
Invited Paper: Hyperdimensional Computing for
Resilient Edge Learning

Hamza Errahmouni Barkam1, SungHeon Eavn Jeon1, Sanggeon Yun1, Calvin Yeung1

Zhuowen Zou1, Xun Jiao2, Narayan Srinivasa3, and Mohsen Imani1,†

1University of California Irvine, 2Vilanova University, 3Intel Labs
†Correspondance: m.imani@uci.edu

Abstract—Recent strides in deep learning have yielded impres-
sive practical applications such as autonomous driving, natural
language processing, and graph reasoning. However, the sus-
ceptibility of deep learning models to subtle input variations,
which stems from device imperfections and non-idealities, or
adversarial attacks on edge devices, presents a critical challenge.
These vulnerabilities hold dual significance—security concerns
in critical applications and insights into human-machine sen-
sory alignment. Efforts to enhance model robustness encounter
resource constraints in the edge and the black box nature of
neural networks, hindering their deployment on edge devices.
This paper focuses on algorithmic adaptations inspired by the
human brain to address these challenges. Hyper Dimensional
Computing (HDC), rooted in neural principles, replicates brain
functions while enabling efficient, noise-tolerant computation.
HDC leverages high-dimensional vectors to encode information,
seamlessly blending learning and memory functions. Its trans-
parency empowers practitioners, enhancing both robustness and
understanding of deployed models. In this paper, we introduce the
first comprehensive study that compares the robustness of HDC
to white-box malicious attacks to that of deep neural network
(DNN) models and the first HDC gradient-based attack in the
literature. We develop a framework that enables HDC models
to generate gradient-based adversarial examples using state-of-
the-art techniques applied to DNNs. Our evaluation shows that
our HDC model provides, on average, 19.9% higher robustness
than DNNs to adversarial samples and up to 90% robustness
improvement against random noise on the weights of the model
compared to the DNN.

I. INTRODUCTION

Modern deep learning has achieved impressive breakthroughs in

practical applications fueled by large datasets. For instance, existing

deep learning models have demonstrated remarkable accuracy in tasks

like extensive image categorization [1]. However, the susceptibility of

deep learning algorithms to subtle input alterations poses a significant

challenge, and these perturbations can arise from random noise in-

herent to device imperfections or from intentional attacks exploiting

the vulnerabilities of edge devices. Such devices, often constrained by

their limited computational capacities, are particularly susceptible to

such vulnerabilities, which can further limit the kinds of deployable

models.

These vulnerabilities that deep neural networks exhibit against

perturbations are well-documented as ”adversarial attacks” [2]. Com-

prehending these adversarial perturbations holds a two-fold signif-

icance [3]: firstly, it pertains to the security of deployed machine

learning algorithms, particularly in safety-critical applications like

autonomous vehicles; secondly, it serves to bridge the gap between

human and machine sensory information processing, which can guide

the development of robust, brain-inspired learning paradigms.

However, ongoing efforts to enhance the accuracy and resilience

of deep learning models against adversarial attacks are not without

limitations. On the one hand, executing deep learning algorithms re-

quires considerable computational resources and storage capacities that

often exceed what current edge devices can provide [4]. Consequently,

many devices lack the capability for on-device security monitoring,

necessitating the transmission of data to remote cloud servers for

analysis. This practice, though convenient, introduces concerns related

to scalability, security, and data privacy [5]. Furthermore, deep learning

models, unlike the human brain, inherently lack the robustness needed

to handle adversarial perturbations.

Acknowledging a significant roadblock in deploying neural net-

works, particularly in edge device scenarios, pertains to their often-

opaque nature. Neural networks, often called ”black boxes,” introduce

challenges in comprehending, interpreting, and subsequently enhanc-

ing their performance. This limitation curtails meaningful enhance-

ments and thorough investigations into their behavior, particularly

when embedded in resource-constrained environments like edge de-

vices.

To address these challenges and achieve real-time performance

combined with robustness in AI models, we propose algorithmic

adjustments inspired by the human brain. In this pursuit, we advocate

for adopting Hyper Dimensional Computing (HDC), a groundbreak-

ing paradigm firmly rooted in neural principles [6]–[9]. HDC has

garnered noteworthy acclaim for its adept replication of essential

brain functions, all while providing a platform for efficient and noise-

tolerant computation. That is the main reason why HDC emerges

as a promising solution, not only offering resilience against ad-

versarial perturbations but also delivering heightened transparency

and interpretability [10]–[13]. This inherent transparency empowers

practitioners to glean insights into the inner workings of deployed

models, thereby paving the path for more informed and effective

improvements.

Central to the HDC framework lies a profound insight derived

from the human brain’s information-processing mechanisms, which

hinge on intricate high-dimensional representations. Within the HDC

framework, entities are encoded using elaborate high-dimensional

vectors referred to as ”hypervectors,” each painstakingly constructed

from an array of thousands of elements [14]. Notably, HDC seamlessly

amalgamates learning capabilities with memory functions that closely

mirror the operations of human memory systems. This innovative

approach effectively mimics core memory functions through the

execution of vector-based operations, thereby conferring both practical

feasibility and mathematical rigor to the paradigm.

Recent strides have showcased HDC’s advantages over alternative

learning methods: (1) its exceptional parallelism and suitability for

real-time on-device learning scenarios [15]–[20]; (2) its capability to

achieve effective learning with minimal sample usage [21]; and (3)

its robustness against noise and data corruption (OnlineHD). HDC

20
23

 IE
EE

/A
CM

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
pu

te
r A

id
ed

 D
es

ig
n

(IC
CA

D)
 |

 9
79

-8
-3

50
3-

22
25

-5
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

CA
D5

73
90

.2
02

3.
10

32
36

71

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:45:56 UTC from IEEE Xplore. Restrictions apply.

has demonstrated superior accuracy with fewer training instances in

comparison to support vector machines (SVMs), gradient boosting,

and deep learning models [21], [22]. By bridging the gap between

neural principles and real-world applications, HDC opens avenues

for achieving both human-like robustness and a deeper grasp of the

model’s behavior. This momentum propels the field toward more

secure, knowledgeable deployments in edge computing environments.

On the backbone of these promising advancements, an important

part of the research must focus on HDC’s vulnerability to perturbations

in several scenarios. HDC algorithms have recently found utility in

security-critical industrial applications underscoring the importance

of thoroughly exploring the susceptibility of HDC algorithms to

adversarial samples. The main contributions of the paper are listed

as follows:

" Comprehensive comparative study on the robustness of HDC and

DNN models versus perturbations on the weights of the model given

two of the most comment non-idealities on the edge.

" We develop a novel framework that enables HDC models to generate

gradient-based adversarial examples. We define a loss function and

back-propagation on the HDC model, which enables us to generate

adversarial samples using state-of-the-art attack methods: Fast Gra-

dient Sign Method [23], Jacobian-based Saliency Map Attack [24],

and DeepFool [25]. Finally, we measure their effectiveness against

both HDC and DNN.

" We study the effect of HDC hyperparameters such as encoding and

dimensionality on the robustness of the model. Finally, we design

defense mechanisms to protect HDC models against adversarial

samples, such as data pre-processing and adversarial training on

gradient-based samples. Our study also indicates that the defense

mechanisms can have significant effectiveness against some specific

attacks (for example, 24% enhancement on DeepFool), but further

work is still needed in this area.

We evaluate our solution on several scenarios, such as three popular

image classification datasets, MNIST, E-MNIST, and FMNIST. Our

results indicate that the HDC model provides, on average, 19.9%

higher robustness than DNNs to adversarial samples. Understanding

that adversarial samples are often considered universal, the adversarial

samples generated by DNN are not successful in attacking the HDC

model (attack success rate under 5%), which proves HDC provides

inherent robustness against noise.

II. BACKGROUND

A. Hyperdimensional Computing

Hyper-dimensional Computing (HDC) emerged from theoretical

neuroscience as a short-term human memory model [14], [26]. The

cerebellum is an area in the brain that plays a significant role in cog-

nitive functions. Each dimension of the hypervector models a neuron’s

function at an abstract level [27]. When we generate hypervectors on

the high-dimensional space, our encoding works in a way where there

is a huge number of nearly orthogonal hypervectors. This enables

us to combine such hypervectors using well-defined operations while

keeping the information of the two with high probability. There are

three main operators on HDC:

" (1) Bundling: Describes the memorization of a set of hypervectors,

which results in a single hypervector that shares similarities with all

its elements. For two hypervectors V1 and V2, bundling corresponds

to the element-wise sum: R = V1 + V2.

" (2) Binding: Represents the association of multiple dissimilar

hypervectors (e.g., V1, V2), which generates a single hypervector

(R = V17V2). The bound hypervector is a new object in HDC space

which is orthogonal to each one of its components (·(R, V1) c 0

and ·(R, V2) c 0).

" (3) Permutation: Is an operator that encodes order. It consists of

applying a single rotational shift. The permuted hypervector will be

dissimilar to its original hypervector (·(V1, ÃV1) c 0). We apply

permutation as many times as the position of the element in the

sequence, i.e., BCDA can be encoded as VB 7 ÃVC 7 Ã
2VD 7 Ã

3VA.

There is not a lot of literature on HDC against adversarial attacks.

The first publication [28] demonstrates that HDC is vulnerable to

black-box attacks, specifically genetic algorithms, and proposes neg-

ative training as a defense technique. However, it has the following

limitations: (1) the study is limited only to binary hypervectors, (2)

It does not cover effective and popular white-box attacks such as

gradient-based attacks, and (3) it does not compare its results with

traditional neural networks. Subsequent publications, such as [22],

[29], [30], study the robustness of HDC against black-box attacks in

different domains, such as voice recognition. However, they fail to

show gradient-based methods to generate the samples (white-box) or

compare them to DNNs.

B. Adversarial Attacks

An intriguing discovery in 2014 [31] showed the weakness of DNN

models to adversarial attacks. Adversarial samples are any perturbation

to the original input that can change the predicted label and, more

often, cause the model to have high confidence in the wrong class.

DNN adversarial samples are often considered universal since the same

instance can trick multiple classifiers. These results prompted many

researchers to gain interest in this topic and investigate how to defend

against adversarial attacks [32]–[34].

Adversarial research begins by defining the threat model, which

consists of describing the goal of the attacker and the amount of

knowledge he has of the model. Among all types of threat models,

white-box attacks are those where the adversary has full knowledge

of the model and all its parameters. White-box attacks such as

FGSM [23], JSMA [24] and Deep Fool [32] have gained traction.

They have become widely used to test the robustness of models due

to their ability to generate highly successful adversarial inputs in a

very efficient manner using the gradient of the model’s loss function.

Such research advancements and discoveries of the vulnerabilities

of learning models have also caused the appearance of defense

strategies that increase the robustness of models against adversarial

attacks. The most intuitive technique against attacks proposed is

adversarial training [23], which consists of retraining the model on

generated negative samples to improve robustness without losing

much accuracy. Many new defense strategies have appeared, and one

showing tremendous potential is pre-processing images to eliminate

noise, which many adversarial algorithms do not account for [35].

Unlike existing DNN models, which are gradient-based, HDC has a

different learning methodology as it is a pattern-based computational

model. Therefore, adversarial sample generators and defense mech-

anisms developed for DNN may not be effective against HDC. In

this paper, we explore the capability of the HDC model to generate

adversarial samples. Accordingly, we define new defense mechanisms

that are well-developed for it.

III. HYPERDIMENSIONAL CLASSIFICATION

At training time, the first step is to encode data points into high-

dimensional space. The encoded hypervectors are combined via brain-

like operations to train a suitable learning model, resulting in a

2

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:45:56 UTC from IEEE Xplore. Restrictions apply.

hypervector representation for each class. The similarity between

an encoded query hypervector and the various class hypervectors is

computed at inference time. Then, the class with the highest similarity

is selected as the predicted class.

A. Hyperdimensional Encoding

The first step of HDC is an encoding module that maps each data

point to high-dimensional space. HDC leverages different encoding

methodologies according to the data types [15], [36]. The encoding

process of our framework is characterized as Locality Preserving

Encoding (LPE), which produces vector representations of points so

that the inner product of the vectors reflects the relationship between

the points in the original space. The encoded data should satisfy the

common-sense principle: data points separate from each other in the

original space should also be different in the hyperspace. All encoding

methods are based on the fact that data points in the original space

should also be different in high dimensions.

The encoding method we use exploits the kernel trick [37], [38].

The underlying idea of the kernel trick is that data, which may not be

linearly separable in original dimensions, might be linearly separable if

projected to higher dimensions. The Radial Basis Function or Gaussian

Kernel K(x, y) = e
2||x2y||2

2σ2 is the most popular kernel.

The study in [37] showed that the dot product of two encoded inputs

can efficiently approximate the Radial Basis Function (RBF) kernel,

such that: K(x, y) j z(x) · z(y), where the encoding z(·) generally

maps to high dimensional space. Figure 1"a shows the functionality

of our encoding method. The proposed encoding method is inspired

by the RBF kernel.

Let us consider an encoding that maps a feature vector F =

(f1, . . . , fn) * R
n to a hypervector at inference time H =

(h1, h2, . . . , hD) * R
D . We generate each dimension of the hyper-

vector as follows:

hi = cos(Bi · F+ b)× sin(Bi · F), (1)

where Bi > N (÷0n, In) and b > Unif(0, 2Ã) (Figure 1"b). The

random vectors {B1,B2, · · · ,BD} can be generated once offline and

can then be used for the rest of the classification task. Hypervectors

generated as above precisely approximate the Gaussian kernel simi-

larity via the dot product operation [37].

B. Training

The objective of the HDC training is to find the universal patterns

from the training dataset that describe each one of the labels. During

training, the encoded hypervectors are linearly combined to create a

hypervector representation for each class (Figure 1"c). For each data

point, we compute the similarity between it and all class hypervectors

{Cl}, ·(H,Cl). We then update the model based on the · similarity

and the model’s correctness. For example, if the data point has a true

label of l but the more similar to class l2, we update the model as

follows:

Cl ± Cl + ·(12 ·l)×H Cl2 ± Cl2 2 ··l2 ×H

where · represent the learning rate, and ·l = ·(H,Cl) and ·l2 =

·(H,Cl2) are the similarity of an encoded train data to true and

incorrectly predicted classes. As such, we ensure that the model is

updated based on how far a training data point is misclassified with

the current model. Also, we provide separate coefficients for the true

and miss-predicted labels, allowing us to update each class hypervector

independently.

C. Inference

When deducing an inference, we encode and generate a query hy-

pervector H. We compute the similarity between the query hypervector

and all class hypervectors. The model takes the class with maximum

similarity as the predicted class for the query.

IV. HDC ADVERSARIAL ATTACK

In this section, we explore the robustness of HDC models to state-

of-the-art adversarial attacks. Figure 1 shows an overview of our

framework. All the existing attacks that we use in this paper require

us to define a gradient over the HDC model with respect to some loss

function. However, the existing HDC models are trained using simple

operations (bundling, binding, and permutation) and do not rely on

the optimization of a loss function.

Figure 1 shows the overview of our HDC model with holographic

gradient-based computation. During inference, the model predicts the

class based on the similarity of a query with all class hypervectors. We

pass the similarities through an additional softmax layer. We define a

loss function with the goal of changing the class similarity values in

the desired direction. We retrieve an adversarial hypervector from the

loss function ("d), and then we go back to the original space through

the activation function ("e) and the encoding matrix ("f), giving us

the desired adversarial noise. Although backpropagation through the

HDC model can be accurate since our attacks were successful using

this framework, as explained in Section III-A, our encoding method

exploits a periodic activation function and high-dimensional encoding

matrix that generates quasi-orthogonal hypervectors and introduces

non-linearity. Unlike neural networks, where backpropagation is nec-

essary to the DNN framework, HDC does not require it. We generate

adversarial samples to adapt to a white-box scenario. However, the

perturbations are more perceptible, which shows the need to design

a white-box attack catered to HDC mathematics, something we are

planning to work on for future work.

A. Threat Model

Threat Modeling consists of identifying the security threats of the

experiment, often characterized by describing the profile of the attacker

and their objectives, the system vulnerable to the attack, and the access

the attacker has to the system. Threat models are often found in two

categories, white-box or black-box attacks. In black-box scenarios, the

attackers have no knowledge of the architecture of the target model,

so they generate adversarial samples by getting feedback from the

predictions of the model by given input (queries). On the other hand,

white-box models assume that the attacker has full access to the target

model, often using the gradient of the input to generate adversarial

samples. In our threat model, we consider an adversary/attacker as

any subject that generates samples that can fool the classifier by

causing erroneous predictions. We compare the robustness of the HDC

and DNN models against three popular white-box attacks. Our goal

is to minimize the accuracy of the model while generating subtle

perturbations.

B. Fast Gradient Sign Method

The first white-box attack we use is the Fast Gradient Sign Method

(FGSM), which consists of an algorithm that produces malicious

samples from the gradient of the cost function relative to the inputs.

Work in [23] is one of the most effective FGSM attacks on DNN

models. We adapted FGSM by adding a loss function suitable to our

framework in order to generate adversarial samples with HDC.

3

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:45:56 UTC from IEEE Xplore. Restrictions apply.

 ×

×

×
B1D B12 B11

B2D B22 B21

BnD Bn2 Bn1

£
£

£
Non-linear
Activation

cos(.+b) sin(.)

cos(.+b) sin(.)

cos(.+b) sin(.)

h1

hD

h2

Gaussian Sampler

c1D c12 c11

c2D c22 c21

s
o

ft
m

a
x

ckD ck2 ck1

 ×

 ×

 ×

+

·k

·2

·1

Lk

L2

L1

 d e f

cosine
Class hypervectors

(HDC model)

L
o

s
s

 v
e

c
to

r

 ×

×

×
B1D B12 B11

B2D B22 B21

BnD Bn2 Bn1

£
£

£
Non-linear
Activation

cos(.+b) sin(.)

cos(.+b) sin(.)

cos(.+b) sin(.)

h1

hD

h2

Gaussian Sampler

c1D c12 c11

c2D c22 c21

s
o

ft
m

a
x

ckD ck2 ck1

 ×

 ×

 ×

+

·k

·2

·1

Lk

L2

L1

 d e f

cosine
Class hypervectors

(HDC model)

L
o

s
s

 v
e

c
to

r

Encoding Hypervectors

 a b c

Adversarial
Noise

Original Data

Fig. 1. Hyperdimensional computing with non-linear encoding. The backpropagation of the model could formal loss function.

In FGSM, the perturbations are calculated as

· = ÷ sign('xJ(», x, y)), (2)

where ÷ is the perturbation magnitude, » are the model parameters,

x is the input of the model, y is the target label, and J is the loss

function. In the case of DNN, we take J to be the MSE loss function.

For HDC, we defined the encoding methodology on III-A. Let

us define an encoded query Hx. Since classification is defined as the

maximum cosine similarity between class hypervectors Cï and the

query, our loss function is the cosine loss function:

J(» = "Ci, x, y) =
Ci · Hx

||Ci|| ||Hx||
2 1 (3)

Since we are applying FGSM, we get the gradient as ½xJ(» =

"Ci, x, y), and then compute the perturbation by multiplying by

epsilon.

C. Jacobian Based Saliency Map Attack

Jacobian-Based Saliency Map Attack (JSMA) is another gradient-

based white-box method. Work in [24] proposed to use the gradient

of the loss with each class label concerning every component of the

input, i.e., Jacobian matrix, to extract the sensitivity direction. Then

a saliency map is used to select the dimension which produces the

maximum error using the following equation (1):

S
+(x(i), Ci) =

ù

ú

û

0 if
∂fCi

(x)

∂x(i)
< 0 or

∑

C2 ;=Ci

∂fCi
(x)

∂x(i)
> 0

2
∂fCi

(x)

∂x(i)
·
∑

C2 ;=Ci

∂fCi
(x)

∂x(i)
otherwise

(4)

Where fCi(x) corresponds to the softmax probability for class Ci

predicted by the victim model, i.e. fCi(x) = softmax(ŷ(x))i, where

ŷ(x) is the output of the DNN (with no softmax layer). To adapt JMSA

to the HDC framework, we have fCi(x) = softmax

(

Ci · Hx

||Ci|| ||Hx||

)

.

Once we have the saliency map, we generate the noise samples by

selecting the pixel positions that produce the maximum error. This

consists of penalizing gradients associated with small probabilities to

mitigate their influence (sensitivity).

The significant distinction between JSMA with FGSM is that it

reduces the number of perturbations, making the adversarial exam-

ples far less detectable. But this comes at the expense of a higher

computation cost. Also, JSMA is helpful for targeted misclassification

attacks [39].

D. DeepFool Attack

DeepFool [25] is a recent white-box attack that is a simple and

accurate method for computing the robustness of different classifiers to

adversarial perturbations. DeepFool uses a model and an input image

and outputs the minimal perturbation required to misclassify an image.

We are considering the algorithm for multi-classification perturbation.

We start from an input x0 and the classifier f . Next, we define the

perturbed image as the original image xi = x0 and iteratively perturb

the data until the original label y0 and the predicted label yi are not

matching.

Each iteration t begins by going over all the classes (Ci) and storing

the minimum difference between the gradient of the original image and

that of each one of the classes, and also the difference in outputs:

w
2
Ci

= 'fCi(xi)2'fy0(x0) (5)

f
2
Ci

= fCi(xi)2 fy0(x0) (6)

Given these values for every class, we compute the closest hyperplane

for the input x0 as:

l̂(x0) = argmin
Ci ;=y0

|fCi(x0)2 fy0(x0)|

||wCi 2 wy0 ||2
(7)

Then, we derive the minimal vector that projects x onto the closest

hyperplane from the previous step:

r7(x0) =
|fl̂(x0)

(x0)2 fy0(x0)|

||wl̂(x0)
2 wy0 ||

2
2

(wl̂(x0)
2 wy0) (8)

The last step of the iteration is adding the minimal perturbation to the

image and checking if it is misclassified. If that is the case, the output

will be the total perturbation, which is the sum of all perturbations.

For HDC and DNN, the gradients are computed similarly to FGSM.

Figure 2 represents the effect of the attacks on FMNIST samples.

The samples are generated using HDC and DNN models (epsilon of

0.01). We can observe how DeepFool is the best attack to hide the

perturbation to the human eye, but we also notice how HDC yields

more perturbation than DNN on FGSM using the same epsilon values.

V. ADVERSARIAL DEFENSE

Many studies have been conducted on defense techniques for

adversarial attacks against DNNs [40]. We have yet to see any effort

toward making HDC learning models robust using novel techniques

such as data filtering or adversarial training using white-box samples.

In this section, we present defense techniques that focus on two

mechanisms: (1) retraining the model on gradient-based generated

adversarial samples; and (2) pre-processing input data by applying

a noise reduction filter, a novel technique that, to our knowledge, has

4

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:45:56 UTC from IEEE Xplore. Restrictions apply.

CNN

HDC

Original FGSM JSMA DeepFool

Fig. 2. Adversarial attacks using a DNN and HDC model on FMNIST.

never been applied to HDC. We then analyze how the accuracy varies

for each defense technique and compare them to the original HDC

classifier previously described.

A. Retraining on Adversarial Samples

We use Projected Gradient Descent (PGD) [41], another white-box

attack method, to generate adversarial samples for retraining purposes.

Compared to other attacks that aim to maximize the model’s loss

function, PGD imposes almost no constraints on resources in time and

computation to find the perturbation with minimal magnitude; these

samples thus provide more comprehensive coverage for defense.

B. Image Filtering

Image filtering tries to keep the classifier intact by pre-processing

the input to reduce noise, which we consider to be any change in pixel

values in an image. In image processing, additive noise is a problem

that has been well studied, mostly done to recover the intensity and

value of pixels. Consequently, several simple and effective techniques

have been developed to solve this problem [42]. We implement average

local pooling as our filtering method that computes the average for

each patch of the pixels. To avoid detection, adversarial noise is typical

of small magnitude. This technique effectively erases added noise.

VI. EVALUATIONS

A. Experimental Setup

We developed a PyTorch-based code to implement Hyperdimen-

sional classification along with adversarial sample generation, attack,

and defense. Both DNN and HDC implementations were optimized to

maximize performance by utilizing GPU resources.

Our model is extensively evaluated on three popular datasets:

MNIST [43], an extended MNIST (EMNIST) [44] and Fashion-

MNIST [45]. MNIST and EMNIST consist of handwritten digits and

Fashion-MNIST is a dataset of clothing images. Each example is a

28×28 gray-scale image and both of them have a training set of 60,000

examples and a test set of 10,000 examples. We generated adversarial

samples for both HDC (described in section IV) and DNN models,

which specifically consist of a 3-layer Convolutional Neural Network.

B. Robustness of model against perturbations on the weights

Within this section, we focus on the intricate interplay of per-

turbations on model weights, a pivotal focus in the realm of AI.

This approach encompasses the construction of weight histograms for

classifiers, where significance is attributed to dominant values. Our

investigation encompasses two prevalent perturbation scenarios en-

countered in edge and computing-in-memory environments. The first

scenario, named ”state shift probability,” introduces symbol transitions

similar to scaled Computing-In-Memory FeFET cells. The second

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

QuantHD (10K) DNN

State Shift Probability (%)

Te
st

 A
cc

u
ra

cy
 (

%
)

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

Te
st

 A
cc

u
ra

cy
 L

o
ss

 (
%

)

MNIST

FMNIST

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

State Shift Probability (%)
Te

st
 A

cc
u

ra
cy

 (
%

)

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

Te
st

 A
cc

u
ra

cy
 L

o
ss

 (
%

)

EMNIST

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

State Shift Probability (%)

Te
st

 A
cc

u
ra

cy
 (

%
)

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

Te
st

 A
cc

u
ra

cy
 L

o
ss

 (
%

)

Fig. 3. Accuracy of Quantized version of HDC and DNNs when given
different probabilities for the model to shift model weight values, often found
in Computing in Memory based noise.

scenario involves random bit inversion. These scenarios mirror real-

world challenges arising from emerging technologies. Our findings

notably underscore HDC’s exceptional superiority over DNN counter-

parts. Impressively, HDC’s performance demonstrates only minimal

accuracy degradation, as shown in Figures 3 and 4, emphasizing its

robustness in the face of induced perturbations. Furthermore, HDC’s

training efficiency is still orders of magnitude higher compared to

DNN, an achievement given HDC’s intrinsic efficiency compared to

DNN backpropagation.

We expanded our exploration by testing an HDC clustering model’s

resilience against noise contextualized on the MNIST dataset. The

model being used is described in [46]. This evaluation fortifies the

idea of HDC’s natural robustness. Through this analysis, we examine

the impact of perturbations on the model’s performance in Figure 5.

Intriguingly, the results support the idea of HDC’s resilience, as minor

variations are observed in the generated clusters, yet the underlying

classification remains consistently accurate until 50% noise is consid-

ered. This reinforces HDC’s adaptability and robustness across various

scenarios, underlining its potential for deployment in a wide array of

applications.

5

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:45:56 UTC from IEEE Xplore. Restrictions apply.

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

QuantHD (10K) DNN

Bit Flip Probability (%)

Te
st

 A
cc

u
ra

cy
 (

%
)

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

Te
st

 A
cc

u
ra

cy
 L

o
ss

 (
%

)

MNIST

FMNIST

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

Bit Flip Probability (%)

Te
st

 A
cc

u
ra

cy
 (

%
)

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

Te
st

 A
cc

u
ra

cy
 L

o
ss

 (
%

)

EMNIST

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

Bit Flip Probability (%)

Te
st

 A
cc

u
ra

cy
 (

%
)

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80

Te
st

 A
cc

u
ra

cy
 L

o
ss

 (
%

)

Fig. 4. Accuracy of Quantized version of HDC and DNNs when given different
probabilities for the model to flip any bit of its model weight values, often
considered for basic noisy scenarios.

C. HDC & DNN Attacks by FGSM

The goal of this experiment is to compare each model’s malicious

samples in order to have fairness. Figure 6 visually compares the

adversarial samples generated by FGSM using different epsilon (÷)

values. The figure shows that HDC backpropagation of the noise

has more noticeable perturbations than DNN using the same epsilon

values. This comes from our periodic activation, high dimensionality,

and holographicness of our encoding process. In order to compare

the robustness of DNN with HDC, we quantitatively compare per-

turbations in terms of noise for the adversarial images. Using the

FGSM method, our results indicate that HDC adversarial samples with

÷ = 0.01 have the equivalent perturbation to DNN using ÷ = 0.03,

and these will be the epsilon values used for fairness.

D. HD & DNN Robustness to Adversarial Attack

Figure 7a compares the robustness of HDC and DNN models to

adversarial samples generated by different attack mechanisms. We

report adversarial classification accuracy for all three datasets. Higher

accuracy indicates higher robustness to adversarial perturbation. Our

evaluation shows that DNN is highly vulnerable to adversarial samples

generated by a DNN model. In contrast, HDC using our non-linear

-100

-80

-60

-40

-20

0

20

40

60

80

-100 -50 0 50 100

-100

-80

-60

-40

-20

0

20

40

60

80

-100 -50 0 50 100

-100

-80

-60

-40

-20

0

20

40

60

80

-100 -50 0 50 100

-100

-80

-60

-40

-20

0

20

40

60

80

-100 -50 0 50 100

-100

-80

-60

-40

-20

0

20

40

60

80

-100 -50 0 50 100

-100

-80

-60

-40

-20

0

20

40

60

80

-100 -50 0 50 100

0% Error 10% Error

20% Error 30% Error

40% Error 50% Error

Fig. 5. Applying bit flip noise error on the HDC clustering model and showing
the different classifications for several digits plotted using TSNE.

CNN

HDC

0.01 0.03 0.07 0.1
Epsilon (·)

Fig. 6. DNN and HDC adversarial samples with FGSM varying epsilon.

encoding provides natural robustness to adversarial attacks. For the

example with the MNIST dataset and the same perturbation magnitude,

our HDC model achieves 11.15%, 57.16% and 20.19% higher accu-

racy than DNN models using FGSM, Deep Fool, and JSMA attacks,

respectively. Comparing different attack mechanisms, we observe that

HDC has the highest sensitivity to DeepFool attacks. As explained

in Section IV, HDC exploits non-linear and non-convex encoding

methods, thus making gradient-based attacks relatively unsuccessful.

In contrast, DeepFool exploits non-gradient-based sample generation

which provides more success in attacking the HDC model.

Figure 7b shows the effect of DNN adversarial samples on attacking

the HDC classifier. The results are reported for the MNIST dataset.

Our evaluation shows that DNN adversarial samples can fool the

6

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:45:56 UTC from IEEE Xplore. Restrictions apply.

20

40

60

80

100

A
c
c
u

ra
c

y
 (

%
)

MNIST FMNIST EMNIST

HDC Attacking HDC DNN Attacking DNN

20

40

60

80

100

A
c
c
u

ra
c

y
 (

%
)

HDC
Attack

DNN
Attack

Attacks on HDC

Fig. 7. (a) Adversarial accuracy of HDC and DNN models for different
datasets. (b) adversarial accuracy of HDC attacked by HDC and DNN ad-
versarial samples on MNIST dataset.

HDC model. However, these samples are less effective than HDC

adversarial samples in attacking our model. This evaluation indicates:

(1) the effectiveness of the samples generated by HDC for attacking

HDC models. In particular, it validates our framework’s effectiveness

in generating gradient-based attacks. (2) The internal robustness of

HDC models to samples generated with non-HDC-based approaches.

Our results show that the attacks made by DNN models using FGSM

(DeepFool and JSMA) have a 5.8% (12.5% and 4.1%) lower success

rate on the HDC model than attacks made by HDC adversarial

samples.

E. Dimensionality and Adversarial Robustness

The HDC model’s dimensionality directly impacts its robustness

to adversarial attacks. Figure 8a shows the impact of the hypervector

dimensionality on the HDC classification accuracy using the FGSM

attack. The results are reported for dimensions varying from D = 500

to D = 4500. Regardless of the epsilon value, an HDC model with

higher dimensionality provides more robustness to adversarial attacks.

For example, increasing dimensionality from D = 500 to D = 4500

improves the HDC classification accuracy by 2.56%. Even from the

smallest ÷ = 0.01, the classification accuracy increases up to 30.77%.

Our evaluation shows that the dimensionality of the model is a key

aspect of the robustness of HDC models, especially for adversarial

noise of large magnitude. Note that we can use higher dimensionality

to enhance HDC robustness to adversarial attacks further. However,

that comes at the overhead of higher computational resources required

to train and perform testing.

Figure 8b shows the trade-off between the training efficiency and

adversarial robustness for FGSM on CPU and FPGA platforms. HDC

naturally has parallelism making it suitable for parallel processors.

Since CPUs often have a limited number of cores, their computa-

tional performance increases linearly with dimensionality. In contrast,

FPGAs can provide high computational parallelism as well as pipeline

mechanism to accelerate HDC models with higher dimensions. Our

evaluation shows that our model can provide higher adversarial robust-

ness with low-performance overhead on custom and parallel platforms.

F. HDC Robustness with Encoding

Here, we evaluate the impact of HDC encoding on the robustness

of our model to adversarial attacks. We evaluate the robustness of

three HDC encoding methods: (1) our non-linear encoder with periodic

activation function, introduced in Section III-A, and (2) state-of-the-

art random projection encoding using real values, where the encoding

does not use any activation function [4], and (3) binary random

projection encoding [47]. Figure 9 shows the effectiveness of all

0

0.01

0.03

0.07

0.1

Dimension (D)

N
o

rm
.
E

x
e

c
u

ti
o

n
 T

im
e

CPU FPGA

Dimension (D)

P
e

rt
u

rb
a

ti
o

n
 (
·)

10

90

30

50

70

0

6

12

18

24

30

a b

Fig. 8. (a) HDC accuracy to adversarial samples using different epsilons and
dimensions, (b) HDC execution time running on CPU and FPGA.

0

20

40

60

80

100

A
c

c
u

ra
c

y
 (

%
)

Adversarial Noise (·)

0 0.01 0.03 0.07 0.1

Non-linear Real Projection Binary Projection

Larger Margin
in higher ·

Low
Robustness

Fig. 9. Impact of encoding method on HDC robustness to adversarial attacks.

three encoding methods using the same dimensionality. The results

are reported for different adversarial epsilons. Our results indicate that

our non-linear encoder has significantly higher robustness to malicious

attacks. For example, using ÷ = 0.1, the real and binary projection

encoding provides 21.34% and 24.24% lower accuracy than our non-

linear encoding method. As we explained, this robustness comes from

the periodic activation function that makes gradient-based attacks less

successful. In addition, we observe that binary projection encoding

has the most vulnerability to attacks. These results guide us towards

designing more dynamic encoding methods with higher non-linearity

that could provide higher accuracy and robustness to gradient-based

malicious attacks.

G. HDC Defense Methods

As explained in Section V, we use two defense mechanisms to

further enhance the robustness of the HDC model to adversarial sam-

ples: data filtering with average pooling and PGD-based adversarial

training. We analyze the defense mechanisms for all three attacks.

We report the results for adversarial examples generated using the

HDC model. Figure 10 shows the accuracy enhancement of the two

defense mechanisms. Our results indicate that data filtering improves

HDC adversarial accuracy regardless of the attack mechanism. For

example, for FGSM, the accuracy enhancements are 10.4%, 6.3%,

and 12.9% for MNIST, FMNIST, and EMNIST, respectively. On the

other hand, PGD training is also a successful method in improving

the robustness of the HDC model to adversarial samples. However,

the PGD training impacts HDC accuracy enhancement less than data

filtering. In particular, we observe that PGD training failed to improve

robustness against JMSA.

VII. CONCLUSION

In this paper, we introduce a comprehensive study on the robustness

of HDC models to perturbations, either on the model or on the inputs.

We design mechanisms to protect HDC models against adversarial

7

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:45:56 UTC from IEEE Xplore. Restrictions apply.

0

6

12

18

24

A
c

c
u

ra
c

y

E
n

h
a

n
c

e
m

e
n

t
(%

) MNIST FMNIST EMNIST

No
Improvement

Data Filtering Adversarial Training

Fig. 10. HDC accuracy enhancement with data filtering & adversarial training.

samples, including data pre-processing and adversarial training. Our

evaluation shows that HDC with a proper neural encoding module

provides significantly higher robustness to malicious attacks than

existing DNN models. In addition, the HDC model has high robustness

to adversarial samples generated by DNN. Our study indicates that our

defense mechanisms can further protect HDC models and move this

technology toward safety-critical applications.

VIII. ACKNOWLEDGEMENTS

This work was supported in part by DARPA Young Faculty Award,

National Science Foundation #2127780, #2319198, #2321840 and

#2312517, Semiconductor Research Corporation (SRC), Office of

Naval Research, grants #N00014-21-1-2225 and #N00014-22-1-2067,

the Air Force Office of Scientific Research under award #FA9550-22-

1-0253, and generous gifts from Xilinx and Cisco.

REFERENCES

[1] A. Krizhevsky et al., “Imagenet classification with deep convolutional neural net-
works,” in NIPS, pp. 1097–1105, 2012.

[2] C. Szegedy et al., “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[3] P. McDaniel, N. Papernot, and Z. B. Celik, “Machine learning in adversarial settings,”
IEEE Security & Privacy, vol. 14, no. 3, pp. 68–72, 2016.

[4] M. Imani et al., “A framework for collaborative learning in secure high-dimensional
space,” in CLOUD, pp. 435–446, IEEE, 2019.

[5] S. Yi et al., “Fog computing: Platform and applications,” in HotWeb, pp. 73–78, IEEE,
2015.

[6] A. Hernandez-Cane et al., “Onlinehd: Robust, efficient, and single-pass online learning
using hyperdimensional system,” in DATE, pp. 56–61, IEEE, 2021.

[7] P. Poduval et al., “Graphd: Graph-based hyperdimensional memorization for brain-like
cognitive learning,” Frontiers in Neuroscience, p. 5, 2022.

[8] Z. Zou et al., “Biohd: an efficient genome sequence search platform using hyperdimen-
sional memorization,” in Proceedings of the 49th Annual International Symposium on
Computer Architecture, pp. 656–669, 2022.

[9] Z. Zou et al., “Eventhd: Robust and efficient hyperdimensional learning with neuro-
morphic sensor,” Frontiers in Neuroscience, vol. 16, 2022.

[10] A. Kazemi, F. Müller, M. M. Sharifi, H. Errahmouni, G. Gerlach, T. Kämpfe, M. Imani,
X. S. Hu, and M. Niemier, “Achieving software-equivalent accuracy for hyperdimen-
sional computing with ferroelectric-based in-memory computing,” Scientific Reports,
vol. 12, p. 19201, Nov 2022.

[11] H. E. Barkam et al., “Hdgim: Hyperdimensional genome sequence matching on unre-
liable highly scaled fefet,” in 2023 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 1–6, 2023.

[12] H. Amrouch, M. Imani, X. Jiao, Y. Aloimonos, C. Fermuller, D. Yuan, D. Ma, H. E.
Barkam, P. R. Genssler, and P. Sutor, “Brain-inspired hyperdimensional computing
for ultra-efficient edge ai,” in 2022 International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), pp. 25–34, 2022.

[13] P. R. Genssler, H. E. Barkam, K. Pandaram, M. Imani, and H. Amrouch, “Modeling
and predicting transistor aging under workload dependency using machine learning,”
IEEE Transactions on Circuits and Systems I: Regular Papers, pp. 1–13, 2023.

[14] P. Kanerva, “Hyperdimensional computing: An introduction to computing in dis-
tributed representation with high-dimensional random vectors,” Cognitive Computa-
tion, vol. 1, no. 2, pp. 139–159, 2009.

[15] A. Rahimi et al., “A robust and energy-efficient classifier using brain-inspired hyper-
dimensional computing,” in ISLPED, pp. 64–69, ACM, 2016.

[16] Y. Ni, M. Issa, D. Abraham, M. Imani, X. Yin, and M. Imani, “Hdpg: hyperdimensional
policy-based reinforcement learning for continuous control,” in Proceedings of the 59th
ACM/IEEE Design Automation Conference, pp. 1141–1146, 2022.

[17] Y. Ni et al., “Neurally-inspired hyperdimensional classification for efficient and robust
biosignal processing,” in Proceedings of the 41st IEEE/ACM International Conference
on Computer-Aided Design, pp. 1–9, 2022.

[18] Y. Ni et al., “Algorithm-hardware co-design for efficient brain-inspired hyperdimen-
sional learning on edge,” in 2022 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 292–297, 2022.

[19] H. Chen et al., “Full stack parallel online hyperdimensional regression on fpga,” in
IEEE ICCD 2022, pp. 517–524, IEEE, 2022.

[20] H. Chen et al., “Darl: Distributed reconfigurable accelerator for hyperdimensional re-
inforcement learning,” in Proceedings of the 41st IEEE/ACM International Conference
on Computer-Aided Design, pp. 1–9, 2022.

[21] G. Karunaratne et al., “Robust high-dimensional memory-augmented neural net-
works,” Nat Commun, vol. 12, p. 2468, 04 2021.

[22] D. Ma, J. Guo, Y. Jiang, and X. Jiao, “Hdtest: Differential fuzz testing of brain-inspired
hyperdimensional computing,” arXiv preprint arXiv:2103.08668, 2021.

[23] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” 2015.

[24] R. Wiyatno and A. Xu, “Maximal jacobian-based saliency map attack,” 2018.
[25] S.-M. Moosavi-Dezfooli et al., “Deepfool: a simple and accurate method to fool deep

neural networks,” in CVPR, pp. 2574–2582, 2016.
[26] B. Babadi and H. Sompolinsky, “Sparseness and expansion in sensory representations,”

Neuron, vol. 83, no. 5, pp. 1213–1226, 2014.
[27] Z. Zou et al., “Scalable edge-based hyperdimensional learning system with brain-like

neural adaptation,” in SC, pp. 1–15, 2021.
[28] F. Yang and S. Ren, “Adversarial attacks on brain-inspired hyperdimensional

computing-based classifiers,” 2020.
[29] O. Gungor et al., “Res-hd: Resilient intelligent fault diagnosis against adversarial

attacks using hyper-dimensional computing,” arXiv preprint arXiv:2203.08148, 2022.
[30] W. Chen et al., “Adversarial attacks on voice recognition based on hyper dimensional

computing,” JSPS, 2021.
[31] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and

R. Fergus, “Intriguing properties of neural networks,” 2014.
[32] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple and accurate

method to fool deep neural networks,” 2016.
[33] J. X. Morris et al., “Textattack: A framework for adversarial attacks, data augmenta-

tion, and adversarial training in nlp,” 2020.
[34] D. Jin, Z. Jin, J. T. Zhou, and P. Szolovits, “Is bert really robust? a strong baseline for

natural language attack on text classification and entailment,” 2020.
[35] F. Khalid, M. A. Hanif, S. Rehman, J. Qadir, and M. Shafique, “Fademl: Understanding

the impact of pre-processing noise filtering on adversarial machine learning,” 2018.
[36] M. Imani et al., “A binary learning framework for hyperdimensional computing,” in

DATE, pp. 126–131, IEEE, 2019.
[37] A. Rahimi and B. Recht, “Random features for large-scale kernel machines,” in

Advances in neural information processing systems, pp. 1177–1184, 2008.
[38] B. Schölkopf, “The kernel trick for distances,” in NIPS, pp. 301–307, 2001.
[39] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and D. Mukhopadhyay, “Adver-

sarial attacks and defences: A survey,” 2018.
[40] M. Qiu and H. Qiu, “Review on image processing based adversarial example defenses

in computer vision,” in IDS, pp. 94–99, 2020.
[41] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning

models resistant to adversarial attacks,” 2017.
[42] L. Fan, F. Zhang, H. Fan, and C. Zhang, “Brief review of image denoising techniques,”

Visual Computing for Industry, Biomedicine, and Art, vol. 2, p. 7, Jul 2019.
[43] L. Deng, “The mnist database of handwritten digit images for machine learning

research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012.
[44] G. Cohen et al., “Emnist: an extension of mnist to handwritten letters,” 2017.
[45] H. Xiao et al., “Fashion-mnist: a novel image dataset for benchmarking machine

learning algorithms,” 2017.
[46] M. Imani, Y. Kim, T. Worley, S. Gupta, and T. Rosing, “Hdcluster: An accurate clus-

tering using brain-inspired high-dimensional computing,” in 2019 Design, Automation
Test in Europe Conference Exhibition (DATE), pp. 1591–1594, 2019.

[47] M. Imani et al., “Bric: Locality-based encoding for energy-efficient brain-inspired
hyperdimensional computing,” in IEEE/ACM DAC, pp. 1–6, 2019.

8

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:45:56 UTC from IEEE Xplore. Restrictions apply.

