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1 | INTRODUCTION

We work over the field of complex numbers C.

Pluricanonical systems are central objects in the study of birational geometry. More precisely, given a normal projective
variety X such that K is effective, we would like to study the behavior of the linear systems |[mKjy | for any positive integer
m.

It is well known that for any sufficiently divisible m > 0, the rational map given by |mKx| is birationally equivalent to
the Iitaka fibration of K. In 2014, Hacon-M“Kernan-Xu proved that for any Ic projective variety X of general type and
of fixed dimension, there exists a uniform positive integer m such that |[mKy| defines a birational map [8, Theorem 1.3]
(see also [7, 15, 16]). In other words, |mKy| defines a birational morphism X\ Bs(|mKx|) — P(|mKx|) for some uniform
positive integer m, where Bs(|mKx|) is the base locus of |mKx]|.

Itis then natural to ask whether the behavior |mKx| can be described more accurately. Since we already have a birational
morphism X\ Bs(|mKx|) - P(JmKx|) for some uniform positive integer m, one would like to focus on the asymptotic
behavior of Bs(|mKjx|). As the very first step, we have the following question proposed by Prof. C. Xu to the first author
in 2018:

Question 1 (Xu). Assume that X is a kit projective variety of fixed dimension such that Ky is big and nef. When will we
have a uniform positive integer m, such that |mKy| defines a birational map and does not have a fixed part?

Note that it is natural to assume Ky to be nef as we can always run an MMP with scaling and reach a minimal model
for varieties of general type (cf. [3, Corollary 1.4.2]).
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Question 1 naturally arises as a combination of [8, Theorem 1.3] and the effective base-point-freeness theorem [9, 1.1
Theorem]. Note that when the Cartier index is bounded, |mKx| not only defines a birational map but is also base-point-
free for some uniform positive integer m. The interesting cases of Question 1 appear when the Cartier index of Ky is
unbounded, in which case, the uniform base-point-freeness cannot be guaranteed.

Question 1 is trivial in dimension 1 but remained widely open in dimension > 2. In this paper, we study Question 1
when dim X = 2. The main theorem of this paper is the following:

Theorem 1.1. There exists a uniform positive integer m satisfying the following. Assume that X is a %-lc projective surface
and Ky is big and nef. Then, |mKx| defines a birational map and does not have a fixed part.

The following theorem is a complementary statement for Theorem 1.1, which shows that if the Cartier index of K is
not bounded and X is not %-lc, then Theorem 1.1 is not expected to hold.

Theorem 1.2. For any integer n > 3, there exists a sequence of projective surfaces {X; l+:°1° such that

1
=

n

1. mld(X;) > lfor each i and lim;_, , , mld(X;) =
n
2. Ky, is ample, and
3. if m; is the minimal positive integer such that |m;Ky, | defines a birational map and has no fixed part, then lim;_, , , m; =
+00.

Note that the assumptions on mld(X) in Theorem 1.1 and Theorem 1.2 are natural assumptions: We are only interested
in varieties such that the Cartier index of Ky is not bounded, and if we consider a family of singularities {(X 3 x)} such
that the index of Ky is unbounded, then {mld(X > x)} is an infinite set (cf. [4, Proposition 7.4]) and the accumulation
points of {mld(X > x)} belong to {0} U {%l n € Zs,} (cf. [1, Corollary 3.4]). The é accumulation point case is resolved by
Theorem 1.1 and the remaining cases are resolved by Theorem 1.2.

It is also interesting to ask whether Question 1 has a positive answer for canonical or terminal threefolds in dimension
3, as 1is the largest accumulation points of mld(X > x) in dimension 3 (cf. [13, Appendix, Theorem]). We will not address
this question in this paper, but we will provide a related example (cf. Theorem 5.7).

2 | PRELIMINARIES
We adopt the standard notation and definitions in [11], and will freely use them.

Definition 2.1 (Pairs and singularities). A pair (X, B) consists of a normal quasi-projective variety X and an R-divisor
B > 0 such that Ky + B is R-Cartier. Moreover, if the coefficients of B are < 1, then B is called a boundary of X.

Let E be a prime divisor on X and D an R-divisor on X. We define multg D to be the multiplicity of E along D. Let
¢ : W — X be any log resolution of (X, B) and let

The log discrepancy of a prime divisor D on W with respect to (X, B) is 1 — multp By, and it is denoted by a(D, X, B). For
any positive real number €, we say that (X, B) is Ic (resp. klt, e-Ic, e-klt) if a(D, X, B) > 0 (resp. > 0, > €, > ¢) for every log
resolution ¢ : W — X as above and every prime divisor D on W. We say that X is Ic (resp. klt, e-Ic, e-kIt) if (X,0) is Ic
(resp. klt, e-Ic, e-klt).

A germ (X © x, B) consists of a pair (X, B) and a closed point x € X. (X 3 x, B) is called an Ic (resp. a klt, an e-Ic) germ
if (X, B) is Ic (resp. klt, e-Ic) near x. (X S x, B) is called ¢-Ic at x if a(D, X, B) > ¢ for any prime divisor D over X 3 x (i.e.,

centery D = x).

Definition 2.2. Let T be a set of real numbers. We say that 7 satisfies the descending chain condition (DCC) if any decreas-
ing sequence a; > a, > --- > aq; > --- in T stabilizes. We say that T satisfies the ascending chain condition (ACC) if any
increasing sequence in 7 stabilizes.

2SUDIT suowwo)) aAneaI) a[qedijdde oy Aq pauIoA0S are SA[OIIE YO 2SN JO SA[NI 10§ AIRIqIT QUI[UQ AJ[IAL UO (SUONIPUOD-PUB-SULIAY/WOd Ko[Im KIeiqrjaul[uoy/:sdny) suonipuo)) pue suLd ], ay) 998 *[+202/80/90] uo Areiqi auruQ Lo[1A ‘88000TT0OT BUBW/ZO0 1 0] /10p/Wod K3[1m’ Kreiqijaurjuo//:sdiy woiy papeo[umod ‘S ‘€70T ‘91972¢S1



2048 MATHEMATISCHE LIU AND XIE
NACHRICHTEN

Definition 2.3 (Minimal log discrepancies). Let (X, B) be a pair and x € X a closed point. The minimal log discrepancy of
(X, B) is defined as

mld(X, B) := inf{a(E, X, B) | E is an exceptional prime divisor over X}.
The minimal log discrepancy of (X S x, B) is defined as
mld(X 3 x,B) :=inf{a(E, X, B) | E is a prime divisor over X > x}.

If X is Q-Gorenstein, we define mld(X) := mld(X,0). If X is Q-Gorenstein near x, we define mld(X 3 x) := mld(X >
x,0). For any positive integer d, we define

mld(d) :={mld(X 2 x) | X 2 x,0)isIc, dimX = d}.
Definition 2.4. Let X be a normal projective variety and D an R-divisor on X. We define
ID| :={D' |0 <D’ ~ |D]}.
For any R-divisor D such that |D| # @, the base locus of D is
Bs(D) := Npr.p Supp D/,
the fixed part of D is the unique R-divisor F > 0, such that

(1) foranyD’ € |D|,D’' > F, and
(2) Bs(|D — F|) does not contain any divisor,

and the movable part of D is D — F. We also say that F is the fixed part of |D|.
We denote by p(X) the Picard number of X.

Definition 2.5. A surface is a variety of dimension 2. A rational surface is a projective surface that is birational to P2. For
ever nonnegative integer k, the Hirzebruch surface [ is Pp1(Op1 @ Op1(k)).

Definition 2.6. Let n be a nonnegative integer, and C = U{_ C; a collection of proper curves on a smooth surface U. The
determinant of C is defined as det(C) := det({—(C; - Cj)}h < j<n) if C # @, and we define det(d) = 1. We define the dual
graph DG(C) of C as follows.

1. The vertices v; = v;(C;) of DG(C) correspond to the curves C;.
2. For each i, v; is labeled by the integer e; := —(Cl.z). e; is called the weight of v;.
3. Fori # j,the vertices v; and v; are connected by C; - C; edges.

The determinant of DG(C) is defined as det(C). For any birational morphism f : Y — X between normal surfaces, let E =
U, E; be the reduced exceptional divisor for some nonnegative integer n. We define DG(f) := DG(E). If f is the minimal
resolution of X (resp. the minimal resolution of (X > x, 0) for some closed point x € X), we define DG(X) : = DG(f) (resp.
DG(X 3 x) 1= DG(f)).

Theorem 2.7 (cf. [1, Theorem 3.2, Corollary 3.4], [14]). m1d(2) satisfies the ACC, and the set of accumulation points of mld(2)
is{~ | n > 2}u{o}

Proposition 2.8 (cf. [4, Proposition A.5]). Let I C [0, 1] be a finite set. Then, there exists a positive integer I depending only
on 1, satisfying the following. Assume that (X 2 x,0) is an lc surface germ such that mld(X o x) € 1. Then, IKy is Cartier
near Xx.
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FIGURE 1

FIGURE 2

Lemma 2.9. Let € be a positive real number and (X D x,0) an e-lc (resp. e-klt) surface germ. Then, for any vertex v of
DG(X > x), the weight of v is < 2 (resp. < z).
€ €

Proof. [1, Corollary 2.19] proves the e-Ic case and the e-klt case immediately follow. O

Lemma 2.10 (cf. [1, Lemma 3.3], [4, Lemma A.1]). Let € be a positive real number. Then, there exists a finite set G = G(¢) of
dual graphs and a finite set 1, = T, (€) of positive integers, such that for any e-lc germ (X > x,0), one of the following holds:

b~

DG(X > x,0) € C.
2. DG(X > x,0) is of the type as in Figure 1. Here,e; = e1(X 2 x),q; = ¢1(X 2 x)and e, = e,(X 2 x),q, = ¢»(X 2 x) are
the determinants of the subdual graphs, such that ey, e,,q1,q, € 1y, and

. { 1 1 }
min s >e.
e1—q1 €&2—q2
Moreover, we may assume that

(a) eithere; =wy; =2andq, =1, orw; > 2; and
(b) eithere, =w, =2and g, =1, orw, > 2.

3. DG(X > x,0) is of the type as in Figure 2 . Here, e; = e1(X D x) and q; = q1(X D x) are the determinants of the subdual
graphs, such that e, q; € 1, and

mld(X 3 x) = > €.

e1—q1

We remark that each oval in Figures I and 2 corresponds to a subdual graph, which is a chain, as shown in [1, Lemma 3.3,
2] and [4, Appendix, Notation].

Proof. The statement on the structure of the dual graphs are explained both in [1, Lemma 3.3] and in [4, Lemma A.1]. By

taking the coefficient set T’ = {0}, the inequality min{ ! , ! } > ¢ in (2) follows from the moreover part of [4, Lemma
€1—q1 €x—q>

A.1(2)], and the inequality e+ > ¢ follows from the moreover part of [4, Lemma A.1(3)].

For the moreover part of (2), note that if w; < 2, then we may add the vertex corresponding to w, to the 2-chains and
repeat this process unless this vertex is the tail of the chain. This implies (2.a), and (2.b) is similar to (2.a). O

Lemma 2.11 [10, 3.1.11]. Let (X > x,0) be a kit surface germ such that DG(X > x,0) is a chain. Then, X 3 x is a cyclic
quotient singularity. Moreover, if the dual graph of X 2 x is

a a a3 Ap1 a,
O—O O O O
then X 3 x is a cyclic quotient singularity of form l(1, a), such that - = a; — ;1 and ged(r,a) = 1.
r a
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Lemma 2.12 (cf. [12, Lemma 2.11], [2, Theorem 1]). Let X S x be a cyclic quotient singularity of form l(1, a) such that
r
ged(r,a) = 1. Then,

mld(Xax):min{§+{kTa}|1§k§r—1,k€N+}.

Lemma 2.13. Let (X © x,0) and (Y > y,0) be two kit surface germs such that DG(X > x,0) is a subgraph of DG(Y > y,0).
Then, mld(X 5 x) > mld(Y > y,0).

Proof. Let f : W — Y be a partial resolution, which extracts all divisors corresponding to vertices contained in DG(Y >
v,0\DG(X > x,0). Then, (X 2 x) = (W > w) for some w € W. Since f*Ky = Ky + By, for some By, > 0, we have

mld(Y 3 y,0) < mld(W 3 w, By) < mld(W 3 w,0) = mld(X > x,0). O

Lemma2.14. Let (X > x,0) bea %—kltsurface singularity. Then, either (X 3 x) & %(1, 2),0or(X o x) i(l, 1), or the weight
of any vertex of DG(X 2 x) is < 3.

Proof. By Lemma 2.9, the weight of any vertex of DG(X 3 x) is < 4. By [11, Theorem 4.7], DG(X 3 x, 0) is connected and
contains no cycle. We may assume that DG(X > x) contains a vertex of weight 4. We have the following cases.

Case 1. DG(X > x, 0) only contains one point. Then, (X 3 x) 2 %(1, 1) and we are done.

Case 2. DG(X > x,0) contains the subgraph G,:

n 4
Oo0——=0O

for some n > 3. By Lemma 2.11, the singularity corresponding to the dual graph G, is a cyclic quotient singularity of type
ﬁ(1,4). By Lemma 2.12, when n > 4,
n—

1 5 1 2
< <<=
mld<4n_1(1,4)> < <3 < =

and when n = 3,

mld<4n1_1(1,4)> =m1d<1_11(1,4)> _ 11 -

[a—
wl N

We get a contradiction to Lemma 2.13.
Case 3. DG(X > x,0) contains the subgraph G,:

2 4
o——0

but does not contain the subgraph G, as in Case 1.2 for any n > 3. We have the following cases.
Case 3.1. DG(X > x,0) = G,. By Lemma 2.11, (X 3 x) is a cyclic quotient singularity of type %(1, 2) and we are done.
Case 3.2. DG(X > x,0) contains a subgraph H:

2 4 2
O O O

By Lemma 2.11, the singularity corresponds to H, which is a cyclic quotient singularity of type %(1,7). Since

mld <%(1, 7)) = % < % we get a contradiction to Lemma 2.13.
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Case 3.3. DG(X > x,0) contains a subgraph L,:

n 4
O O O

for some integer n > 2. By Lemma 2.11, singularity corresponds to £,, which is a cyclic quotient singularity of type
ﬁ(l, 7). By Lemma 2.12, when n > 4,
n—

1 8 1 2
< <=-<-=.
mld<7n—4(1’7)> STh=4°3°5
Whenn = 3,
1 1 1 6 2
Whenn = 2,
1 1 1 2
mld<7n _4(1,7)> = mld<ﬁ(1,7)> = mld(E(&l)) =z
We get a contradiction to Lemma 2.13. O

Lemma 2.15. Let (X 2 x) bea %—klt surface germand f : Y — X the minimal resolution of X o x. Suppose that

n
Ky + Z aE; = f*Kx,
i=1

where Eq, ..., E,, are the prime exceptional divisors of f. Then, Ky - Z?:l a;E; <n.

Proof. By Lemma 2.14, there are three cases.

Case 1. El2 > —3 for each i. Since (Ky + E;) - E; = —2 for each i, Ky - E; < 1 for each i. Since a; < 1 for each i, the
lemma follows.

1 n 1

Case2.n=1 andEf = —4.Then,Ky - E; = 2and (Ky + a1E;) - E; = 0,hencea; = E.We haveKy - 3. | a;E; = EKY .
El = 1 =n.

Case 3. n = 2, and possibly reordering indices, Ef = —2and Eg = —4.Then, Ky -E; =0,Ky - E; =2, (Ky + a1E; +
a,E;) - E; =0, and (Ky + a;E; + a,E,) - E; = 0. Thus, a; = % and a, = %, hence Ky - Z:;l a,E; = g <2=n. O

Lemma 2.16. Let X 3 x be a cyclic quotient singularity of type #H(l, k) for some positive integer k. Then, DG(X 2 x) is the

following graph, where there are k — 1 “2” in the graph.

2 2 2 3
oO——0O - O O O

Moreover, let Ey, ..., Ej. be the divisors corresponding to the vertices of DG(X > x), such that El2 =2, whenl<i<k-1,

Ei = -3, and E; “Ej #0 ifand only if |i — j| £ 1. Then, a(E;, X,0) = 212{;1_1 foreach i.
Proof. 1t is clear that the cyclic quotient singularity is uniquely determined by its dual graph. Since ZkTH =3- . ! n
o1
22— —
2

where there are k — 1 “2” in the fraction, the first part of the lemma follows from Lemma 2.11. For the remaining part of
the lemma, let a; := 1 — a(E;, X, 0) for each i. Since Ky - E; = —2 — El2 for each i and (Ky + Zi;l a;E;) - E; = 0 for each
i,whenk =1, a(Ey, x,0) = % and we are done, and when k > 2, we have
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(1) 2a1 = ay,

(2) 2a;,=a;_1 +a;;; forany2 <i <k—1,and

3) 3ap = ap_1 + 1.

Thus, a; = ia; for each i, and we have
3ka; =3ay = a1 +1=(k—1a; +1,

1 i .
hence a; = —— and a; = —— for each i. The lemma follows. |
2k+1 2k+1

3 | GLOBAL GEOMETRY OF SMOOTH SURFACES
3.1 | Some elementary lemmas

Lemma 3.1. Let X be a smooth projective surface, D a pseudo-effective R-divisor on X, and C an irreducible curve on X. If
D-C <0, thenC?<0.

Proof. Let D = P + N be the Zariski decomposition of D such that P is the positive part and N is the negative part. Since
D-C<O0andPisnef, N-C <0.Since N >0,C C SuppN and C? < 0. m

Lemma 3.2. Let X be a smooth projective surface such that Ky is pseudo-effective. Let C be an irreducible curve on X such
that Ky - C < 0. Then, C? = Ky - C = —1. In particular, C is a smooth rational curve.

Proof. By Lemma 3.1, C? < 0. Since X is smooth, Ky - C < —1 and C? < —1. Thus, (Kx + C) - C < —2, which implies that
Kx+C)-C=-2, C?= Ky - C = —1, and C is a smooth rational curve. O

Lemma 3.3. Let X be a smooth projective surface such that Ky is pseudo-effective, and C a smooth rational curve on X. Then,
C?<-1

Proof. If not, then C?>0. Since (Ky+C)-C = -2, Ky -C <—2<0. Since Ky is pseudo-effective, C*> <0, a
contradiction. O

Lemma 3.4. Let X be a smooth projective surface, C an irreducible curve on X, f : Y — X a blow-up of a closed point, E
the exceptional divisor of f, and Cy the strict transform of C on Y. IfCy - E < 1 and Cy is a smooth rational curve, then C is
a smooth rational curve.

Proof. Since X is smooth, Y is smooth. Thus, Cy - E € {0,1}. If Cy - E = 0, then f is an isomorphism near a neighborhood
of Cy and hence C is a smooth rational curve. If Cy - E = 1,thenKy - C =Ky - Cy —land C? = Cf, + 1, and hence (Ky +
C)-C = (Ky + Cy) - Cy = —2. Thus, C is a smooth rational curve. O

Lemma 3.5. Let X be a smooth projective surface such that Kx is pseudo-effective, and E1, E, two different smooth rational
curves on X such that E? = E; = —1. Then, E; - E, = 0.

Proof. Assume that E; - E, # 0, then E; - E, = n > 1 for some positive integer n. Let f : X — Y be the contraction of
E,andE,y := f.E;. Then, Efy =-1+4+n?>0andKy - E;y = —1 — n < 0. Since Ky is pseudo-effective, Ky is pseudo-
effective, which contradicts Lemma 3.1. O

Lemma 3.6. Let X be a smooth projective surface such that Ky is pseudo-effective, and E1, E,, E5 three different smooth
rational curves on X. IfEf = E§ = —2and Eg = —1, then either E, - E, =0orE, - E; = 0.

Proof. Assume that E; - E, = n; > 0 and E, - E3 = n3 > 0 for some positive integers n; and n;. Let f : X — Y be the
contraction of E,. Then, Y is smooth and Ky is pseudo-effective. Let By y := f,E;,and E5y := f,E5. Then, Ef y=-—2+
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ni, By = =2+nj,Ky - Eyy = —ny, and Ky - E3y = —n3. Thus, by Lemma 3.1, ny = n3 = 1, which implies that E; |, =

Eiy = —landE, y - E;y > 0.By Lemma 3.4, E; y and E; y are smooth rational curves, which contradicts Lemma 3.5. []

Lemma 3.7. Let X be a smooth rational surface. Then, K)Z( =10 — p(X).

Proof. We may runa Ky-MMP f : X :=X, i» X1 ﬁ) ﬁ» X, such that either X,, = F; for some nonnegative integer

kor X, = P2, Foranyi € {0,1,2,...,n — 1}, we have Kf(i = Kﬁzfm —land p(X;) = p(X;41) + 1. Thus, K3 + p(X) = K)z(n +
o(X,). If X,, = F; for some nonnegative integer k, then K)z(n + o(X,) = 8+ 2 =10. If X,, = P?, then K)zfn +0(X,) =9+
1 = 10. Thus, K5 = 10 — p(X). O

3.2 | Zariski decomposition

Lemma 3.8. Let X be a smooth projective surface, and D, D two Q-divisors on X, such thatD > D and D isnef. LetD = P + N
be the Zariski decomposition of D, where P is the positive part and N is the negative part. Then, P > D.

Proof. Assume that N = Zin:l a;C; and D—D = 2?21 b,C; + Dy, where n is a nonnegative integer, C; are distinct
irreducible curves, Dy > 0, and for each i, a; > 0, b; > 0, and C; ¢ Supp D,. Then, for every j € {1,2, ..., n},

n
i=1

n n
>(D-D)-C;= Y bi(C;-C+Dy-Cj > Y b(Ci-Cy),
i=1 i=1

which implies that 2?:1(611‘ —b;)(C; - C}) > Oforevery j. Since the intersection matrix {(C; - C})} ; j<n is negative definite,
a; < b; for each i. Thus, D — D > N, hence P > D. n

Lemma 3.9. Let X be a smooth projective surface, D a big Weil divisor on X, D an nef Weil divisor on X, and E a Weil divisor
on X, such that

() D =P + N is the Zariski decomposition of D, where P is the positive part and N > 0 is the negative part,
(2) E=D-D >0, and
(3) |D| defines a birational map.

Then, there exist a big Weil divisor D; on X and a Weil divisor E; on X, such that

1 D, =|P],

2.E>E, =D, —D?>0,

3. |D,| defines a birational map, and

4. either N = 0 and D = P, or there exists at least one irreducible component F of Supp E such that multz(E — E;) > 1.

Proof. WeletD; := |P],then (1) holds. LetE; := D; — D.Since Disnefand D > D,by Lemma 3.8, P > D. Thus,P — D >
0, and hence

Since
E-E,=D-D,=P+N-|P|]={P}+N >0,

we deduce (2). Since |D;| = ||P]| = |P| = |D|,|D; | defines a birational map, hence (3). Finally, if E — E; # 0, then we are
done; otherwise, E — E; = 0, hence {P} + N = 0. Thus, N = 0, which implies that D = P, hence (4). O
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Proposition 3.10. Let X be a smooth projective surface, D a big Weil divisor on X, and D an nef Weil divisor on X, such
that

() D =P + N is the Zariski decomposition of D, where P is the positive part and N > 0 is the negative part,
(2) D—D >0,and
(3) |D| defines a birational map.

Then, there exists a Weil divisor D’ on X, such that

1. D>D'>D,
2. D' defines a birational map, and
3. D' is big and nef.

Proof. LetDy :=D,P, :=P,N, :=N,and E, := D — D, and let r, be the sum of all the coefficients of E,. Then, r is a
nonnegative integer.

For any nonnegative integer k, assume that there exist big Weil divisors Dy, ..., D) on X, Weil divisors Ej, ..., E; on X,
and nonnegative integers ry, ..., r, such that for every i € {0, 1, ..., k},

(1) D; = P; + N; is the Zariski decomposition of D;, where P; is the positive part and N; > 0 is the negative part;
(2) Ey>E;=D; =D >0;

(3) |D;| defines a birational map;

(4) ry is the sum of all the coefficients of the components of E; such that 0 < r;, <ry — k; and

(5) ifi > 1, then D; = |P;_4].

It is clear that these assumptions hold when k = 0. By Lemma 3.9, there are two cases:
Case 1. N, = 0 and D;, = Py. In this case, by our assumptions,

(1) Dy —D >0, hence Dy > D;

(2) Ey > Dy, — D, hence D > Dy;

(3) Dy is big and defines a birational map; and
(4) Dy = Py is nef.

Thus, we may let D’ := D.
Case 2. There exists a big Weil divisor Dy, ; on X, a Weil divisor Ej.,; on X, and a nonnegative integer ry,;, such that

(1) Dyy1 = [Pk,

(2) Eo 2 Eg41 = Dy — D >0,

(3) |Dy41]| defines a birational map, and
4 0<rgy <rg—1L

In this case, we may replace k with k 4+ 1 and apply induction on k. Since 0 < r, < ry — k, we have k < r(. Thus, this
process must terminate and we are done. O

3.3 | Effective birationality and existence of special nef Q-divisors
Lemma 3.11. Let X be a klt projective surface such that Kx is big and nef, f : Y — X the minimal resolution of X, and
E,...,E, the prime f-exceptional divisors. Assume that Ky + E?:l a,E; = f*Kx. Then, for any positive integer m, if there

exist integers ry, ..., 'y, Such that

1. 0<r; <|ma;],and
2. Ky + Z?_l 2LE, is big and nef,
- m

then |192mKjx | does not have a fixed part.
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Proof. Let A := Z?zl %Ei and L := m(Ky + A). Then, L is big and nef and Cartier. In particular, 2L — (Ky + A) ~¢

(2 -1 ) Lisbigand nef. By [6, Theorem 1.1, Remark 1.2] (see also [9, 1.1 Theorem]), 192L is base-point-free, which implies
m
that the fixed part of 192m(Ky + Zinzl a;E;) is supported on U}, E;. Thus, [192mKx | does not have a fixed part. O

Theorem 3.12 (cf. [8, Theorem 1.3]). There exists a uniform positive integer m,, such that for any lc surface X such that Kx
is big, |[m,Kx| defines a birational map.

4 | i-KLT SURFACES

In this section, we will prove Theorem 1.1. The structure of this section is as follows. In Section 4.1, we give a detailed
classification of %-klt surface singularities. In Section 4.2, we consider the intersection numbers of the form Kx - C where

Xis g-klt, K is big and nef, and C is a curve satisfying special properties. For some lemmas and propositions, we need to

restrict ourselves to %—klt surfaces. With a good description of these intersection numbers and with the help of the results
on Zariski decomposition in Section 3, in Section 4.3, we will construct special nef Q-divisors on the minimal resolution
of %-klt surfaces. We will prove our main theorem in Section 4.4.

4.1 | Classification of (§ + ¢)-Ic singularities

Lemma 4.1. Let € be a positive real number. Then, there exists a positive integer ny = ny(€) depending only on € satisfying
the following. Assume that (X 3 x,0) isa (% + €)-lc surface germ. Then,

1. either nyKy is Cartier near x, or

2. X > x is a cyclic quotient singularity of type ﬁ(l, k) for some positive integer k > 10. In particular, DG(X > x) is the

following graph, where there are k — 1 “2” in the graph.

2 2 2 2 3
O—0 O O

Proof. Assume that the lemma does not hold. Then, there exists a sequence of (§ + €)-lc surface germs (X; 3 x;,0), and a
strictly increasing sequence of positive integer n;, such that

(1) nKy, is not Cartier near x; for any positive integer n < n;, and
(2) X; > x; is not a cyclic quotient singularity of type ﬁ(l, k) for any i and any positive integer k.

We consider the set A := {mld(X; o xl-)}i*':"f. Since mld(X; 2 x;) > § + €, by Theorem 2.7, the only possible accumulation

point of A is % If A is a finite set, it contradicts Proposition 2.8. Thus, possibly passing to a subsequence and replacing A,
1
1 1 2
We let G := Q(g + ¢) be the finite set of dual graphs and I, := Io(g + ¢) be the finite set of real numbers as in
Lemma 2.10. Then, for any (X 2 x) such that DG(X 3 x,0) € G, mld(X > x) belongs to a finite set. Thus, possibly passing
to a subsequence, by Lemma 2.10, we may assume that one of the following holds:

we may assume that mld(X; o x;) is strictly decreasing and lim;_, , ., mld(X; 2 x;) =

(1) (X; 2 x;) satisfies (2) of Lemma 2.10 for each i, and e; = e1(X; 2 x;),q1 = ¢1(X; D x;), e, = ,(X; D x;),q» = ¢»(X; D
X;) € 1, for each i. Since I, is a finite set, possibly passing to a subsequence, we may assume that e, e,,q;,q, are
constants for each i.
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(2) (X; > x;) satisfies (3) of Lemma 2.10 for each i, and e; = e;(X; D x;),q; = ¢:(X; D x;) € I, for each i. Since I, is a
finite set, possibly passing to a subsequence, we may assume that ey, e,, q1, q, are constants for each i.

If (X; > x;) satisfies (3) of Lemma 2.10 for each i, and e; = ¢;(X; 3 x;),q; = q;(X; D x;) are constants for each i, then by
Lemma 2.10(3), mld(X; 3 x;) = L isa constant, a contradiction.
€1—q1

If (X;  x;) satisfies (2) of Lemma 2.10 for each i, and e; = e;(X; 2 x;),q1 = ¢1(X; D x;), 62 = e,(X; 2 X;),q» = @»(X; D
X;) are constants for each i, then by Lemma 2.10(2),

} { 1 1 } 1
min s > —-+e€.
er—q1 e—q 3

Thus, e; —q; <2and e, — g, < 2. We get a contradiction by enumerating possibilities as follows:
Casel.q; =1.Thene; =2or3.
Casel.le; =2.
Case1l.1.1g, = 1. Thene, =2or3.
Casel.1.1.1¢, = 2. In this case, all the weights in DG(X; 3 x;) are 2. Thus, mld(X; 2 x;) = 1 for every i, a contradiction.
Case 1.1.1.2 ¢, = 3. In this case, for each i, the dual graph of X; 3 x; is of the following form

2 2 2 2 3
oO——0O - O O O
By Lemma 2.11, X; D X; is a cyclic quotient singularity of type (1 k;) for some positive integer k;, and k; — +o0 when

i - 400, a contradiction.
Case1.1.2 g, > 2. In this case, there exist an integer w, > 3 and a nonnegative integer d, < q,,such thate, = w,q, — d,.
Thus,

22— =W, - D —dy 2 (W, =2)g +12 g +1 23,

a contradiction.
Casel.2¢; = 3.
Case1.2.1q, = 1. Then,e, =2or3.
Case 1.2.1.1 ¢, = 2. In this case, for each i, the dual graph of X; > x; is of the following form

3 2 2 2 2
oO——0O - O O O
By Lemma 2.11, X; 3 x; is a cyclic quotient singularity of type (1 k;) for some positive integer k;, and k; — +o00 when

i — +o00, a contradiction.
Case 1.2.1.2 e, = 3. In this case, for each i, the dual graph of X; 3 x; is of the following form:

3 2 2 2 3
O——0O - O O O
By Lemma 2.11, X; 2 x; is a cychc quotient singularity of type (1 2k; + 3) for some nonnegative integer k;. By

Lemma 2.12, mld(X; 2 x;) = 5 contradiction.

Case 1.2.2 g, > 2. In this case, exactly the same argument as in Case 1.1.2 holds and we get a contradiction.

Case 2. q; > 2. In this case, there exists an integer w; > 3 and a nonnegative integer d; < q;, such thate; = wyq; — d;.
Thus,

22e—qu=(w; —Dgy —d; >2(w; —2)q; +1>¢q; +12>3,

a contradiction. O
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4.2 | Intersection numbers

Lemma 4.2. Let X be a projective kit surface such that Ky is nefand f : Y — X the minimal resolution of X. If X is not
rational, then Ky is pseudo-effective.

Proof. If X is not rational, Y is not rational. If Ky is not pseudo-effective, then there exists a birational morphism g :
Y — W to a smooth projective surface W and a P!-fibration & : W — R. Since Y is not a rational surface, g(R) > 0. Thus,
for any exceptional curve F of f, F does not dominate R. Pick a general h-vertical curve X and let Zy, £y be the strict
transforms of £ on Y and X, respectively. Then,

OSKXEX =KYZY =KWZ=—2,
a contradiction. O

Lemma4.3. Let X bea %-klt surface such that Ky is big and nef, C an irreducible curveon X, x € C aclosed point, f : Y - X
the minimal resolution of X, and Cy the strict transform of C on Y. Assume that

* X is not a rational surface,
« Ky -Cy <0,
* X > x is a cyclic quotient singularity of type ?lﬂ(l, k) for some integer k > 5, and
* Ey,...,Ey are prime f-exceptional divisors over X 3 x, such that
1. E} = —2when1<i<k-1,
2. Ei = -3, and
3. E;-Ej #0ifandonlyif|i — j| < 1.

Then,

1. Cy-E;=0whenl<i<k-1,and

2. CY . Ek = 1

Proof. By Lemma 4.2, Ky is pseudo-effective. By Lemma 3.2, Ky - Cy = —1 and Clz, = —1. Moreover, each E; is a smooth
rational curve. Letg : Y — W be the contraction of Cy and E; y» := g..E; for eachi. Then, W is smooth and Ky, is pseudo-
effective. |

Claim4.4. Cy -E; < 1forevery j € {1,2,...,k}.

Proof of Claim 4.4. Suppose this is not the case, then there exists an integer n > 2 and an integer j € {1, 2, ..., k}, such that
Cy - Ej = n. We have

W
and
Ky Ejw=Ky -Ej—n<-1,
which contradicts Lemma 3.1 as Ky is pseudo-effective. O
Claim 4.5. E;y, are smooth rational curves for every i.
Proof of Claim 4.5. It immediately follows from Lemma 3.4 and Claim 4.4. O

Claim4.6. Cy - E; = O forevery j € {2,3,...,k =2}
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Proof of Claim 4.6. Suppose that the claim does not hold. Then, by Claim 4.4, there exists j € {2, 3, ..., k — 2} such that
Cy - Ej = 1. There are three cases:

Case 1. Cy - E;,; = 1. In this case, Ej2 _E]2+1W —1and Ejy - Ej41w = 2. By Claim 4.5, E;  and Ej,, y are
smooth rational curves. Since Ky, is pseudo-effective, this contradicts Lemma 3.5.

Case 2. Cy - E;_; = 1. We get a contradiction by the same arguments as Case 1 except that we replace E;,; with E;_;

Case3.Cy - Ej_; = Cy - Ej4; = 0. In this case, E]2 -1, EJZ W E]2+1W —2,Ejw -Ej.iw=Ejw -Ejnw=1,
which contradicts Lemma 3.6. O

Claim4.7. Cy - Ex_; = 0.

Proof of Claim 4.7. Suppose that the claim does not hold. Then, by Claim 4.4, Cy - Ex_; = 1. By Claim 4.6, Cy - E; = 0 for
every j € {2,3, ...,k — 2}. There are two cases:

Case 1. Cy - E; = 1. In this case, Ele 1E2 =-2,E_ ow =2 Bw  Exw =2, and Ey_yw - B ow = L.
This contradicts Lemma 3.6.

Case2.Cy - Ey = 0.Inthiscase, E} _ W= 1E2 =-3,E,_ ZW—Ei sw = —2,andforeveryi, j € {k — 3,k — 2,k —
Lk}, E;-Ej =1if|i — j| = 1and E; - E; —O1f|z— |>2

Leth : W — Z be the contraction of Ek 1w and E; 7 := h,E;y foranyi # k — 1. Then, Z is smooth and K is pseudo-
effective. By Lemma 3.4, Ey._3 7, Ex_, 7, and E}, ; are smooth rational curves. Moreover, Ek 32 = Ei,z = -2, Ei 2z =L
and Ex_3 7 - Ex_, 7z = Ex_7 - Exz = 1. This contradicts Lemma 3.6.

Claim 4.8. CY . El =0.

Proof of Claim 4.8. Suppose that the claim does not hold. Then, by Claim 4.4, Cy - E; = 1. By Claim 4.6 and Claim 4.7,
Cy - E; = Oforevery j € {2,...,k — 1}. By Claim 4.4, there are two cases:

Case 1. Cy - E = 1. In this case, E;, = —1, E; , = E/,, = =2, By - Eyw = Eyw - Exw = 1, which contradicts
Lemma 3.6.

Case 2. Cy - E; = 0. The are two subcases:

Case 2.1. For any closed point y € C such that y # x, X is smooth near y. In this case, leta :=1 — a(E;,X,0) =

. o 2k+1°
Since K is big and nef,

OSKx‘C:f*KX‘CY:(Ky+(1—a)E1)'CY:—1+(1—a):—a<0,

a contradiction.

Case 2.2. There exists a closed point y € C such thaty # x and X is not smooth near y. Then, there exists a prime divisor
F onY thatis over X 3 y, such that Cy N F # @. Moreover, F is a smooth rational curve. Since X is %-klt, by Lemma 2.9,
F?2 > —5.LetFy :=g,F.

We have Fy, - E;y = 0 for every i # 1, EiW =-1, EiW = Eg,w = EiW = —2, and for every i,j €{1,2,3,4}, E;y -
Ejw =1when|i— jl| =1and E;y - E; = 0 when [i — j| > 2.

There are two subcases:

Case 2.2.1.Cy - F = 1. In this case, by Lemma 3.4, Fy, is a smooth rational curve. Moreover, F2, > —4 and Fy, - Eiw =
1,

Leth : W — Z be the contraction of E y, E; 7 := h,E;y foreachi # 1,and F, .= h,Fy,. Then, Z is smooth and K
is pseudo-effective. By Lemma 3.4, E, , E; 7, E4 7, and F; are smooth rational curves. Moreover, Eg’z =-1, E§ , = Eiz =
2By B3z =Es; - Eyyz=F; - Ey;=1,F,; - Ey;=F,7-Ey7=E,;-Ey7 =0,and F, > -3.

Let p : Z — T be the contraction of E, ;, E; r := p,E; z foreachi # 1,2,and Fy := p,F. Then, T is smooth and K is
pseudo-effective. By Lemma 3.4, Es 1, Ey 1, and Fr are smooth rational curves. Moreover, E3 . = =1, E; . = =2, F;. > —
and Ey g - Eyp = Fp-Esp = 1.

By Lemma 3.3, F7. € {—1,—2}. By Lemma 3.5, F7 = —2. But this contradicts Lemma 3.6.

Case2.2.2.Cy - F > 2. In this case, weletb := F>andc¢ :=Cy - F. Then, Fj;, =b+¢* Ky - Fyy =Ky -F—c= -2 —
b—c,and Fy, - Ey v =c.
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Let h : W — Z be the contraction of E; yy and F; := h,Fy,. Then, Z is smooth and K is pseudo-effective. Moreover,
F,=F;, +c?=b+2%* andK;-F; =Ky -Fyy—c=—-2—b—2c.Sinceb>—5andc¢ >2,F, >3>0andK; - F; <
—1 < 0, which contradicts Lemma 3.1. O

Proof of Lemma 4.3 continued. By Claim 4.6, Claim 4.7, and Claim 4.8, we get (1). Since x € C, Cy intersects uf':lcl-, which
implies that Cy intersects Ey. Thus, Cy - E; > 1. (2) follows from Claim 4.4. O

Lemma 4.9. Let X be a rational %-klt surface such that Ky is big and nef and k > 10 an integer. Then, X does not contain a

cyclic quotient singularity of type Tlﬂ(l, k).

Proof. Assume not. Then, there exists a closed point x € X such that x is a cyclic quotient singularity of type ﬁ(l, k).

By Lemma 2.16, we may let f : Y — X be the minimal resolution of X and write

k . s
i
KY + Z —Ei + ZbiFi = f*KX
~2k+1 “~
where Ey, ..., Ey, F1, ..., Fg are the prime f-exceptional divisors, where

(1) Ei,...,Ej are the prime f-exceptional divisors over X > x such that El2 =—-2whenl<i<k-—1land Ei = —3,and
(2) foreveryi € {1,2,...,s}, centery F; = x; for some closed point x; € X, such that x; # x.

In particular, Ky - E; = Owheni # kand Ky - E;, = 1. Since X is %-klt, by Lemma 2.15, Ky - Zle b;F; < s.Since f extracts
k + s divisors, we have p(Y) > 1 + k + s. Since K is big and nef, we have K)z( > 0, which implies that

k .

N
k 1
K2 =K2 —Ky - L E+¥YbF |>- s> —=—s.
Y T 8% Y(;2k+1‘;” nkt+1 7278

Since X is rational, Y is rational. By Lemma 3.7, Klz, =10 — p(Y). Thus,
1
-5 —5<K;=10—p(Y)<10—(1+k+s)=9-k—s,

which implies that k < % < 10, a contradiction. O

Lemma 4.10. Then, there exists a positive integer ny, a DCC set T of nonnegative real numbers, and a positive real number
Yo satisfying the following. Assume the following:

Xisa %—klt surface such that Ky is big and nef,
e Cisanirreducible curve on X,

* f 1Y — X isthe minimal resolution of X,

* Cy is the strict transform of C on Y, and

* Ky'Cy<O,
then
1L Ky-Cel,

2. ifKx - C =0, then n;Ky is Cartier near C, and
3. lfKX -C>0, thenKX -C > Yo-
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Proof. By Lemma 4.1, there exists a positive integer ny = no(lis), such that for any closed point X 3 x, either nyKy is

Cartier near x, or x is a cyclic quotient singularity of type z)kIT(L k) for some positive integer k > 10. Now we let

m

1

Then, 7 is a DCC set of nonnegative real numbers. Since 7 satisfies the DCC, we may let y, := min{l,y € T | y > 0}.
Consider the equation

i WL
& oki+1 ny

where m, [, ky, ..., k,, € N. Then, there exists a finite set Z, C N such that k; € I, for each i: to see this, note that ﬁ

ro~l | 1 <1< ngy}, which

belongs to a DCC set of positive real numbers and the sum Z belongs to the finite set {

i=1 k
implies that T:—l belongs to a finite set, hence k; belongs to a finite set. We define

ny 1= ny H(2y+1).

v€ly

We show that n, Z, and y,, satisfy our requirements. For any curve C as in the assumption, there exists a nonnegative
integer s, such that

(1) there are closed points xy, ..., Xy on X, such that x; € C and Xx; is a cyclic quotient singularity of type ﬁ(l, k;) for

some positive integer k; > 10 for each i, and
(2) for any closed point y & {x1, ..., xs}, noKx is Cartier near y.

By Lemma 4.9, we may assume that X is not rational. By Lemma 4.3, we may write

KY+ZZaWE’]+Z Fk_f Ky,

i=1 j=

where

(1) E;; and Fy, are distinct prime f-exceptional divisors for every i, j, k,
2 for any i, j, centery E; ; = x;,
(3) k;, ¢y are positive integers,

ki
@) ayy, = e, for each i, and

(5) Cy - Ejy, =1and Cy - E;; = 0 for every j # u;.

By Lemma 3.2, Ky - Cy = —1. Thus,

0

s ki s
k; l
* = —_— . _ —_— i —_—
fKX-CY_< ZZ ”E”+Z Fk> Cy = 1+;2ki+1+n
for some nonnegative integer I. Moreover, since Ky is big and nef,
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Thus, Ky - C = f*Kx - Cy € I, and we get (1). (3) follows from (1). Moreover, if Ky - C = 0, then

>k !
0=-1+ — +—,
;2](14'1 ny

which implies that k; € I, for each i. Thus, n; Ky is Cartier near C by construction of n;, and we get (2). O

4.3 | Construction of nef Q-divisors
Proposition 4.11. There exists a positive integer my, satisfying the following. Assume the following:

D Xa %-klt surface such that Ky is big and nef,
(2) f :Y - X is the minimal resolution of X, and
(3) Ky + Zle a;E; = f*Kx, where E; are the prime f-exceptional divisors,

then myKy + Zle ¢;E; is nef for some nonnegative integers cy, ..., C, Such that ¢; < |mya; | for each i.

Proof. Let ny and y, be the numbers given by Lemma 4.10, n, the number given by Lemma 4.1, n, := max{10, ny, [i] },
Yo

and
ny
mgy .= nghy H(2l + 1)
i=1

We show that m, satisfies our requirements.
We classify the singularities on X into three classes:
Class 1. Cyclic quotient singularities of type 2}{1?(1, k) where k > n,. Let these singularities be x, ..., x; for some non-

negative integer s. We may assume that x; is a cyclic quotient singularity of type ﬁ(l, k;) for some integer k; > n, for
everyl <i<s. l

Class 2. Singularities of type ﬁ(l, k) where 5 < k < n,. Let these singularities be xg,1, ..., X; for some integer ¢ > s.
In particular, by the definition of m,. myKy is Cartier near x; forevery s + 1 <i < t.

Class 3. Other singularities. Let these singularities be x;,1, ..., X, for some integer r > ¢t. In particular, by Lemma 4.1,
and the definition of m,, myKy is Cartier near x; foreveryt +1 <i <r.

Now we may write

k

N i .
J 1
)y Eij+ —F = f"Kx,
i=1 j=1 ki +1 mgy

Ky +

[\

where

(1) foreveryl <i<sand1< j <k, centery E; ; = X;;
. . 2 _ .
(2) foreveryl <i<sand1<j<k; —l,El.,j =-2;
(3) forevery1 <i<s,E} =-3;
(4) F > 0is a f-exceptional Weil divisor, such that x; & centery F forevery 1 <i <s.

We show that we may take

1 N k;
o v my(J — (ki =)
ZCiEi .—Z Z 2n2+1 Ei,j+F.
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Indeed, by our constructions, 0 < ¢; < |mgaq;| for each i, and we only left to check that (myKy + Z:zl ¢;E;) - Cy > 0 for
any irreducible curve Cy on Y. We have the following cases:

Case 1. Ky is not pseudo-effective. In this case, by Lemma 4.2, X is rational. By Lemma 4.9, s = 0. Thus, Zizl c¢;E;=F
and

I
(moKY + Z CiEi> =mof"Kx

i=1

is nef. Thus, (myKy + Zﬁzl ¢;E;) - Cy > 0 for any irreducible curve Cy on Y.

Case 2. Ky is pseudo-effective.

Case 2.1. Cy is not exceptional over X. Let C := f.Cy.

Case 2.1.1. Ky - Cy > 0. In this case, E; j - Cy > 0and F - Cy > 0, hence (moKy + Zi:l ¢;E;))-Cy > 0.

Case2.1.2.Ky - Cy < 0.ByLemma3.2,Ky - Cy = Clz, = —1.ByLemma4.3,Cy - E; ; = Oforeveryiandevery j < k; — 1,
and Cy - Ej, € {0, 1} for every i. By Lemma 4.10, there are two possibilities.

Case 2.1.2.1. n; Ky is Cartier near C. In this case, since n, > n;, we have 2k; + 1 > 2n, + 1 > n; for every i. Since the
Cartier index of Ky near x; is 2k; + 1 and n; Ky is Cartier near C, C does not pass through x;. Thus, Cy does not intersect
E; j for any i, j, and hence

i=1

l
(moKY + Z ciEi) . CY = (m()Ky + F) . CY

k; .

N

myJ *

=<MOKY+E- 12ki+1Ei,j+F>'CY:m0fKX'CYZO-
i=1 j=

Case 2.1.2.2. Ky - C > y,. Possibly reordering indices, we may assume that there exists an integer ¢ € {0, 1, 2, ..., s}, such
thatCy - Ej,, = 1when1 <i <tandCy - Ej, = O0when +1 <i < 5. There are two cases:

1
. Thus,
2ny+1

Case 2.1.2.2.1. t < 2. In this case, since n, > i, Yo >
Yo

! ¢
myk; myn,
K z E).Ccy = K. C— z -
<m° v ’) Cy =mof "Ry -C < <2kl~ 1 2m+ 1>

i=1

t
1 n, mgy
> Mgy —m (———>2my— > 0.
0ro Og{ 2 2my+1 070 2n, +1

Case 2.1.2.2.2. t > 3. In this case, we have

l t t
moyn, n,
K E E; ]-Cy >myKy - C E = -1 E
(Wlo y + C; l) y 2 MyKy y+i:1 2n2+1 m0< +i:1 2n2+1>

i=1

> 0.

3n, my(ny — 1)
> my( -1 =
—m°< +2n2+1> 2n, +1

Case 2.2. Cy is exceptional over X. Then, C C Supp (Uf=1 Ul;izl E; j) U SuppF.
Case 2.2.1 Cy C Supp F. In this case, Cy - E; ; = 0 for every i, j, and hence

l
<m0Ky + Z CiEi> . CY = (moKY + F) . CY
i=1

s ki .
m
= <m0Ky+ k.i]lEi,j-FF)'Cyzmof*Kx'Cyzo.
i=1j=1 "1

i )
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Case 2.2.2 Cy C Supp (Ule U§i=1 E; j>. We may assume that Cy = E; j, for some i and some 1 < j, < k;. In this case,

[ ki
L mg(j — (ki — 1)
(moKY + Z ciEi> . CY = (moKY + Z 0 21’12 _:_ 1 2 El',j . Cy.

i=1 Jj=ki—ny+1

There are four possibilities:
. . !
Case 2.2.2.1 j, = k;. In this case, <m0Ky + Zi:1 ciEl-> -Cy =my (1 +
Case 2.2.2.2k; — n, + 1 < jy < k; — 1. In this case,

1
jo—1—(k; — 2(jo — (kj — io+1—(k; —
(mOKY+ZciEi> -Cy =m0<0+ Jo (k; — ny) _ (Jo — (ki = ny)) 4 Jo+ (k; n2)> —o.

2mp+1  2np+1

np,—1 3n, )

= 2]’12 +1 2}’12 +1 2}’12 +1

mo
2n,+1

Case 2.2.2.3 j, = k; — n,. In this case, <m0Ky + Zﬁzl ciEl-> -Cy =

Case 2.2.2.4 1 < j, < k; — n,. In this case, (m()Ky + Zizl ciEl-> -Cy =myKy - Cy = 0. ]
Proposition 4.12. There exists a uniform positive integer m, satisfying the following. Assume that

1L Xa %-klt surface such that Ky, is big and nef,
2. f 1Y - X is the minimal resolution of X, and
3. Ky + Zle a,E; = f*Kx, where E; are the prime f-exceptional divisors,

l Lo L .
then myKy + Zi:l r,E; is big and nef for some nonnegative integers rq, ..., 1}, such that r; < |mya; | for each i.

Proof. By Proposition 4.11, there exist a positive integer m, = my which does not depend on X, and non-negative integers

! . ; . - o
c1,-»¢;, such that moKy + 3., ¢;E; is nef and ¢; < [ myq;] for each i. By Theorem 3.12, there exists a uniform positive
integer m; such that |m;Kx| defines a birational map. Let m, := mom;. Then, |m,Kx| defines a birational map, and
hence

l l

myKy + Z |maa; |E;| = |myKy + Z myaiE;| = | f*(myKx)|
i=1 i=1

defines a birational map.
LetD := myKy + Z§=1 |mya; |E; and D := my,Ky + Zizl my ¢ E;. Since ¢; < |mya;],

mic; < my|mya;| < [mimya;| = [mya;].

Thus, D > D. By Proposition 3.10, there exists a Weil divisor D’ on X, such that D > D’ > D and D’ is big and nef. In
. . ! . ;
particular, we may write D" = m,Ky + Y ._, 1;E; for some integers ry, ..., r; such that 0 < ¢; <r; < [m,a;| for each i. m,
and ry, ..., r; satisfy our requirements. O

4.4 | Proof of the main theorem

Proof of Theorem 1.1. Let f : Y — X be the minimal resolution of X such that Ky + 2?21 a;E; = f*Kx, where Ey, ... , E,
are the prime exceptional divisors of f. By Proposition 4.12, there exists a uniform positive integer m,, such that Ky +
Z?zl r:z_iEi is big and nef for some integers ry,...,r, such that 0 <r; < |m,aq;]| for each i. By Lemma 3.11, |192m,Kx|
deﬁnesza birational map and we may let m := 192m,. |
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5 | EXAMPLES

In this section, we will provide two theorems where we construct some interesting examples. The first one is Theorem 5.3
(= Theorem 1.2), which shows that the %-lc assumption in Theorem 1.1 is necessary. The second one is Theorem 5.7. It
shows that, even if we only have a very strong control on mld(X) (i.e., when X is a terminal threefold), “|mKx| has no
fixed part” is the best we may expect, as we cannot expect [mKy| to be free in codimension 2 for any bounded m.

Lemma 5.1. Let X be an lc projective surface such that Ky is big and nef, f : Y — X the minimal resolution of X, and
E,,...,E, the prime f-exceptional divisors of X. Assume that Ky + Z:;l a;E; = f*Kx, where a; :=1— a(E;,X,0). Let m be
a positive integer and cy, ... , ¢, nonnegative integers, such that

© 0<cp, e, cy < [mayl,
. ImKy + ¥ E| #0,

* the fixed part of |mKy + Zinzl ¢;E;| is supported on U?=1Ei’ and
« mKy + Y, ¢;E; is big but not nef,

then there exist nonnegative integers ci, wr» Ch, such that

. 0<c <c;foreachi,

there exists j € {1, 2, ..., n} such that c} <cj,

. |mKy + ZL c;E;| # 0, and

the fixed part of |mKy + Z:lzl c/E;| is supported on UL E;

1

Proof. Since 0 <cy,...,¢, < |ma;], (Y, Zin=1 C—W‘lE,) is Ic. Thus, we may run a (KY + Z?zl %Ei>-MMP h:Y->W.
Since the fixed part of [mKy + Zin:l ¢;E;| is supported on U! | E;, h only contracts divisors supported on U}, E;. Let
B :=h, <Ky + Zin_l ﬂEi>, then we have

- m

n

n
Ci .
Ky + Z ELEL = h%(KW + B) + Z biEi’
i=1 i=1

where b; > 0 are real numbers. Moreover, since mKy + Z?:l c;E; is big but not nef, h # idy. Thus, there exists j €
{1,2,...,n}such that bj > 0. We have

n
mh*(Ky + B) = mKy + Z(Ci — mb;)E;.
i=1

Since f is the minimal resolution of X, El2 < =2 for every i. Thus, h is the minimal resolution of W, which implies that
¢; —mb; > 0 for every i. Let clf := |¢; — mb; | for every i. Then, (1)(2) hold. Since

5

n
'me + Z ciEi
i=1

n
~ |m(Ky + B)| = [mh*(Ky + B)| = ’me + Zc;Ei
i=1

(3)(4) hold. O

Theorem 5.2. Let X be an Ic projective surface such that Kx is big and nef, f : Y — X the minimal resolution of X, and
Ey,...,E, the prime f-exceptional divisors of X. Assume that Ky + Z?:l a,E; = f*Kx, where a; :=1—a(E;, X,0). Then,
for any positive integer m, if |mKx| defines a birational map and does not have fixed part, then there exist positive integers
1, .., Ty, SUch that

1. 0<r; <|ma;],and
2. Ky + Zin_l LLE, is big and nef.
- m
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Proof. The fixed part of

n
|f*(mKx)| = ‘me + ) maE;
i=1

n
= ‘me + Z LmaiJEi
i=1

is supported on U E;. Since |mKx| defines a birational map, |[mKy + 2?:1 |ma; |E;| defines a birational map. In
particular, mKy + Zl.n:l |ma; | E; is big.

We inductively define integers cf foy every i €1{1,2,...,n} for nonnegative integers j in the following way: Let

J .

c? := |maq;] for every i. If Ky + Z?:l %Ei is big and nef, then we let r; := c{ for every i and we are done. Other-
ij+1 < cij, c{rl < ci for some k €{1,2,...,n},
|me + Zgl:l[cf +1JE1~| # @, and the fixed part of |mKy + Z?:l Lc{ +1JE1-’ is supported on U E;. This process must
terminate after finitely many steps, and we get the desired r; for every i. |

wise, by Lemma 5.1, there exist integers clj 1 for every i, such that 0 <c¢

Theorem 5.3 (= Theorem 1.2). There exist normal projective surfaces {X, i }y>4 jc>2, Such that

L |mKx, | # @ and has a nonzero fixed part for any positive integers m, n, and k > m,
2. Kx  isample for every n, k, and

3 limy oo mld(X,, ) = Llfor any n.
, e

Proof. Step 1. In this step, we construct X,  foreveryn > 4and k > 2.

For any positive integer n > 4 and positive integer k > 2, we let Y, ; be a general hypersurface of degree d,, ; := 2k(n —
2)%(2k(n — 1) — 1) in the weighted projective space P, :=P@1,1,2k(n — 2),2k(n — 2)(n — 1) + 1). Since 2k(n — 2) | d,
and

dpxy—1=QCk(n-2)n—-1)+1) - 2k(n—2)-1),

Y,r is well formed and has a unique singularity o,;, which is a cyclic quotient singularity of type
1

DD (1, 2k(n — 2)). The dual graph of this cyclic quotient singularity is the following:
2 2

2 2
O——O0 O O

n
O

where there are 2k(n — 2) — 1 “2” in the chain. Let E; = E1(n, k), ..., Es(n—2) = Eak(n—2)(n, k) be the curves in this dual
graph in order, that is,

(1) E} = —2wheni €{1,2,..,2k(n —2) - 1},
2 Egk(n—z = —n, and
(3) E;-E; #0ifand only if |i — j| < 1.

Leth, : Z,x — Y, be the minimal resolution, then we have
2k(n—2)

iln—2)
K; + i =h* Ky .
Znk Z{ 2k(n—1)(n—2)+1 ' nk Yk

Now let g, © Wy — Zy x be the blow-up of Ey(,—1) N Ex(n—1)+1 and Cy o the exceptional divisor of g, . Let By =
E; (n, k) be the strict transform of E; on W, for each i. Then,

2k(n—2) )

i(n—2) n—3

K + B+ c

Wk ; Zk(l’l — 1)(” — 2) +1 LW Zk(l’l _ 1)(1’[ — 2) 1 n,k,W

2k(n—2) )
i(n—2) .
=g | Kz, K + E |=( R

g"’k( Znk ; 2k(n—-1)(n—-2)+1 l) (P08 ) Ky,
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2k(n—2) n-3
Now, we run a <KW et E Eiw + 2k(n—1)(n—2)+1

Snk * Wai = Xpk. Then, f, ;. contracts precisely E, yy, ..., Exg(n—2),w- We let C,, i be the pushforward of C, j y on X,
and p, x : X, = Y, the induced contraction.
Step 2. In this step, we show the following:

Cn,k,W>—MMP over Y, i, which induces a birational contraction

Claim 5.4. For any positive integers m, n > 4 and k > m, if [mKy | # # and Ky, is big, then [mKx , | has nonzero
fixed part.

Proof. Weleto, = 0;(n,k) :=(fri)« < ukn- 1)E ) and 0, = 0,(n,k) 1= (i)« <Ul-2i{,(:(l;f)1)+1Ei,W)- Then, o, is a cyclic

quotient singularity of type m(l, k(n — 1)) with dual graph

2 2 2 2 3
O——0O -+ O O O
where there are k(n — 1) — 1 “2” in the chain, and o, is a cyclic quotient singularity of type m(l, 2k(n—3)—1)
n— n—1)—
with dual graph
3 2 2 2 n
O——0O -+ O O O

where there are k(n — 3) — 2 “2” in the chain. Then,

n-—3
2kin—-1)(n-2)+1

KXn)k + C}’l,k = p:,kKYn,k’

2n2) in—2) n->3

K + B o+ c
Wn,k ; 2k(n — 1)(]’1 — 2) + 1 i,w Zk(n _ 1)(” _ 2) + 1 n,k,W

n—3
=f* | Kx , + C ,
! "’k< Xk T 2ke(n = 1)(n—2) + 1 ””‘>

and
k(n—1) 2k(n—2) i_1
Wni Z 2k(n—1)+1 1) 107 k(o 2k =1 =1 iw = FicKx
‘We have
k(n—-1) k(n—-1) 1 1 5
ngcKnje "W 2k(n—1)+1 2k(n—1)—1 4k2(n—1)2—1  35k2 12k

Now for any positive even number m = 2, any n > 4 and any k > [, we have

{ k(n—1) } { 21k(n—1) } { l }
m - —_— ——— —_—
2k(n-1+1 )  2k(n-D+1) 2k(n—1)+1 S 5
m B 21 B 21 = 121

> 2
T 12k

2k(n—2) C‘E

Thus, for any positive even number m = 2l, any n > 4 and any k > [, Ky, P Z ;. w is not nef for any integers

Clyenns Czk(n_2) such that 1

1) o< < [mjwhen1<l<k(n—1) and
2) 0<c < [Lll))ljwhenk(n—l)+1§i§2k(n—2).

For any integer n > 4, any positive integer m such that [mKy | # @, and any integer k > m,
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(1) ifKx, , is not nef, then [mKy , | has nonzero fixed part, and
(2) if Ky, , is nef, then by Theorem 5.2, |[mKx , | has nonzero fixed part.

Step 3. In this step, we show that Kx | is ample.

Claim 5.5. For any integers n > 4 and k > 2, Ky, isample, |[Ky | defines a birational map, and |Ky , | and has no fixed
part. In particular, |Ky | | defines a birational map.

Proof. Letd! , :=dy) —deg(~Kp,,). Then,
d; i QCk(n—-2)(n—1)+1)=—-4+2k(n —2)(n —1)(2k(h —2) — 3) > 116 > 0.

Thus, Ky, , isample and |Ky, , | defines a birational map. In particular, Ky, , | # 0.
Let x,y, z, w be the coordinates of P, ; and since d:l o = dnk — AQ+1+2k(n—-2)+Rk(n—-2)(n—1)+1)).Let A :=

(xd;hk = 0) andB := (yd:l-k = 0). Then,Alyn,k € |Ky,,| andBlyn,k € |Ky, |- We only need to show thatA|yn,k # Bly, -
This is the same as saying that Y}, does not contain the line (x = y = 0) in P, ;. Suppose that Y,  is defined by the
homogeneous weighted polynomial gy, ;(x,y,z, w). Since Y, is general, z(n=2)k(n-1)-1) ¢ Gni(x,y,z,w). Thus, Y,
does not contain the line x = y = 0 and we are done. O

Claim 5.6. For any integersn > 4and k > 2, Kx, , is ample.

Proof. For any n, k, by Claim 5.5, the fixed part of | p:’kKyn]k | is supported on C,, . Since

(n—3)
2k(n—1)(n—-2)+1

p;:,kKYn,k = KXn,k + Cn,k’
there exists a nonnegative integer r = r,, ; such that |[Kx , —r, Cp | defines a birational map and has no fixed part. In
particular, Kx , —rp, xCp is big and nef. If r,, ;. = 0, then |Kx | # @ and has no fixed part, which contradicts Claim 5.4.

Thus, r, > 0.

(n-3) (n—3)
2k(n—1)(n—2)+1 2k(n—1)(n—2)+1
big, Kx,, is nef and big and Kx,, " Cnk >0.In particular, K)Z(’1 > 0.

For any irreducible curve D, ; on X,, ; such that D, j # Cn,k,, if D, - Cy x > 0, we have that

Since Ky, + C,. is nef and big, <KXnk + c,,,k) - Cpi = 0.Since Ky —ryCp is nef and

KXn,k ’ D”’k = (KXn,k - rn,kcn,k) : Dn,k + rn,kcn,k : Dn,k >0,
and ifDn’k . Cn,k = O, then
KXn,k ) Dn,k = KYn,k : (pn,k)*Dn,k > 0.
Thus, Ky, , is ample. O

Step 4. Claim 5.4 and Claim 5.6 imply (1)(2). Since

2k 1

k(n—1—1 ,_;_L°
2k

mld(X,, ;) = mld(X, x 3 0,(n,k)) =

we have limy_, ; o, mld(X,, ;) = ﬁ for any n > 4, which implies (3). O

Theorem 5.7. For any positive integer m, there exists a terminal threefold X such that Ky is ample but |myKx| is not free
in codimension 2.

Proof. Step 1. We start with a local construction by using the language of toric varieties.
LetN = 73, e; =(1,0,0),e, =(0,1,0),e3 =(0,0,1),w = (1,1,0). Letu = (m,1,—b) and v = (—n, 2,1), where m,n, b
are positive integers such that nb = m + 1 and 2 } n. Then, all these vectors above are primitive in N.
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Let X, be the fan determined by the single maximal Cone(e;, u, v). Let X5 be the corresponding toric variety. Then, X5

is affine and the cyclic quotient singularity is of the form ﬁ(—l, 2,2b + 1). Notice that X5 has an isolated singularity.
m-+n

u

v
LetZ, = Z](e,) be the star subdivision of £, ate, as above (see [5, Chapter 11]) and X5, be the corresponding toric variety,
theng : X5 — Xy isabirational morphism, which is an isomorphism outside the unique torus-invariant point P € Xy, .

Since Cone(u, e,,v) is smooth, X5 has only two isolated singularities, which are of type l(1, —1,b) and l(1, -1,2). In
m n
particular, X5 is terminal. We use De,, Dy, Dy, De, to denote the corresponding torus-invariant divisors. We can see
that D, is the only exceptional divisor. Let R denote the proper curve in X5, that corresponds to Cone(e,, e3) € Z,. Then,
. 1 1 b 1 2,1
R C De,. By [5, Proposition 6.4.4], D, - R = - Dy -R= ;,De3 ‘R = ——=> 0,and D, - R = —(; + ;). Therefore,

1
=KX22'R<E

NI

2
0< = -
n

u

Let X3 = X7 (w) be the star subdivision of X, at w as above and Xy, be the corresponding toric variety, then f : Xy, —
Xy, is a birational morphism, which is an isomorphism outside the torus-invariant point Q € X5, that corresponds to
the maximal Cone(w, e,, e;) € =, . We use Dgz, D!, D], Dé}, DY, to denote the corresponding torus-invariant divisors.
Notice that Dy, is the only exceptional divisor of f and D, Dy, Dy, De, are the birational transforms of De,, Dy, Dy, D,

on Xy,. Let R’ denote the birational transform of R on X3, then R" corresponds to Cone(e,, €;) € 5.

. 1 b -1 . 1. b -1
Sincew = —u+ —e;3 + m—ez,we have Ky, = f*Kx, + (— + -+ = 1) DY, hence
m m m Z3 % m m m

* b /
f KXZZ = KXE:}, - EDW'

By [5, Lemma 6.4.2], D, - R" = 1. Thus, for any positive integer k,

. , (2 b m — kb
KK, )R = (2 o= {2

Step 2. Next, we will use covering trick to make the canonical divisor ample.
Choose a projective threefold Z with the isolated quotient singularity of type

1

S (—1,2,2b + 1) at P, after resolving
singularities away from P, we may assume that P is the only singular point on Z. By abuse of notation we continue to use
f Y —>Xandg : X - Z todenote the corresponding toric blow-ups defined in Step 1. Let E be the exceptional divisor
of g and R C E be the proper curve defined in Step 1. Then, —F is g-ample and we have f*K, — aF = Kx, where
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Let L be a sufficiently ample Cartier divisor on Z such that g*(L + K;) — aE is ample on X. We can find an effective
A ~ 2L that is smooth and avoids P. Let h : Z’ — Z be the double cover ramified along A. Then, by Hurwitz’s Formula,

we have K’Z =h* (KZ + %A) and h is étale around P. Let X', Y', E/, f', g’ be the corresponding base change of h. Then,

Kxr = h} <KX + %g*A) = h} (g*(%A +Ky)— aE) is ample, where hy : X’ = X X, Z’' — X is the canonical projection.
Since R is a proper curve in one of the components of E” as in Step 1 and R’ its birational transform in Y’, we have

— myb
s e=(3-2)m- (2522}

m

for any positive integer m since Z’ and Xy, are isomorphic around the isolated singular point and the computation is local.
Now we can choose m, n > 0 such that 2bm, < n < m, then

— myb
<£_2>mo_{u}<m_l<o,
n m m n 2

Therefore, |mf*Kxs | - R’ < 0, which means any effective divisor in |m,f*Kx| contains R’. Since f’ is isomorphic over
the generic point of R, this implies that any effective divisor in |myKy-| contains R. O
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