_{n \geq 4, k \geq 2}$, such that*

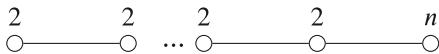
1. $|mK_{X_{n,k}}| \neq \emptyset$ and has a nonzero fixed part for any positive integers m, n , and $k \geq m$,
2. $K_{X_{n,k}}$ is ample for every n, k , and
3. $\lim_{k \rightarrow +\infty} \text{mld}(X_{n,k}) = \frac{1}{n-1}$ for any n .

Proof. **Step 1.** In this step, we construct $X_{n,k}$ for every $n \geq 4$ and $k \geq 2$.

For any positive integer $n \geq 4$ and positive integer $k \geq 2$, we let $Y_{n,k}$ be a general hypersurface of degree $d_{n,k} := 2k(n-2)^2(2k(n-1)-1)$ in the weighted projective space $P_{n,k} := \mathbb{P}(1, 1, 2k(n-2), 2k(n-2)(n-1)+1)$. Since $2k(n-2) \mid d_{n,k}$ and

$$d_{n,k} - 1 = (2k(n-2)(n-1)+1) \cdot (2k(n-2)-1),$$

$Y_{n,k}$ is well formed and has a unique singularity $o_{n,k}$, which is a cyclic quotient singularity of type $\frac{1}{2k(n-2)(n-1)+1}(1, 2k(n-2))$. The dual graph of this cyclic quotient singularity is the following:



where there are $2k(n-2)-1$ “2” in the chain. Let $E_1 = E_1(n, k), \dots, E_{2k(n-2)} = E_{2k(n-2)}(n, k)$ be the curves in this dual graph in order, that is,

- (1) $E_i^2 = -2$ when $i \in \{1, 2, \dots, 2k(n-2)-1\}$,
- (2) $E_{2k(n-2)}^2 = -n$, and
- (3) $E_i \cdot E_j \neq 0$ if and only if $|i - j| \leq 1$.

Let $h_{n,k} : Z_{n,k} \rightarrow Y_{n,k}$ be the minimal resolution, then we have

$$K_{Z_{n,k}} + \sum_{i=1}^{2k(n-2)} \frac{i(n-2)}{2k(n-1)(n-2)+1} E_i = h_{n,k}^* K_{Y_{n,k}}.$$

Now let $g_{n,k} : W_{n,k} \rightarrow Z_{n,k}$ be the blow-up of $E_{k(n-1)} \cap E_{k(n-1)+1}$ and $C_{n,k,W}$ the exceptional divisor of $g_{n,k}$. Let $E_{i,W} = E_{i,W}(n, k)$ be the strict transform of E_i on $W_{n,k}$ for each i . Then,

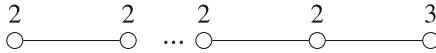
$$\begin{aligned} K_{W_{n,k}} + \sum_{i=1}^{2k(n-2)} \frac{i(n-2)}{2k(n-1)(n-2)+1} E_{i,W} + \frac{n-3}{2k(n-1)(n-2)+1} C_{n,k,W} \\ = g_{n,k}^* \left(K_{Z_{n,k}} + \sum_{i=1}^{2k(n-2)} \frac{i(n-2)}{2k(n-1)(n-2)+1} E_i \right) = (h_{n,k} \circ g_{n,k})^* K_{Y_{n,k}}. \end{aligned}$$

Now, we run a $\left(K_{W_{n,k}} + \sum_{i=1}^{2k(n-2)} E_{i,W} + \frac{n-3}{2k(n-1)(n-2)+1} C_{n,k,W}\right)$ -MMP over $Y_{n,k}$, which induces a birational contraction $f_{n,k} : W_{n,k} \rightarrow X_{n,k}$. Then, $f_{n,k}$ contracts precisely $E_{1,W}, \dots, E_{2k(n-2),W}$. We let $C_{n,k}$ be the pushforward of $C_{n,k,W}$ on $X_{n,k}$ and $p_{n,k} : X_{n,k} \rightarrow Y_{n,k}$ the induced contraction.

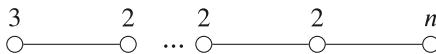
Step 2. In this step, we show the following:

Claim 5.4. For any positive integers $m, n \geq 4$ and $k \geq m$, if $|mK_{X_{n,k}}| \neq \emptyset$ and $K_{X_{n,k}}$ is big, then $|mK_{X_{n,k}}|$ has nonzero fixed part.

Proof. We let $o_1 = o_1(n, k) := (f_{n,k})_* \left(\bigcup_{i=1}^{k(n-1)} E_{i,W} \right)$ and $o_2 = o_2(n, k) := (f_{n,k})_* \left(\bigcup_{i=k(n-1)+1}^{2k(n-2)} E_{i,W} \right)$. Then, o_1 is a cyclic quotient singularity of type $\frac{1}{2k(n-1)+1}(1, k(n-1))$ with dual graph



where there are $k(n-1) - 1$ “2” in the chain, and o_2 is a cyclic quotient singularity of type $\frac{1}{(n-3)(2k(n-1)-1)}(1, 2k(n-3)-1)$ with dual graph



where there are $k(n-3) - 2$ “2” in the chain. Then,

$$\begin{aligned} K_{X_{n,k}} + \frac{n-3}{2k(n-1)(n-2)+1} C_{n,k} &= p_{n,k}^* K_{Y_{n,k}}, \\ K_{W_{n,k}} + \sum_{i=1}^{2k(n-2)} \frac{i(n-2)}{2k(n-1)(n-2)+1} E_{i,W} + \frac{n-3}{2k(n-1)(n-2)+1} C_{n,k,W} \\ &= f_{n,k}^* \left(K_{X_{n,k}} + \frac{n-3}{2k(n-1)(n-2)+1} C_{n,k} \right), \end{aligned}$$

and

$$K_{W_{n,k}} + \sum_{i=1}^{k(n-1)} \frac{i}{2k(n-1)+1} E_{i,W} + \sum_{i=k(n-1)+1}^{2k(n-2)} \frac{i-1}{2k(n-1)-1} E_{i,W} = f_{n,k}^* K_{X_{n,k}}.$$

We have

$$f_{n,k}^* K_{X_{n,k}} \cdot C_{n,k,W} = -1 + \frac{k(n-1)}{2k(n-1)+1} + \frac{k(n-1)}{2k(n-1)-1} = \frac{1}{4k^2(n-1)^2 - 1} < \frac{1}{35k^2} < \frac{5}{12k}.$$

Now for any positive even number $m = 2l$, any $n \geq 4$ and any $k \geq l$, we have

$$\frac{\left\{ m \cdot \frac{k(n-1)}{2k(n-1)+1} \right\}}{m} = \frac{\left\{ \frac{2lk(n-1)}{2k(n-1)+1} \right\}}{2l} = \frac{\left\{ -\frac{l}{2k(n-1)+1} \right\}}{2l} \geq \frac{5}{12l} \geq \frac{5}{12k}.$$

Thus, for any positive even number $m = 2l$, any $n \geq 4$ and any $k \geq l$, $K_{W_{n,k}} + \sum_{i=1}^{2k(n-2)} \frac{c_i}{m} E_{i,W}$ is not nef for any integers $c_1, \dots, c_{2k(n-2)}$ such that 1

- (1) $0 \leq c_i \leq \lfloor \frac{mi}{2k(n-1)+1} \rfloor$ when $1 \leq i \leq k(n-1)$, and
- (2) $0 \leq c_i \leq \lfloor \frac{m(i-1)}{2k(n-1)-1} \rfloor$ when $k(n-1) + 1 \leq i \leq 2k(n-2)$.

For any integer $n \geq 4$, any positive integer m such that $|mK_{X_{n,k}}| \neq \emptyset$, and any integer $k \geq m$,

- (1) if $K_{X_{n,k}}$ is not nef, then $|mK_{X_{n,k}}|$ has nonzero fixed part, and
- (2) if $K_{X_{n,k}}$ is nef, then by Theorem 5.2, $|mK_{X_{n,k}}|$ has nonzero fixed part.

Step 3. In this step, we show that $K_{X_{n,k}}$ is ample.

Claim 5.5. For any integers $n \geq 4$ and $k \geq 2$, $K_{Y_{n,k}}$ is ample, $|K_{Y_{n,k}}|$ defines a birational map, and $|K_{Y_{n,k}}|$ has no fixed part. In particular, $|K_{Y_{n,k}}|$ defines a birational map.

Proof. Let $d'_{n,k} := d_{n,k} - \deg(-K_{P_{n,k}})$. Then,

$$d'_{n,k} - (2k(n-2)(n-1) + 1) = -4 + 2k(n-2)(n-1)(2k(n-2) - 3) \geq 116 > 0.$$

Thus, $K_{Y_{n,k}}$ is ample and $|K_{Y_{n,k}}|$ defines a birational map. In particular, $|K_{Y_{n,k}}| \neq \emptyset$.

Let x, y, z, w be the coordinates of $P_{n,k}$ and since $d'_{n,k} = d_{n,k} - (1 + 1 + 2k(n-2) + (2k(n-2)(n-1) + 1))$. Let $A := (x^{d'_{n,k}} = 0)$ and $B := (y^{d'_{n,k}} = 0)$. Then, $A|_{Y_{n,k}} \in |K_{Y_{n,k}}|$ and $B|_{Y_{n,k}} \in |K_{Y_{n,k}}|$. We only need to show that $A|_{Y_{n,k}} \neq B|_{Y_{n,k}}$. This is the same as saying that $Y_{n,k}$ does not contain the line $(x = y = 0)$ in $P_{n,k}$. Suppose that $Y_{n,k}$ is defined by the homogeneous weighted polynomial $q_{n,k}(x, y, z, w)$. Since $Y_{n,k}$ is general, $z^{(n-2)(2k(n-1)-1)} \in q_{n,k}(x, y, z, w)$. Thus, $Y_{n,k}$ does not contain the line $x = y = 0$ and we are done. \square

Claim 5.6. For any integers $n \geq 4$ and $k \geq 2$, $K_{X_{n,k}}$ is ample.

Proof. For any n, k , by Claim 5.5, the fixed part of $|p_{n,k}^* K_{Y_{n,k}}|$ is supported on $C_{n,k}$. Since

$$p_{n,k}^* K_{Y_{n,k}} = K_{X_{n,k}} + \frac{(n-3)}{2k(n-1)(n-2)+1} C_{n,k},$$

there exists a nonnegative integer $r = r_{n,k}$ such that $|K_{X_{n,k}} - r_{n,k} C_{n,k}|$ defines a birational map and has no fixed part. In particular, $K_{X_{n,k}} - r_{n,k} C_{n,k}$ is big and nef. If $r_{n,k} = 0$, then $|K_{X_{n,k}}| \neq \emptyset$ and has no fixed part, which contradicts Claim 5.4. Thus, $r_{n,k} > 0$.

Since $K_{X_{n,k}} + \frac{(n-3)}{2k(n-1)(n-2)+1} C_{n,k}$ is nef and big, $(K_{X_{n,k}} + \frac{(n-3)}{2k(n-1)(n-2)+1} C_{n,k}) \cdot C_{n,k} = 0$. Since $K_{X_{n,k}} - r_{n,k} C_{n,k}$ is nef and big, $K_{X_{n,k}} \cdot C_{n,k} > 0$. In particular, $K_{X_{n,k}}^2 > 0$.

For any irreducible curve $D_{n,k}$ on $X_{n,k}$ such that $D_{n,k} \neq C_{n,k}$, if $D_{n,k} \cdot C_{n,k} > 0$, we have that

$$K_{X_{n,k}} \cdot D_{n,k} = (K_{X_{n,k}} - r_{n,k} C_{n,k}) \cdot D_{n,k} + r_{n,k} C_{n,k} \cdot D_{n,k} > 0,$$

and if $D_{n,k} \cdot C_{n,k} = 0$, then

$$K_{X_{n,k}} \cdot D_{n,k} = K_{Y_{n,k}} \cdot (p_{n,k})_* D_{n,k} > 0.$$

Thus, $K_{X_{n,k}}$ is ample. \square

Step 4. Claim 5.4 and Claim 5.6 imply (1)(2). Since

$$\text{mld}(X_{n,k}) = \text{mld}(X_{n,k} \ni o_2(n, k)) = \frac{2k}{2k(n-1)-1} = \frac{1}{n-1 - \frac{1}{2k}},$$

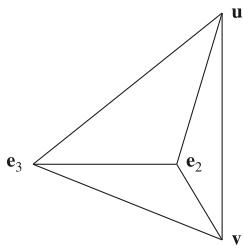
we have $\lim_{k \rightarrow +\infty} \text{mld}(X_{n,k}) = \frac{1}{n-1}$ for any $n \geq 4$, which implies (3). \square

Theorem 5.7. For any positive integer m_0 , there exists a terminal threefold X such that K_X is ample but $|m_0 K_X|$ is not free in codimension 2.

Proof. **Step 1.** We start with a local construction by using the language of toric varieties.

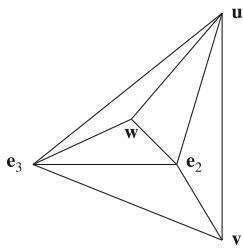
Let $N = \mathbb{Z}^3$, $\mathbf{e}_1 = (1, 0, 0)$, $\mathbf{e}_2 = (0, 1, 0)$, $\mathbf{e}_3 = (0, 0, 1)$, $\mathbf{w} = (1, 1, 0)$. Let $\mathbf{u} = (m, 1, -b)$ and $\mathbf{v} = (-n, 2, 1)$, where m, n, b are positive integers such that $nb = m + 1$ and $2 \nmid n$. Then, all these vectors above are primitive in N .

Let Σ_1 be the fan determined by the single maximal Cone($\mathbf{e}_3, \mathbf{u}, \mathbf{v}$). Let X_{Σ_1} be the corresponding toric variety. Then, X_{Σ_1} is affine and the cyclic quotient singularity is of the form $\frac{1}{2m+n}(-1, 2, 2b+1)$. Notice that X_{Σ_1} has an isolated singularity.



Let $\Sigma_2 = \Sigma_1^*(\mathbf{e}_2)$ be the star subdivision of Σ_1 at \mathbf{e}_2 as above (see [5, Chapter 11]) and X_{Σ_2} be the corresponding toric variety, then $g : X_{\Sigma_2} \rightarrow X_{\Sigma_1}$ is a birational morphism, which is an isomorphism outside the unique torus-invariant point $P \in X_{\Sigma_1}$. Since Cone($\mathbf{u}, \mathbf{e}_2, \mathbf{v}$) is smooth, X_{Σ_2} has only two isolated singularities, which are of type $\frac{1}{m}(1, -1, b)$ and $\frac{1}{n}(1, -1, 2)$. In particular, X_{Σ_2} is terminal. We use $D_{\mathbf{e}_2}$, $D_{\mathbf{v}}$, $D_{\mathbf{u}}$, $D_{\mathbf{e}_3}$ to denote the corresponding torus-invariant divisors. We can see that $D_{\mathbf{e}_2}$ is the only exceptional divisor. Let R denote the proper curve in X_{Σ_2} that corresponds to Cone($\mathbf{e}_2, \mathbf{e}_3$) $\in \Sigma_2$. Then, $R \subset D_{\mathbf{e}_2}$. By [5, Proposition 6.4.4], $D_{\mathbf{u}} \cdot R = \frac{1}{m}$, $D_{\mathbf{v}} \cdot R = \frac{1}{n}$, $D_{\mathbf{e}_3} \cdot R = \frac{b}{m} - \frac{1}{n} > 0$, and $D_{\mathbf{e}_2} \cdot R = -(\frac{2}{n} + \frac{1}{m})$. Therefore,

$$0 < \frac{2}{n} - \frac{b}{m} = K_{X_{\Sigma_2}} \cdot R < \frac{1}{n}$$



Let $\Sigma_3 = \Sigma_2^*(\mathbf{w})$ be the star subdivision of Σ_2 at \mathbf{w} as above and X_{Σ_3} be the corresponding toric variety, then $f : X_{\Sigma_3} \rightarrow X_{\Sigma_2}$ is a birational morphism, which is an isomorphism outside the torus-invariant point $Q \in X_{\Sigma_2}$ that corresponds to the maximal Cone($\mathbf{w}, \mathbf{e}_2, \mathbf{e}_3$) $\in \Sigma_2$. We use $D'_{\mathbf{e}_2}$, $D'_{\mathbf{v}}$, $D'_{\mathbf{u}}$, $D'_{\mathbf{e}_3}$, $D'_{\mathbf{w}}$ to denote the corresponding torus-invariant divisors. Notice that $D'_{\mathbf{w}}$ is the only exceptional divisor of f and $D'_{\mathbf{e}_2}$, $D'_{\mathbf{v}}$, $D'_{\mathbf{u}}$, $D'_{\mathbf{e}_3}$ are the birational transforms of $D_{\mathbf{e}_2}$, $D_{\mathbf{v}}$, $D_{\mathbf{u}}$, $D_{\mathbf{e}_3}$ on X_{Σ_3} . Let R' denote the birational transform of R on X_{Σ_3} , then R' corresponds to Cone($\mathbf{e}_2, \mathbf{e}_3$) $\in \Sigma_3$.

Since $\mathbf{w} = \frac{1}{m}\mathbf{u} + \frac{b}{m}\mathbf{e}_3 + \frac{m-1}{m}\mathbf{e}_2$, we have $K_{X_{\Sigma_3}} = f^*K_{X_{\Sigma_2}} + \left(\frac{1}{m} + \frac{b}{m} + \frac{m-1}{m} - 1\right)D'_{\mathbf{w}}$, hence

$$f^*K_{X_{\Sigma_2}} = K_{X_{\Sigma_3}} - \frac{b}{m}D'_{\mathbf{w}}.$$

By [5, Lemma 6.4.2], $D'_{\mathbf{w}} \cdot R' = 1$. Thus, for any positive integer k ,

$$\lfloor kf^*K_{X_{\Sigma_2}} \rfloor \cdot R' = \left(\frac{2}{n} - \frac{b}{m}\right)k - \left\{\frac{m-kb}{m}\right\}.$$

Step 2. Next, we will use covering trick to make the canonical divisor ample.

Choose a projective threefold Z with the isolated quotient singularity of type $\frac{1}{2m+n}(-1, 2, 2b+1)$ at P , after resolving singularities away from P , we may assume that P is the only singular point on Z . By abuse of notation we continue to use $f : Y \rightarrow X$ and $g : X \rightarrow Z$ to denote the corresponding toric blow-ups defined in Step 1. Let E be the exceptional divisor of g and $R \subset E$ be the proper curve defined in Step 1. Then, $-E$ is g -ample and we have $f^*K_Z - aE = K_X$, where

$$a = \frac{\frac{2}{n} - \frac{b}{m}}{\frac{2}{n} + \frac{1}{m}} > 0.$$

Let L be a sufficiently ample Cartier divisor on Z such that $g^*(L + K_Z) - aE$ is ample on X . We can find an effective $A \sim 2L$ that is smooth and avoids P . Let $h : Z' \rightarrow Z$ be the double cover ramified along A . Then, by Hurwitz's Formula, we have $K'_{Z'} = h^*(K_Z + \frac{1}{2}A)$ and h is étale around P . Let X', Y', E', f', g' be the corresponding base change of h . Then, $K_{X'} = h_X^*(K_X + \frac{1}{2}g^*A) = h_X^*(g^*(\frac{1}{2}A + K_Z) - aE)$ is ample, where $h_X : X' = X \times_Z Z' \rightarrow X$ is the canonical projection. Since R is a proper curve in one of the components of E' as in Step 1 and R' its birational transform in Y' , we have

$$\lfloor m_0 f^* K_{X'} \rfloor \cdot R' = \left(\frac{2}{n} - \frac{b}{m} \right) m_0 - \left\{ \frac{m - m_0 b}{m} \right\}$$

for any positive integer m_0 since Z' and X_{Σ_1} are isomorphic around the isolated singular point and the computation is local.

Now we can choose $m, n \gg 0$ such that $2bm_0 < n < m$, then

$$\left(\frac{2}{n} - \frac{b}{m} \right) m_0 - \left\{ \frac{m - m_0 b}{m} \right\} < \frac{m_0}{n} - \frac{1}{2} < 0.$$

Therefore, $\lfloor m_0 f^* K_{X'} \rfloor \cdot R' < 0$, which means any effective divisor in $|m_0 f^* K_{X'}|$ contains R' . Since f' is isomorphic over the generic point of R , this implies that any effective divisor in $|m_0 K_{X'}|$ contains R . \square

ACKNOWLEDGMENTS

The authors would like to thank Christopher D. Hacon for useful discussions and encouragements. They would like to thank Chenyang Xu for proposing Question 1 to them and sharing useful comments to this question. The authors would like to thank useful discussions with Paolo Cascini, Guodu Chen, Jingjun Han, Junpeng Jiao, Yuchen Liu, Yujie Luo, and Qingyuan Xue. They would like to thank the referees for useful suggestions.

ORCID

Jihao Liu <https://orcid.org/0000-0002-7190-5531>

REFERENCES

- [1] V. Alexeev, *Two two-dimensional terminations*. Duke Math. J. **69** (1993), no. 3, 527–545.
- [2] F. Ambro, *The set of toric minimal log discrepancies*, Cent. Eur. J. Math. **4** (2006), no. 3, 358–370.
- [3] C. Birkar, P. Cascini, C. D. Hacon, and J. M^cKernan, *Existence of minimal models for varieties of log general type*, J. Amer. Math. Soc. **23** (2010), no. 2, 405–468.
- [4] G. Chen and J. Han, *Boundedness of (ϵ, n) -complements for surfaces*, Adv. Math. **383** (2021), 107703, 40 pages.
- [5] D. A. Cox, J. Little, and H. Schenck, *Toric varieties*, American Mathematical Society, Providence, RI, 2011.
- [6] O. Fujino, *Effective base point free theorem for log canonical pairs–Kollar type theorem*, Tohoku Math. J. (2) **61** (2009), no. 4, 475–481.
- [7] C. Hacon and J. M^cKernan, *Boundedness of pluricanonical maps of varieties of general type*, Invent. Math. **166** (2006), no. 1, 1–25.
- [8] C.D. Hacon, J. M^cKernan, and C. Xu, *ACC for log canonical thresholds*, Ann. of Math. (2) **180** (2014), no. 2, 523–571.
- [9] J. Kollar, *Effective base point freeness*, Math. Annalen **296** (1993), no. 1, 595–605.
- [10] J. Kollar, D. Abramovich, V. Alexeev, A. Corti, L.-Y. Fong, A. Grassi, S. Keel, T. Luo, K. Matsuki, J. McKernan, G. Megyesi, D. Morrison, K. Paranjape, N. I. Shepherd-Baron, and V. Srinivas, *Flip and abundance for algebraic threefolds*, Astérisque **211**, 258 pages (1992).
- [11] J. Kollar and S. Mori, *Birational geometry of algebraic varieties*, In: Cambridge Tracts in Math. vol. 134, Cambridge Univ. Press, Cambridge, 1998.
- [12] J. Liu and Y. Luo, *Second largest accumulation point of minimal log discrepancies of threefolds*, arXiv: 2207.04610v1.
- [13] V. V. Shokurov, *Threefold log flips*, Izv. Ross. Akad. Nauk Ser. Mat. **56** (1992), no. 1, 105–203. With an appendix in English by Y. Kawamata.
- [14] V. V. Shokurov, *A.c.c. in codimension 2*, 1994 (preprint).
- [15] S. Takayama, *Pluricanonical systems on algebraic varieties of general type*, Invent. Math. **165** (2006), no. 3, 551–587.
- [16] H. Tsuji, *Pluricanonical systems of projective varieties of general type*, arXiv:math.AG/9909021.

How to cite this article: J. Liu and L. Xie, *On the fixed part of pluricanonical systems for surfaces*, Math. Nachr. **296** (2023), 2046–2069. <https://doi.org/10.1002/mana.202200088>