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Abstract
We show that |𝑚𝐾𝑋| defines a birational map and has no fixed part for some
bounded positive integer 𝑚 for any 12 -lc surface 𝑋 such that 𝐾𝑋 is big and nef.
For every positive integer 𝑛 ≥ 3, we construct a sequence of projective surfaces𝑋𝑛,𝑖 , such that 𝐾𝑋𝑛,𝑖 is ample,mld(𝑋𝑛,𝑖) > 1𝑛 for every 𝑖, lim𝑖→+∞mld(𝑋𝑛,𝑖) = 1𝑛 ,
and for any positive integer𝑚, there exists 𝑖 such that |𝑚𝐾𝑋𝑛,𝑖 | has nonzero fixed
part. These results answer the surface case of a question of Xu.
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1 INTRODUCTION

We work over the field of complex numbers ℂ.
Pluricanonical systems are central objects in the study of birational geometry. More precisely, given a normal projective

variety𝑋 such that𝐾𝑋 is effective, we would like to study the behavior of the linear systems |𝑚𝐾𝑋| for any positive integer𝑚.
It is well known that for any sufficiently divisible𝑚 ≫ 0, the rational map given by |𝑚𝐾𝑋| is birationally equivalent to

the Iitaka fibration of 𝐾𝑋 . In 2014, Hacon–McKernan–Xu proved that for any lc projective variety 𝑋 of general type and
of fixed dimension, there exists a uniform positive integer 𝑚 such that |𝑚𝐾𝑋| defines a birational map [8, Theorem 1.3]
(see also [7, 15, 16]). In other words, |𝑚𝐾𝑋| defines a birational morphism 𝑋∖Bs(|𝑚𝐾𝑋|)→ 𝐏(|𝑚𝐾𝑋|) for some uniform
positive integer𝑚, where Bs(|𝑚𝐾𝑋|) is the base locus of |𝑚𝐾𝑋|.
It is then natural to askwhether the behavior |𝑚𝐾𝑋| can be describedmore accurately. Sincewe already have a birational

morphism 𝑋∖Bs(|𝑚𝐾𝑋|)→ 𝐏(|𝑚𝐾𝑋|) for some uniform positive integer 𝑚, one would like to focus on the asymptotic
behavior of Bs(|𝑚𝐾𝑋|). As the very first step, we have the following question proposed by Prof. C. Xu to the first author
in 2018:

Question 1 (Xu). Assume that 𝑋 is a klt projective variety of fixed dimension such that 𝐾𝑋 is big and nef. When will we
have a uniform positive integer𝑚, such that |𝑚𝐾𝑋| defines a birational map and does not have a fixed part?
Note that it is natural to assume 𝐾𝑋 to be nef as we can always run an MMP with scaling and reach a minimal model

for varieties of general type (cf. [3, Corollary 1.4.2]).
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Question 1 naturally arises as a combination of [8, Theorem 1.3] and the effective base-point-freeness theorem [9, 1.1
Theorem]. Note that when the Cartier index is bounded, |𝑚𝐾𝑋| not only defines a birational map but is also base-point-
free for some uniform positive integer 𝑚. The interesting cases of Question 1 appear when the Cartier index of 𝐾𝑋 is
unbounded, in which case, the uniform base-point-freeness cannot be guaranteed.
Question 1 is trivial in dimension 1 but remained widely open in dimension ≥ 2. In this paper, we study Question 1

when dim𝑋 = 2. The main theorem of this paper is the following:

Theorem 1.1. There exists a uniform positive integer 𝑚 satisfying the following. Assume that 𝑋 is a 12 -lc projective surfaceand 𝐾𝑋 is big and nef. Then, |𝑚𝐾𝑋| defines a birational map and does not have a fixed part.
The following theorem is a complementary statement for Theorem 1.1, which shows that if the Cartier index of 𝐾𝑋 is

not bounded and 𝑋 is not 12 -lc, then Theorem 1.1 is not expected to hold.

Theorem 1.2. For any integer 𝑛 ≥ 3, there exists a sequence of projective surfaces {𝑋𝑖}+∞𝑖=1 , such that
1. mld(𝑋𝑖) > 1𝑛 for each 𝑖 and lim𝑖→+∞mld(𝑋𝑖) = 1𝑛 ,
2. 𝐾𝑋𝑖 is ample, and
3. if𝑚𝑖 is the minimal positive integer such that |𝑚𝑖𝐾𝑋𝑖 | defines a birational map and has no fixed part, then lim𝑖→+∞𝑚𝑖 =+∞.

Note that the assumptions onmld(𝑋) in Theorem 1.1 and Theorem 1.2 are natural assumptions: We are only interested
in varieties such that the Cartier index of 𝐾𝑋 is not bounded, and if we consider a family of singularities {(𝑋 ∋ 𝑥)} such
that the index of 𝐾𝑋 is unbounded, then {mld(𝑋 ∋ 𝑥)} is an infinite set (cf. [4, Proposition 7.4]) and the accumulation
points of {mld(𝑋 ∋ 𝑥)} belong to {0} ∪ { 1𝑛 | 𝑛 ∈ ℤ≥2} (cf. [1, Corollary 3.4]). The 12 accumulation point case is resolved by
Theorem 1.1 and the remaining cases are resolved by Theorem 1.2.
It is also interesting to ask whether Question 1 has a positive answer for canonical or terminal threefolds in dimension

3, as 1 is the largest accumulation points ofmld(𝑋 ∋ 𝑥) in dimension 3 (cf. [13, Appendix, Theorem]). We will not address
this question in this paper, but we will provide a related example (cf. Theorem 5.7).

2 PRELIMINARIES

We adopt the standard notation and definitions in [11], and will freely use them.

Definition 2.1 (Pairs and singularities). A pair (𝑋,𝐵) consists of a normal quasi-projective variety 𝑋 and an ℝ-divisor𝐵 ≥ 0 such that 𝐾𝑋 + 𝐵 is ℝ-Cartier. Moreover, if the coefficients of 𝐵 are ≤ 1, then 𝐵 is called a boundary of 𝑋.
Let 𝐸 be a prime divisor on 𝑋 and 𝐷 an ℝ-divisor on 𝑋. We define mult𝐸 𝐷 to be the multiplicity of 𝐸 along 𝐷. Let𝜙 ∶ 𝑊 → 𝑋 be any log resolution of (𝑋,𝐵) and let

𝐾𝑊 + 𝐵𝑊 ∶= 𝜙∗(𝐾𝑋 + 𝐵).
The log discrepancy of a prime divisor 𝐷 on𝑊 with respect to (𝑋,𝐵) is 1 −mult𝐷 𝐵𝑊 and it is denoted by 𝑎(𝐷,𝑋,𝐵). For
any positive real number 𝜖, we say that (𝑋,𝐵) is lc (resp. klt, 𝜖-lc, 𝜖-klt) if 𝑎(𝐷,𝑋,𝐵) ≥ 0 (resp. > 0, ≥ 𝜖, > 𝜖) for every log
resolution 𝜙 ∶ 𝑊 → 𝑋 as above and every prime divisor 𝐷 on 𝑊. We say that 𝑋 is lc (resp. klt, 𝜖-lc, 𝜖-klt) if (𝑋, 0) is lc
(resp. klt, 𝜖-lc, 𝜖-klt).
A germ (𝑋 ∋ 𝑥,𝐵) consists of a pair (𝑋,𝐵) and a closed point 𝑥 ∈ 𝑋. (𝑋 ∋ 𝑥,𝐵) is called an lc (resp. a klt, an 𝜖-lc) germ

if (𝑋,𝐵) is lc (resp. klt, 𝜖-lc) near 𝑥. (𝑋 ∋ 𝑥,𝐵) is called 𝜖-lc at 𝑥 if 𝑎(𝐷,𝑋,𝐵) ≥ 𝜖 for any prime divisor 𝐷 over 𝑋 ∋ 𝑥 (i.e.,center𝑋 𝐷 = 𝑥).
Definition 2.2. Let  be a set of real numbers.We say that  satisfies the descending chain condition (DCC) if any decreas-
ing sequence 𝑎1 ≥ 𝑎2 ≥ ⋯ ≥ 𝑎𝑘 ≥ ⋯ in  stabilizes. We say that  satisfies the ascending chain condition (ACC) if any
increasing sequence in  stabilizes.
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Definition 2.3 (Minimal log discrepancies). Let (𝑋,𝐵) be a pair and 𝑥 ∈ 𝑋 a closed point. Theminimal log discrepancy of(𝑋,𝐵) is defined as
mld(𝑋,𝐵) ∶= inf {𝑎(𝐸,𝑋,𝐵) ∣ 𝐸 is an exceptional prime divisor over 𝑋}.

Theminimal log discrepancy of (𝑋 ∋ 𝑥,𝐵) is defined as
mld(𝑋 ∋ 𝑥,𝐵) ∶= inf {𝑎(𝐸,𝑋,𝐵) ∣ 𝐸 is a prime divisor over 𝑋 ∋ 𝑥}.

If 𝑋 is ℚ-Gorenstein, we define mld(𝑋) ∶= mld(𝑋, 0). If 𝑋 is ℚ-Gorenstein near 𝑥, we define mld(𝑋 ∋ 𝑥) ∶= mld(𝑋 ∋𝑥, 0). For any positive integer 𝑑, we define
mld(𝑑) ∶= {mld(𝑋 ∋ 𝑥) ∣ (𝑋 ∋ 𝑥, 0) is lc, dim𝑋 = 𝑑}.

Definition 2.4. Let 𝑋 be a normal projective variety and 𝐷 an ℝ-divisor on 𝑋. We define
|𝐷| ∶= {𝐷′ ∣ 0 ≤ 𝐷′ ∼ ⌊𝐷⌋}.

For any ℝ-divisor 𝐷 such that |𝐷| ≠ ∅, the base locus of 𝐷 is

Bs(𝐷) ∶= ∩𝐷′∼𝐷 Supp𝐷′,
the fixed part of 𝐷 is the unique ℝ-divisor 𝐹 ≥ 0, such that
(1) for any 𝐷′ ∈ |𝐷|, 𝐷′ ≥ 𝐹, and
(2) Bs(|𝐷 − 𝐹|) does not contain any divisor,
and themovable part of 𝐷 is 𝐷 − 𝐹. We also say that 𝐹 is the fixed part of |𝐷|.
We denote by 𝜌(𝑋) the Picard number of 𝑋.

Definition 2.5. A surface is a variety of dimension 2. A rational surface is a projective surface that is birational to ℙ2. For
ever nonnegative integer 𝑘, the Hirzebruch surface 𝔽𝑘 is ℙℙ1 (ℙ1 ⊕ ℙ1 (𝑘)).
Definition 2.6. Let 𝑛 be a nonnegative integer, and 𝐶 = ∪𝑛𝑖=1𝐶𝑖 a collection of proper curves on a smooth surface𝑈. The
determinant of 𝐶 is defined as det(𝐶) ∶= det({−(𝐶𝑖 ⋅ 𝐶𝑗)}1≤𝑖,𝑗≤𝑛) if 𝐶 ≠ ∅, and we define det(∅) = 1. We define the dual
graph(𝐶) of 𝐶 as follows.

1. The vertices 𝑣𝑖 = 𝑣𝑖(𝐶𝑖) of(𝐶) correspond to the curves 𝐶𝑖 .
2. For each 𝑖, 𝑣𝑖 is labeled by the integer 𝑒𝑖 ∶= −(𝐶2𝑖 ). 𝑒𝑖 is called the weight of 𝑣𝑖 .
3. For 𝑖 ≠ 𝑗,the vertices 𝑣𝑖 and 𝑣𝑗 are connected by 𝐶𝑖 ⋅ 𝐶𝑗 edges.
The determinant of(𝐶) is defined as det(𝐶). For any birational morphism 𝑓 ∶ 𝑌 → 𝑋 between normal surfaces, let 𝐸 =∪𝑛𝑖=1𝐸𝑖 be the reduced exceptional divisor for some nonnegative integer 𝑛. We define(𝑓) ∶= (𝐸). If 𝑓 is the minimal
resolution of𝑋 (resp. theminimal resolution of (𝑋 ∋ 𝑥, 0) for some closed point 𝑥 ∈ 𝑋), we define(𝑋) ∶= (𝑓) (resp.(𝑋 ∋ 𝑥) ∶= (𝑓)).
Theorem 2.7 (cf. [1, Theorem 3.2, Corollary 3.4], [14]).mld(2) satisfies the ACC, and the set of accumulation points ofmld(2)
is { 1𝑛 ∣ 𝑛 ≥ 2} ∪ {0}.
Proposition 2.8 (cf. [4, Proposition A.5]). Let 0 ⊂ [0, 1] be a finite set. Then, there exists a positive integer 𝐼 depending only
on 0 satisfying the following. Assume that (𝑋 ∋ 𝑥, 0) is an lc surface germ such thatmld(𝑋 ∋ 𝑥) ∈ 0. Then, 𝐼𝐾𝑋 is Cartier
near 𝑥.
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F IGURE 1 .

F IGURE 2 .

Lemma 2.9. Let 𝜖 be a positive real number and (𝑋 ∋ 𝑥, 0) an 𝜖-lc (resp. 𝜖-klt) surface germ. Then, for any vertex 𝑣 of(𝑋 ∋ 𝑥), the weight of 𝑣 is ≤ 2𝜖 (resp. < 2𝜖 ).
Proof. [1, Corollary 2.19] proves the 𝜖-lc case and the 𝜖-klt case immediately follow. □
Lemma 2.10 (cf. [1, Lemma 3.3], [4, Lemma A.1]). Let 𝜖 be a positive real number. Then, there exists a finite set  = (𝜖) of
dual graphs and a finite set 0 = 0(𝜖) of positive integers, such that for any 𝜖-lc germ (𝑋 ∋ 𝑥, 0), one of the following holds:
1. (𝑋 ∋ 𝑥, 0) ∈ .
2. (𝑋 ∋ 𝑥, 0) is of the type as in Figure 1 . Here, 𝑒1 = 𝑒1(𝑋 ∋ 𝑥), 𝑞1 = 𝑞1(𝑋 ∋ 𝑥) and 𝑒2 = 𝑒2(𝑋 ∋ 𝑥), 𝑞2 = 𝑞2(𝑋 ∋ 𝑥) are

the determinants of the subdual graphs, such that 𝑒1, 𝑒2, 𝑞1, 𝑞2 ∈ 0, and
min{ 1𝑒1 − 𝑞1 , 1𝑒2 − 𝑞2} ≥ 𝜖.

Moreover, we may assume that
(a) either 𝑒1 = 𝑤1 = 2 and 𝑞1 = 1, or 𝑤1 > 2; and
(b) either 𝑒2 = 𝑤2 = 2 and 𝑞2 = 1, or 𝑤2 > 2.

3. (𝑋 ∋ 𝑥, 0) is of the type as in Figure 2 . Here, 𝑒1 = 𝑒1(𝑋 ∋ 𝑥) and 𝑞1 = 𝑞1(𝑋 ∋ 𝑥) are the determinants of the subdual
graphs, such that 𝑒1, 𝑞1 ∈ 0, and

mld(𝑋 ∋ 𝑥) = 1𝑒1 − 𝑞1 ≥ 𝜖.
We remark that each oval in Figures 1 and 2 corresponds to a subdual graph, which is a chain, as shown in [1, Lemma 3.3,

2] and [4, Appendix, Notation].

Proof. The statement on the structure of the dual graphs are explained both in [1, Lemma 3.3] and in [4, Lemma A.1]. By
taking the coefficient set Γ = {0}, the inequalitymin{ 1𝑒1−𝑞1 , 1𝑒2−𝑞2 } ≥ 𝜖 in (2) follows from the moreover part of [4, Lemma

A.1(2)], and the inequality 1𝑒1−𝑞1 ≥ 𝜖 follows from the moreover part of [4, Lemma A.1(3)].
For the moreover part of (2), note that if 𝑤1 ≤ 2, then we may add the vertex corresponding to 𝑤1 to the 2-chains and

repeat this process unless this vertex is the tail of the chain. This implies (2.a), and (2.b) is similar to (2.a). □
Lemma 2.11 [10, 3.1.11]. Let (𝑋 ∋ 𝑥, 0) be a klt surface germ such that (𝑋 ∋ 𝑥, 0) is a chain. Then, 𝑋 ∋ 𝑥 is a cyclic
quotient singularity. Moreover, if the dual graph of 𝑋 ∋ 𝑥 is

then 𝑋 ∋ 𝑥 is a cyclic quotient singularity of form 1𝑟 (1,𝑎), such that 𝑟𝑎 = 𝑎1 − 1𝑎2− 1𝑎3− 1…𝑎𝑛
and gcd(𝑟,𝑎) = 1.
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Lemma 2.12 (cf. [12, Lemma 2.11], [2, Theorem 1]). Let 𝑋 ∋ 𝑥 be a cyclic quotient singularity of form 1𝑟 (1,𝑎) such thatgcd(𝑟,𝑎) = 1. Then,
mld(𝑋 ∋ 𝑥) = min{𝑘𝑟 +{𝑘𝑎𝑟 } ∣ 1 ≤ 𝑘 ≤ 𝑟 − 1, 𝑘 ∈ ℕ+}.

Lemma 2.13. Let (𝑋 ∋ 𝑥, 0) and (𝑌 ∋ 𝑦, 0) be two klt surface germs such that(𝑋 ∋ 𝑥, 0) is a subgraph of(𝑌 ∋ 𝑦, 0).
Then,mld(𝑋 ∋ 𝑥) ≥ mld(𝑌 ∋ 𝑦, 0).
Proof. Let 𝑓 ∶ 𝑊 → 𝑌 be a partial resolution, which extracts all divisors corresponding to vertices contained in (𝑌 ∋𝑦, 0)∖(𝑋 ∋ 𝑥, 0). Then, (𝑋 ∋ 𝑥) ≅ (𝑊 ∋ 𝑤) for some 𝑤 ∈ 𝑊. Since 𝑓∗𝐾𝑌 = 𝐾𝑊 + 𝐵𝑊 for some 𝐵𝑊 ≥ 0, we have

mld(𝑌 ∋ 𝑦, 0) ≤ mld(𝑊 ∋ 𝑤,𝐵𝑊) ≤ mld(𝑊 ∋ 𝑤, 0) = mld(𝑋 ∋ 𝑥, 0). □
Lemma 2.14. Let (𝑋 ∋ 𝑥, 0) be a 25 -klt surface singularity. Then, either (𝑋 ∋ 𝑥) ≅ 17 (1, 2), or (𝑋 ∋ 𝑥) ≅ 14 (1, 1), or the weight
of any vertex of(𝑋 ∋ 𝑥) is ≤ 3.
Proof. By Lemma 2.9, the weight of any vertex of (𝑋 ∋ 𝑥) is ≤ 4. By [11, Theorem 4.7], (𝑋 ∋ 𝑥, 0) is connected and
contains no cycle. We may assume that(𝑋 ∋ 𝑥) contains a vertex of weight 4. We have the following cases.
Case 1.(𝑋 ∋ 𝑥, 0) only contains one point. Then, (𝑋 ∋ 𝑥) ≅ 14 (1, 1) and we are done.
Case 2.(𝑋 ∋ 𝑥, 0) contains the subgraph 𝑛:

for some 𝑛 ≥ 3. By Lemma 2.11, the singularity corresponding to the dual graph 𝑛 is a cyclic quotient singularity of type14𝑛−1 (1, 4). By Lemma 2.12, when 𝑛 ≥ 4,
mld( 14𝑛 − 1(1, 4)) ≤ 54𝑛 − 1 ≤ 13 < 25 ,

and when 𝑛 = 3,
mld( 14𝑛 − 1(1, 4)) = mld( 111(1, 4)) = 411 < 25 .

We get a contradiction to Lemma 2.13.
Case 3.(𝑋 ∋ 𝑥, 0) contains the subgraph 2:

but does not contain the subgraph 𝑛 as in Case 1.2 for any 𝑛 ≥ 3. We have the following cases.
Case 3.1.(𝑋 ∋ 𝑥, 0) = 2. By Lemma 2.11, (𝑋 ∋ 𝑥) is a cyclic quotient singularity of type 17 (1, 2) and we are done.
Case 3.2.(𝑋 ∋ 𝑥, 0) contains a subgraph:

By Lemma 2.11, the singularity corresponds to , which is a cyclic quotient singularity of type 112 (1, 7). Sincemld( 112 (1, 7)) = 13 < 25 , we get a contradiction to Lemma 2.13.
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Case 3.3.(𝑋 ∋ 𝑥, 0) contains a subgraph 𝑛:

for some integer 𝑛 ≥ 2. By Lemma 2.11, singularity corresponds to 𝑛, which is a cyclic quotient singularity of type17𝑛−4 (1, 7). By Lemma 2.12, when 𝑛 ≥ 4,
mld( 17𝑛 − 4(1, 7)) ≤ 87𝑛 − 4 ≤ 13 < 25 .

When 𝑛 = 3,
mld( 17𝑛 − 4(1, 7)) = mld( 117(1, 7)) = mld( 117(5, 1)) = 617 < 25 .

When 𝑛 = 2,
mld( 17𝑛 − 4(1, 7)) = mld( 110(1, 7)) = mld( 110(3, 1)) = 25 .

We get a contradiction to Lemma 2.13. □
Lemma 2.15. Let (𝑋 ∋ 𝑥) be a 25 -klt surface germ and 𝑓 ∶ 𝑌 → 𝑋 the minimal resolution of 𝑋 ∋ 𝑥. Suppose that

𝐾𝑌 + 𝑛∑
𝑖=1 𝑎𝑖𝐸𝑖 = 𝑓∗𝐾𝑋 ,

where 𝐸1, … ,𝐸𝑛 are the prime exceptional divisors of 𝑓. Then, 𝐾𝑌 ⋅∑𝑛𝑖=1 𝑎𝑖𝐸𝑖 ≤ 𝑛.
Proof. By Lemma 2.14, there are three cases.
Case 1. 𝐸2𝑖 ≥ −3 for each 𝑖. Since (𝐾𝑌 + 𝐸𝑖) ⋅ 𝐸𝑖 = −2 for each 𝑖, 𝐾𝑌 ⋅ 𝐸𝑖 ≤ 1 for each 𝑖. Since 𝑎𝑖 < 1 for each 𝑖, the

lemma follows.
Case 2. 𝑛 = 1 and𝐸21 = −4. Then,𝐾𝑌 ⋅ 𝐸1 = 2 and (𝐾𝑌 + 𝑎1𝐸1) ⋅ 𝐸1 = 0, hence 𝑎1 = 12 . We have𝐾𝑌 ⋅∑𝑛𝑖=1 𝑎𝑖𝐸𝑖 = 12𝐾𝑌 ⋅𝐸1 = 1 = 𝑛.
Case 3. 𝑛 = 2, and possibly reordering indices, 𝐸21 = −2 and 𝐸22 = −4. Then, 𝐾𝑌 ⋅ 𝐸1 = 0, 𝐾𝑌 ⋅ 𝐸2 = 2, (𝐾𝑌 + 𝑎1𝐸1 +𝑎2𝐸2) ⋅ 𝐸1 = 0, and (𝐾𝑌 + 𝑎1𝐸1 + 𝑎2𝐸2) ⋅ 𝐸2 = 0. Thus, 𝑎1 = 27 and 𝑎2 = 47 , hence 𝐾𝑌 ⋅∑𝑛𝑖=1 𝑎𝑖𝐸𝑖 = 87 < 2 = 𝑛. □

Lemma 2.16. Let𝑋 ∋ 𝑥 be a cyclic quotient singularity of type 12𝑘+1(1, 𝑘) for some positive integer 𝑘. Then,(𝑋 ∋ 𝑥) is the
following graph, where there are 𝑘 − 1 “ 2” in the graph.

Moreover, let 𝐸1, … ,𝐸𝑘 be the divisors corresponding to the vertices of (𝑋 ∋ 𝑥), such that 𝐸2𝑖 = −2, when 1 ≤ 𝑖 ≤ 𝑘 − 1,𝐸2𝑘 = −3, and 𝐸𝑖 ⋅ 𝐸𝑗 ≠ 0 if and only if |𝑖 − 𝑗| ≤ 1. Then, 𝑎(𝐸𝑖 ,𝑋, 0) = 2𝑘+1−𝑖2𝑘+1 for each 𝑖.
Proof. It is clear that the cyclic quotient singularity is uniquely determined by its dual graph. Since 2𝑘+1𝑘 = 3 − 12− 12− 1…2
where there are 𝑘 − 1 “2” in the fraction, the first part of the lemma follows from Lemma 2.11. For the remaining part of
the lemma, let 𝑎𝑖 ∶= 1 − 𝑎(𝐸𝑖 ,𝑋, 0) for each 𝑖. Since 𝐾𝑌 ⋅ 𝐸𝑖 = −2 − 𝐸2𝑖 for each 𝑖 and (𝐾𝑌 +∑𝑘𝑖=1 𝑎𝑖𝐸𝑖) ⋅ 𝐸𝑖 = 0 for each𝑖, when 𝑘 = 1, 𝑎(𝐸1,𝑥, 0) = 23 and we are done, and when 𝑘 ≥ 2, we have
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(1) 2𝑎1 = 𝑎2,
(2) 2𝑎𝑖 = 𝑎𝑖−1 + 𝑎𝑖+1 for any 2 ≤ 𝑖 ≤ 𝑘 − 1, and
(3) 3𝑎𝑘 = 𝑎𝑘−1 + 1.
Thus, 𝑎𝑖 = 𝑖𝑎1 for each 𝑖, and we have

3𝑘𝑎1 = 3𝑎𝑘 = 𝑎𝑘−1 + 1 = (𝑘 − 1)𝑎1 + 1,
hence 𝑎1 = 12𝑘+1 and 𝑎𝑖 = 𝑖2𝑘+1 for each 𝑖. The lemma follows. □
3 GLOBAL GEOMETRY OF SMOOTH SURFACES

3.1 Some elementary lemmas

Lemma 3.1. Let 𝑋 be a smooth projective surface, 𝐷 a pseudo-effective ℝ-divisor on 𝑋, and 𝐶 an irreducible curve on 𝑋. If𝐷 ⋅ 𝐶 < 0, then 𝐶2 < 0.
Proof. Let 𝐷 = 𝑃 +𝑁 be the Zariski decomposition of 𝐷 such that 𝑃 is the positive part and 𝑁 is the negative part. Since𝐷 ⋅ 𝐶 < 0 and 𝑃 is nef, 𝑁 ⋅ 𝐶 < 0. Since 𝑁 ≥ 0, 𝐶 ⊂ Supp𝑁 and 𝐶2 < 0. □
Lemma 3.2. Let 𝑋 be a smooth projective surface such that 𝐾𝑋 is pseudo-effective. Let 𝐶 be an irreducible curve on 𝑋 such
that 𝐾𝑋 ⋅ 𝐶 < 0. Then, 𝐶2 = 𝐾𝑋 ⋅ 𝐶 = −1. In particular, 𝐶 is a smooth rational curve.

Proof. By Lemma 3.1, 𝐶2 < 0. Since 𝑋 is smooth, 𝐾𝑋 ⋅ 𝐶 ≤ −1 and 𝐶2 ≤ −1. Thus, (𝐾𝑋 + 𝐶) ⋅ 𝐶 ≤ −2, which implies that(𝐾𝑋 + 𝐶) ⋅ 𝐶 = −2, 𝐶2 = 𝐾𝑋 ⋅ 𝐶 = −1, and 𝐶 is a smooth rational curve. □
Lemma 3.3. Let𝑋 be a smooth projective surface such that𝐾𝑋 is pseudo-effective, and𝐶 a smooth rational curve on𝑋. Then,𝐶2 ≤ −1.
Proof. If not, then 𝐶2 ≥ 0. Since (𝐾𝑋 + 𝐶) ⋅ 𝐶 = −2, 𝐾𝑋 ⋅ 𝐶 ≤ −2 < 0. Since 𝐾𝑋 is pseudo-effective, 𝐶2 < 0, a
contradiction. □
Lemma 3.4. Let 𝑋 be a smooth projective surface, 𝐶 an irreducible curve on 𝑋, 𝑓 ∶ 𝑌 → 𝑋 a blow-up of a closed point, 𝐸
the exceptional divisor of 𝑓, and 𝐶𝑌 the strict transform of 𝐶 on 𝑌. If 𝐶𝑌 ⋅ 𝐸 ≤ 1 and 𝐶𝑌 is a smooth rational curve, then 𝐶 is
a smooth rational curve.

Proof. Since𝑋 is smooth,𝑌 is smooth. Thus, 𝐶𝑌 ⋅ 𝐸 ∈ {0, 1}. If 𝐶𝑌 ⋅ 𝐸 = 0, then 𝑓 is an isomorphism near a neighborhood
of𝐶𝑌 and hence𝐶 is a smooth rational curve. If𝐶𝑌 ⋅ 𝐸 = 1, then𝐾𝑋 ⋅ 𝐶 = 𝐾𝑌 ⋅ 𝐶𝑌 − 1 and𝐶2 = 𝐶2𝑌 + 1, and hence (𝐾𝑋 +𝐶) ⋅ 𝐶 = (𝐾𝑌 + 𝐶𝑌) ⋅ 𝐶𝑌 = −2. Thus, 𝐶 is a smooth rational curve. □
Lemma 3.5. Let 𝑋 be a smooth projective surface such that 𝐾𝑋 is pseudo-effective, and 𝐸1,𝐸2 two different smooth rational
curves on 𝑋 such that 𝐸21 = 𝐸22 = −1. Then, 𝐸1 ⋅ 𝐸2 = 0.
Proof. Assume that 𝐸1 ⋅ 𝐸2 ≠ 0, then 𝐸1 ⋅ 𝐸2 = 𝑛 ≥ 1 for some positive integer 𝑛. Let 𝑓 ∶ 𝑋 → 𝑌 be the contraction of𝐸1 and 𝐸2,𝑌 ∶= 𝑓∗𝐸2. Then, 𝐸22,𝑌 = −1 + 𝑛2 ≥ 0 and 𝐾𝑌 ⋅ 𝐸2,𝑌 = −1 − 𝑛 < 0. Since 𝐾𝑋 is pseudo-effective, 𝐾𝑌 is pseudo-
effective, which contradicts Lemma 3.1. □
Lemma 3.6. Let 𝑋 be a smooth projective surface such that 𝐾𝑋 is pseudo-effective, and 𝐸1,𝐸2,𝐸3 three different smooth
rational curves on 𝑋. If 𝐸21 = 𝐸23 = −2 and 𝐸22 = −1, then either 𝐸1 ⋅ 𝐸2 = 0 or 𝐸2 ⋅ 𝐸3 = 0.
Proof. Assume that 𝐸1 ⋅ 𝐸2 = 𝑛1 > 0 and 𝐸2 ⋅ 𝐸3 = 𝑛3 > 0 for some positive integers 𝑛1 and 𝑛3. Let 𝑓 ∶ 𝑋 → 𝑌 be the
contraction of 𝐸2. Then, 𝑌 is smooth and 𝐾𝑌 is pseudo-effective. Let 𝐸1,𝑌 ∶= 𝑓∗𝐸1, and 𝐸3,𝑌 ∶= 𝑓∗𝐸3. Then, 𝐸21,𝑌 = −2 +
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LIU and XIE 2053

𝑛21, 𝐸23,𝑌 = −2 + 𝑛23, 𝐾𝑌 ⋅ 𝐸1,𝑌 = −𝑛1, and 𝐾𝑌 ⋅ 𝐸3,𝑌 = −𝑛3. Thus, by Lemma 3.1, 𝑛1 = 𝑛3 = 1, which implies that 𝐸21,𝑌 =𝐸23,𝑌 = −1 and𝐸1,𝑌 ⋅ 𝐸3,𝑌 > 0. By Lemma 3.4,𝐸1,𝑌 and𝐸3,𝑌 are smooth rational curves, which contradicts Lemma 3.5. □
Lemma 3.7. Let 𝑋 be a smooth rational surface. Then, 𝐾2𝑋 = 10 − 𝜌(𝑋).
Proof. We may run a 𝐾𝑋-MMP 𝑓 ∶ 𝑋 ∶= 𝑋0 𝑓1^̂→ 𝑋1 𝑓2^̂→ … 𝑓𝑛^̂→ 𝑋𝑛 such that either 𝑋𝑛 = 𝔽𝑘 for some nonnegative integer𝑘 or 𝑋𝑛 = ℙ2. For any 𝑖 ∈ {0, 1, 2, … ,𝑛 − 1}, we have 𝐾2𝑋𝑖 = 𝐾2𝑋𝑖+1 − 1 and 𝜌(𝑋𝑖) = 𝜌(𝑋𝑖+1) + 1. Thus, 𝐾2𝑋 + 𝜌(𝑋) = 𝐾2𝑋𝑛 +𝜌(𝑋𝑛). If 𝑋𝑛 = 𝔽𝑘 for some nonnegative integer 𝑘, then 𝐾2𝑋𝑛 + 𝜌(𝑋𝑛) = 8 + 2 = 10. If 𝑋𝑛 = ℙ2, then 𝐾2𝑋𝑛 + 𝜌(𝑋𝑛) = 9 +1 = 10. Thus, 𝐾2𝑋 = 10 − 𝜌(𝑋). □
3.2 Zariski decomposition

Lemma 3.8. Let𝑋 be a smooth projective surface, and𝐷, 𝐷̃ twoℚ-divisors on𝑋, such that𝐷 ≥ 𝐷̃ and 𝐷̃ is nef. Let𝐷 = 𝑃 +𝑁
be the Zariski decomposition of 𝐷, where 𝑃 is the positive part and𝑁 is the negative part. Then, 𝑃 ≥ 𝐷̃.
Proof. Assume that 𝑁 = ∑𝑛𝑖=1 𝑎𝑖𝐶𝑖 and 𝐷 − 𝐷̃ = ∑𝑛𝑖=1 𝑏𝑖𝐶𝑖 + 𝐷0, where 𝑛 is a nonnegative integer, 𝐶𝑖 are distinct
irreducible curves, 𝐷0 ≥ 0, and for each 𝑖, 𝑎𝑖 > 0, 𝑏𝑖 ≥ 0, and 𝐶𝑖 ⊄ Supp𝐷0. Then, for every 𝑗 ∈ {1, 2, … ,𝑛},

𝑛∑
𝑖=1 𝑎𝑖(𝐶𝑖 ⋅ 𝐶𝑗) = 𝑁 ⋅ 𝐶𝑗 = 𝐷 ⋅ 𝐶𝑗 = 𝐷̃ ⋅ 𝐶𝑗 + (𝐷 − 𝐷̃) ⋅ 𝐶𝑗

≥ (𝐷 − 𝐷̃) ⋅ 𝐶𝑗 = 𝑛∑
𝑖=1 𝑏𝑖(𝐶𝑖 ⋅ 𝐶𝑗) + 𝐷0 ⋅ 𝐶𝑗 ≥ 𝑛∑

𝑖=1 𝑏𝑖(𝐶𝑖 ⋅ 𝐶𝑗),
which implies that∑𝑛𝑖=1(𝑎𝑖 − 𝑏𝑖)(𝐶𝑖 ⋅ 𝐶𝑗) ≥ 0 for every 𝑗. Since the intersectionmatrix {(𝐶𝑖 ⋅ 𝐶𝑗)}1≤𝑖,𝑗≤𝑛 is negative definite,𝑎𝑖 ≤ 𝑏𝑖 for each 𝑖. Thus, 𝐷 − 𝐷̃ ≥ 𝑁, hence 𝑃 ≥ 𝐷̃. □
Lemma 3.9. Let𝑋 be a smooth projective surface,𝐷 a big Weil divisor on𝑋, 𝐷̃ an nef Weil divisor on𝑋, and 𝐸 aWeil divisor
on 𝑋, such that
(1) 𝐷 = 𝑃 +𝑁 is the Zariski decomposition of 𝐷, where 𝑃 is the positive part and𝑁 ≥ 0 is the negative part,
(2) 𝐸 = 𝐷 − 𝐷̃ ≥ 0, and
(3) |𝐷| defines a birational map.
Then, there exist a big Weil divisor 𝐷1 on 𝑋 and a Weil divisor 𝐸1 on 𝑋, such that
1. 𝐷1 = ⌊𝑃⌋,
2. 𝐸 ≥ 𝐸1 = 𝐷1 − 𝐷̃ ≥ 0,
3. |𝐷1| defines a birational map, and
4. either𝑁 = 0 and 𝐷 = 𝑃, or there exists at least one irreducible component 𝐹 of Supp𝐸 such thatmult𝐹(𝐸 − 𝐸1) ≥ 1.
Proof. We let𝐷1 ∶= ⌊𝑃⌋, then (1) holds. Let 𝐸1 ∶= 𝐷1 − 𝐷̃. Since 𝐷̃ is nef and𝐷 ≥ 𝐷̃, by Lemma 3.8, 𝑃 ≥ 𝐷̃. Thus, 𝑃 − 𝐷̃ ≥0, and hence

𝐸1 = 𝐷1 − 𝐷̃ = ⌊𝑃⌋ − 𝐷̃ = ⌊𝑃 − 𝐷̃⌋ ≥ 0.
Since 𝐸 − 𝐸1 = 𝐷 − 𝐷1 = 𝑃 +𝑁 − ⌊𝑃⌋ = {𝑃} +𝑁 ≥ 0,
we deduce (2). Since |𝐷1| = |⌊𝑃⌋| = |𝑃| ≅ |𝐷|,|𝐷1| defines a birational map, hence (3). Finally, if 𝐸 − 𝐸1 ≠ 0, then we are
done; otherwise, 𝐸 − 𝐸1 = 0, hence {𝑃} +𝑁 = 0. Thus, 𝑁 = 0, which implies that 𝐷 = 𝑃, hence (4). □
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2054 LIU and XIE

Proposition 3.10. Let 𝑋 be a smooth projective surface, 𝐷 a big Weil divisor on 𝑋, and 𝐷̃ an nef Weil divisor on 𝑋, such
that

(1) 𝐷 = 𝑃 +𝑁 is the Zariski decomposition of 𝐷, where 𝑃 is the positive part and𝑁 ≥ 0 is the negative part,
(2) 𝐷 − 𝐷̃ ≥ 0, and
(3) |𝐷| defines a birational map.
Then, there exists a Weil divisor 𝐷′ on 𝑋, such that
1. 𝐷 ≥ 𝐷′ ≥ 𝐷̃,
2. 𝐷′ defines a birational map, and
3. 𝐷′ is big and nef.
Proof. Let 𝐷0 ∶= 𝐷, 𝑃0 ∶= 𝑃,𝑁0 ∶= 𝑁, and 𝐸0 ∶= 𝐷 − 𝐷̃, and let 𝑟0 be the sum of all the coefficients of 𝐸0. Then, 𝑟0 is a
nonnegative integer.
For any nonnegative integer 𝑘, assume that there exist big Weil divisors 𝐷1, … ,𝐷𝑘 on 𝑋, Weil divisors 𝐸1, … ,𝐸𝑘 on 𝑋,

and nonnegative integers 𝑟1, … , 𝑟𝑘, such that for every 𝑖 ∈ {0, 1, … , 𝑘},
(1) 𝐷𝑖 = 𝑃𝑖 +𝑁𝑖 is the Zariski decomposition of 𝐷𝑖 , where 𝑃𝑖 is the positive part and 𝑁𝑖 ≥ 0 is the negative part;
(2) 𝐸0 ≥ 𝐸𝑖 = 𝐷𝑖 − 𝐷̃ ≥ 0;
(3) |𝐷𝑖| defines a birational map;
(4) 𝑟𝑘 is the sum of all the coefficients of the components of 𝐸𝑖 such that 0 ≤ 𝑟𝑘 ≤ 𝑟0 − 𝑘; and
(5) if 𝑖 ≥ 1, then 𝐷𝑖 = ⌊𝑃𝑖−1⌋.
It is clear that these assumptions hold when 𝑘 = 0. By Lemma 3.9, there are two cases:
Case 1. 𝑁𝑘 = 0 and 𝐷𝑘 = 𝑃𝑘. In this case, by our assumptions,

(1) 𝐷𝑘 − 𝐷̃ ≥ 0, hence 𝐷𝑘 ≥ 𝐷̃;
(2) 𝐸0 ≥ 𝐷𝑘 − 𝐷̃, hence 𝐷 ≥ 𝐷𝑘;
(3) 𝐷𝑘 is big and defines a birational map; and
(4) 𝐷𝑘 = 𝑃𝑘 is nef.
Thus, we may let 𝐷′ ∶= 𝐷𝑘.
Case 2. There exists a big Weil divisor𝐷𝑘+1 on𝑋, a Weil divisor 𝐸𝑘+1 on𝑋, and a nonnegative integer 𝑟𝑘+1, such that

(1) 𝐷𝑘+1 = ⌊𝑃𝑘⌋,
(2) 𝐸0 ≥ 𝐸𝑘+1 = 𝐷𝑘+1 − 𝐷̃ ≥ 0,
(3) |𝐷𝑘+1| defines a birational map, and
(4) 0 ≤ 𝑟𝑘+1 ≤ 𝑟𝑘 − 1.
In this case, we may replace 𝑘 with 𝑘 + 1 and apply induction on 𝑘. Since 0 ≤ 𝑟𝑘 ≤ 𝑟0 − 𝑘, we have 𝑘 ≤ 𝑟0. Thus, this
process must terminate and we are done. □
3.3 Effective birationality and existence of special nefℚ-divisors
Lemma 3.11. Let 𝑋 be a klt projective surface such that 𝐾𝑋 is big and nef, 𝑓 ∶ 𝑌 → 𝑋 the minimal resolution of 𝑋, and𝐸1, … ,𝐸𝑛 the prime 𝑓-exceptional divisors. Assume that 𝐾𝑌 +∑𝑛𝑖=1 𝑎𝑖𝐸𝑖 = 𝑓∗𝐾𝑋 . Then, for any positive integer 𝑚, if there
exist integers 𝑟1, … , 𝑟𝑛, such that
1. 0 ≤ 𝑟𝑖 ≤ ⌊𝑚𝑎𝑖⌋, and
2. 𝐾𝑌 +∑𝑛𝑖=1 𝑟𝑖𝑚𝐸𝑖 is big and nef,
then |192𝑚𝐾𝑋| does not have a fixed part.
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LIU and XIE 2055

Proof. Let ∆ ∶= ∑𝑛𝑖=1 𝑟𝑖𝑚𝐸𝑖 and 𝐿 ∶= 𝑚(𝐾𝑌 + ∆). Then, 𝐿 is big and nef and Cartier. In particular, 2𝐿 − (𝐾𝑌 + ∆) ∼ℚ(2 − 1𝑚)𝐿 is big and nef. By [6, Theorem 1.1, Remark 1.2] (see also [9, 1.1Theorem]), 192𝐿 is base-point-free, which implies
that the fixed part of 192𝑚(𝐾𝑌 +∑𝑛𝑖=1 𝑎𝑖𝐸𝑖) is supported on ∪𝑛𝑖=1𝐸𝑖 . Thus, |192𝑚𝐾𝑋| does not have a fixed part. □
Theorem 3.12 (cf. [8, Theorem 1.3]). There exists a uniform positive integer𝑚1, such that for any lc surface 𝑋 such that 𝐾𝑋
is big, |𝑚1𝐾𝑋| defines a birational map.
4 𝟏𝟑 -KLT SURFACES
In this section, we will prove Theorem 1.1. The structure of this section is as follows. In Section 4.1, we give a detailed
classification of 13 -klt surface singularities. In Section 4.2, we consider the intersection numbers of the form 𝐾𝑋 ⋅ 𝐶 where𝑋 is 13 -klt, 𝐾𝑋 is big and nef, and 𝐶 is a curve satisfying special properties. For some lemmas and propositions, we need to
restrict ourselves to 25 -klt surfaces. With a good description of these intersection numbers and with the help of the results
on Zariski decomposition in Section 3, in Section 4.3, we will construct special nef ℚ-divisors on the minimal resolution
of 25 -klt surfaces. We will prove our main theorem in Section 4.4.

4.1 Classification of ( 𝟏𝟑 + 𝝐)-lc singularities
Lemma 4.1. Let 𝜖 be a positive real number. Then, there exists a positive integer 𝑛0 = 𝑛0(𝜖) depending only on 𝜖 satisfying
the following. Assume that (𝑋 ∋ 𝑥, 0) is a ( 13 + 𝜖)-lc surface germ. Then,
1. either 𝑛0𝐾𝑋 is Cartier near 𝑥, or
2. 𝑋 ∋ 𝑥 is a cyclic quotient singularity of type 12𝑘+1(1, 𝑘) for some positive integer 𝑘 ≥ 10. In particular, (𝑋 ∋ 𝑥) is the

following graph, where there are 𝑘 − 1 “ 2” in the graph.

Proof. Assume that the lemma does not hold. Then, there exists a sequence of ( 13 + 𝜖)-lc surface germs (𝑋𝑖 ∋ 𝑥𝑖 , 0), and a
strictly increasing sequence of positive integer 𝑛𝑖 , such that
(1) 𝑛𝐾𝑋𝑖 is not Cartier near 𝑥𝑖 for any positive integer 𝑛 ≤ 𝑛𝑖 , and
(2) 𝑋𝑖 ∋ 𝑥𝑖 is not a cyclic quotient singularity of type 12𝑘+1(1, 𝑘) for any 𝑖 and any positive integer 𝑘.
We consider the set ∶= {mld(𝑋𝑖 ∋ 𝑥𝑖)}+∞𝑖=1 . Sincemld(𝑋𝑖 ∋ 𝑥𝑖) ≥ 13 + 𝜖, by Theorem 2.7, the only possible accumulation
point of is 12 . If is a finite set, it contradicts Proposition 2.8. Thus, possibly passing to a subsequence and replacing,
we may assume thatmld(𝑋𝑖 ∋ 𝑥𝑖) is strictly decreasing and lim𝑖→+∞mld(𝑋𝑖 ∋ 𝑥𝑖) = 12 .
We let  ∶= ( 13 + 𝜖) be the finite set of dual graphs and 0 ∶= 0( 13 + 𝜖) be the finite set of real numbers as in

Lemma 2.10. Then, for any (𝑋 ∋ 𝑥) such that(𝑋 ∋ 𝑥, 0) ∈ ,mld(𝑋 ∋ 𝑥) belongs to a finite set. Thus, possibly passing
to a subsequence, by Lemma 2.10, we may assume that one of the following holds:

(1) (𝑋𝑖 ∋ 𝑥𝑖) satisfies (2) of Lemma 2.10 for each 𝑖, and 𝑒1 = 𝑒1(𝑋𝑖 ∋ 𝑥𝑖), 𝑞1 = 𝑞1(𝑋𝑖 ∋ 𝑥𝑖), 𝑒2 = 𝑒2(𝑋𝑖 ∋ 𝑥𝑖), 𝑞2 = 𝑞2(𝑋𝑖 ∋𝑥𝑖) ∈ 0 for each 𝑖. Since 0 is a finite set, possibly passing to a subsequence, we may assume that 𝑒1, 𝑒2, 𝑞1, 𝑞2 are
constants for each 𝑖.
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(2) (𝑋𝑖 ∋ 𝑥𝑖) satisfies (3) of Lemma 2.10 for each 𝑖, and 𝑒1 = 𝑒1(𝑋𝑖 ∋ 𝑥𝑖), 𝑞1 = 𝑞1(𝑋𝑖 ∋ 𝑥𝑖) ∈ 0 for each 𝑖. Since 0 is a
finite set, possibly passing to a subsequence, we may assume that 𝑒1, 𝑒2, 𝑞1, 𝑞2 are constants for each 𝑖.

If (𝑋𝑖 ∋ 𝑥𝑖) satisfies (3) of Lemma 2.10 for each 𝑖, and 𝑒1 = 𝑒1(𝑋𝑖 ∋ 𝑥𝑖), 𝑞1 = 𝑞1(𝑋𝑖 ∋ 𝑥𝑖) are constants for each 𝑖, then by
Lemma 2.10(3),mld(𝑋𝑖 ∋ 𝑥𝑖) = 1𝑒1−𝑞1 is a constant, a contradiction.
If (𝑋𝑖 ∋ 𝑥𝑖) satisfies (2) of Lemma 2.10 for each 𝑖, and 𝑒1 = 𝑒1(𝑋𝑖 ∋ 𝑥𝑖), 𝑞1 = 𝑞1(𝑋𝑖 ∋ 𝑥𝑖), 𝑒2 = 𝑒2(𝑋𝑖 ∋ 𝑥𝑖), 𝑞2 = 𝑞2(𝑋𝑖 ∋𝑥𝑖) are constants for each 𝑖, then by Lemma 2.10(2),

min{ 1𝑒1 − 𝑞1 , 1𝑒2 − 𝑞2} ≥ 13 + 𝜖.
Thus, 𝑒1 − 𝑞1 ≤ 2 and 𝑒2 − 𝑞2 ≤ 2. We get a contradiction by enumerating possibilities as follows:
Case 1. 𝑞1 = 1. Then 𝑒1 = 2 or 3.
Case 1.1 𝑒1 = 2.
Case 1.1.1 𝑞2 = 1. Then 𝑒2 = 2 or 3.
Case 1.1.1.1 𝑒2 = 2. In this case, all the weights in(𝑋𝑖 ∋ 𝑥𝑖) are 2. Thus,mld(𝑋𝑖 ∋ 𝑥𝑖) = 1 for every 𝑖, a contradiction.
Case 1.1.1.2 𝑒2 = 3. In this case, for each 𝑖, the dual graph of 𝑋𝑖 ∋ 𝑥𝑖 is of the following form

By Lemma 2.11,𝑋𝑖 ∋ 𝑥𝑖 is a cyclic quotient singularity of type 12𝑘𝑖+1(1, 𝑘𝑖) for some positive integer 𝑘𝑖 , and 𝑘𝑖 → +∞when𝑖 → +∞, a contradiction.
Case 1.1.2 𝑞2 ≥ 2. In this case, there exist an integer𝑤2 ≥ 3 and a nonnegative integer 𝑑2 < 𝑞2, such that 𝑒2 = 𝑤2𝑞2 − 𝑑2.

Thus,

2 ≥ 𝑒2 − 𝑞2 = (𝑤2 − 1)𝑞2 − 𝑑2 ≥ (𝑤2 − 2)𝑞2 + 1 ≥ 𝑞2 + 1 ≥ 3,
a contradiction.
Case 1.2 𝑒1 = 3.
Case 1.2.1 𝑞2 = 1. Then, 𝑒2 = 2 or 3.
Case 1.2.1.1 𝑒2 = 2. In this case, for each 𝑖, the dual graph of 𝑋𝑖 ∋ 𝑥𝑖 is of the following form

By Lemma 2.11,𝑋𝑖 ∋ 𝑥𝑖 is a cyclic quotient singularity of type 12𝑘𝑖+1(1, 𝑘𝑖) for some positive integer 𝑘𝑖 , and 𝑘𝑖 → +∞when𝑖 → +∞, a contradiction.
Case 1.2.1.2 𝑒2 = 3. In this case, for each 𝑖, the dual graph of 𝑋𝑖 ∋ 𝑥𝑖 is of the following form:

By Lemma 2.11, 𝑋𝑖 ∋ 𝑥𝑖 is a cyclic quotient singularity of type 14𝑘𝑖+8(1, 2𝑘𝑖 + 3) for some nonnegative integer 𝑘𝑖 . By
Lemma 2.12,mld(𝑋𝑖 ∋ 𝑥𝑖) = 12 , a contradiction.
Case 1.2.2 𝑞2 ≥ 2. In this case, exactly the same argument as in Case 1.1.2 holds and we get a contradiction.
Case 2. 𝑞1 ≥ 2. In this case, there exists an integer 𝑤1 ≥ 3 and a nonnegative integer 𝑑1 < 𝑞1, such that 𝑒1 = 𝑤1𝑞1 − 𝑑1.

Thus,

2 ≥ 𝑒1 − 𝑞1 = (𝑤1 − 1)𝑞1 − 𝑑1 ≥ (𝑤1 − 2)𝑞1 + 1 ≥ 𝑞1 + 1 ≥ 3,
a contradiction. □
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4.2 Intersection numbers

Lemma 4.2. Let 𝑋 be a projective klt surface such that 𝐾𝑋 is nef and 𝑓 ∶ 𝑌 → 𝑋 the minimal resolution of 𝑋. If 𝑋 is not
rational, then 𝐾𝑌 is pseudo-effective.
Proof. If 𝑋 is not rational, 𝑌 is not rational. If 𝐾𝑌 is not pseudo-effective, then there exists a birational morphism 𝑔 ∶𝑌 → 𝑊 to a smooth projective surface𝑊 and a ℙ1-fibration ℎ ∶ 𝑊 → 𝑅. Since 𝑌 is not a rational surface, 𝑔(𝑅) ≥ 0. Thus,
for any exceptional curve 𝐹 of 𝑓, 𝐹 does not dominate 𝑅. Pick a general ℎ-vertical curve Σ and let Σ𝑌 , Σ𝑋 be the strict
transforms of Σ on 𝑌 and 𝑋, respectively. Then,

0 ≤ 𝐾𝑋 ⋅ Σ𝑋 = 𝐾𝑌 ⋅ Σ𝑌 = 𝐾𝑊 ⋅ Σ = −2,
a contradiction. □
Lemma 4.3. Let𝑋 be a 13 -klt surface such that𝐾𝑋 is big andnef,𝐶 an irreducible curve on𝑋,𝑥 ∈ 𝐶 a closed point,𝑓 ∶ 𝑌 → 𝑋
the minimal resolution of 𝑋, and 𝐶𝑌 the strict transform of 𝐶 on 𝑌. Assume that
∙ 𝑋 is not a rational surface,∙ 𝐾𝑌 ⋅ 𝐶𝑌 < 0,∙ 𝑋 ∋ 𝑥 is a cyclic quotient singularity of type 12𝑘+1(1, 𝑘) for some integer 𝑘 ≥ 5, and∙ 𝐸1, … ,𝐸𝑘 are prime 𝑓-exceptional divisors over 𝑋 ∋ 𝑥, such that
1. 𝐸2𝑖 = −2 when 1 ≤ 𝑖 ≤ 𝑘 − 1,
2. 𝐸2𝑘 = −3, and
3. 𝐸𝑖 ⋅ 𝐸𝑗 ≠ 0 if and only if |𝑖 − 𝑗| ≤ 1.

Then,

1. 𝐶𝑌 ⋅ 𝐸𝑖 = 0 when 1 ≤ 𝑖 ≤ 𝑘 − 1, and
2. 𝐶𝑌 ⋅ 𝐸𝑘 = 1.
Proof. By Lemma 4.2, 𝐾𝑌 is pseudo-effective. By Lemma 3.2, 𝐾𝑌 ⋅ 𝐶𝑌 = −1 and 𝐶2𝑌 = −1. Moreover, each 𝐸𝑖 is a smooth
rational curve. Let 𝑔 ∶ 𝑌 → 𝑊 be the contraction of𝐶𝑌 and 𝐸𝑖,𝑊 ∶= 𝑔∗𝐸𝑖 for each 𝑖. Then,𝑊 is smooth and𝐾𝑊 is pseudo-
effective. □
Claim 4.4. 𝐶𝑌 ⋅ 𝐸𝑗 ≤ 1 for every 𝑗 ∈ {1, 2, … , 𝑘}.
Proof of Claim 4.4. Suppose this is not the case, then there exists an integer 𝑛 ≥ 2 and an integer 𝑗 ∈ {1, 2, … , 𝑘}, such that𝐶𝑌 ⋅ 𝐸𝑗 = 𝑛. We have

𝐸2𝑗,𝑊 = 𝐸2𝑗 + 𝑛2 ≥ −3 + 4 ≥ 1
and

𝐾𝑊 ⋅ 𝐸𝑗,𝑊 = 𝐾𝑌 ⋅ 𝐸𝑗 − 𝑛 ≤ −1,
which contradicts Lemma 3.1 as 𝐾𝑊 is pseudo-effective. □
Claim 4.5. 𝐸𝑖,𝑊 are smooth rational curves for every 𝑖.
Proof of Claim 4.5. It immediately follows from Lemma 3.4 and Claim 4.4. □
Claim 4.6. 𝐶𝑌 ⋅ 𝐸𝑗 = 0 for every 𝑗 ∈ {2, 3, … , 𝑘 − 2}.
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Proof of Claim 4.6. Suppose that the claim does not hold. Then, by Claim 4.4, there exists 𝑗 ∈ {2, 3, … , 𝑘 − 2} such that𝐶𝑌 ⋅ 𝐸𝑗 = 1. There are three cases:
Case 1. 𝐶𝑌 ⋅ 𝐸𝑗+1 = 1. In this case, 𝐸2𝑗,𝑊 = 𝐸2𝑗+1,𝑊 = −1 and 𝐸𝑗,𝑊 ⋅ 𝐸𝑗+1,𝑊 = 2. By Claim 4.5, 𝐸𝑗,𝑊 and 𝐸𝑗+1,𝑊 are

smooth rational curves. Since 𝐾𝑊 is pseudo-effective, this contradicts Lemma 3.5.
Case 2. 𝐶𝑌 ⋅ 𝐸𝑗−1 = 1. We get a contradiction by the same arguments as Case 1 except that we replace 𝐸𝑗+1 with 𝐸𝑗−1.
Case 3. 𝐶𝑌 ⋅ 𝐸𝑗−1 = 𝐶𝑌 ⋅ 𝐸𝑗+1 = 0. In this case, 𝐸2𝑗,𝑊 = −1, 𝐸2𝑗−1,𝑊 = 𝐸2𝑗+1,𝑊 = −2, 𝐸𝑗,𝑊 ⋅ 𝐸𝑗−1,𝑊 = 𝐸𝑗,𝑊 ⋅ 𝐸𝑗+1,𝑊 = 1,

which contradicts Lemma 3.6. □
Claim 4.7. 𝐶𝑌 ⋅ 𝐸𝑘−1 = 0.
Proof of Claim 4.7. Suppose that the claim does not hold. Then, by Claim 4.4, 𝐶𝑌 ⋅ 𝐸𝑘−1 = 1. By Claim 4.6, 𝐶𝑌 ⋅ 𝐸𝑗 = 0 for
every 𝑗 ∈ {2, 3, … , 𝑘 − 2}. There are two cases:
Case 1. 𝐶𝑌 ⋅ 𝐸𝑘 = 1. In this case, 𝐸2𝑘−1,𝑊 = −1, 𝐸2𝑘,𝑊 = −2, 𝐸2𝑘−2,𝑊 = −2, 𝐸𝑘−1,𝑊 ⋅ 𝐸𝑘,𝑊 = 2, and 𝐸𝑘−1,𝑊 ⋅ 𝐸𝑘−2,𝑊 = 1.

This contradicts Lemma 3.6.
Case 2.𝐶𝑌 ⋅ 𝐸𝑘 = 0. In this case,𝐸2𝑘−1,𝑊 = −1,𝐸2𝑘,𝑊 = −3,𝐸2𝑘−2,𝑊 = 𝐸2𝑘−3,𝑊 = −2, and for every 𝑖, 𝑗 ∈ {𝑘 − 3, 𝑘 − 2, 𝑘 −1, 𝑘}, 𝐸𝑖 ⋅ 𝐸𝑗 = 1 if |𝑖 − 𝑗| = 1 and 𝐸𝑖 ⋅ 𝐸𝑗 = 0 if |𝑖 − 𝑗| ≥ 2.
Let ℎ ∶ 𝑊 → 𝑍 be the contraction of 𝐸𝑘−1,𝑊 and 𝐸𝑖,𝑍 ∶= ℎ∗𝐸𝑖,𝑊 for any 𝑖 ≠ 𝑘 − 1. Then, 𝑍 is smooth and 𝐾𝑍 is pseudo-

effective. By Lemma 3.4, 𝐸𝑘−3,𝑍 ,𝐸𝑘−2,𝑍 , and 𝐸𝑘,𝑍 are smooth rational curves. Moreover, 𝐸2𝑘−3,𝑍 = 𝐸2𝑘,𝑍 = −2, 𝐸2𝑘−2,𝑍 = −1,
and 𝐸𝑘−3,𝑍 ⋅ 𝐸𝑘−2,𝑍 = 𝐸𝑘−2,𝑍 ⋅ 𝐸𝑘,𝑍 = 1. This contradicts Lemma 3.6. □
Claim 4.8. 𝐶𝑌 ⋅ 𝐸1 = 0.
Proof of Claim 4.8. Suppose that the claim does not hold. Then, by Claim 4.4, 𝐶𝑌 ⋅ 𝐸1 = 1. By Claim 4.6 and Claim 4.7,𝐶𝑌 ⋅ 𝐸𝑗 = 0 for every 𝑗 ∈ {2, … , 𝑘 − 1}. By Claim 4.4, there are two cases:
Case 1. 𝐶𝑌 ⋅ 𝐸𝑘 = 1. In this case, 𝐸21,𝑊 = −1, 𝐸22,𝑊 = 𝐸2𝑘,𝑊 = −2, 𝐸1,𝑊 ⋅ 𝐸2,𝑊 = 𝐸1,𝑊 ⋅ 𝐸𝑘,𝑊 = 1, which contradicts

Lemma 3.6.
Case 2. 𝐶𝑌 ⋅ 𝐸𝑘 = 0. The are two subcases:
Case 2.1. For any closed point 𝑦 ∈ 𝐶 such that 𝑦 ≠ 𝑥, 𝑋 is smooth near 𝑦. In this case, let 𝑎 ∶= 1 − 𝑎(𝐸1,𝑋, 0) = 12𝑘+1 .

Since 𝐾𝑋 is big and nef,
0 ≤ 𝐾𝑋 ⋅ 𝐶 = 𝑓∗𝐾𝑋 ⋅ 𝐶𝑌 = (𝐾𝑌 + (1 − 𝑎)𝐸1) ⋅ 𝐶𝑌 = −1 + (1 − 𝑎) = −𝑎 < 0,

a contradiction.
Case 2.2. There exists a closed point 𝑦 ∈ 𝐶 such that 𝑦 ≠ 𝑥 and𝑋 is not smooth near 𝑦. Then, there exists a prime divisor𝐹 on 𝑌 that is over 𝑋 ∋ 𝑦, such that 𝐶𝑌 ∩ 𝐹 ≠ ∅. Moreover, 𝐹 is a smooth rational curve. Since 𝑋 is 13 -klt, by Lemma 2.9,𝐹2 ≥ −5. Let 𝐹𝑊 ∶= 𝑔∗𝐹.
We have 𝐹𝑊 ⋅ 𝐸𝑖,𝑊 = 0 for every 𝑖 ≠ 1, 𝐸21,𝑊 = −1, 𝐸22,𝑊 = 𝐸23,𝑊 = 𝐸24,𝑊 = −2, and for every 𝑖, 𝑗 ∈ {1, 2, 3, 4}, 𝐸𝑖,𝑊 ⋅𝐸𝑗,𝑊 = 1 when |𝑖 − 𝑗| = 1 and 𝐸𝑖,𝑊 ⋅ 𝐸𝑗,𝑊 = 0 when |𝑖 − 𝑗| ≥ 2.
There are two subcases:
Case 2.2.1. 𝐶𝑌 ⋅ 𝐹 = 1. In this case, by Lemma 3.4, 𝐹𝑊 is a smooth rational curve. Moreover, 𝐹2𝑊 ≥ −4 and 𝐹𝑊 ⋅ 𝐸1,𝑊 =1,
Let ℎ ∶ 𝑊 → 𝑍 be the contraction of 𝐸1,𝑊 , 𝐸𝑖,𝑍 ∶= ℎ∗𝐸𝑖,𝑊 for each 𝑖 ≠ 1, and 𝐹𝑍 ∶= ℎ∗𝐹𝑊 . Then, 𝑍 is smooth and 𝐾𝑍

is pseudo-effective. By Lemma 3.4, 𝐸2,𝑍 ,𝐸3,𝑍 ,𝐸4,𝑍 , and 𝐹𝑍 are smooth rational curves. Moreover, 𝐸22,𝑍 = −1, 𝐸23,𝑍 = 𝐸24,𝑍 =−2, 𝐸2,𝑍 ⋅ 𝐸3,𝑍 = 𝐸3,𝑍 ⋅ 𝐸4,𝑍 = 𝐹𝑍 ⋅ 𝐸2,𝑍 = 1, 𝐹2,𝑍 ⋅ 𝐸3,𝑍 = 𝐹2,𝑍 ⋅ 𝐸4,𝑍 = 𝐸2,𝑍 ⋅ 𝐸4,𝑍 = 0, and 𝐹2𝑍 ≥ −3.
Let 𝑝 ∶ 𝑍 → 𝑇 be the contraction of 𝐸2,𝑍 , 𝐸𝑖,𝑇 ∶= 𝑝∗𝐸𝑖,𝑍 for each 𝑖 ≠ 1, 2, and 𝐹𝑇 ∶= 𝑝∗𝐹𝑍 . Then, 𝑇 is smooth and𝐾𝑇 is

pseudo-effective. By Lemma 3.4, 𝐸3,𝑇 ,𝐸4,𝑇 , and 𝐹𝑇 are smooth rational curves. Moreover, 𝐸23,𝑇 = −1, 𝐸24,𝑇 = −2, 𝐹2𝑇 ≥ −2,
and 𝐸3,𝑇 ⋅ 𝐸4,𝑇 = 𝐹𝑇 ⋅ 𝐸3,𝑇 = 1.
By Lemma 3.3, 𝐹2𝑇 ∈ {−1,−2}. By Lemma 3.5, 𝐹2𝑇 = −2. But this contradicts Lemma 3.6.
Case 2.2.2. 𝐶𝑌 ⋅ 𝐹 ≥ 2. In this case, we let 𝑏 ∶= 𝐹2 and 𝑐 ∶= 𝐶𝑌 ⋅ 𝐹. Then, 𝐹2𝑊 = 𝑏 + 𝑐2, 𝐾𝑊 ⋅ 𝐹𝑊 = 𝐾𝑌 ⋅ 𝐹 − 𝑐 = −2 −𝑏 − 𝑐, and 𝐹𝑊 ⋅ 𝐸1,𝑊 = 𝑐.
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Let ℎ ∶ 𝑊 → 𝑍 be the contraction of 𝐸1,𝑊 and 𝐹𝑍 ∶= ℎ∗𝐹𝑊 . Then, 𝑍 is smooth and 𝐾𝑍 is pseudo-effective. Moreover,𝐹2𝑍 = 𝐹2𝑊 + 𝑐2 = 𝑏 + 2𝑐2, and 𝐾𝑍 ⋅ 𝐹𝑍 = 𝐾𝑊 ⋅ 𝐹𝑊 − 𝑐 = −2 − 𝑏 − 2𝑐. Since 𝑏 ≥ −5 and 𝑐 ≥ 2, 𝐹2𝑍 ≥ 3 > 0 and 𝐾𝑍 ⋅ 𝐹𝑍 ≤−1 < 0, which contradicts Lemma 3.1. □
Proof of Lemma 4.3 continued. By Claim 4.6, Claim 4.7, and Claim 4.8, we get (1). Since 𝑥 ∈ 𝐶, 𝐶𝑌 intersects ∪𝑘𝑖=1𝐶𝑖 , which
implies that 𝐶𝑌 intersects 𝐸𝑘. Thus, 𝐶𝑌 ⋅ 𝐸𝑘 ≥ 1. (2) follows from Claim 4.4. □
Lemma 4.9. Let 𝑋 be a rational 25 -klt surface such that 𝐾𝑋 is big and nef and 𝑘 ≥ 10 an integer. Then, 𝑋 does not contain a
cyclic quotient singularity of type 12𝑘+1(1, 𝑘).
Proof. Assume not. Then, there exists a closed point 𝑥 ∈ 𝑋 such that 𝑥 is a cyclic quotient singularity of type 12𝑘+1(1, 𝑘).
By Lemma 2.16, we may let 𝑓 ∶ 𝑌 → 𝑋 be the minimal resolution of 𝑋 and write

𝐾𝑌 + 𝑘∑
𝑖=1

𝑖2𝑘 + 1𝐸𝑖 + 𝑠∑
𝑖=1 𝑏𝑖𝐹𝑖 = 𝑓∗𝐾𝑋

where 𝐸1, … ,𝐸𝑘,𝐹1, … ,𝐹𝑠 are the prime 𝑓-exceptional divisors, where
(1) 𝐸1, … ,𝐸𝑘 are the prime 𝑓-exceptional divisors over 𝑋 ∋ 𝑥 such that 𝐸2𝑖 = −2 when 1 ≤ 𝑖 ≤ 𝑘 − 1 and 𝐸2𝑘 = −3, and
(2) for every 𝑖 ∈ {1, 2, … , 𝑠}, center𝑋 𝐹𝑖 = 𝑥𝑖 for some closed point 𝑥𝑖 ∈ 𝑋, such that 𝑥𝑖 ≠ 𝑥.
In particular,𝐾𝑌 ⋅ 𝐸𝑖 = 0when 𝑖 ≠ 𝑘 and𝐾𝑌 ⋅ 𝐸𝑘 = 1. Since𝑋 is 25 -klt, by Lemma 2.15,𝐾𝑌 ⋅∑𝑠𝑖=1 𝑏𝑖𝐹𝑖 ≤ 𝑠. Since 𝑓 extracts𝑘 + 𝑠 divisors, we have 𝜌(𝑌) ≥ 1 + 𝑘 + 𝑠. Since 𝐾𝑋 is big and nef, we have 𝐾2𝑋 > 0, which implies that

𝐾2𝑌 = 𝐾2𝑋 − 𝐾𝑌 ⋅( 𝑘∑
𝑖=1

𝑖2𝑘 + 1𝐸𝑖 + 𝑠∑
𝑖=1 𝑏𝑖𝐹𝑖

) > − 𝑘2𝑘 + 1 − 𝑠 > −12 − 𝑠.
Since 𝑋 is rational, 𝑌 is rational. By Lemma 3.7, 𝐾2𝑌 = 10 − 𝜌(𝑌). Thus,

−12 − 𝑠 < 𝐾2𝑌 = 10 − 𝜌(𝑌) ≤ 10 − (1 + 𝑘 + 𝑠) = 9 − 𝑘 − 𝑠,
which implies that 𝑘 < 192 < 10, a contradiction. □
Lemma 4.10. Then, there exists a positive integer 𝑛1, a DCC set  of nonnegative real numbers, and a positive real number𝛾0 satisfying the following. Assume the following:∙ 𝑋 is a 25 -klt surface such that 𝐾𝑋 is big and nef,∙ 𝐶 is an irreducible curve on 𝑋,∙ 𝑓 ∶ 𝑌 → 𝑋 is the minimal resolution of 𝑋,∙ 𝐶𝑌 is the strict transform of 𝐶 on 𝑌, and∙ 𝐾𝑌 ⋅ 𝐶𝑌 < 0,
then

1. 𝐾𝑋 ⋅ 𝐶 ∈ ,
2. if 𝐾𝑋 ⋅ 𝐶 = 0, then 𝑛1𝐾𝑋 is Cartier near 𝐶, and
3. if 𝐾𝑋 ⋅ 𝐶 > 0, then 𝐾𝑋 ⋅ 𝐶 ≥ 𝛾0.
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2060 LIU and XIE

Proof. By Lemma 4.1, there exists a positive integer 𝑛0 = 𝑛0( 115 ), such that for any closed point 𝑋 ∋ 𝑥, either 𝑛0𝐾𝑋 is
Cartier near 𝑥, or 𝑥 is a cyclic quotient singularity of type 12𝑘+1(1, 𝑘) for some positive integer 𝑘 ≥ 10. Now we let

 ∶= {𝛾 ∣ 𝛾 ≥ 0, 𝛾 = −1 + 𝑚∑
𝑖=1

𝑘𝑖2𝑘𝑖 + 1 + 𝑙𝑛0 ,𝑚, 𝑙, 𝑘1, … , 𝑘𝑚 ∈ ℕ}.
Then,  is a DCC set of nonnegative real numbers. Since  satisfies the DCC, we may let 𝛾0 ∶= min{1, 𝛾 ∈  ∣ 𝛾 > 0}.
Consider the equation

𝑚∑
𝑖=1

𝑘𝑖2𝑘𝑖 + 1 + 𝑙𝑛0 = 1,
where 𝑚, 𝑙, 𝑘1, … , 𝑘𝑚 ∈ ℕ. Then, there exists a finite set 0 ⊂ ℕ such that 𝑘𝑖 ∈ 0 for each 𝑖: to see this, note that 𝑘𝑖2𝑘𝑖+1
belongs to a DCC set of positive real numbers and the sum∑𝑚𝑖=1 𝑘𝑖2𝑘𝑖+1 belongs to the finite set {𝑛0−𝑙𝑛0 ∣ 1 ≤ 𝑙 ≤ 𝑛0}, which
implies that 𝑘𝑖2𝑘𝑖+1 belongs to a finite set, hence 𝑘𝑖 belongs to a finite set. We define

𝑛1 ∶= 𝑛0 ∏
𝛾∈0(2𝛾 + 1).

We show that 𝑛1,, and 𝛾0 satisfy our requirements. For any curve 𝐶 as in the assumption, there exists a nonnegative
integer 𝑠, such that
(1) there are closed points 𝑥1, … ,𝑥𝑠 on 𝑋, such that 𝑥𝑖 ∈ 𝐶 and 𝑥𝑖 is a cyclic quotient singularity of type 12𝑘𝑖+1(1, 𝑘𝑖) for

some positive integer 𝑘𝑖 ≥ 10 for each 𝑖, and
(2) for any closed point 𝑦 ∉ {𝑥1, … ,𝑥𝑠}, 𝑛0𝐾𝑋 is Cartier near 𝑦.
By Lemma 4.9, we may assume that 𝑋 is not rational. By Lemma 4.3, we may write

𝐾𝑌 + 𝑠∑
𝑖=1

𝑘𝑖∑
𝑗=1 𝑎𝑖,𝑗𝐸𝑖,𝑗 +

𝑡∑
𝑘=1

𝑐𝑘𝑛0𝐹𝑘 = 𝑓∗𝐾𝑋 ,
where

(1) 𝐸𝑖,𝑗 and 𝐹𝑘 are distinct prime 𝑓-exceptional divisors for every 𝑖, 𝑗, 𝑘,
(2) for any 𝑖, 𝑗, center𝑋 𝐸𝑖,𝑗 = 𝑥𝑖 ,
(3) 𝑘𝑖 , 𝑐𝑘 are positive integers,
(4) 𝑎𝑖,𝑘𝑖 = 𝑘𝑖2𝑘𝑖+1 for each 𝑖, and
(5) 𝐶𝑌 ⋅ 𝐸𝑖,𝑢𝑖 = 1 and 𝐶𝑌 ⋅ 𝐸𝑖,𝑗 = 0 for every 𝑗 ≠ 𝑢𝑖 .
By Lemma 3.2, 𝐾𝑌 ⋅ 𝐶𝑌 = −1. Thus,

𝑓∗𝐾𝑋 ⋅ 𝐶𝑌 = (𝐾𝑌 + 𝑠∑
𝑖=1

𝑘𝑖∑
𝑗=1 𝑎𝑖,𝑗𝐸𝑖,𝑗 +

𝑡∑
𝑘=1

𝑐𝑘𝑛0𝐹𝑘
) ⋅ 𝐶𝑌 = −1 + 𝑠∑

𝑖=1
𝑘𝑖2𝑘𝑖 + 1 + 𝑙𝑛0

for some nonnegative integer 𝑙. Moreover, since 𝐾𝑋 is big and nef,
0 ≤ 𝐾𝑋 ⋅ 𝐶 = 𝑓∗𝐾𝑋 ⋅ 𝐶𝑌 .
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Thus, 𝐾𝑋 ⋅ 𝐶 = 𝑓∗𝐾𝑋 ⋅ 𝐶𝑌 ∈ , and we get (1). (3) follows from (1). Moreover, if 𝐾𝑋 ⋅ 𝐶 = 0, then
0 = −1 + 𝑠∑

𝑖=1
𝑘𝑖2𝑘𝑖 + 1 + 𝑙𝑛0 ,

which implies that 𝑘𝑖 ∈ 0 for each 𝑖. Thus, 𝑛1𝐾𝑋 is Cartier near 𝐶 by construction of 𝑛1, and we get (2). □
4.3 Construction of nef ℚ-divisors
Proposition 4.11. There exists a positive integer𝑚0 satisfying the following. Assume the following:
(1) 𝑋 a 25 -klt surface such that 𝐾𝑋 is big and nef,
(2) 𝑓 ∶ 𝑌 → 𝑋 is the minimal resolution of 𝑋, and
(3) 𝐾𝑌 +∑𝑠𝑖=1 𝑎𝑖𝐸𝑖 = 𝑓∗𝐾𝑋 , where 𝐸𝑖 are the prime 𝑓-exceptional divisors,
then𝑚0𝐾𝑌 +∑𝑠𝑖=1 𝑐𝑖𝐸𝑖 is nef for some nonnegative integers 𝑐1, … , 𝑐𝑠, such that 𝑐𝑖 ≤ ⌊𝑚0𝑎𝑖⌋ for each 𝑖.
Proof. Let 𝑛1 and 𝛾0 be the numbers given by Lemma 4.10, 𝑛0 the number given by Lemma 4.1, 𝑛2 ∶= max{10,𝑛1, ⌈ 1𝛾0 ⌉},
and

𝑚0 ∶= 𝑛0𝑛1 𝑛2∏
𝑖=1(2𝑖 + 1).

We show that𝑚0 satisfies our requirements.
We classify the singularities on 𝑋 into three classes:
Class 1. Cyclic quotient singularities of type 12𝑘+1(1, 𝑘) where 𝑘 ≥ 𝑛2. Let these singularities be 𝑥1, … ,𝑥𝑠 for some non-

negative integer 𝑠. We may assume that 𝑥𝑖 is a cyclic quotient singularity of type 12𝑘𝑖+1(1, 𝑘𝑖) for some integer 𝑘𝑖 ≥ 𝑛2 for
every 1 ≤ 𝑖 ≤ 𝑠.
Class 2. Singularities of type 12𝑘+1(1, 𝑘) where 5 ≤ 𝑘 < 𝑛2. Let these singularities be 𝑥𝑠+1, … ,𝑥𝑡 for some integer 𝑡 ≥ 𝑠.

In particular, by the definition of𝑚0.𝑚0𝐾𝑋 is Cartier near 𝑥𝑖 for every 𝑠 + 1 ≤ 𝑖 ≤ 𝑡.
Class 3. Other singularities. Let these singularities be 𝑥𝑡+1, … ,𝑥𝑟 for some integer 𝑟 ≥ 𝑡. In particular, by Lemma 4.1,

and the definition of𝑚0,𝑚0𝐾𝑋 is Cartier near 𝑥𝑖 for every 𝑡 + 1 ≤ 𝑖 ≤ 𝑟.
Now we may write

𝐾𝑌 + 𝑠∑
𝑖=1

𝑘𝑖∑
𝑗=1

𝑗2𝑘𝑖 + 1𝐸𝑖,𝑗 + 1𝑚0𝐹 = 𝑓∗𝐾𝑋 ,
where

(1) for every 1 ≤ 𝑖 ≤ 𝑠 and 1 ≤ 𝑗 ≤ 𝑘𝑖 , center𝑋 𝐸𝑖,𝑗 = 𝑥𝑖;
(2) for every 1 ≤ 𝑖 ≤ 𝑠 and 1 ≤ 𝑗 ≤ 𝑘𝑖 − 1, 𝐸2𝑖,𝑗 = −2;
(3) for every 1 ≤ 𝑖 ≤ 𝑠, 𝐸2𝑖,𝑘𝑖 = −3;
(4) 𝐹 ≥ 0 is a 𝑓-exceptional Weil divisor, such that 𝑥𝑖 ∉ center𝑋 𝐹 for every 1 ≤ 𝑖 ≤ 𝑠.
We show that we may take

𝑙∑
𝑖=1 𝑐𝑖𝐸𝑖 ∶=

𝑠∑
𝑖=1

𝑘𝑖∑
𝑗=𝑘𝑖−𝑛2+1

𝑚0(𝑗 − (𝑘𝑖 − 𝑛2))2𝑛2 + 1 𝐸𝑖,𝑗 + 𝐹.
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2062 LIU and XIE

Indeed, by our constructions, 0 ≤ 𝑐𝑖 ≤ ⌊𝑚0𝑎𝑖⌋ for each 𝑖, and we only left to check that (𝑚0𝐾𝑌 +∑𝑙𝑖=1 𝑐𝑖𝐸𝑖) ⋅ 𝐶𝑌 ≥ 0 for
any irreducible curve 𝐶𝑌 on 𝑌. We have the following cases:
Case 1. 𝐾𝑌 is not pseudo-effective. In this case, by Lemma 4.2, 𝑋 is rational. By Lemma 4.9, 𝑠 = 0. Thus,∑𝑙𝑖=1 𝑐𝑖𝐸𝑖 = 𝐹

and
(𝑚0𝐾𝑌 + 𝑙∑

𝑖=1 𝑐𝑖𝐸𝑖
) = 𝑚0𝑓∗𝐾𝑋

is nef. Thus, (𝑚0𝐾𝑌 +∑𝑙𝑖=1 𝑐𝑖𝐸𝑖) ⋅ 𝐶𝑌 ≥ 0 for any irreducible curve 𝐶𝑌 on 𝑌.
Case 2. 𝐾𝑌 is pseudo-effective.
Case 2.1. 𝐶𝑌 is not exceptional over 𝑋. Let 𝐶 ∶= 𝑓∗𝐶𝑌 .
Case 2.1.1. 𝐾𝑌 ⋅ 𝐶𝑌 ≥ 0. In this case, 𝐸𝑖,𝑗 ⋅ 𝐶𝑌 ≥ 0 and 𝐹 ⋅ 𝐶𝑌 ≥ 0, hence (𝑚0𝐾𝑌 +∑𝑙𝑖=1 𝑐𝑖𝐸𝑖) ⋅ 𝐶𝑌 ≥ 0.
Case 2.1.2.𝐾𝑌 ⋅ 𝐶𝑌 < 0. By Lemma 3.2,𝐾𝑌 ⋅ 𝐶𝑌 = 𝐶2𝑌 = −1. By Lemma 4.3,𝐶𝑌 ⋅ 𝐸𝑖,𝑗 = 0 for every 𝑖 and every 𝑗 ≤ 𝑘𝑖 − 1,

and 𝐶𝑌 ⋅ 𝐸𝑖,𝑘𝑖 ∈ {0, 1} for every 𝑖. By Lemma 4.10, there are two possibilities.
Case 2.1.2.1. 𝑛1𝐾𝑋 is Cartier near 𝐶. In this case, since 𝑛2 ≥ 𝑛1, we have 2𝑘𝑖 + 1 ≥ 2𝑛2 + 1 > 𝑛1 for every 𝑖. Since the

Cartier index of 𝐾𝑋 near 𝑥𝑖 is 2𝑘𝑖 + 1 and 𝑛1𝐾𝑋 is Cartier near 𝐶, 𝐶 does not pass through 𝑥𝑖 . Thus, 𝐶𝑌 does not intersect𝐸𝑖,𝑗 for any 𝑖, 𝑗, and hence
(𝑚0𝐾𝑌 + 𝑙∑

𝑖=1 𝑐𝑖𝐸𝑖
) ⋅ 𝐶𝑌 = (𝑚0𝐾𝑌 + 𝐹) ⋅ 𝐶𝑌

= (𝑚0𝐾𝑌 + 𝑠∑
𝑖=1

𝑘𝑖∑
𝑗=1

𝑚0𝑗2𝑘𝑖 + 1𝐸𝑖,𝑗 + 𝐹) ⋅ 𝐶𝑌 = 𝑚0𝑓∗𝐾𝑋 ⋅ 𝐶𝑌 ≥ 0.
Case 2.1.2.2.𝐾𝑋 ⋅ 𝐶 ≥ 𝛾0. Possibly reordering indices, wemay assume that there exists an integer 𝑡 ∈ {0, 1, 2, … , 𝑠}, such

that 𝐶𝑌 ⋅ 𝐸𝑖,𝑘𝑖 = 1 when 1 ≤ 𝑖 ≤ 𝑡 and 𝐶𝑌 ⋅ 𝐸𝑖,𝑘𝑖 = 0 when 𝑡 + 1 ≤ 𝑖 ≤ 𝑠. There are two cases:
Case 2.1.2.2.1. 𝑡 ≤ 2. In this case, since 𝑛2 ≥ 1𝛾0 , 𝛾0 > 12𝑛2+1 . Thus,

(𝑚0𝐾𝑌 + 𝑙∑
𝑖=1 𝑐𝑖𝐸𝑖

) ⋅ 𝐶𝑌 = 𝑚0𝑓∗𝐾𝑋 ⋅ 𝐶 − 𝑡∑
𝑖=1

( 𝑚0𝑘𝑖2𝑘𝑖 + 1 − 𝑚0𝑛22𝑛2 + 1)
≥ 𝑚0𝛾0 −𝑚0 𝑡∑

𝑖=1
(12 − 𝑛22𝑛2 + 1) ≥ 𝑚0𝛾0 − 𝑚02𝑛2 + 1 > 0.

Case 2.1.2.2.2. 𝑡 ≥ 3. In this case, we have
(𝑚0𝐾𝑌 + 𝑙∑

𝑖=1 𝑐𝑖𝐸𝑖
) ⋅ 𝐶𝑌 ≥ 𝑚0𝐾𝑌 ⋅ 𝐶𝑌 + 𝑡∑

𝑖=1
𝑚0𝑛22𝑛2 + 1 = 𝑚0

(−1 + 𝑡∑
𝑖=1

𝑛22𝑛2 + 1
)

≥ 𝑚0(−1 + 3𝑛22𝑛2 + 1) = 𝑚0(𝑛2 − 1)2𝑛2 + 1 > 0.
Case 2.2. 𝐶𝑌 is exceptional over 𝑋. Then, 𝐶 ⊂ Supp(∪𝑠𝑖=1 ∪𝑘𝑖𝑗=1 𝐸𝑖,𝑗) ∪ Supp𝐹.
Case 2.2.1 𝐶𝑌 ⊂ Supp𝐹. In this case, 𝐶𝑌 ⋅ 𝐸𝑖,𝑗 = 0 for every 𝑖, 𝑗, and hence

(𝑚0𝐾𝑌 + 𝑙∑
𝑖=1 𝑐𝑖𝐸𝑖

) ⋅ 𝐶𝑌 = (𝑚0𝐾𝑌 + 𝐹) ⋅ 𝐶𝑌
= (𝑚0𝐾𝑌 + 𝑠∑

𝑖=1
𝑘𝑖∑
𝑗=1

𝑚0𝑗2𝑘𝑖 + 1𝐸𝑖,𝑗 + 𝐹) ⋅ 𝐶𝑌 = 𝑚0𝑓∗𝐾𝑋 ⋅ 𝐶𝑌 = 0.
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LIU and XIE 2063

Case 2.2.2 𝐶𝑌 ⊂ Supp(∪𝑠𝑖=1 ∪𝑘𝑖𝑗=1 𝐸𝑖,𝑗). We may assume that 𝐶𝑌 = 𝐸𝑖,𝑗0 for some 𝑖 and some 1 ≤ 𝑗0 ≤ 𝑘𝑖 . In this case,
(𝑚0𝐾𝑌 + 𝑙∑

𝑖=1 𝑐𝑖𝐸𝑖
) ⋅ 𝐶𝑌 = (𝑚0𝐾𝑌 + 𝑘𝑖∑

𝑗=𝑘𝑖−𝑛2+1
𝑚0(𝑗 − (𝑘𝑖 − 𝑛2))2𝑛2 + 1 𝐸𝑖,𝑗) ⋅ 𝐶𝑌 .

There are four possibilities:
Case 2.2.2.1 𝑗0 = 𝑘𝑖 . In this case, (𝑚0𝐾𝑌 +∑𝑙𝑖=1 𝑐𝑖𝐸𝑖) ⋅ 𝐶𝑌 = 𝑚0 (1 + 𝑛2−12𝑛2+1 − 3𝑛22𝑛2+1

) = 0.
Case 2.2.2.2 𝑘𝑖 − 𝑛2 + 1 ≤ 𝑗0 ≤ 𝑘𝑖 − 1. In this case,

(𝑚0𝐾𝑌 + 𝑙∑
𝑖=1 𝑐𝑖𝐸𝑖

) ⋅ 𝐶𝑌 = 𝑚0(0 + 𝑗0 − 1 − (𝑘𝑖 − 𝑛2)2𝑛2 + 1 − 2(𝑗0 − (𝑘𝑖 − 𝑛2))2𝑛2 + 1 + 𝑗0 + 1 − (𝑘𝑖 − 𝑛2)2𝑛2 + 1 ) = 0.
Case 2.2.2.3 𝑗0 = 𝑘𝑖 − 𝑛2. In this case, (𝑚0𝐾𝑌 +∑𝑙𝑖=1 𝑐𝑖𝐸𝑖) ⋅ 𝐶𝑌 = 𝑚02𝑛2+1 > 0.
Case 2.2.2.4 1 ≤ 𝑗0 ≤ 𝑘𝑖 − 𝑛2. In this case, (𝑚0𝐾𝑌 +∑𝑙𝑖=1 𝑐𝑖𝐸𝑖) ⋅ 𝐶𝑌 = 𝑚0𝐾𝑌 ⋅ 𝐶𝑌 = 0. □

Proposition 4.12. There exists a uniform positive integer𝑚2 satisfying the following. Assume that
1. 𝑋 a 25 -klt surface such that 𝐾𝑋 is big and nef,
2. 𝑓 ∶ 𝑌 → 𝑋 is the minimal resolution of 𝑋, and
3. 𝐾𝑌 +∑𝑠𝑖=1 𝑎𝑖𝐸𝑖 = 𝑓∗𝐾𝑋 , where 𝐸𝑖 are the prime 𝑓-exceptional divisors,
then𝑚2𝐾𝑌 +∑𝑙𝑖=1 𝑟𝑖𝐸𝑖 is big and nef for some nonnegative integers 𝑟1, … , 𝑟𝑙 , such that 𝑟𝑖 ≤ ⌊𝑚2𝑎𝑖⌋ for each 𝑖.
Proof. By Proposition 4.11, there exist a positive integer𝑚0 = 𝑚0 which does not depend on 𝑋, and non-negative integers𝑐1, … , 𝑐𝑙, such that 𝑚0𝐾𝑌 +∑𝑙𝑖=1 𝑐𝑖𝐸𝑖 is nef and 𝑐𝑖 ≤ ⌊𝑚0𝑎𝑖⌋ for each 𝑖. By Theorem 3.12, there exists a uniform positive
integer 𝑚1 such that |𝑚1𝐾𝑋| defines a birational map. Let 𝑚2 ∶= 𝑚0𝑚1. Then, |𝑚2𝐾𝑋| defines a birational map, and
hence

||||||
𝑚2𝐾𝑌 + 𝑙∑

𝑖=1⌊𝑚2𝑎𝑖⌋𝐸𝑖|||||| =
||||||
𝑚2𝐾𝑌 + 𝑙∑

𝑖=1𝑚2𝑎𝑖𝐸𝑖|||||| = |𝑓∗(𝑚2𝐾𝑋)|
defines a birational map.
Let 𝐷 ∶= 𝑚2𝐾𝑌 +∑𝑙𝑖=1⌊𝑚2𝑎𝑖⌋𝐸𝑖 and 𝐷̃ ∶= 𝑚2𝐾𝑌 +∑𝑙𝑖=1𝑚1𝑐𝑖𝐸𝑖 . Since 𝑐𝑖 ≤ ⌊𝑚0𝑎𝑖⌋,

𝑚1𝑐𝑖 ≤ 𝑚1⌊𝑚0𝑎𝑖⌋ ≤ ⌊𝑚1𝑚0𝑎𝑖⌋ = ⌊𝑚2𝑎𝑖⌋.
Thus, 𝐷 ≥ 𝐷̃. By Proposition 3.10, there exists a Weil divisor 𝐷′ on 𝑋, such that 𝐷 ≥ 𝐷′ ≥ 𝐷̃ and 𝐷′ is big and nef. In
particular, we may write 𝐷′ = 𝑚2𝐾𝑌 +∑𝑙𝑖=1 𝑟𝑖𝐸𝑖 for some integers 𝑟1, … , 𝑟𝑙 such that 0 ≤ 𝑐𝑖 ≤ 𝑟𝑖 ≤ ⌊𝑚2𝑎𝑖⌋ for each 𝑖. 𝑚2
and 𝑟1, … , 𝑟𝑙 satisfy our requirements. □
4.4 Proof of the main theorem

Proof of Theorem 1.1. Let 𝑓 ∶ 𝑌 → 𝑋 be the minimal resolution of 𝑋 such that 𝐾𝑌 +∑𝑛𝑖=1 𝑎𝑖𝐸𝑖 = 𝑓∗𝐾𝑋 , where 𝐸1, … ,𝐸𝑛
are the prime exceptional divisors of 𝑓. By Proposition 4.12, there exists a uniform positive integer 𝑚2, such that 𝐾𝑌 +∑𝑛𝑖=1 𝑟𝑖𝑚2𝐸𝑖 is big and nef for some integers 𝑟1, … , 𝑟𝑛 such that 0 ≤ 𝑟𝑖 ≤ ⌊𝑚2𝑎𝑖⌋ for each 𝑖. By Lemma 3.11, |192𝑚2𝐾𝑋|
defines a birational map and we may let𝑚 ∶= 192𝑚2. □
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5 EXAMPLES

In this section, we will provide two theorems where we construct some interesting examples. The first one is Theorem 5.3
(= Theorem 1.2), which shows that the 12 -lc assumption in Theorem 1.1 is necessary. The second one is Theorem 5.7. It
shows that, even if we only have a very strong control on mld(𝑋) (i.e., when 𝑋 is a terminal threefold), “|𝑚𝐾𝑋| has no
fixed part” is the best we may expect, as we cannot expect |𝑚𝐾𝑋| to be free in codimension 2 for any bounded𝑚.
Lemma 5.1. Let 𝑋 be an lc projective surface such that 𝐾𝑋 is big and nef, 𝑓 ∶ 𝑌 → 𝑋 the minimal resolution of 𝑋, and𝐸1, … ,𝐸𝑛 the prime 𝑓-exceptional divisors of 𝑋. Assume that 𝐾𝑌 +∑𝑛𝑖=1 𝑎𝑖𝐸𝑖 = 𝑓∗𝐾𝑋 , where 𝑎𝑖 ∶= 1 − 𝑎(𝐸𝑖 ,𝑋, 0). Let𝑚 be
a positive integer and 𝑐1, … , 𝑐𝑛 nonnegative integers, such that∙ 0 ≤ 𝑐1, … , 𝑐𝑛 ≤ ⌊𝑚𝑎𝑖⌋,∙ |𝑚𝐾𝑌 +∑𝑛𝑖=1 𝑐𝑖𝐸𝑖| ≠ ∅,∙ the fixed part of |𝑚𝐾𝑌 +∑𝑛𝑖=1 𝑐𝑖𝐸𝑖| is supported on ∪𝑛𝑖=1𝐸𝑖 , and∙ 𝑚𝐾𝑌 +∑𝑛𝑖=1 𝑐𝑖𝐸𝑖 is big but not nef,
then there exist nonnegative integers 𝑐′1, … , 𝑐′𝑛, such that
1. 0 ≤ 𝑐′𝑖 ≤ 𝑐𝑖 for each 𝑖,
2. there exists 𝑗 ∈ {1, 2, … ,𝑛} such that 𝑐′𝑗 < 𝑐𝑗 ,
3. |𝑚𝐾𝑌 +∑𝑛𝑖=1 𝑐𝑖𝐸𝑖| ≠ ∅, and
4. the fixed part of |𝑚𝐾𝑌 +∑𝑛𝑖=1 𝑐′𝑖𝐸𝑖| is supported on ∪𝑛𝑖=1𝐸𝑖 ,
Proof. Since 0 ≤ 𝑐1, … , 𝑐𝑛 ≤ ⌊𝑚𝑎𝑖⌋, (𝑌,∑𝑛𝑖=1 𝑐𝑖𝑚𝐸𝑖) is lc. Thus, we may run a

(𝐾𝑌 +∑𝑛𝑖=1 𝑐𝑖𝑚𝐸𝑖)-MMP ℎ ∶ 𝑌 → 𝑊.
Since the fixed part of |𝑚𝐾𝑌 +∑𝑛𝑖=1 𝑐𝑖𝐸𝑖| is supported on ∪𝑛𝑖=1𝐸𝑖 , ℎ only contracts divisors supported on ∪𝑛𝑖=1𝐸𝑖 . Let𝐵 ∶= ℎ∗ (𝐾𝑌 +∑𝑛𝑖=1 𝑐𝑖𝑚𝐸𝑖), then we have

𝐾𝑌 + 𝑛∑
𝑖=1

𝑐𝑖𝑚𝐸𝑖 = ℎ∗(𝐾𝑊 + 𝐵) + 𝑛∑
𝑖=1 𝑏𝑖𝐸𝑖 ,

where 𝑏𝑖 ≥ 0 are real numbers. Moreover, since 𝑚𝐾𝑌 +∑𝑛𝑖=1 𝑐𝑖𝐸𝑖 is big but not nef, ℎ ≠ id𝑌 . Thus, there exists 𝑗 ∈{1, 2, … ,𝑛} such that 𝑏𝑗 > 0. We have
𝑚ℎ∗(𝐾𝑊 + 𝐵) = 𝑚𝐾𝑌 + 𝑛∑

𝑖=1(𝑐𝑖 − 𝑚𝑏𝑖)𝐸𝑖 .
Since 𝑓 is the minimal resolution of 𝑋, 𝐸2𝑖 ≤ −2 for every 𝑖. Thus, ℎ is the minimal resolution of𝑊, which implies that𝑐𝑖 − 𝑚𝑏𝑖 ≥ 0 for every 𝑖. Let 𝑐′𝑖 ∶= ⌊𝑐𝑖 − 𝑚𝑏𝑖⌋ for every 𝑖. Then, (1)(2) hold. Since

|||||
𝑚𝐾𝑌 + 𝑛∑

𝑖=1 𝑐𝑖𝐸𝑖||||| ≅ |𝑚(𝐾𝑊 + 𝐵)| ≅ |𝑚ℎ∗(𝐾𝑊 + 𝐵)| ≅ |||||
𝑚𝐾𝑌 + 𝑛∑

𝑖=1 𝑐′𝑖𝐸𝑖|||||,
(3)(4) hold. □
Theorem 5.2. Let 𝑋 be an lc projective surface such that 𝐾𝑋 is big and nef, 𝑓 ∶ 𝑌 → 𝑋 the minimal resolution of 𝑋, and𝐸1, … ,𝐸𝑛 the prime 𝑓-exceptional divisors of 𝑋. Assume that 𝐾𝑌 +∑𝑛𝑖=1 𝑎𝑖𝐸𝑖 = 𝑓∗𝐾𝑋 , where 𝑎𝑖 ∶= 1 − 𝑎(𝐸𝑖 ,𝑋, 0). Then,
for any positive integer 𝑚, if |𝑚𝐾𝑋| defines a birational map and does not have fixed part, then there exist positive integers𝑟1, … , 𝑟𝑛, such that
1. 0 ≤ 𝑟𝑖 ≤ ⌊𝑚𝑎𝑖⌋, and
2. 𝐾𝑌 +∑𝑛𝑖=1 𝑟𝑖𝑚𝐸𝑖 is big and nef.
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Proof. The fixed part of

|𝑓∗(𝑚𝐾𝑋)| = |||||
𝑚𝐾𝑌 + 𝑛∑

𝑖=1𝑚𝑎𝑖𝐸𝑖||||| = |||||
𝑚𝐾𝑌 + 𝑛∑

𝑖=1⌊𝑚𝑎𝑖⌋𝐸𝑖|||||
is supported on ∪𝑛𝑖=1𝐸𝑖 . Since |𝑚𝐾𝑋| defines a birational map, |𝑚𝐾𝑌 +∑𝑛𝑖=1⌊𝑚𝑎𝑖⌋𝐸𝑖| defines a birational map. In
particular,𝑚𝐾𝑌 +∑𝑛𝑖=1⌊𝑚𝑎𝑖⌋𝐸𝑖 is big.
We inductively define integers 𝑐𝑗𝑖 for every 𝑖 ∈ {1, 2, … ,𝑛} for nonnegative integers 𝑗 in the following way: Let𝑐0𝑖 ∶= ⌊𝑚𝑎𝑖⌋ for every 𝑖. If 𝐾𝑌 +∑𝑛𝑖=1 𝑐𝑗𝑖𝑚𝐸𝑖 is big and nef, then we let 𝑟𝑖 ∶= 𝑐𝑗𝑖 for every 𝑖 and we are done. Other-

wise, by Lemma 5.1, there exist integers 𝑐𝑗+1𝑖 for every 𝑖, such that 0 ≤ 𝑐𝑗+1𝑖 ≤ 𝑐𝑗𝑖 , 𝑐𝑗+1𝑘 < 𝑐𝑗𝑘 for some 𝑘 ∈ {1, 2, … ,𝑛},
|||𝑚𝐾𝑌 +∑𝑛𝑖=1⌊𝑐𝑗+1𝑖 ⌋𝐸𝑖||| ≠ ∅, and the fixed part of |||𝑚𝐾𝑌 +∑𝑛𝑖=1⌊𝑐𝑗+1𝑖 ⌋𝐸𝑖||| is supported on ∪𝑛𝑖=1𝐸𝑖 . This process must
terminate after finitely many steps, and we get the desired 𝑟𝑖 for every 𝑖. □
Theorem 5.3 (= Theorem 1.2). There exist normal projective surfaces {𝑋𝑛,𝑘}𝑛≥4,𝑘≥2, such that
1. |𝑚𝐾𝑋𝑛,𝑘 | ≠ ∅ and has a nonzero fixed part for any positive integers𝑚,𝑛, and 𝑘 ≥ 𝑚,
2. 𝐾𝑋𝑛,𝑘 is ample for every 𝑛, 𝑘, and
3. lim𝑘→+∞mld(𝑋𝑛,𝑘) = 1𝑛−1 for any 𝑛.
Proof. Step 1. In this step, we construct 𝑋𝑛,𝑘 for every 𝑛 ≥ 4 and 𝑘 ≥ 2.
For any positive integer 𝑛 ≥ 4 and positive integer 𝑘 ≥ 2, we let𝑌𝑛,𝑘 be a general hypersurface of degree 𝑑𝑛,𝑘 ∶= 2𝑘(𝑛 −2)2(2𝑘(𝑛 − 1) − 1) in the weighted projective space 𝑃𝑛,𝑘 ∶= ℙ(1, 1, 2𝑘(𝑛 − 2), 2𝑘(𝑛 − 2)(𝑛 − 1) + 1). Since 2𝑘(𝑛 − 2) ∣ 𝑑𝑛,𝑘

and 𝑑𝑛,𝑘 − 1 = (2𝑘(𝑛 − 2)(𝑛 − 1) + 1) ⋅ (2𝑘(𝑛 − 2) − 1),𝑌𝑛,𝑘 is well formed and has a unique singularity 𝑜𝑛,𝑘, which is a cyclic quotient singularity of type12𝑘(𝑛−2)(𝑛−1)+1 (1, 2𝑘(𝑛 − 2)). The dual graph of this cyclic quotient singularity is the following:
where there are 2𝑘(𝑛 − 2) − 1 “2” in the chain. Let 𝐸1 = 𝐸1(𝑛, 𝑘), … ,𝐸2𝑘(𝑛−2) = 𝐸2𝑘(𝑛−2)(𝑛, 𝑘) be the curves in this dual
graph in order, that is,

(1) 𝐸2𝑖 = −2 when 𝑖 ∈ {1, 2, … , 2𝑘(𝑛 − 2) − 1},
(2) 𝐸22𝑘(𝑛−2) = −𝑛, and
(3) 𝐸𝑖 ⋅ 𝐸𝑗 ≠ 0 if and only if |𝑖 − 𝑗| ≤ 1.
Let ℎ𝑛,𝑘 ∶ 𝑍𝑛,𝑘 → 𝑌𝑛,𝑘 be the minimal resolution, then we have

𝐾𝑍𝑛,𝑘 + 2𝑘(𝑛−2)∑
𝑖=1

𝑖(𝑛 − 2)2𝑘(𝑛 − 1)(𝑛 − 2) + 1𝐸𝑖 = ℎ∗𝑛,𝑘𝐾𝑌𝑛,𝑘 .
Now let 𝑔𝑛,𝑘 ∶ 𝑊𝑛,𝑘 → 𝑍𝑛,𝑘 be the blow-up of 𝐸𝑘(𝑛−1) ∩ 𝐸𝑘(𝑛−1)+1 and 𝐶𝑛,𝑘,𝑊 the exceptional divisor of 𝑔𝑛,𝑘. Let 𝐸𝑖,𝑊 =𝐸𝑖,𝑊(𝑛, 𝑘) be the strict transform of 𝐸𝑖 on𝑊𝑛,𝑘 for each 𝑖. Then,

𝐾𝑊𝑛,𝑘 + 2𝑘(𝑛−2)∑
𝑖=1

𝑖(𝑛 − 2)2𝑘(𝑛 − 1)(𝑛 − 2) + 1𝐸𝑖,𝑊 + 𝑛 − 32𝑘(𝑛 − 1)(𝑛 − 2) + 1𝐶𝑛,𝑘,𝑊
= 𝑔∗𝑛,𝑘(𝐾𝑍𝑛,𝑘 + 2𝑘(𝑛−2)∑

𝑖=1
𝑖(𝑛 − 2)2𝑘(𝑛 − 1)(𝑛 − 2) + 1𝐸𝑖

) = (ℎ𝑛,𝑘◦𝑔𝑛,𝑘)∗𝐾𝑌𝑛,𝑘 .
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2066 LIU and XIE

Now, we run a
(𝐾𝑊𝑛,𝑘 +∑2𝑘(𝑛−2)𝑖=1 𝐸𝑖,𝑊 + 𝑛−32𝑘(𝑛−1)(𝑛−2)+1𝐶𝑛,𝑘,𝑊)

-MMP over 𝑌𝑛,𝑘, which induces a birational contraction𝑓𝑛,𝑘 ∶ 𝑊𝑛,𝑘 → 𝑋𝑛,𝑘. Then, 𝑓𝑛,𝑘 contracts precisely 𝐸1,𝑊 , … ,𝐸2𝑘(𝑛−2),𝑊 . We let 𝐶𝑛,𝑘 be the pushforward of 𝐶𝑛,𝑘,𝑊 on 𝑋𝑛,𝑘
and 𝑝𝑛,𝑘 ∶ 𝑋𝑛,𝑘 → 𝑌𝑛,𝑘 the induced contraction.
Step 2. In this step, we show the following:

Claim 5.4. For any positive integers 𝑚, 𝑛 ≥ 4 and 𝑘 ≥ 𝑚, if |𝑚𝐾𝑋𝑛,𝑘 | ≠ ∅ and 𝐾𝑋𝑛,𝑘 is big, then |𝑚𝐾𝑋𝑛,𝑘 | has nonzero
fixed part.

Proof. We let 𝑜1 = 𝑜1(𝑛, 𝑘) ∶= (𝑓𝑛,𝑘)∗ (∪𝑘(𝑛−1)𝑖=1 𝐸𝑖,𝑊)
and 𝑜2 = 𝑜2(𝑛, 𝑘) ∶= (𝑓𝑛,𝑘)∗ (∪2𝑘(𝑛−2)𝑖=𝑘(𝑛−1)+1𝐸𝑖,𝑊)

. Then, 𝑜1 is a cyclic
quotient singularity of type 12𝑘(𝑛−1)+1 (1, 𝑘(𝑛 − 1)) with dual graph

where there are 𝑘(𝑛 − 1) − 1 “2” in the chain, and 𝑜2 is a cyclic quotient singularity of type 1(𝑛−3)(2𝑘(𝑛−1)−1) (1, 2𝑘(𝑛 − 3) − 1)
with dual graph

where there are 𝑘(𝑛 − 3) − 2 “2” in the chain. Then,
𝐾𝑋𝑛,𝑘 + 𝑛 − 32𝑘(𝑛 − 1)(𝑛 − 2) + 1𝐶𝑛,𝑘 = 𝑝∗𝑛,𝑘𝐾𝑌𝑛,𝑘 ,

𝐾𝑊𝑛,𝑘 + 2𝑘(𝑛−2)∑
𝑖=1

𝑖(𝑛 − 2)2𝑘(𝑛 − 1)(𝑛 − 2) + 1𝐸𝑖,𝑊 + 𝑛 − 32𝑘(𝑛 − 1)(𝑛 − 2) + 1𝐶𝑛,𝑘,𝑊
= 𝑓∗𝑛,𝑘(𝐾𝑋𝑛,𝑘 + 𝑛 − 32𝑘(𝑛 − 1)(𝑛 − 2) + 1𝐶𝑛,𝑘),

and

𝐾𝑊𝑛,𝑘 + 𝑘(𝑛−1)∑
𝑖=1

𝑖2𝑘(𝑛 − 1) + 1𝐸𝑖,𝑊 + 2𝑘(𝑛−2)∑
𝑖=𝑘(𝑛−1)+1

𝑖 − 12𝑘(𝑛 − 1) − 1𝐸𝑖,𝑊 = 𝑓∗𝑛,𝑘𝐾𝑋𝑛,𝑘 .
We have

𝑓∗𝑛,𝑘𝐾𝑋𝑛,𝑘 ⋅ 𝐶𝑛,𝑘,𝑊 = −1 + 𝑘(𝑛 − 1)2𝑘(𝑛 − 1) + 1 + 𝑘(𝑛 − 1)2𝑘(𝑛 − 1) − 1 = 14𝑘2(𝑛 − 1)2 − 1 < 135𝑘2 < 512𝑘 .
Now for any positive even number𝑚 = 2𝑙, any 𝑛 ≥ 4 and any 𝑘 ≥ 𝑙, we have

{𝑚 ⋅ 𝑘(𝑛−1)2𝑘(𝑛−1)+1}𝑚 = { 2𝑙𝑘(𝑛−1)2𝑘(𝑛−1)+1}2𝑙 = {− 𝑙2𝑘(𝑛−1)+1}2𝑙 ≥ 512𝑙 ≥ 512𝑘 .
Thus, for any positive even number 𝑚 = 2𝑙, any 𝑛 ≥ 4 and any 𝑘 ≥ 𝑙, 𝐾𝑊𝑛,𝑘 +∑2𝑘(𝑛−2)𝑖=1 𝑐𝑖𝑚𝐸𝑖,𝑊 is not nef for any integers𝑐1, … , 𝑐2𝑘(𝑛−2) such that 1
(1) 0 ≤ 𝑐𝑖 ≤ ⌊ 𝑚𝑖2𝑘(𝑛−1)+1⌋ when 1 ≤ 𝑖 ≤ 𝑘(𝑛 − 1), and
(2) 0 ≤ 𝑐𝑖 ≤ ⌊ 𝑚(𝑖−1)2𝑘(𝑛−1)−1⌋ when 𝑘(𝑛 − 1) + 1 ≤ 𝑖 ≤ 2𝑘(𝑛 − 2).
For any integer 𝑛 ≥ 4, any positive integer𝑚 such that |𝑚𝐾𝑋𝑛,𝑘 | ≠ ∅, and any integer 𝑘 ≥ 𝑚,
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LIU and XIE 2067

(1) if 𝐾𝑋𝑛,𝑘 is not nef, then |𝑚𝐾𝑋𝑛,𝑘 | has nonzero fixed part, and
(2) if 𝐾𝑋𝑛,𝑘 is nef, then by Theorem 5.2, |𝑚𝐾𝑋𝑛,𝑘 | has nonzero fixed part.
Step 3. In this step, we show that 𝐾𝑋𝑛,𝑘 is ample.

Claim 5.5. For any integers 𝑛 ≥ 4 and 𝑘 ≥ 2, 𝐾𝑌𝑛,𝑘 is ample, |𝐾𝑌𝑛,𝑘 | defines a birational map, and |𝐾𝑌𝑛,𝑘 | and has no fixed
part. In particular, |𝐾𝑌𝑛,𝑘 | defines a birational map.
Proof. Let 𝑑′𝑛,𝑘 ∶= 𝑑𝑛,𝑘 − deg(−𝐾𝑃𝑛,𝑘 ). Then,𝑑′𝑛,𝑘 − (2𝑘(𝑛 − 2)(𝑛 − 1) + 1) = −4 + 2𝑘(𝑛 − 2)(𝑛 − 1)(2𝑘(𝑛 − 2) − 3) ≥ 116 > 0.
Thus, 𝐾𝑌𝑛,𝑘 is ample and |𝐾𝑌𝑛,𝑘 | defines a birational map. In particular, |𝐾𝑌𝑛,𝑘 | ≠ ∅.
Let 𝑥, 𝑦, 𝑧,𝑤 be the coordinates of 𝑃𝑛,𝑘 and since 𝑑′𝑛,𝑘 = 𝑑𝑛,𝑘 − (1 + 1 + 2𝑘(𝑛 − 2) + (2𝑘(𝑛 − 2)(𝑛 − 1) + 1)). Let 𝐴 ∶=(𝑥𝑑′𝑛,𝑘 = 0) and 𝐵 ∶= (𝑦𝑑′𝑛,𝑘 = 0). Then,𝐴|𝑌𝑛,𝑘 ∈ |𝐾𝑌𝑛,𝑘 | and 𝐵|𝑌𝑛,𝑘 ∈ |𝐾𝑌𝑛,𝑘 |. We only need to show that𝐴|𝑌𝑛,𝑘 ≠ 𝐵|𝑌𝑛,𝑘 .

This is the same as saying that 𝑌𝑛,𝑘 does not contain the line (𝑥 = 𝑦 = 0) in 𝑃𝑛,𝑘. Suppose that 𝑌𝑛,𝑘 is defined by the
homogeneous weighted polynomial 𝑞𝑛,𝑘(𝑥, 𝑦, 𝑧,𝑤). Since 𝑌𝑛,𝑘 is general, 𝑧(𝑛−2)(2𝑘(𝑛−1)−1) ∈ 𝑞𝑛,𝑘(𝑥, 𝑦, 𝑧,𝑤). Thus, 𝑌𝑛,𝑘
does not contain the line 𝑥 = 𝑦 = 0 and we are done. □
Claim 5.6. For any integers 𝑛 ≥ 4 and 𝑘 ≥ 2, 𝐾𝑋𝑛,𝑘 is ample.
Proof. For any 𝑛, 𝑘, by Claim 5.5, the fixed part of |𝑝∗𝑛,𝑘𝐾𝑌𝑛,𝑘 | is supported on 𝐶𝑛,𝑘. Since

𝑝∗𝑛,𝑘𝐾𝑌𝑛,𝑘 = 𝐾𝑋𝑛,𝑘 + (𝑛 − 3)2𝑘(𝑛 − 1)(𝑛 − 2) + 1𝐶𝑛,𝑘,
there exists a nonnegative integer 𝑟 = 𝑟𝑛,𝑘 such that |𝐾𝑋𝑛,𝑘 − 𝑟𝑛,𝑘𝐶𝑛,𝑘| defines a birational map and has no fixed part. In
particular, 𝐾𝑋𝑛,𝑘 − 𝑟𝑛,𝑘𝐶𝑛,𝑘 is big and nef. If 𝑟𝑛,𝑘 = 0, then |𝐾𝑋𝑛,𝑘 | ≠ ∅ and has no fixed part, which contradicts Claim 5.4.
Thus, 𝑟𝑛,𝑘 > 0.
Since 𝐾𝑋𝑛,𝑘 + (𝑛−3)2𝑘(𝑛−1)(𝑛−2)+1𝐶𝑛,𝑘 is nef and big, (𝐾𝑋𝑛,𝑘 + (𝑛−3)2𝑘(𝑛−1)(𝑛−2)+1𝐶𝑛,𝑘) ⋅ 𝐶𝑛,𝑘 = 0. Since 𝐾𝑋𝑛,𝑘 − 𝑟𝑛,𝑘𝐶𝑛,𝑘 is nef and

big, 𝐾𝑋𝑛,𝑘 is nef and big and 𝐾𝑋𝑛,𝑘 ⋅ 𝐶𝑛,𝑘 > 0. In particular, 𝐾2𝑋𝑛,𝑘 > 0.
For any irreducible curve 𝐷𝑛,𝑘 on 𝑋𝑛,𝑘 such that 𝐷𝑛,𝑘 ≠ 𝐶𝑛,𝑘, if 𝐷𝑛,𝑘 ⋅ 𝐶𝑛,𝑘 > 0, we have that𝐾𝑋𝑛,𝑘 ⋅ 𝐷𝑛,𝑘 = (𝐾𝑋𝑛,𝑘 − 𝑟𝑛,𝑘𝐶𝑛,𝑘) ⋅ 𝐷𝑛,𝑘 + 𝑟𝑛,𝑘𝐶𝑛,𝑘 ⋅ 𝐷𝑛,𝑘 > 0,

and if 𝐷𝑛,𝑘 ⋅ 𝐶𝑛,𝑘 = 0, then 𝐾𝑋𝑛,𝑘 ⋅ 𝐷𝑛,𝑘 = 𝐾𝑌𝑛,𝑘 ⋅ (𝑝𝑛,𝑘)∗𝐷𝑛,𝑘 > 0.
Thus, 𝐾𝑋𝑛,𝑘 is ample. □
Step 4. Claim 5.4 and Claim 5.6 imply (1)(2). Since

mld(𝑋𝑛,𝑘) = mld(𝑋𝑛,𝑘 ∋ 𝑜2(𝑛, 𝑘)) = 2𝑘2𝑘(𝑛 − 1) − 1 = 1𝑛 − 1 − 12𝑘 ,
we have lim𝑘→+∞mld(𝑋𝑛,𝑘) = 1𝑛−1 for any 𝑛 ≥ 4, which implies (3). □
Theorem 5.7. For any positive integer𝑚0, there exists a terminal threefold 𝑋 such that 𝐾𝑋 is ample but |𝑚0𝐾𝑋| is not free
in codimension 2.

Proof. Step 1. We start with a local construction by using the language of toric varieties.
Let𝑁 = ℤ3, 𝐞1 = (1, 0, 0), 𝐞2 = (0, 1, 0), 𝐞3 = (0, 0, 1),𝐰 = (1, 1, 0). Let 𝐮 = (𝑚, 1,−𝑏) and 𝐯 = (−𝑛, 2, 1), where𝑚,𝑛, 𝑏

are positive integers such that 𝑛𝑏 = 𝑚 + 1 and 2 ∤ 𝑛. Then, all these vectors above are primitive in 𝑁.
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2068 LIU and XIE

Let Σ1 be the fan determined by the singlemaximal Cone(𝐞3,𝐮,𝐯). Let𝑋Σ1 be the corresponding toric variety. Then,𝑋Σ1
is affine and the cyclic quotient singularity is of the form 12𝑚+𝑛 (−1, 2, 2𝑏 + 1). Notice that 𝑋Σ1 has an isolated singularity.

LetΣ2 = Σ∗1(𝐞2) be the star subdivision ofΣ1 at 𝐞2 as above (see [5, Chapter 11]) and𝑋Σ2 be the corresponding toric variety,
then 𝑔 ∶ 𝑋Σ2 → 𝑋Σ1 is a birational morphism, which is an isomorphism outside the unique torus-invariant point 𝑃 ∈ 𝑋Σ1 .
Since Cone(𝐮, 𝐞2,𝐯) is smooth, 𝑋Σ2 has only two isolated singularities, which are of type 1𝑚 (1,−1, 𝑏) and 1𝑛 (1,−1, 2). In
particular, 𝑋Σ2 is terminal. We use 𝐷𝐞2 , 𝐷𝐯 , 𝐷𝐮, 𝐷𝐞3 to denote the corresponding torus-invariant divisors. We can see
that 𝐷𝐞2 is the only exceptional divisor. Let 𝑅 denote the proper curve in 𝑋Σ2 that corresponds to Cone(𝐞2, 𝐞3) ∈ Σ2. Then,𝑅 ⊂ 𝐷𝐞2 . By [5, Proposition 6.4.4], 𝐷𝐮 ⋅ 𝑅 = 1𝑚 , 𝐷𝐯 ⋅ 𝑅 = 1𝑛 , 𝐷𝐞3 ⋅ 𝑅 = 𝑏𝑚 − 1𝑛 > 0, and 𝐷𝐞2 ⋅ 𝑅 = −( 2𝑛 + 1𝑚 ). Therefore,

0 < 2𝑛 − 𝑏𝑚 = 𝐾𝑋Σ2 ⋅ 𝑅 < 1𝑛

Let Σ3 = Σ∗2(𝐰) be the star subdivision of Σ2 at𝐰 as above and 𝑋Σ3 be the corresponding toric variety, then 𝑓 ∶ 𝑋Σ3 →𝑋Σ2 is a birational morphism, which is an isomorphism outside the torus-invariant point 𝑄 ∈ 𝑋Σ2 that corresponds to
the maximal Cone(𝐰, 𝐞2, 𝐞3) ∈ Σ2 . We use 𝐷′𝐞2 , 𝐷′𝐯 , 𝐷′𝐮, 𝐷′𝐞3 , 𝐷′𝐰 to denote the corresponding torus-invariant divisors.
Notice that𝐷′𝐰 is the only exceptional divisor of 𝑓 and𝐷′𝐞2 , 𝐷′𝐯 , 𝐷′𝐮, 𝐷′𝐞3 are the birational transforms of𝐷𝐞2 , 𝐷𝐯 , 𝐷𝐮, 𝐷𝐞3
on 𝑋Σ3 . Let 𝑅′ denote the birational transform of 𝑅 on 𝑋3, then 𝑅′ corresponds to Cone(𝐞2, 𝐞3) ∈ Σ3.
Since𝐰 = 1𝑚𝐮 + 𝑏𝑚𝐞3 + 𝑚−1𝑚 𝐞2, we have 𝐾𝑋Σ3 = 𝑓∗𝐾𝑋Σ2 + ( 1𝑚 + 𝑏𝑚 + 𝑚−1𝑚 − 1)𝐷′𝐰 , hence

𝑓∗𝐾𝑋Σ2 = 𝐾𝑋Σ3 − 𝑏𝑚𝐷′𝐰 .
By [5, Lemma 6.4.2], 𝐷′𝐰 ⋅ 𝑅′ = 1. Thus, for any positive integer 𝑘,

⌊𝑘𝑓∗𝐾𝑋Σ2 ⌋ ⋅ 𝑅′ = ( 2𝑛 − 𝑏𝑚)𝑘 −{𝑚 − 𝑘𝑏𝑚 }.
Step 2. Next, we will use covering trick to make the canonical divisor ample.
Choose a projective threefold 𝑍 with the isolated quotient singularity of type 12𝑚+𝑛 (−1, 2, 2𝑏 + 1) at 𝑃, after resolving

singularities away from 𝑃, we may assume that 𝑃 is the only singular point on 𝑍. By abuse of notation we continue to use𝑓 ∶ 𝑌 → 𝑋 and 𝑔 ∶ 𝑋 → 𝑍 to denote the corresponding toric blow-ups defined in Step 1. Let 𝐸 be the exceptional divisor
of 𝑔 and 𝑅 ⊂ 𝐸 be the proper curve defined in Step 1. Then, −𝐸 is 𝑔-ample and we have 𝑓∗𝐾𝑍 − 𝑎𝐸 = 𝐾𝑋 , where

𝑎 = 2𝑛 − 𝑏𝑚2𝑛 + 1𝑚 > 0.
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LIU and XIE 2069

Let 𝐿 be a sufficiently ample Cartier divisor on 𝑍 such that 𝑔∗(𝐿 + 𝐾𝑍) − 𝑎𝐸 is ample on 𝑋. We can find an effective𝐴 ∼ 2𝐿 that is smooth and avoids 𝑃. Let ℎ ∶ 𝑍′ → 𝑍 be the double cover ramified along 𝐴. Then, by Hurwitz’s Formula,
we have 𝐾′𝑍 = ℎ∗ (𝐾𝑍 + 12𝐴) and ℎ is étale around 𝑃. Let 𝑋′,𝑌′,𝐸′,𝑓′, 𝑔′ be the corresponding base change of ℎ. Then,𝐾𝑋′ = ℎ∗𝑋 (𝐾𝑋 + 12𝑔∗𝐴) = ℎ∗𝑋 (𝑔∗( 12𝐴 + 𝐾𝑍) − 𝑎𝐸) is ample, where ℎ𝑋 ∶ 𝑋′ = 𝑋 ×𝑍 𝑍′ → 𝑋 is the canonical projection.
Since 𝑅 is a proper curve in one of the components of 𝐸′ as in Step 1 and 𝑅′ its birational transform in 𝑌′, we have

⌊𝑚0𝑓∗𝐾𝑋′⌋ ⋅ 𝑅′ = ( 2𝑛 − 𝑏𝑚)𝑚0 −{𝑚 −𝑚0𝑏𝑚 }

for any positive integer𝑚0 since𝑍′ and𝑋Σ1 are isomorphic around the isolated singular point and the computation is local.
Now we can choose𝑚,𝑛 ≫ 0 such that 2𝑏𝑚0 < 𝑛 < 𝑚, then

( 2𝑛 − 𝑏𝑚)𝑚0 −{𝑚 −𝑚0𝑏𝑚 } < 𝑚0𝑛 − 12 < 0.
Therefore, ⌊𝑚0𝑓∗𝐾𝑋′⌋ ⋅ 𝑅′ < 0, which means any effective divisor in |𝑚0𝑓∗𝐾𝑋′ | contains 𝑅′. Since 𝑓′ is isomorphic over
the generic point of 𝑅, this implies that any effective divisor in |𝑚0𝐾𝑋′ | contains 𝑅. □
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