2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD) | 979-8-3503-2225-5/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICCAD57390.2023.10323657

Brain-inspired Trustworthy Hyperdimensional
Computing with Efficient Uncertainty Quantification

Yang Nil, Hanning Chen?, Prathyush Poduval?, Zhuowen Zou!, Pietro Mercati®, and Mohsen Imani

1%

1University of California Irvine, 1"?University of Maryland, ®Intel Labs

*Corresponding author: m.imani@uci.edu

Abstract—Recent advancement in emerging brain-inspired
computing has pointed out a promising path to Machine Learning
(ML) algorithms with high efficiency. Particularly, research in the
field of HyperDimensional Computing (HDC) brings orders of
magnitude speedup to both ML model training and inference
compared to their deep learning counterparts. However, current
HDC-based ML algorithms generally lack uncertainty estimation,
despite having shown good results in various practical appli-
cations and outstanding energy efficiency. On the other hand,
existing solutions such as the Bayesian Neural Networks (BNN)
are generally much slower than regular neural networks and
lead to high energy consumption. In this paper, we propose
a hyperdimensional Bayesian framework called DiceHD, which
enables uncertainty estimation for the HDC-based regression
algorithm. The core of our framework is a specially designed
HDC encoder that maps input features to the high dimensional
space with an extra layer of randomness, i.e., a small number
of dimensions are randomly dropped for each input. Our key
insight is that by using this encoder, DiceHD implements Bayesian
inference while maintaining the efficiency advantage of HDC. We
verify our framework with both toy regression tasks and real-
world datasets. We compare our DiceHD to several widely-used
BNN baselines in terms of performance and efficiency. The results
on CPU show that DiceHD provides comparable uncertainty
estimations while achieving significant speedup compared to the
BNN baseline. We also deploy DiceHD on two FPGA platforms
with different acceleration capabilities, showing that DiceHD
provides up to 84x (3740x) better energy efficiency for training
(inference).

I. INTRODUCTION

In the past ten years, research in the area of deep learning
observed the fast growth of Deep Neural Network (DNN)
based algorithms. We have seen that DNNs fundamentally
change how machine learning interacts with our daily life
through their advancements in natural language processing,
object detection, and reinforcement learning. However, the
complexity of DNNs and the computation cost of using
such networks have also been increasing significantly. This
inevitably leads to a surge of power consumption for training
and inference, which essentially contrasts with the power limit
and efficiency requirements of edge computing. Compared
to the human brain, DNN-based algorithms are surprisingly
inefficient, albeit the fact that neural networks are bio-inspired
to start with.

Therefore, novel brain-inspired computing methods such
as Spiking Neural Networks (SNN) and HyperDimensional
Computing (HDC) are gaining traction because of their better
efficiency [1], [2] and robustness against hardware noise [3]. In

particular, HDC mimics human brain functionalities by learn-
ing and reasoning in high-dimensional spaces with lightweight
operations [4], [S]. This is supported by the finding that
information on sensory inputs is stored in the cerebellum
cortex using high-dimensional neural activity patterns [6].
To enable HDC operations, inputs from the original low-
dimensional space are encoded to vectors with thousands of di-
mensions, i.e., hypervectors. HDC-based algorithms, equipped
with lightweight computations, are usually easily parallelizable
using off-the-shelf hardware accelerators so that the efficiency
is further improved [7]. Prior works [1] show that HDC pro-
vides a significant efficiency boost over other widely-deployed
ML algorithms such as DNN and Support Vector Machine
(SVM). Recent research brings this advantage of HDC to dif-
ferent kinds of learning tasks like classification/clustering [8]—
[10], regression [11] and reinforcement learning [12]-[14],
and it enables low-latency training and inference with less
power consumption. However, current HDC algorithms are not
without limitations.

We observed that HDC-based ML algorithms still lack
the ability to provide uncertainty along with regular
prediction. This ability is a must for safety-critical tasks
where the importance of model trustworthiness and robustness
are particularly emphasized [15]. For example, self-driving
cars should make conservative decisions with high confi-
dence. Predictions without uncertainty can lead to catastrophic
consequences. This is not only a challenge for HDC but
also for DNN because both mainly evolved without Bayesian
statistics. Different from regular ML, Bayesian inference pa-
rameters have a probability distribution instead of a single
value. This key difference enables the analytical expression of
the posterior distribution and predictive distribution through
Bayes’ Theorem. The advantage of Bayesian statistics is that
the posterior predictive distribution accounts for the noise of
observation, model stochasticity, and prior knowledge about
the task. Prior research works try to incorporate this advantage
into the DNN learning process and propose several Bayesian
Neural Networks (BNN) algorithms [16]-[19]. However, to
approximate Bayesian statistics, expensive modifications are
necessary for the original network structure or the training
and inference processes. Unfortunately, existing BNN algo-
rithms bring more computations and larger energy costs in
the learning, compared to already complex DNNs. We believe
the lightweight HDC with uncertainty estimation is a more

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:47:02 UTC from IEEE Xplore. Restrictions apply.

efficient alternative to existing BNN algorithms. We find that
introducing random noise to the HDC encoding process effec-
tively approximates the posterior distribution. This functions
as the key to Bayesian inference while keeping the whole
framework as lightweight as possible.

In this paper, we propose DiceHD, a hyperdimensional
Bayesian framework that enables efficient uncertainty estima-
tion for HDC-based regression algorithm. Our contributions
are summarized as follows:

o Through DiceHD, we overcome a major limitation in exist-
ing HDC-based ML methods, i.e., the inability to provide
uncertainty estimation. Previously, without model confi-
dence, the usability of HDC regression algorithms is limited
in safety-critical tasks. DiceHD, as it incorporates Bayesian
statistics, opens up new opportunities such as more efficient
exploration in optimization.

o We revisit the recent HDC regression algorithm and draw
a connection to the more general Vector Function Archi-
tecture [20]. In essence, we encode the input to a high
dimensional space and we construct the model hypervector
that holographically represents the function to approximate.

« We propose a novel HDC encoder that includes pertur-
bations via randomly dropped dimensions to propagate
the uncertainty estimation in our DiceHD framework. Our
solution, unlike existing BNN methods, introduces few
complications to the original regression, simplifies the train-
ing, and enables computational reuse in the inference. In
Section III-B, we show how this noisy mapping to hy-
perdimensional space effectively approximates the posterior
distribution.

e Our design is evaluated on both CPU and FPGA plat-
forms. We verify DiceHD using several toy regression tasks
and multiple real-world datasets. Through visualization, we
show that DiceHD is able to generate meaningful uncertainty
estimation. Results on real data show that our framework
significantly improves the training and inference efficiency,
compared to BNN baselines. Compared to BNN on FPGA
(or CPU), our design shows a noticeable speedup of up
to 2.5x (17x) for training and 8x(748x) for inference.
DiceHD provides 84 x (3740x) better energy efficiency for
training (inference).

II. RELATED WORK

Bayesian Inference: The Bayesian paradigm utilizes prob-
ability instead of point estimates to represent the belief of
models. This probability is updated as the model observes
more training data points. In the past few years, there has
been a resurgence of interest in Bayesian statistics due to the
need for more informative ML models. There are multiple
challenges in making modern ML algorithms Bayesian, es-
pecially if they are deep. Most of the existing works take
the path of approximating the posterior distribution, which
is often intractable. Markov Chain Monte Carlo (MCMC)
methods have been used to generate samples from desired
posterior distributions [21]-[23]. However, MCMC methods
are hardly scalable, memory-hungry, and time-consuming.

Therefore, methods in the family of Stochastic Variational
Inference (SVI) are considered more suitable for the task.
SVI methods learn a tractable variational distribution that is as
close as possible to the original posterior. Nevertheless, SVI
methods require significant training time and large compu-
tational costs due to the more complex networks [16], [17].
Some prior works enable Bayesian inference through ensemble
methods [18], [19], [24]-[27]. Many of them approximate the
posterior distribution by training multiple models and capture
the model uncertainty through model averaging. However,
training multiple models inevitably increases the runtime
and energy costs. MC-Dropout [18] alleviates this significant
overhead by leveraging neural network dropout layers. It en-
ables uncertainty estimation without training multiple models.
However, the computationally heavy DNN training process
and the multi-layer deep structure significantly increase its
energy consumption. This shows the need for a more efficient
alternative ML algorithm.

Hyperdimensional Computing: For machine learning in
resource-limited environments, HDC is a more efficient al-
ternative computing paradigm compared to DNN. Previous
works have successfully applied HDC to ML tasks of various
natures. Considering supervised training as an example, prior
works propose HDC-based algorithms for real-world regres-
sion [11], [28], bio-signal processing [29], [30], genome se-
quencing [31], [32], drug discovery [33], outlier detection [34],
and spam detection [35]. These works have shown that HDC-
based ML achieves notable energy savings and speedups in
both training and testing, making HDC suitable for machine
learning on CPUs even with tight power budgets. In addi-
tion, researchers have explored various hardware acceleration
strategies to further enhance efficiency [7], [8], [11], [36], [37].
For example, the recent work [11] accelerates the HDC-based
regression using FPGA and outperforms several baselines on
runtime and energy costs. However, existing HDC algorithms
failed to include uncertainty while doing predictions; and our
goal is to fix this shortcoming while maintaining the high
efficiency of HDC.

III. DiceHD: ENABLING EFFICIENT BAYESIAN HDC

Fig. 1 presents an overview of our DiceHD, and compares it
with the non-Bayesian hyperdimensional regression algorithm.
In Section III-A, we briefly introduce the regular algorithm that
only provides point estimates. In Section III-B, we propose to
incorporate uncertainty estimation into HDC-based regression.

A. VFA & Hyperdimensional Regression

In this section, we provide the intuition behind the HDC-
based regression algorithm from the angle of Vector Function
Architecture (VFA) [20]. VFA is regarded as an extension
of the hypervector-based representation in HDC mathematics.
One key insight of VFA is that we can define a function space
where functions can be represented using high-dimensional
vectors. More importantly, HDC operations are compatible and
meaningful in this function space. To begin with, we define
a function in the form of a weighted kernel sum: f(z) =

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:47:02 UTC from IEEE Xplore. Restrictions apply.

Input
S Encoded Input Single Point
H Hypervector S Estimate
Zi HDC | S1 |". | So4 | So |E(> Predicted
m Encoder Value Vg
[Ry [eee[Ros]| Ro |
E Regression Model
Hypervector R (a) Regular HDC Regression
(b) Bayesian HDC Regression
InPUt — Dropped Multi-pass
s HDC Encoded Input Inference
- Hypervector S
S1 Encoder | Z |'" | Sou I 5 | Predicted
B ! Distribution
>=> Random (Voreal5.R)
ﬂ Dimension | R: |0" | Ro1 | Ro | P(Vpredls,
m Drop Regression Model
— H tor R
HDC Bayesian Encoder ypervector n

Fig. 1. Comparison between DiceHD and non-Bayesian HDC-based re-
gression algorithm: (a) Basic structure of regular regression that gives point
estimates. (b) Overview of our proposed DiceHD, which approximates
predictive distribution through a noisy HDC Bayesian encoder.

>k kK (z—xy). When K is a universal, translation-invariant,
and positive-definite kernel, we can represent any continuous
function through this representation. ays are model parameters
learned via supervised training. The function representation is
obtained in VFA as follows:

f@) =Y, anK(z —z1) = 3, ard(zr)d(z) = yFo(z) (1)

where y, = >, ar¢(xy) is the vector representation of f(-)
and ¢(-) is the mapping defined by the kernel K.

However, the exact mapping ¢ is often intractable if the
kernel implicitly maps inputs to an infinite-dimensional space
like the Radial basis function (RBF). There are also unknown
kernels that do not have explicit mapping. On the other
hand, functions represented using kernels need to accumulate
through all training samples for each prediction, which is
not scalable. To solve these challenges, prior work in [38]
proposes that with a large but finite dimensional mapping Z,
the shift-invariant kernel K as the one defined above can be
approximated using inner-products:

K(xm - xn) ~ ZD(ij)TZD(xn) 2

where D is the dimensionality of the mapping. Authors in [38]
provide several practical measures to design the mapping Z
that corresponds to known kernels. In this paper, we focus on
one of them that approximates the RBF kernel and it is defined

as follows:
2 - R
Zp(x) = 1/BCOS(H$+B) 3)

H is a vector of dimension D with its elements randomly
sampled from standard Gaussian distribution A(0,1) and B
functions as a bias vector with elements sampled from uniform
distribution ¢/ (0, 27). Once they are randomly generated, we
keep them fixed during the later learning and inference.

In HDC-based regression, by using Equation (1), (2),
and (3), we can construct a hyperdimensional representation
of function, similar to yj, with the mapping Zp: R =

"l LoDl s] Sy

.oe Bias B Diﬂsgﬂ(%::)!g“ R?J]‘:;(’“
N OERIOIO) L
(T [Tama Hon FCOH 2 | cost) Ho)—ml—s1]

Gaussian

Distribution|
N(0,1]
)| T Toow [Aama] Aan (b2 H_cost) FoOma—{s:]
. . . : . .
.

Matrix
H

Encoded
Input
S

Fig. 2. Overview of DiceHD HDC Bayesian encoder: input § is mapped to
hypervector .S through a stochastic encoding process.

>k 0kZp(xy). We refer to this mapping Zp as an HDC
encoder that outputs encoded hypervectors Zp(x). The rep-
resentation R shows that we can approximate the function
through a weighted sum of encoded training samples, which
makes itself also a hypervector. In addition, we refer to R
as the model hypervector, and the inference is simply the
inner-product between the model and encoded hypervector:
f(x) = RTZp(x). Notice that the complex conjugate is
omitted because Zp(x) has only real components. To update
the model hypervector R, we feedback the prediction error
as the weight for the corresponding encoded input. Assume a
true value Vi, and a predicted value Vi, eq = RTZ p(xg), the
update step for the model is: R =R+ (Virue — Vpred) Zp (Tk).
This update process is essentially tuning the parameter oy, for a
particular training sample zj, through the hypervector element-
wise add/subtract operation, which is highly parallelizable and
lightweight.

B. Hyperdimensional Regression with Uncertainty Estimation

In this section, we propose a noisy HDC encoder and
describe how it contributes to an HDC-based regression
with Bayesian uncertainty included. The regression men-
tioned above with VFA provides only point estimates with
a deterministic HDC encoder, which is unable to inject the
uncertainty during training. We found that it is effective to
randomly drop dimensions in the HDC encoder to implement
stochastic perturbations.

1) HDC Bayesian Encoder: Fig. 2 shows the structure of
the HDC Bayesian encoder with randomly dropped dimen-
sions. Our design follows the VFA mathematics as introduced
in Section III-A. In this figure, we assume a multi-feature
input vector § = {s1, 82,..., S, } instead of a single value x.
We define an encoder matrix H = {I—fl,ﬁg, .. .,an} with
size n x D, of which the elements are randomly generated:
H, € NP(0,1). The bias is defined as: B € UP(0,2r).
The main difference in this encoder is that some of the
dimensions in the encoded hypervector S are set to zeros or
dropped. We show this modification in Fig. 2 as a randomly
generated mask M with its elements m € Bernoulli(pg).
For performance considerations on hardware platforms, the
encoded inputs without dropped dimensions may be saved for
computational reuse in the iterative model update as well as for
inference. As shown in the figure, the encoded hypervectors

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:47:02 UTC from IEEE Xplore. Restrictions apply.

are represented as:

Zp(5) = —cos(HT§+ B)oM 4)

2) Approximate Posterior Distribution: We show next how
DiceHD enables Bayesian inference through this noisy en-
coder. Fig. 3 presents the model update process in DiceHD. If
we recall the regular HDC regression inference equation from
Section III-A, we get the new single-pass inference equation:

o o 2 L
Virea = RTS = RT (\/;cos(’HTé'—i— B)o M) %)

To model the uncertainty, it is crucial to learn the posterior
distribution conditioned on all training samples. It is defined
using the Bayes’ theorem as follows:

p(VIS, R)p(R)
[p(VIS, R)p(R)dR

where {8, V} refers to the training dataset. The posterior is
focused on R, since the training process only updates the
model hypervector R instead of the HDC encoder H and
B. The prediction with uncertainty is obtained through the

predictive distribution:

p(R|S, V) = (6)

P(Vpred|5, S, V) = / p(Vpreal3, R)p(R|S, V)R (7)

The main difficulty in calculating the accurate predictive
distribution is that the Equation (6) is intractable, and more
specifically, the integration over the model R. Therefore, the
only way to deal with it is by approximating the intractable
posterior distribution. One standard method is Variational
Inference as mentioned in Section II, where a surrogate vari-
ational distribution q(f_é) is used in place of the real posterior
p(R|S, V). To ensure that q(R) is a good approximation, we
can minimize the Kullback—Leibler (KL) divergence between
these two distributions: min_ g KL (q(ﬁ)Hp(ﬁ\S,V) . In
most cases, KL divergence is not minimized in its original
form because this requires again the exact posterior. Instead,
we rearrange the terms and maximize the log evidence lower
bound [39]:

J = [a(R)log p(VIS, R)dR — KL(¢(R)|Ip(R)) ~ (®)

The first term in this objective can be factorized as
a sum in terms of each training sample {5, Vj}, as-
summg K is the total number of training data points:
Zk L Ja(R)log p (Vie| 5)dR Then we apply Monte Carlo
integration for each term in this sum to avoid the exact com-
putation of integral, i.e., we sample a realization R~ q(ﬁ)
In addition, we assume that p(V;|5), B) follows a Gaussian
distribution with precision 7 and mean Vj. Finally, we get the
corresponding loss function:

— ko1 108 Par(vi 1) (Velk, B) + KL(q(R)|[p(R)) (9)

To support the variational inference as formulated above,
we need to construct a proper variational distribution ¢(R). In

Lyc =

True Value
Encoded Input Virue

Hypervector S =)

(el smse] _®s
Value V.,
[R1 lcoc l le Rp | Lightweight A

Regression Model
Hypervector R

Model Update
Error VineVipred

with L, Regularization

Fig. 3. Model hypervector update process in DiceHD: minimize the KL
divergence through lightweight hypervector operations.

DiceHD, this is achieved through adding a random mask in
the HDC Bayesian encoder. Equation (5) can be rearranged
as: Vipreq = (R o M)T(\/%COS(HTg-F B)). This allows us
to define the Varlanonal distribution on the model hypervector
R as: q(R) = Hd 19(rm), where ¢(ry,) is assumed to be a
Gaussain mixture model with a Bernoulli mask embedded:

q(rm)

In this equation, pp is the probability for the Bernoulli mask
to be 1, i.e., the corresponding dimension is retained. 7 is the
expected mean value of the model hypervector element and o
is a positive standard deviation of the Gaussian model. From
Equation (10), we observe that a noisy HDC encoder not only
perturbs the encoded results but also can be equivalently added
onto the variational distribution q(ﬁ) as element dropping.
In this case, the KL divergence term in Equation (9) can be
further approximated by following [18]. It provides a way to
approximate the KL divergence between a Gaussian mixture
and a single Gaussian, especially when the dimensionality is
high and therefore applies to our case:

=psN(r,0®) + (1 —pp)N(0,6°) (10)

K

1 7)2 PB |32
£o<;2K(Vk Vi)’ + 5 lIBIE Ay
This can also be intuitively understood as a likelihood function
plus an extra regularization term. They ensure that the regres-
sion will converge to the true values, and prevent overfitting
and deviating too much from the prior distribution through the
KL divergence.

One advantage of regular HDC-based algorithms lies in the
efficient training process. Our DiceHD maintains a lightweight
hypervector update process compared to the one defined in
Section III-A. As presented in Fig. 3, the model hypervector is
updated with feedback from the prediction error Viyye — Vpred-
The loss function in Equation (11) can be minimized through
simple element-wise operations with learning rate +:

R (1 — 'YP%) R' + ’Y(Vtme - Vm‘ed)g

12)

3) Bayesian Inference: In inference, we apply model av-
eraging by having testing samples evaluated for several iter-
ations, and then obtain the mean predicted value py,.., and
standard deviation oy, . During each iteration, the random

mask is regenerated for R. We can also compute the log

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:47:02 UTC from IEEE Xplore. Restrictions apply.

(a) Encoding Matrix

! I
! (b) Cosine IP I (c) Systolic Array IP
S = p—— | :
B oo H @ A [Ax) alfl = | D}DRl EI;DRZ
H = X Hnl 3 |) 7 T) I : H | 1101...01 : : T :
Input AXI Interconnect IP | | E——— | D
e B
seed — Systolic Array | vp Vi | el ! }_) :-I:-I:
PEHPEHPE O] | » ! Es E»
pE-PE-PE i | & |
| = : R3 Ra
buft PEHPEHPE [~ Ol g ! D;D | D}D
uffers 0 7 ol | LI
o i | ! []
Z: 1 ; r{(B1[=[Bo] Re[== [Ro L2 P | BRAM ! ; | 500 . |
eyl [Es1] - [Es0] P bias HDV reg HDV ! | 3

Fig. 4. (a) Online bayesian learning FPGA acceleration architecture. V}, is the batch prediction value vector, and V% is the true value vector. (b) The cosine
kernel function IP implementation. (c) The systolic array IP architecture design.

predictive distribution, i.e., log-likelihood, by a Monte Carlo
integration of Equation (7):

log p(Vyreal5, 5, Vi) ~ / p(Vyredl5, R)a(R)dER

1 e
~ log T;p(vpredlsﬁ) (13)

1
= logsumexp |:—27'(V;:rue - V};red)2] -C

where the constant C' = logT — Jlog2r — flogr—'. T is
the number of inference passes and we use the variational
distribution ¢(R) to replace the intractable p(R) before Monte
Carlo integration.

To summarize, the noisy DiceHD HDC encoder contributes
to a practical variational distribution that can be efficiently
optimized, leading to a posterior predictive distribution for
regression with uncertainty estimation. Compare to the reg-
ular HDC-based regression, the whole process especially the
training still remains lightweight as defined in Section III-A.

C. FPGA acceleration for DiceHD

Fig. 4(a) shows the acceleration architecture of DiceHD
on FPGA. The host CPU will load input data and random
seed into the kernel FPGA via Xilinx AXI DMA IP. The
random seed is mainly used for the drop IP to generate
random numbers. For each training or inference iteration, the
drop IP will decide each dimension of the hypervector to be
0 (drop) or the original value (not drop). As is shown in
Figure 4(b), for hardware cosine function implementation, we
adopt the triangle codebook method to efficiently implement
cosine encoder IP for kernel encoding [7], [40]. Compared
to Taylor expansion or Xilinx CORDIC IP, using on-chip
BRAM to store pre-compute cos value and treating each fixed-
point number as memory access address are much faster and
more efficient on FPGA. Specifically, since each hypervector
element’s precision is fixed-point, we can use it as an input
address to access on-chip storage (such as BRAM) where we
pre-store all possible cosine values. Since for cosine function,
its valid input is only in the range [—m, 7], we will first
quantize the input element into this range and then access
BRAM to get the corresponding cosine value.

| Training Data Testing Data === Mean [] Uncertaintyl

0.4] Fal .04 /\
0.2 |02 %
~ 0 { \ I~ 0 i
0.2 § D02 S \
-0.4 \J == -04 \
- | 06
4 -2 0 2 4 6 8 | 4 2 0 2 4
x (@) (b) x

Fig. 5. Visualizations for the DiceHD regression with uncertainty estimation

Training Data 4.0
Testing Data 3.5 4
3.0

— >

Mean 25 /
0 Uncertainty 2.0 ,'l

(pg=0.95) 1.5
o Uncertainty 1.0

(pg=0.975) 5 -4 -3 -2 -1 0

X

Fig. 6. DiceHD uncertainty estimation with different Bernoulli probabilities

After finishing the encoding process, the encoded hypervec-
tor will simultaneously forward to systolic array IP and AXI
Interconnect IP, which means we do not need to conduct the
rest training of inferring epochs encoding operation anymore.
We use a Systolic Array IP to perform regression operations
and generate the predicted value. As is shown in Figure 4,
to simplify the FPGA synthesize and placement difficulty,
instead of using a single large dimension systolic array, we
cut the hypervector regression operation into small chunks [41]
and assign each small chunk computation to a small systolic
array IP. After all small systolic array finish computation, we
perform a concatenation operation to generate the predicted
value V},. Compared to traditional DNN training [42], an HDC-
based FPGA accelerator is much easier to support on-chip
online learning, which means our platform can support both
training and inference. The first advantage is that HDC-based
model training does not need too much power-hungry DSP.
The second advantage is that we only need to update a single
hypervector instead of multiple layers.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

To evaluate our Bayesian HDC framework, we imple-
ment DiceHD on both CPU and FPGA platforms. The CPU

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:47:02 UTC from IEEE Xplore. Restrictions apply.

TABLE I
REGRESSION QUALITY COMPARISON ON REAL-WORLD TASKS ACROSS DIFFERENT BAYESIAN INFERENCE ALGORITHMS

| R2 | Log-likelihood

Variational Stein MC Our Variational Stein MC Our
Dataset Inference PBP VI Dropout Design Inference PBP VI Dropout Design
Boston Housing 0.86 0.89 0.88 0.89 0.89 -2.90 -2.57 -2.68 -2.40 -2.52
Propulsion Plant 0.87 087 084 0.99 0.98 3.73 3.73 3.68 4.38 4.12
Power Plant 0.95 095 094 0.95 0.94 -2.89 -2.84 -3.17 -2.80 -2.84
Wine Quality Red 0.39 0.40 041 0.42 0.39 -0.98 -0.97 -0.97 -0.92 -0.97
Computer Activity - - 0.97 0.97 0.96 - - -3.15 -2.49 -2.68
Stock - - 0.98 0.98 0.98 - - -2.14 -1.26 -1.33
Geographical Analysis - - 0.68 0.68 0.68 - - 0.76 0.77 0.76

=
(=3
o

‘ []BNNonCPU [|HDConCPU [|BNN onZynqZCU104 [] HDC onZynqZCU104 []| BNN on Alveo U50 [|HDC on Alveo U50 ‘

s 17X
B
:.;_ 10 4.2X
o 1.6X
(E 1
=

0.1

Housing Propulsion Power Wine CompAct Stock Geographic Average
Fig. 7. Training runtime speedup comparison on CPU and two FPGAs. The speedup is normalized to the BNN (MC-Dropout) runtime on the CPU.
‘ [JBNNonCPU []HDConCPU [|BNNonZynqZCU104 [| HDC onZynqZCU104 [| BNN on Alveo U50 [| HDC on Alveo US0 |

10K
E 748X
g 1K 187X
o

100
% 11X,
» H H H
2 1
£
oD i i] l]] i

Housing Propulsion Power Wine CompAct Stock Geographic Average

Fig. 8. Inference runtime speedup comparison. The speedup is normalized to the BNN (MC-Dropout) runtime on the CPU.

is Intel Core i7-10700; and for FPGA, we choose Xilinx
Zynq ZCU104 and Alveo U50. Our CPU implementation
uses Python with Scikit-learn. We also used the Xilinx Vitis
framework to conduct the communication between CPU and
FPGA via PCle [43]. We select multiple regression workloads
that are comprised of toy datasets as well as real-world
regression tasks. We provide visualizations for the DiceHD
regression and uncertainty estimation on 1-D toy datasets.
As for multi-dimensional practical regression tasks, we select
several publicly available datasets from UCI Machine Learning
Repository [44] and OpenML [45]. Our baselines include
several widely-deployed BNN algorithms such as direct varia-
tional inference (VI), probabilistic backpropagation (PBP), and
dropout-based approximation [18], [25], [27], [46]-[48]. The
neural network used in BNN baselines has two hidden layers
and each has 50 neurons. For DiceHD, we use hypervectors
with dimensionality D 2000. Similar to other dropout-
based BNNs, we use grid search to find the suitable setting of
Bernoulli probability pp (in the range of 0.95 to 0.995) and
estimate the precision 7. We set the training iterations to 200
and the number of inference iterations to 7' = 300. For each
practical regression task, we use 20 random splits and average
the prediction, training runtime, and testing runtime.

B. Toy Workloads Visualization

In Fig. 5. we show the visualization of DiceHD Bayesian
regression on a noisy and partially observable sine function.
For (a) and (b), the parts of available training data points
are different. The mean value prediction is shown in a solid
curve and the uncertainty (£30) is shown as the shady area.
We notice that DiceHD predicts the testing data with lower
accuracy where training data is not presented, however, it gives
a significantly higher uncertainty in those areas. This shows
that the DiceHD model is not confident about the prediction.

In Fig. 6, we visualize the results of DiceHD with a
slightly more complex example where training data points are
separated into two clusters. We show the effect of different
Bernoulli probabilities on uncertainty estimation: the range
of uncertainty increases when we tune down pp and vice
versa. As shown in this figure, the model is highly unsure
about the prediction in —3 < & < —2 due to the lack of
training data, and the prediction converges with the presence of
training data points. Notice that the uncertainty is not zero even
with training data, and this is because the data contains noise
during training. It is expected during Bayesian inference since
the model uncertainty should also account for the observation
noise.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:47:02 UTC from IEEE Xplore. Restrictions apply.

TABLE II
DESIGN ACCELERATION ON XILINX ALVEO U50 WHEN BATCH SIZE IS 8, FREQUENCU IS 200 MHZ AND THE FPGA POWER CONSUMPTION IS 22W. AT
ZYNQ ULTRASCALE+ ZCU104, THE BATCH SIZE IS 1, FREQUENCY IS 200MHZ, AND THE FPGA POWER CONSUMPTION IS 7.7W.

| Xilinx Alveo U50 | ZCU 104
Name ‘ LUT FF DSP BRAM URAM ‘ LUT FF DSP BRAM URAM
Total 797K 1458K 3 806 0 167.6K 227.5K 3 132 0
Available 872K 1743K 5952 1344 640 230K 460.8K 1728 312 96
Utilization | 91.3% 83.6% ~0% 59.9% 0% 72.8% 49.3% ~0% 42.3% 0%

| Z]BNN on cPU [[] HDC on CPU BNN on Zynq ZcU104 [l HDC on Zynq ZCU104 /7 BNN on Alveo U50 [Jl] HDC on Alveo U50

Training
Energy Efficiency

Housing Propulsion

Fig.

Hﬂ%l%l HH

Stock Geographic

CompAct Average

9. Training energy efficiency comparison across hardware platforms. The results are normalized to BNN (MC-Dropout) energy consumption on CPU.

‘ [/)BNNonCPU [[]HDC onCPU [ZJBNN on Zynq zcu104 [l HDC on Zyng ZCU104 /ZZ BNN on Alveo U50 [l HDC on Alveo U50 ‘

-
=)
=}
x

-
= 2
A X

Inference
Energy Efficiency
-
-
o Qo

Housing Power Wine

Propulsion

mH%I%I mH%I%| ﬂﬂ%l%l ﬂﬂ%l%l al

Stock Geographic

Average

CompAct

Fig. 10. Cross-platform inference energy efficiency comparison. The results are normalized to BNN (MC-Dropout) energy consumption on CPU.

C. Regression Accuracy & Uncertainty Estimation

Table I compares the Bayesian inference quality of DiceHD
with baseline BNN algorithms. We implement MC-Dropout
using the open-sourced code provided by the original authors
and Stein-VI using the Pyro framework [49]. We report the
results for 7 different datasets that focus on different regression
tasks. The results of some datasets are omitted for variational
inference and PBP since they are not reported in original
papers. We select two metrics, coefficient of determination
(R?) and log-likelihood, to evaluate the regression quality and
the uncertainty estimation respectively. The log-likelihood, as
defined in Section III-B3, represents the posterior probability
density function for the prediction. For both metrics, the
higher value means better quality. In terms of the regression
quality across all tested datasets, DiceHD achieves comparable
R? value and log-likelihood to the best algorithm among
baselines.

We also observe that, on average, MC-Dropout achieves the
highest R? and log-likelihood when compared to other BNNs.
In addition, it also has a smaller computational overhead
than variational inference and a relatively more lightweight
structure than the probabilistic network in PBP, making itself
a strong baseline. In the following sections, we will focus
on comparing MC-Dropout with our DiceHD in terms of
Bayesian inference efficiency on various hardware platforms.

D. Runtime & Energy Efficiency

This parameter tuning overhead is not included in the
training runtime for both DiceHD and MC-dropout, however,
our method has a much smaller overhead thanks to the fast
learning and inference.

Table II presents the resource utilization of DiceHD accel-
eration on Xilinx Alveo U50 and Zynq Ultrascale+ ZCU104.
We suppose the batch size and frequency for both training and
inferring are 8 and 200 MHz on Alveo U50. For ZCU104, due
to limited resources, we set the batch size to 1 and keep the
FPGA frequency still as 200 MHz. As the baseline to our
FPGA acceleration, we also implement MC-Dropout on these
two FPGAs mentioned above. We use Xilinx deep-learning
processor unit (DPU) [50] for efficient implementation of
the BNN inference. We perform the training acceleration
on FPGA boards based on previous DNN FPGA training
frameworks [42], [51].

Fig. 7 and Fig. 8 compare the training and inference
runtime of DiceHD with BNN (MC-Dropout) when running
both algorithms on CPU (Intel Core i7-10700) and FPGAs
(Zynq ZCU104 and Alveo U50). The results are normalized
as speedup when compared to MC-Dropout runtime on the
CPU. We compare the training runtime for each regression
task in Fig. 7 and compute the geometric average over all the
tasks. DiceHD is, on average, 60% faster than the baseline on
CPU and 17x faster after our FPGA acceleration on Alveo
US50. In contrast, MC-Dropout on Alveo U50 shows a smaller

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:47:02 UTC from IEEE Xplore. Restrictions apply.

speedup of 6.7x, compared to its CPU implementation. As
for results collected on the Zynq FPGA, the speedup values
are generally lower (about 4.2x for HDC and 1.1x for MC-
Dropout) mainly because of its low power consumption. Fig. 8
compares the inference runtime. On average, DiceHD achieves
an 11x speedup over the MC-dropout baseline on CPU; the
speedup is 187 x and 748 if with FPGA acceleration on Zynq
ZCU104 and Alveo US50.

We also compare the energy efficiency between DiceHD
and the baseline BNN (MC-Dropout) in terms of the training
cost (Fig. 9 and inference cost (Fig. 10. On CPU, thanks to
the smaller runtime costs, our HDC-based method provides
significantly better energy efficiency than the baseline, i.e.,
1.6x (11x) improvement for training (inference). With FPGA
acceleration, DiceHD achieves up to 84x and 3740x better
energy efficiency on Alveo U50 for training and inference,
respectively. Compared to the CPU, the FPGA acceleration
shows advantages in both power consumption and runtime.
The power consumption of DiceHD on Alveo US50 is only
22W and 7.7w for Zynq ZCU104, which are much smaller
than the CPU (around 100W).

V. CONCLUSION

In this paper, we propose DiceHD, a hyperdimensional
Bayesian framework that enables efficient uncertainty estima-
tion for HDC-based regression algorithm. We propose a noisy
HDC encoder that leads to an approximation of the true pos-
terior distribution. DiceHD provides meaningful uncertainty
estimations while also achieving significant speedup in both
training and inference compared to the BNN baseline.

ACKNOWLEDGEMENTS

This work was supported in part by DARPA Young Faculty
Award, National Science Foundation #2127780 and #2312517,
and #2319198, Semiconductor Research Corporation (SRC),
Office of Naval Research, grants #N00014-21-1-2225 and
#N00014-22-1-2067, the Air Force Office of Scientific Re-
search, grants #FA9550-22-1-0253, and generous gifts from
Xilinx and Cisco.

[1]

[2]
[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]
(23]
[24]
[25]

[26]

REFERENCES

A. Hernandez-Cane, N. Matsumoto ef al., “Onlinehd: Robust, efficient,
and single-pass online learning using hyperdimensional system,” in 2021
DATE. IEEE, 2021, pp. 56-61.

H. Fang, B. Taylor et al., “Neuromorphic algorithm-hardware codesign
for temporal pattern learning,” in DAC. IEEE, 2021, pp. 361-366.

P. Poduval, Y. Ni et al., “Adaptive neural recovery for highly robust
brain-like representation,” in Proceedings of the 59th ACM/IEEE Design
Automation Conference, 2022, pp. 367-372.

P. Kanerva, “Hyperdimensional computing: An introduction to comput-
ing in distributed representation with high-dimensional random vectors,”
Cognitive computation, vol. 1, no. 2, pp. 139-159, 2009.

P. Poduval, H. Alimohamadi et al., “Graphd: Graph-based hyperdi-
mensional memorization for brain-like cognitive learning,” Frontiers in
Neuroscience, vol. 16, p. 757125, 2022.

C. J. Stoodley, “The cerebellum and cognition: evidence from functional
imaging studies,” The Cerebellum, vol. 11, no. 2, pp. 352-365, 2012.
M. Imani, Z. Zou et al., “Revisiting hyperdimensional learning for fpga
and low-power architectures,” in 2021 IEEE HPCA. IEEE, 2021, pp.
221-234.

J. Morris, K. Ergun, B. Khaleghi et al., “Hydrea: Towards more
robust and efficient machine learning systems with hyperdimensional
computing,” in 2021 Design, Automation & Test in Europe Conference
& Exhibition (DATE). 1EEE, 2021, pp. 723-728.

Y. Ni, Y. Kim, T. Rosing, and M. Imani, “Algorithm-hardware co-design
for efficient brain-inspired hyperdimensional learning on edge,” in 2022
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2022, pp. 292-297.

M. Imani, A. Zakeri et al., “Neural computation for robust and holo-
graphic face detection,” in Proceedings of the 59th ACM/IEEE Design
Automation Conference, 2022, pp. 31-36.

A. Herndndez-Cano, C. Zhuo et al., “Reghd: Robust and efficient re-
gression in hyper-dimensional learning system,” in 2021 58th ACM/IEEE
Design Automation Conference (DAC). 1EEE, 2021, pp. 7-12.

Y. Ni, M. Issa et al, “Hdpg: hyperdimensional policy-based rein-
forcement learning for continuous control,” in Proceedings of the 59th
ACM/IEEE Design Automation Conference, 2022, pp. 1141-1146.

Y. Ni, D. Abraham, M. Issa, Y. Kim, P. Mercati, and M. Imani, “Efficient
off-policy reinforcement learning via brain-inspired computing,” arXiv
preprint arXiv:2205.06978, 2022.

M. Issa, S. Shahhosseini et al., “Hyperdimensional hybrid learning on
end-edge-cloud networks,” in 2022 IEEE 40th International Conference
on Computer Design (ICCD). 1EEE, 2022, pp. 652-655.

H. Kumar et al., “Towards improving the trustworthiness of hardware
based malware detector using online uncertainty estimation,” in DAC.
IEEE, 2021, pp. 961-966.

C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural network,” in International conference on machine
learning. PMLR, 2015, pp. 1613-1622.

M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, “Stochastic
variational inference,” Journal of Machine Learning Research, 2013.
Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in international
conference on machine learning. PMLR, 2016, pp. 1050-1059.

B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” Advances in
neural information processing systems, vol. 30, 2017.

E. P. Frady, D. Kleyko, C. J. Kymn, B. A. Olshausen, and F. T. Sommer,
“Computing on functions using randomized vector representations,”
arXiv preprint arXiv:2109.03429, 2021.

S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, “Hybrid
monte carlo,” Physics letters B, vol. 195, no. 2, pp. 216-222, 1987.

R. M. Neal et al., “Mcmc using hamiltonian dynamics,” Handbook of
markov chain monte carlo, vol. 2, no. 11, p. 2, 2011.
R. M. Neal, Bayesian learning for neural networks.
& Business Media, 2012, vol. 118.

T. Fushiki, “Bootstrap prediction and bayesian prediction under mis-
specified models,” Bernoulli, vol. 11, no. 4, pp. 747-758, 2005.

Y. Gal, J. Hron, and A. Kendall, “Concrete dropout,” Advances in neural
information processing systems, vol. 30, 2017.

I. Osband, C. Blundell et al., “Deep exploration via bootstrapped dqn,”
Advances in neural information processing systems, vol. 29, 2016.

Springer Science

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:47:02 UTC from IEEE Xplore. Restrictions apply.

[27] X. Fan, S. Zhang, K. Tanwisuth et al., “Contextual dropout: An efficient
sample-dependent dropout module,” arXiv preprint arXiv:2103.04181,
2021.

[28] M. Hersche et al., “Integrating event-based dynamic vision sensors with
sparse hyperdimensional computing: a low-power accelerator with on-
line learning capability,” in Proceedings of the ACM/IEEE International
Symposium on Low Power Electronics and Design, 2020, pp. 169—-174.

[29] A. Burrello et al., “Hyperdimensional computing with local binary pat-
terns: One-shot learning of seizure onset and identification of ictogenic
brain regions using short-time ieeg recordings,” IEEE Transactions on
Biomedical Engineering, vol. 67, no. 2, pp. 601-613, 2019.

[30] Y. Ni, N. Lesica, F.-G. Zeng, and M. Imani, “Neurally-inspired hyper-
dimensional classification for efficient and robust biosignal processing,”
in Proceedings of the 41st IEEE/ACM International Conference on
Computer-Aided Design, 2022, pp. 1-9.

[31] Z. Zou, H. Chen et al., “Biohd: an efficient genome sequence search
platform using hyperdimensional memorization,” in Proceedings of the
49th Annual International Symposium on Computer Architecture, 2022,
pp. 656-669.

[32] H.E. Barkam, S. Yun, P. R. Genssler et al., “Hdgim: Hyperdimensional
genome sequence matching on unreliable highly scaled fefet,” in DATE.
IEEE, 2023, pp. 1-6.

[33] D. Ma, R. Thapa, and X. Jiao, “Molehd: Drug discovery us-
ing brain-inspired hyperdimensional computing,” arXiv preprint
arXiv:2106.02894, 2021.

[34] R. Wang, X. Jiao, and X. S. Hu, “Odhd: one-class brain-inspired
hyperdimensional computing for outlier detection,” in Proceedings of
the 59th ACM/IEEE Design Automation Conference, 2022, pp. 43-48.

[35] R. Thapa, B. Lamichhane, D. Ma, and X. Jiao, “Spamhd: Memory-
efficient text spam detection using brain-inspired hyperdimensional
computing,” in ISVLSI. 1EEE, 2021, pp. 84-89.

[36] B. Khaleghi et al., “tiny-hd: Ultra-efficient hyperdimensional computing
engine for iot applications,” in DATE. IEEE, 2021, pp. 408-413.

[37] A. Kazemi, F. Miiller, M. M. Sharifi, H. Errahmouni et al., “Achiev-
ing software-equivalent accuracy for hyperdimensional computing with
ferroelectric-based in-memory computing,” Scientific reports, vol. 12,
no. 1, p. 19201, 2022.

[38] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” NIPS, vol. 20, 2007.

[39] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine
learning. Springer, 2006, vol. 4, no. 4.

[40] H. Chen, M. Issa et al., “Darl: Distributed reconfigurable accelerator for
hyperdimensional reinforcement learning,” in Proceedings of the 41st
IEEE/ACM ICCAD, 2022, pp. 1-9.

[41] H. Chen, M. H. Najafi et al., “Full stack parallel online hyperdimensional
regression on fpga,” in 2022 IEEE 40th International Conference on
Computer Design (ICCD). IEEE, 2022, pp. 517-524.

[42] T. Wang, T. Geng, A. Li, X. Jin, and M. Herbordt, “Fpdeep: Scalable
acceleration of cnn training on deeply-pipelined fpga clusters,” IEEE
Transactions on Computers, vol. 69, no. 8, pp. 1143-1158, 2020.

[43] V. Kathail, “Xilinx vitis unified software platform,” in ACM/SIGDA
FPGA 2020, 2020, pp. 173-174.

[44] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[45] J. Vanschoren, J. N. Van Rijn, B. Bischl, and L. Torgo, “Openml:
networked science in machine learning,” ACM SIGKDD Explorations
Newsletter, vol. 15, no. 2, pp. 49-60, 2014.

[46] A. Graves, “Practical variational inference for neural networks,” Ad-
vances in neural information processing systems, vol. 24, 2011.

[47] J. M. Hernandez-Lobato and R. Adams, “Probabilistic backpropagation
for scalable learning of bayesian neural networks,” in International
conference on machine learning. PMLR, 2015, pp. 1861-1869.

[48] Q. Liu and D. Wang, “Stein variational gradient descent: A general
purpose bayesian inference algorithm,” Advances in neural information
processing systems, vol. 29, 2016.

[49] E. Bingham, J. P. Chen, M. Jankowiak et al., “Pyro: Deep Universal
Probabilistic Programming,” JMLR, 2018.

[50] X. Zhang et al., “Dnnexplorer: a framework for modeling and exploring
a novel paradigm of fpga-based dnn accelerator,” in ICCAD, 2020, pp.
1-9.

[51] Y. Tang, X. Zhang, P. Zhou, and J. Hu, “Ef-train: Enable efficient
on-device cnn training on fpga through data reshaping for online
adaptation or personalization,” ACM Transactions on Design Automation
of Electronic Systems (TODAES), vol. 27, no. 5, pp. 1-36, 2022.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:47:02 UTC from IEEE Xplore. Restrictions apply.

