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Abstract—Recent strides in deep learning have yielded impres-
sive practical applications such as autonomous driving, natural
language processing, and graph reasoning. However, the sus-
ceptibility of deep learning models to subtle input variations,
which stems from device imperfections and non-idealities, or
adversarial attacks on edge devices, presents a critical challenge.
These vulnerabilities hold dual significance—security concerns
in critical applications and insights into human-machine sen-
sory alignment. Efforts to enhance model robustness encounter
resource constraints in the edge and the black box nature of
neural networks, hindering their deployment on edge devices.
This paper focuses on algorithmic adaptations inspired by the
human brain to address these challenges. Hyper Dimensional
Computing (HDC), rooted in neural principles, replicates brain
functions while enabling efficient, noise-tolerant computation.
HDC leverages high-dimensional vectors to encode information,
seamlessly blending learning and memory functions. Its trans-
parency empowers practitioners, enhancing both robustness and
understanding of deployed models. In this paper, we introduce the
first comprehensive study that compares the robustness of HDC
to white-box malicious attacks to that of deep neural network
(DNN) models and the first HDC gradient-based attack in the
literature. We develop a framework that enables HDC models
to generate gradient-based adversarial examples using state-of-
the-art techniques applied to DNNs. Our evaluation shows that
our HDC model provides, on average, 19.9% higher robustness
than DNNs to adversarial samples and up to 90% robustness
improvement against random noise on the weights of the model
compared to the DNN.

I. INTRODUCTION

Modern deep learning has achieved impressive breakthroughs in
practical applications fueled by large datasets. For instance, existing
deep learning models have demonstrated remarkable accuracy in tasks
like extensive image categorization [1]. However, the susceptibility of
deep learning algorithms to subtle input alterations poses a significant
challenge, and these perturbations can arise from random noise in-
herent to device imperfections or from intentional attacks exploiting
the vulnerabilities of edge devices. Such devices, often constrained by
their limited computational capacities, are particularly susceptible to
such vulnerabilities, which can further limit the kinds of deployable
models.

These vulnerabilities that deep neural networks exhibit against
perturbations are well-documented as “adversarial attacks” [2]. Com-
prehending these adversarial perturbations holds a two-fold signif-
icance [3]: firstly, it pertains to the security of deployed machine
learning algorithms, particularly in safety-critical applications like
autonomous vehicles; secondly, it serves to bridge the gap between
human and machine sensory information processing, which can guide
the development of robust, brain-inspired learning paradigms.

However, ongoing efforts to enhance the accuracy and resilience
of deep learning models against adversarial attacks are not without

m.imani @uci.edu

limitations. On the one hand, executing deep learning algorithms re-
quires considerable computational resources and storage capacities that
often exceed what current edge devices can provide [4]. Consequently,
many devices lack the capability for on-device security monitoring,
necessitating the transmission of data to remote cloud servers for
analysis. This practice, though convenient, introduces concerns related
to scalability, security, and data privacy [5]. Furthermore, deep learning
models, unlike the human brain, inherently lack the robustness needed
to handle adversarial perturbations.

Acknowledging a significant roadblock in deploying neural net-
works, particularly in edge device scenarios, pertains to their often-
opaque nature. Neural networks, often called “’black boxes,” introduce
challenges in comprehending, interpreting, and subsequently enhanc-
ing their performance. This limitation curtails meaningful enhance-
ments and thorough investigations into their behavior, particularly
when embedded in resource-constrained environments like edge de-
vices.

To address these challenges and achieve real-time performance
combined with robustness in Al models, we propose algorithmic
adjustments inspired by the human brain. In this pursuit, we advocate
for adopting Hyper Dimensional Computing (HDC), a groundbreak-
ing paradigm firmly rooted in neural principles [6]-[9]. HDC has
garnered noteworthy acclaim for its adept replication of essential
brain functions, all while providing a platform for efficient and noise-
tolerant computation. That is the main reason why HDC emerges
as a promising solution, not only offering resilience against ad-
versarial perturbations but also delivering heightened transparency
and interpretability [10]-[13]. This inherent transparency empowers
practitioners to glean insights into the inner workings of deployed
models, thereby paving the path for more informed and effective
improvements.

Central to the HDC framework lies a profound insight derived
from the human brain’s information-processing mechanisms, which
hinge on intricate high-dimensional representations. Within the HDC
framework, entities are encoded using elaborate high-dimensional
vectors referred to as “hypervectors,” each painstakingly constructed
from an array of thousands of elements [14]. Notably, HDC seamlessly
amalgamates learning capabilities with memory functions that closely
mirror the operations of human memory systems. This innovative
approach effectively mimics core memory functions through the
execution of vector-based operations, thereby conferring both practical
feasibility and mathematical rigor to the paradigm.

Recent strides have showcased HDC’s advantages over alternative
learning methods: (1) its exceptional parallelism and suitability for
real-time on-device learning scenarios [15]-[20]; (2) its capability to
achieve effective learning with minimal sample usage [21]; and (3)
its robustness against noise and data corruption (OnlineHD). HDC
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has demonstrated superior accuracy with fewer training instances in

comparison to support vector machines (SVMs), gradient boosting,

and deep learning models [21], [22]. By bridging the gap between
neural principles and real-world applications, HDC opens avenues
for achieving both human-like robustness and a deeper grasp of the
model’s behavior. This momentum propels the field toward more
secure, knowledgeable deployments in edge computing environments.

On the backbone of these promising advancements, an important
part of the research must focus on HDC’s vulnerability to perturbations
in several scenarios. HDC algorithms have recently found utility in
security-critical industrial applications underscoring the importance
of thoroughly exploring the susceptibility of HDC algorithms to
adversarial samples. The main contributions of the paper are listed
as follows:

o Comprehensive comparative study on the robustness of HDC and
DNN models versus perturbations on the weights of the model given
two of the most comment non-idealities on the edge.

« We develop a novel framework that enables HDC models to generate
gradient-based adversarial examples. We define a loss function and
back-propagation on the HDC model, which enables us to generate
adversarial samples using state-of-the-art attack methods: Fast Gra-
dient Sign Method [23], Jacobian-based Saliency Map Attack [24],
and DeepFool [25]. Finally, we measure their effectiveness against
both HDC and DNN.

o We study the effect of HDC hyperparameters such as encoding and
dimensionality on the robustness of the model. Finally, we design
defense mechanisms to protect HDC models against adversarial
samples, such as data pre-processing and adversarial training on
gradient-based samples. Our study also indicates that the defense
mechanisms can have significant effectiveness against some specific
attacks (for example, 24% enhancement on DeepFool), but further
work is still needed in this area.

We evaluate our solution on several scenarios, such as three popular
image classification datasets, MNIST, E-MNIST, and FMNIST. Our
results indicate that the HDC model provides, on average, 19.9%
higher robustness than DNNs to adversarial samples. Understanding
that adversarial samples are often considered universal, the adversarial
samples generated by DNN are not successful in attacking the HDC
model (attack success rate under 5%), which proves HDC provides
inherent robustness against noise.

II. BACKGROUND
A. Hyperdimensional Computing

Hyper-dimensional Computing (HDC) emerged from theoretical
neuroscience as a short-term human memory model [14], [26]. The
cerebellum is an area in the brain that plays a significant role in cog-
nitive functions. Each dimension of the hypervector models a neuron’s
function at an abstract level [27]. When we generate hypervectors on
the high-dimensional space, our encoding works in a way where there
is a huge number of nearly orthogonal hypervectors. This enables
us to combine such hypervectors using well-defined operations while
keeping the information of the two with high probability. There are
three main operators on HDC:

« (1) Bundling: Describes the memorization of a set of hypervectors,
which results in a single hypervector that shares similarities with all
its elements. For two hypervectors Vi and V5, bundling corresponds
to the element-wise sum: R = Vi + Va.

« (2) Binding: Represents the association of multiple dissimilar
hypervectors (e.g., Vi1, V2), which generates a single hypervector

(R = V1% V3). The bound hypervector is a new object in HDC space
which is orthogonal to each one of its components (§(R, V1) ~ 0
and 6(R, V2) ~ 0).

o (3) Permutation: Is an operator that encodes order. It consists of
applying a single rotational shift. The permuted hypervector will be
dissimilar to its original hypervector (6(V4, pV1) ~ 0). We apply
permutation as many times as the position of the element in the
sequence, i.e., BCDA can be encoded as Vi * pVo * p?Vp * p*Via.
There is not a lot of literature on HDC against adversarial attacks.

The first publication [28] demonstrates that HDC is vulnerable to

black-box attacks, specifically genetic algorithms, and proposes neg-

ative training as a defense technique. However, it has the following

limitations: (1) the study is limited only to binary hypervectors, (2)

It does not cover effective and popular white-box attacks such as

gradient-based attacks, and (3) it does not compare its results with

traditional neural networks. Subsequent publications, such as [22],

[29], [30], study the robustness of HDC against black-box attacks in

different domains, such as voice recognition. However, they fail to

show gradient-based methods to generate the samples (white-box) or
compare them to DNNGs.

B. Adversarial Attacks

An intriguing discovery in 2014 [31] showed the weakness of DNN
models to adversarial attacks. Adversarial samples are any perturbation
to the original input that can change the predicted label and, more
often, cause the model to have high confidence in the wrong class.
DNN adversarial samples are often considered universal since the same
instance can trick multiple classifiers. These results prompted many
researchers to gain interest in this topic and investigate how to defend
against adversarial attacks [32]-[34].

Adversarial research begins by defining the threat model, which
consists of describing the goal of the attacker and the amount of
knowledge he has of the model. Among all types of threat models,
white-box attacks are those where the adversary has full knowledge
of the model and all its parameters. White-box attacks such as
FGSM [23], JSMA [24] and Deep Fool [32] have gained traction.
They have become widely used to test the robustness of models due
to their ability to generate highly successful adversarial inputs in a
very efficient manner using the gradient of the model’s loss function.

Such research advancements and discoveries of the vulnerabilities
of learning models have also caused the appearance of defense
strategies that increase the robustness of models against adversarial
attacks. The most intuitive technique against attacks proposed is
adversarial training [23], which consists of retraining the model on
generated negative samples to improve robustness without losing
much accuracy. Many new defense strategies have appeared, and one
showing tremendous potential is pre-processing images to eliminate
noise, which many adversarial algorithms do not account for [35].

Unlike existing DNN models, which are gradient-based, HDC has a
different learning methodology as it is a pattern-based computational
model. Therefore, adversarial sample generators and defense mech-
anisms developed for DNN may not be effective against HDC. In
this paper, we explore the capability of the HDC model to generate
adversarial samples. Accordingly, we define new defense mechanisms
that are well-developed for it.

ITI. HYPERDIMENSIONAL CLASSIFICATION

At training time, the first step is to encode data points into high-
dimensional space. The encoded hypervectors are combined via brain-
like operations to train a suitable learning model, resulting in a
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hypervector representation for each class. The similarity between
an encoded query hypervector and the various class hypervectors is
computed at inference time. Then, the class with the highest similarity
is selected as the predicted class.

A. Hyperdimensional Encoding

The first step of HDC is an encoding module that maps each data
point to high-dimensional space. HDC leverages different encoding
methodologies according to the data types [15], [36]. The encoding
process of our framework is characterized as Locality Preserving
Encoding (LPE), which produces vector representations of points so
that the inner product of the vectors reflects the relationship between
the points in the original space. The encoded data should satisfy the
common-sense principle: data points separate from each other in the
original space should also be different in the hyperspace. All encoding
methods are based on the fact that data points in the original space
should also be different in high dimensions.

The encoding method we use exploits the kernel trick [37], [38].
The underlying idea of the kernel trick is that data, which may not be
linearly separable in original dimensions, might be linearly separable if

projected to higher dimensions. The Radial Basis Function or Gaussian
—lz—ylI?
Kernel K(z,y) =e 202  is the most popular kernel.

The study in [37] showed that the dot product of two encoded inputs
can efficiently approximate the Radial Basis Function (RBF) kernel,
such that: K (z,y) =~ z(x) - z(y), where the encoding z(-) generally
maps to high dimensional space. Figure 1@ shows the functionality
of our encoding method. The proposed encoding method is inspired
by the RBF kernel.

Let us consider an encoding that maps a feature vector F =
(fi,--.,fn) € R™ to a hypervector at inference time H =
(h1,h2,...,hp) € RP. We generate each dimension of the hyper-
vector as follows:

h; =cos(B; - F +b) x sin(B; - F), (1)

where B; ~ N(0,,I,) and b ~ Unif(0,27) (Figure 1@). The
random vectors {B1,Bs, -+ ,Bp} can be generated once offline and
can then be used for the rest of the classification task. Hypervectors
generated as above precisely approximate the Gaussian kernel simi-
larity via the dot product operation [37].

B. Training

The objective of the HDC training is to find the universal patterns
from the training dataset that describe each one of the labels. During
training, the encoded hypervectors are linearly combined to create a
hypervector representation for each class (Figure 1@). For each data
point, we compute the similarity between it and all class hypervectors
{C:}, 6(H, C,). We then update the model based on the § similarity
and the model’s correctness. For example, if the data point has a true
label of [ but the more similar to class I’, we update the model as
follows:

Cl<—Cl+’l7(1—5l)><H Cy+— Cy —néy xH

where 71 represent the learning rate, and §; = 6(H, C;) and §;y =
0(H,Cy/) are the similarity of an encoded train data to true and
incorrectly predicted classes. As such, we ensure that the model is
updated based on how far a training data point is misclassified with
the current model. Also, we provide separate coefficients for the true
and miss-predicted labels, allowing us to update each class hypervector
independently.

C. Inference

When deducing an inference, we encode and generate a query hy-
pervector H. We compute the similarity between the query hypervector
and all class hypervectors. The model takes the class with maximum
similarity as the predicted class for the query.

IV. HDC ADVERSARIAL ATTACK

In this section, we explore the robustness of HDC models to state-
of-the-art adversarial attacks. Figure 1 shows an overview of our
framework. All the existing attacks that we use in this paper require
us to define a gradient over the HDC model with respect to some loss
function. However, the existing HDC models are trained using simple
operations (bundling, binding, and permutation) and do not rely on
the optimization of a loss function.

Figure 1 shows the overview of our HDC model with holographic
gradient-based computation. During inference, the model predicts the
class based on the similarity of a query with all class hypervectors. We
pass the similarities through an additional softmax layer. We define a
loss function with the goal of changing the class similarity values in
the desired direction. We retrieve an adversarial hypervector from the
loss function (@), and then we go back to the original space through
the activation function (@) and the encoding matrix (€p), giving us
the desired adversarial noise. Although backpropagation through the
HDC model can be accurate since our attacks were successful using
this framework, as explained in Section III-A, our encoding method
exploits a periodic activation function and high-dimensional encoding
matrix that generates quasi-orthogonal hypervectors and introduces
non-linearity. Unlike neural networks, where backpropagation is nec-
essary to the DNN framework, HDC does not require it. We generate
adversarial samples to adapt to a white-box scenario. However, the
perturbations are more perceptible, which shows the need to design
a white-box attack catered to HDC mathematics, something we are
planning to work on for future work.

A. Threat Model

Threat Modeling consists of identifying the security threats of the
experiment, often characterized by describing the profile of the attacker
and their objectives, the system vulnerable to the attack, and the access
the attacker has to the system. Threat models are often found in two
categories, white-box or black-box attacks. In black-box scenarios, the
attackers have no knowledge of the architecture of the target model,
so they generate adversarial samples by getting feedback from the
predictions of the model by given input (queries). On the other hand,
white-box models assume that the attacker has full access to the target
model, often using the gradient of the input to generate adversarial
samples. In our threat model, we consider an adversary/attacker as
any subject that generates samples that can fool the classifier by
causing erroneous predictions. We compare the robustness of the HDC
and DNN models against three popular white-box attacks. Our goal
is to minimize the accuracy of the model while generating subtle
perturbations.

B. Fast Gradient Sign Method

The first white-box attack we use is the Fast Gradient Sign Method
(FGSM), which consists of an algorithm that produces malicious
samples from the gradient of the cost function relative to the inputs.
Work in [23] is one of the most effective FGSM attacks on DNN
models. We adapted FGSM by adding a loss function suitable to our
framework in order to generate adversarial samples with HDC.
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In FGSM, the perturbations are calculated as

n= esign(VIJ(ﬁ,x,y)), (2)
where € is the perturbation magnitude, 6 are the model parameters,
x is the input of the model, y is the target label, and J is the loss
function. In the case of DNN, we take J to be the MSE loss function.

For HDC, we defined the encoding methodology on III-A. Let
us define an encoded query H.. Since classification is defined as the
maximum cosine similarity between class hypervectors Cy and the
query, our loss function is the cosine loss function:

A
[IC:l] [1Ha]|

Since we are applying FGSM, we get the gradient as V,J(0 =
VCi,xz,y), and then compute the perturbation by multiplying by

epsilon.

C. Jacobian Based Saliency Map Attack

Jacobian-Based Saliency Map Attack (JSMA) is another gradient-
based white-box method. Work in [24] proposed to use the gradient
of the loss with each class label concerning every component of the
input, i.e., Jacobian matrix, to extract the sensitivity direction. Then
a saliency map is used to select the dimension which produces the
maximum error using the following equation (1):

dfc, (@) ofc, (@)

0if 2o —gor 3, =0
S+(~T X C) — oz i) ZC £C; az(i)
(1), i dfc, (= afc, (z) herwi
T o 'Zc/#;i 7y otherwise

“
Where fc,(z) corresponds to the softmax probability for class C;
predicted by the victim model, i.e. fc,(z) = softmax(§(x));, where
§(x) is the output of the DNN (with no softmax layer). To adapt IMSA

. Gl |[Ha ]|
Once we have the saliency map, we generate the noise samples by

selecting the pixel positions that produce the maximum error. This
consists of penalizing gradients associated with small probabilities to
mitigate their influence (sensitivity).

The significant distinction between JSMA with FGSM is that it
reduces the number of perturbations, making the adversarial exam-
ples far less detectable. But this comes at the expense of a higher
computation cost. Also, JSMA is helpful for targeted misclassification
attacks [39].

to the HDC framework, we have fc,(z) = softmax (

D. DeepFool Attack

DeepFool [25] is a recent white-box attack that is a simple and
accurate method for computing the robustness of different classifiers to
adversarial perturbations. DeepFool uses a model and an input image
and outputs the minimal perturbation required to misclassify an image.
We are considering the algorithm for multi-classification perturbation.
We start from an input zo and the classifier f. Next, we define the
perturbed image as the original image x; = xo and iteratively perturb
the data until the original label yo and the predicted label y; are not
matching.

Each iteration ¢ begins by going over all the classes (C};) and storing
the minimum difference between the gradient of the original image and
that of each one of the classes, and also the difference in outputs:

we, = Vi, (xi) — V fyo (z0) )
fe, = fo; (i) = fyo(z0) (6)

Given these values for every class, we compute the closest hyperplane
for the input x¢ as:
; |fei(x0) = fyo (x0)]

[(zo) = argmin
Ci#yo [lwe, — wy, |2

@)

Then, we derive the minimal vector that projects x onto the closest
hyperplane from the previous step:

. |f[(10)(130) — fuo(@0)]

r+ (o) (3)

iy — o a0 )
The last step of the iteration is adding the minimal perturbation to the
image and checking if it is misclassified. If that is the case, the output
will be the total perturbation, which is the sum of all perturbations.
For HDC and DNN, the gradients are computed similarly to FGSM.

Figure 2 represents the effect of the attacks on FMNIST samples.
The samples are generated using HDC and DNN models (epsilon of
0.01). We can observe how DeepFool is the best attack to hide the
perturbation to the human eye, but we also notice how HDC yields
more perturbation than DNN on FGSM using the same epsilon values.

V. ADVERSARIAL DEFENSE

Many studies have been conducted on defense techniques for
adversarial attacks against DNNs [40]. We have yet to see any effort
toward making HDC learning models robust using novel techniques
such as data filtering or adversarial training using white-box samples.
In this section, we present defense techniques that focus on two
mechanisms: (1) retraining the model on gradient-based generated
adversarial samples; and (2) pre-processing input data by applying
a noise reduction filter, a novel technique that, to our knowledge, has
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Fig. 2. Adversarial attacks using a DNN and HDC model on FMNIST.

DeepFool

never been applied to HDC. We then analyze how the accuracy varies
for each defense technique and compare them to the original HDC
classifier previously described.

A. Retraining on Adversarial Samples

We use Projected Gradient Descent (PGD) [41], another white-box
attack method, to generate adversarial samples for retraining purposes.
Compared to other attacks that aim to maximize the model’s loss
function, PGD imposes almost no constraints on resources in time and
computation to find the perturbation with minimal magnitude; these
samples thus provide more comprehensive coverage for defense.

B. Image Filtering

Image filtering tries to keep the classifier intact by pre-processing
the input to reduce noise, which we consider to be any change in pixel
values in an image. In image processing, additive noise is a problem
that has been well studied, mostly done to recover the intensity and
value of pixels. Consequently, several simple and effective techniques
have been developed to solve this problem [42]. We implement average
local pooling as our filtering method that computes the average for
each patch of the pixels. To avoid detection, adversarial noise is typical
of small magnitude. This technique effectively erases added noise.

VI. EVALUATIONS
A. Experimental Setup

We developed a PyTorch-based code to implement Hyperdimen-
sional classification along with adversarial sample generation, attack,
and defense. Both DNN and HDC implementations were optimized to
maximize performance by utilizing GPU resources.

Our model is extensively evaluated on three popular datasets:
MNIST [43], an extended MNIST (EMNIST) [44] and Fashion-
MNIST [45]. MNIST and EMNIST consist of handwritten digits and
Fashion-MNIST is a dataset of clothing images. Each example is a
28 %28 gray-scale image and both of them have a training set of 60,000
examples and a test set of 10,000 examples. We generated adversarial
samples for both HDC (described in section IV) and DNN models,
which specifically consist of a 3-layer Convolutional Neural Network.

B. Robustness of model against perturbations on the weights

Within this section, we focus on the intricate interplay of per-
turbations on model weights, a pivotal focus in the realm of Al
This approach encompasses the construction of weight histograms for
classifiers, where significance is attributed to dominant values. Our
investigation encompasses two prevalent perturbation scenarios en-
countered in edge and computing-in-memory environments. The first
scenario, named ’state shift probability,” introduces symbol transitions
similar to scaled Computing-In-Memory FeFET cells. The second
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Fig. 3. Accuracy of Quantized version of HDC and DNNs when given

different probabilities for the model to shift model weight values, often found
in Computing in Memory based noise.

scenario involves random bit inversion. These scenarios mirror real-
world challenges arising from emerging technologies. Our findings
notably underscore HDC’s exceptional superiority over DNN counter-
parts. Impressively, HDC’s performance demonstrates only minimal
accuracy degradation, as shown in Figures 3 and 4, emphasizing its
robustness in the face of induced perturbations. Furthermore, HDC’s
training efficiency 1is still orders of magnitude higher compared to
DNN, an achievement given HDC'’s intrinsic efficiency compared to
DNN backpropagation.

We expanded our exploration by testing an HDC clustering model’s
resilience against noise contextualized on the MNIST dataset. The
model being used is described in [46]. This evaluation fortifies the
idea of HDC’s natural robustness. Through this analysis, we examine
the impact of perturbations on the model’s performance in Figure 5.
Intriguingly, the results support the idea of HDC’s resilience, as minor
variations are observed in the generated clusters, yet the underlying
classification remains consistently accurate until 50% noise is consid-
ered. This reinforces HDC’s adaptability and robustness across various
scenarios, underlining its potential for deployment in a wide array of
applications.
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Fig. 4. Accuracy of Quantized version of HDC and DNNs when given different
probabilities for the model to flip any bit of its model weight values, often
considered for basic noisy scenarios.

C. HDC & DNN Attacks by FGSM

The goal of this experiment is to compare each model’s malicious
samples in order to have fairness. Figure 6 visually compares the
adversarial samples generated by FGSM using different epsilon (€)
values. The figure shows that HDC backpropagation of the noise
has more noticeable perturbations than DNN using the same epsilon
values. This comes from our periodic activation, high dimensionality,
and holographicness of our encoding process. In order to compare
the robustness of DNN with HDC, we quantitatively compare per-
turbations in terms of noise for the adversarial images. Using the
FGSM method, our results indicate that HDC adversarial samples with
e = 0.01 have the equivalent perturbation to DNN using ¢ = 0.03,
and these will be the epsilon values used for fairness.

D. HD & DNN Robustness to Adversarial Attack

Figure 7a compares the robustness of HDC and DNN models to
adversarial samples generated by different attack mechanisms. We
report adversarial classification accuracy for all three datasets. Higher
accuracy indicates higher robustness to adversarial perturbation. Our
evaluation shows that DNN is highly vulnerable to adversarial samples
generated by a DNN model. In contrast, HDC using our non-linear

10% Error

100 100

100 100

-100 -50 o 50 100 -100 -50 0 50 100

Fig. 5. Applying bit flip noise error on the HDC clustering model and showing
the different classifications for several digits plotted using TSNE.

Epsilon (g)
3 0.07

Fig. 6. DNN and HDC adversarial samples with FGSM varying epsilon.

encoding provides natural robustness to adversarial attacks. For the
example with the MNIST dataset and the same perturbation magnitude,
our HDC model achieves 11.15%, 57.16% and 20.19% higher accu-
racy than DNN models using FGSM, Deep Fool, and JSMA attacks,
respectively. Comparing different attack mechanisms, we observe that
HDC has the highest sensitivity to DeepFool attacks. As explained
in Section IV, HDC exploits non-linear and non-convex encoding
methods, thus making gradient-based attacks relatively unsuccessful.
In contrast, DeepFool exploits non-gradient-based sample generation
which provides more success in attacking the HDC model.

Figure 7b shows the effect of DNN adversarial samples on attacking
the HDC classifier. The results are reported for the MNIST dataset.
Our evaluation shows that DNN adversarial samples can fool the
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Fig. 7. (a) Adversarial accuracy of HDC and DNN models for different
datasets. (b) adversarial accuracy of HDC attacked by HDC and DNN ad-
versarial samples on MNIST dataset.

HDC model. However, these samples are less effective than HDC
adversarial samples in attacking our model. This evaluation indicates:
(1) the effectiveness of the samples generated by HDC for attacking
HDC models. In particular, it validates our framework’s effectiveness
in generating gradient-based attacks. (2) The internal robustness of
HDC models to samples generated with non-HDC-based approaches.
Our results show that the attacks made by DNN models using FGSM
(DeepFool and JSMA) have a 5.8% (12.5% and 4.1%) lower success
rate on the HDC model than attacks made by HDC adversarial
samples.

E. Dimensionality and Adversarial Robustness

The HDC model’s dimensionality directly impacts its robustness
to adversarial attacks. Figure 8a shows the impact of the hypervector
dimensionality on the HDC classification accuracy using the FGSM
attack. The results are reported for dimensions varying from D = 500
to D = 4500. Regardless of the epsilon value, an HDC model with
higher dimensionality provides more robustness to adversarial attacks.
For example, increasing dimensionality from D = 500 to D = 4500
improves the HDC classification accuracy by 2.56%. Even from the
smallest € = 0.01, the classification accuracy increases up to 30.77%.
Our evaluation shows that the dimensionality of the model is a key
aspect of the robustness of HDC models, especially for adversarial
noise of large magnitude. Note that we can use higher dimensionality
to enhance HDC robustness to adversarial attacks further. However,
that comes at the overhead of higher computational resources required
to train and perform testing.

Figure 8b shows the trade-off between the training efficiency and
adversarial robustness for FGSM on CPU and FPGA platforms. HDC
naturally has parallelism making it suitable for parallel processors.
Since CPUs often have a limited number of cores, their computa-
tional performance increases linearly with dimensionality. In contrast,
FPGAs can provide high computational parallelism as well as pipeline
mechanism to accelerate HDC models with higher dimensions. Our
evaluation shows that our model can provide higher adversarial robust-
ness with low-performance overhead on custom and parallel platforms.

FE. HDC Robustness with Encoding

Here, we evaluate the impact of HDC encoding on the robustness
of our model to adversarial attacks. We evaluate the robustness of
three HDC encoding methods: (1) our non-linear encoder with periodic
activation function, introduced in Section III-A, and (2) state-of-the-
art random projection encoding using real values, where the encoding
does not use any activation function [4], and (3) binary random
projection encoding [47]. Figure 9 shows the effectiveness of all
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Fig. 8. (a) HDC accuracy to adversarial samples using different epsilons and
dimensions, (b) HDC execution time running on CPU and FPGA.
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Fig. 9. Impact of encoding method on HDC robustness to adversarial attacks.

three encoding methods using the same dimensionality. The results
are reported for different adversarial epsilons. Our results indicate that
our non-linear encoder has significantly higher robustness to malicious
attacks. For example, using ¢ = 0.1, the real and binary projection
encoding provides 21.34% and 24.24% lower accuracy than our non-
linear encoding method. As we explained, this robustness comes from
the periodic activation function that makes gradient-based attacks less
successful. In addition, we observe that binary projection encoding
has the most vulnerability to attacks. These results guide us towards
designing more dynamic encoding methods with higher non-linearity
that could provide higher accuracy and robustness to gradient-based
malicious attacks.

G. HDC Defense Methods

As explained in Section V, we use two defense mechanisms to
further enhance the robustness of the HDC model to adversarial sam-
ples: data filtering with average pooling and PGD-based adversarial
training. We analyze the defense mechanisms for all three attacks.
We report the results for adversarial examples generated using the
HDC model. Figure 10 shows the accuracy enhancement of the two
defense mechanisms. Our results indicate that data filtering improves
HDC adversarial accuracy regardless of the attack mechanism. For
example, for FGSM, the accuracy enhancements are 10.4%, 6.3%,
and 12.9% for MNIST, FMNIST, and EMNIST, respectively. On the
other hand, PGD training is also a successful method in improving
the robustness of the HDC model to adversarial samples. However,
the PGD training impacts HDC accuracy enhancement less than data
filtering. In particular, we observe that PGD training failed to improve
robustness against JMSA.

VII. CONCLUSION

In this paper, we introduce a comprehensive study on the robustness
of HDC models to perturbations, either on the model or on the inputs.
We design mechanisms to protect HDC models against adversarial
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Fig. 10. HDC accuracy enhancement with data filtering & adversarial training.

samples, including data pre-processing and adversarial training. Our
evaluation shows that HDC with a proper neural encoding module
provides significantly higher robustness to malicious attacks than
existing DNN models. In addition, the HDC model has high robustness
to adversarial samples generated by DNN. Our study indicates that our
defense mechanisms can further protect HDC models and move this
technology toward safety-critical applications.
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