
Reliable Hyperdimensional Reasoning on

Unreliable Emerging Technologies

Hamza Errahmouni Barkam1,∗, Sanggeon Yun1,∗, Hanning Chen1, Paul Gensler2, Albi Mema2, Andrew Ding1

George Michelogiannakis3, Hussam Amrouch2,4,5, and Mohsen Imani1,†

1University of California Irvine, 2University of Stuttgart, 3Lawrence Berkeley National Laboratory,
4Munich Institute of Robotics and Machine Intelligence, Technical University of Munich

4Chair of AI Processor Design, Technical University of Munich
∗Equal contributions, †Correspondance: m.imani@uci.edu

Abstract—While Graph Neural Networks (GNNs) have demon-
strated remarkable achievements in knowledge graph reasoning,
their computational efficiency on conventional computing plat-
forms is impeded by the memory wall problem. To overcome these
challenges, we introduce an innovative algorithm-hardware solu-
tion that harnesses the potential of hyperdimensional computing
(HDC) for robust and memory-centric computation on computing
in-memory (CiM) platforms. Departing from traditional graph
neural networks, the proposed HDC reasoning model employs a
symbolic approach to effectively encode graph entities and their
relationships as high-dimensional neural activity. Complementing
this approach is a customized Computing-in-Memory (CiM) ar-
chitecture based on advanced Ferroelectric Field-Effect Transistor
(FeFET) technology, which incorporates a precise characterization
of non-idealities. This modeling enables the generation of an HDC-
tailored model that faithfully represents the hardware architecture.
Despite the non-idealities inherent in emerging CiM technologies,
our platform demonstrates performance on par with traditional
von Neumann architectures for substantial combinations of
FeFET device parameters. Our solution overcomes FeFET CiM
the increased non-idealities from down-scaled 3nm, operating
effectively under all possible configurations when 50 graph edges
are considered. Scenarios with less than 4-bit precision per FeFET
device cannot handle graphs with more than 200 edges, whereas
the 4-bit case can achieve a 90.3% graph reconstruction rate on
the worst-case scenario of 80% of noise.

I. INTRODUCTION

The remarkable achievements of artificial intelligence (AI) models

can be attributed, in part, to their exceptional reasoning capabilities

and the ability to derive novel interpretations from limited data[1,

2]. Reasoning as an essential capability of AI has been identified

in [3, 4], which relies on prior knowledge and experiential learning.

A Knowledge Graph (KG) is a graph-based data structure that

leverages semantic relationships to organize and represent knowledge,

facilitating efficient information retrieval and enabling complex

reasoning tasks in a structured manner. Knowledge graph reasoning

(KGR) uses these KGs and facilitates the derivation of previously

undiscovered relationships among entities, thereby enriching the

underlying knowledge graphs and empowering advanced applications.

Notably, KGR models exhibit promising performance in various

AI applications, including question-answering and recommendation

systems[5, 6].

Graph Neural Networks (GNNs) have shown outstanding success

in KG reasoning tasks[7]. These state-of-the-art algorithms utilize

the graph structure to perform node and edge-level computations,

enabling complex reasoning capabilities. However, the computational

CI
M

CI
M

Fig. 1. Traditional computing on graph reasoning tasks is costly. Computing in
memory is an emerging technology that brings the costs down exponentially but
generates non-idealities that GNNs cannot handle. Our HDC-based Algorithm
can perform with the anomalies introduced.

efficiency of GNNs on traditional computing platforms is hindered

by the memory wall problem, resulting in a severe bottleneck of data

transfers from the memory to the processing units[8].

Brain-inspired computing represents a compelling paradigm that

closely replicates the human brain’s intricate workings[9–11]. Our

brains exhibit remarkable characteristics such as efficient learning,

resilience to noise, and works based on the in-memory computing

principle[12–15]. In contrast, traditional von Neumann architectures,

which separate memory and processing units, face limitations due to

the inherent costs associated with data movement. To address these

challenges, computing in memory (CiM) has emerged as a promising

approach by seamlessly integrating memory and processing elements.

CiM addresses the pressing concerns surrounding scalability and

efficiency in conventional architectures by enabling parallel processing

and minimizing data movement. Nonetheless, existing graph neural

network (GNN) models do not inherently possess a memory-centric

nature. They are vulnerable to the adverse effects of technology non-

idealities that often present themselves as noise, leading to suboptimal

quality and computational efficiency when deployed on emerging CiM

architectures.

This paper introduces a novel algorithm technology co-design

that revolutionizes graph reasoning algorithms by harnessing the

potential of hyperdimensional computing (HDC) for robust and

memory-centric computation on CiM platforms. Departing from

conventional GNNs, our HDC reasoning model adopts a symbolic

approach to effectively store graph entities and their relationships

20
23

 IE
EE

/A
CM

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
pu

te
r A

id
ed

 D
es

ig
n

(IC
CA

D)
 |

 9
79

-8
-3

50
3-

22
25

-5
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

CA
D5

73
90

.2
02

3.
10

32
39

35

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:48:23 UTC from IEEE Xplore. Restrictions apply.

as high-dimensional neural activity. By optimizing the distribution

of graph information across redundant high-dimensional vectors, our

HDC reasoning algorithms facilitate highly parallel and fault-tolerant

computation. This innovative approach, supported by the mathematical

underpinnings of HDC, presents a promising solution for advancing

knowledge graph reasoning and augmenting the capabilities of existing

reasoning models.

Prior research has exhibited the intrinsic suitability of HDC models

for optimization through hardware acceleration[16–20]. To enable

efficient execution of HDC algorithms, we designed a tailored CiM

architecture in order to optimize the HDC algebraic operations. The

hardware platform presented in this study is based on advanced Ferro-

electric Field-Effect Transistor (FeFET) technology and incorporates

precise modeling of its non-idealities. This meticulous modeling allows

for the generation of a specialized model that accurately represents the

hardware platform. Leveraging the inherent advantages of CiM, such

as having novel multi-bit CiM cells, parallel processing and reduced

data movement, our algorithm effectively adapts to the inherent non-

idealities prevalent in CiM devices such as scaling noise, temperature

noise and low bit-precision.

Despite the challenges stemming from this emerging technology,

our algorithm demonstrates comparable performance to traditional von

Neumann architectures and improvements against GNNs. Our platform

demonstrates superior performance in reasoning tasks compared to the

Relational Graph Convolutional Network (RGCN) model, achieving

an approximate 12.5% improvement in Mean Reciprocal Rank (MRR),

which is a crucial metric for assessing graph reasoning. Furthermore,

our framework exhibits 87-fold enhanced robustness against noise,

highlighting its resilience in challenging environments. Notably, our

solution overcomes significant limitations related to scalability and

spatial constraints in FeFET CiM by successfully operating despite

the non-idealities, including 3nm thick back-gate FeFET cells and

elevated temperatures of 80 degrees Celsius, without any observable

loss in performance. For graphs with up to 200 edges, the performance

of 2-bit and 3-bits starts to fall down once we insert noises higher

than 50%, but the 4-bit architecture is able to perform well once noise

is introduced during learning phase, as the model learns to handle

with a graph reconstruction rate of 90%.

II. BACKGROUND & RELATED WORK

A. Computing in Memory

Given the high number of matrix-vector multiplications in HDC

algorithms, traditional von-Neumann processing architectures become

in-adequate to satisfy the design space. CiM is a processing paradigm

where the properties of the memory devices are exploited to perform

calculations in-situ. CiM can be achieved by non-volatile memory

(NVM) devices, such as FeFET or RRAM, configured in a crossbar

array structure, which perform in-situ vector-matrix multiplications

(VMM) in constant complexity, utilizing the analog domain.[21]. The

operational procedure of the crossbar array is summarized as follows:

(1) weight values are programmed as resistance levels into the NVM

devices; (2) input values, encoded as voltage levels, are applied to

the row bit lines; (3) the output of each NVM device, governed by

Ohm’s Law, is then summed in the column word lines by Kirchhoff’s

current law; (4) finally the summed current output must then be

converted to a digital value as a registered output. Due to its in-situ

properties, CiM-implemented VMM hardware is highly power efficient

and suitable for low precision, area, and power applications [22].

However, this architecture is fundamentally limited by the necessary

analog-digital conversions at the input/output interfaces between

the crossbar unit to peripheral units or routing buses. Furthermore,

computations performed in the analog domain by NVM devices, such

as FeFet, must tolerate additional noise introduced by device variation,

analog-digital conversion resolution, and limited device precision. For

these reasons, HDC, through its inherent algorithmic redundancy

and robustness, is prime candidate for acceleration with CiM using

emerging technologies such as FeFet[23–25].

B. Graph Learning

The acceleration of graph-related algorithms, such as Graph Neural

Networks (GNNs), using domain-specific accelerators (DSAs) such

as Field-Programmable Gate Arrays (FPGAs) [26, 27], Application-

Specific Integrated Circuits (ASICs) [28], and CiM [29], has garnered

significant attention in recent times. Unlike traditional machine

learning tasks, graph-based learning tasks typically involve large-scale

datasets, necessitating the design of hardware accelerators. However,

most previous studies have focused on accelerating graph neural

networks and mining. More recently, the graph learning framework

based on hyperdimensional computing has gained substantial inter-

est [30–32].

In particular, a FeFET-based CiM hyperdimensional graph classifica-

tion accelerator was demonstrated in the work by [31]. This study cen-

tered on accelerating HDC-based graph learning and compared it with

previous graph neural network acceleration methods. However, the

work did not mention any contributions towards brain-inspired graph

reasoning acceleration [31]. On the other hand, [32] introduced the

first hyperdimensional computing-based graph reasoning framework.

The authors proposed a hyperdimensional graph reasoning model and a

digital CiM hardware platform. Nevertheless, this work only explored

basic digital CiM acceleration and paid limited attention to model

quantization, error analysis, and analog CiM acceleration. Leveraging

model quantization and ensuring robustness become imperative to

achieve efficient acceleration of HDC-based graph models using high-

speed analog CiM.

C. FeFET Basics

A FeFET is a type of transistor that uses a HfO2-based ferro-

electric layer (FE layer) in the gate stack to control the channel

conductivity [33]. The FE layer is highlighted in red in Fig. 2 and

comprises many domains that can be polarized individually [34].

Depending on their polarization, the channel conductivity changes,

which is mapped to logic states. Additionally, the domains retain their

polarization without a voltage making FeFET technology a multi-level

non-volatile memory. To polarize the domains in the same direction,

a write pulse of −4 V or +4 V is applied, typically with a duration of

1 µs [33]. If the pulse has a lower voltage, not all domains are flipped,

and the FeFET’s conductance has an intermediate level. Consequently,

a multi-level cell (MLC) is created. A small voltage is applied during

a read operation, and the conducted current is measured. This voltage

causes read disturbance since some domains could be flipped during

a read [35].

Another challenge is the thickness of the FE layer, which is typically

about 10 nm [36]. A thicker layer increases the memory window, the

difference between the low and highly polarized state, and a metric to

maximize. On the one hand, a thicker layer also hurts the ferroelectric

properties and prevents scaling the underlying transistor. On the other

hand, a thinner layer reduces the number of domains, and each domain

becomes more impactful on the overall polarization of the device.

Because the domain’s polarization change is a stochastic process,

2

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:48:23 UTC from IEEE Xplore. Restrictions apply.

-4 -2 0 2 4

-40

-20

0

20

40

F
e

rr
o

e
le

ct
ri

c
P

o
la

ri
za

ti
o

n
 (

P
F

E
)

[m
C

/c
m

2
]

Ferroelectric Layer Voltage (VFE) [V]

Substrate

Back gate

Channel

Front gate

DrainSource

FE ³±± ³ ³ ±

Fig. 2. Adding a ferroelectric (FE) layer to the regular gate stack allows the
channel conductivity to be controlled within a range known as the memory
window. The size of this window can be increased by incorporating a back gate.
The right image shows the hysteresis behavior of ferroelectric cells, which is
influenced by bit precision, where higher precision amplifies hysteresis effects
and lower precision diminishes them. The choice of precision depends on
specific application requirements.

the variability increases for highly-scaled FeFET devices with fewer

domains [37]. This results in a device that suffers more from non-

idealities.

Advanced dual-gate FeFET: To address both challenges, a FeFET

with an additional back gate has been recently proposed [38]. By

introducing this back gate and reading through it, the domains in the

FE layer are no longer disturbed. The FeFET is still written through

the front gate to change the FE layer’s polarization. In addition,

the memory window is amplified by the body effect factor [39] if

the FeFET is read through the back gate. A negative aspect is an

increasing variability because of the increased distance between the

channel and the back gate compared to the front gate [37].

III. GRAPH ENCODING IN HYPERDIMENSIONAL ENCODING

This section describes the utilization of a hyperdimensional

algorithm inspired by the workings of the human brain for the

purpose of learning and memorizing the given graph. Additionally,

adaptations to the algorithm were made to optimize its performance

and accommodate the inherent non-idealities associated with FeFET

technology, as depicted in Figure 3.

The initial phase of graph memorization involves initializing five

key parameters, namely B, D, G, and Mc. B denotes the number

of bits employed in the encoding process, while D represents the

dimensionality of the hyperdimensional space utilized. The graph

G = (V , E) comprises a set of vertices V and a set of edges E that need

to be memorized. Furthermore, the current matrix Mc encompasses the

mapping values that facilitate the computation of similarities between

graph elements. Subsequently, the encoding procedure is executed to

encode the given graph into the hyperdimensional representation.

In the subsequent step, the model proceeds to encode the given

graph G into a hyperdimensional space. To accomplish this, D-

dimensional vectors, denoted as H⃗v ∈ R
D, are generated for each

vertex v ∈ V . These vectors are sampled from a normal distribution,

specifically from the set {N (0, 1)}D. Subsequently, memory node

hypervectors, represented as M⃗v ∈ R
D, are computed by aggregating

the hypervectors of neighboring vertices for each vertex v ∈ V ,

as visually depicted in Figure4. In other words, for each edge

ei = (vi, ui) ∈ E, the hypervectors H⃗vi and H⃗ui of vertices vi and

ui, respectively, are merged to form Mv and Mu. Finally, as illustrated

in Figure 5, the graph memory G⃗ is computed as the summation over

all vertices i ∈ V of the element-wise multiplication (denoted by

Algorithm 1 Graph Encoding Refinement

Input:

G(V , E): Undirected graph consisted of vertex set V

and edge set E to encode

G⃗: Previously encoded graph memory

H⃗v: Vertex hypervectors

Output:

G⃗′: Refined graph memory

T: Threshold

1: procedure GRAPHENCODINGREFINEMENT(G, G⃗, H⃗v)

2: M⃗(1)
v ← G⃗ ∗ H⃗v

3: for i ∈ {1, 2, ..., n – 1} do

4: M⃗(i+1)
v ← G⃗ ∗ H⃗v – ¸

∑

u ̸=v H⃗v ∗ H⃗u ∗ M⃗(i)
u

5: end for

6: [H⃗q
v , M⃗q

v]← [q(H⃗v), q(M⃗(n)
v)]

7: Spos ← {(v, u) ∈ V × V|(v, u) ∈ E}
8: Sneg ← {(v, u) ∈ V × V|(v, u) /∈ E}

9: T ← 1
2

(∑
(v,u)∈Spos

¶(M⃗q
v ,H⃗q

u)

|Spos|
+

∑
(v,u)∈Sneg

¶(M⃗q
v ,H⃗q

u)

|Sneg|

)

10: for i ∈ V do

11: for j ∈ V do

12: if
¶(M⃗

q

i
,H⃗

q

j
)

D
< T and (i, j) ∈ E then

13: M⃗i ← M⃗i + ³H⃗j

14: else if
¶(M⃗

q

i
,H⃗

q

j
)

D
> T and (i, j) /∈ E then

15: M⃗i ← M⃗i – ³H⃗j

16: end if

17: end for

18: end for

19: G⃗′ ←
∑

i∈V H⃗i ∗ M⃗i

20: end procedure

Algorithm 2 Graph Decoding

Input:

G⃗: Encoded graph memory

H⃗v: Vertex hypervectors

T: Threshold

Output:

E′: Edge set of reconstructed graph

1: procedure GRAPHDECODING(G⃗, H⃗v, T)

2: M⃗(1)
v ← G⃗ ∗ H⃗v

3: for i ∈ {1, 2, ..., n – 1} do

4: M⃗(i+1)
v ← G⃗ ∗ H⃗v – ¸

∑

u ̸=v H⃗v ∗ H⃗u ∗ M⃗(i)
u

5: end for

6: [H⃗q
v , M⃗q

v]← [q(H⃗v), q(M⃗(n)
v)]

7: E′ ← ∅
8: for i ∈ V do

9: for j ∈ V do

10: if
¶(M⃗

q

i
,H⃗

q

j
)

D
≥ T then

11: E′ ← E′ ∪ {(i, j)}
12: end if

13: end for

14: end for

15: end procedure

3

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:48:23 UTC from IEEE Xplore. Restrictions apply.

HDC

Encoding

"

"

"

Fig. 3. General overview of our proposed framework. We begin by generating
a graph hyperdimensional model on ideal conditions and modeling the non-
idealities of the hardware. Then we proceed to combine both in order the
exploit HDCs strengths to generate a compatible model with FeFET Computing
in Memory architecture.

∗) between the hypervector H⃗i and the corresponding memory node

hypervector M⃗i, resulting in G⃗ =
∑

i∈V
H⃗i ∗ M⃗i.

A. Node memory reconstruction

In order to retrieve node memory M⃗v using encoded graph memory

G⃗ and vertex hypervectors H⃗v, iterative node memory reconstruction

is conducted. The initial estimation M⃗(1)
v for node memory M⃗v is

computed by M⃗(1)
v = G⃗ ∗ H⃗v. However, the first estimation contains

noise which is introduced by:

G⃗ ∗ H⃗v = H⃗v ∗ H⃗v ∗ M⃗v +
∑

u ̸=v

H⃗v ∗ H⃗u ∗ M⃗u

= H⃗v ∗ H⃗v ∗ M⃗v + noise ≈ M⃗v.

To cancel noise iteratively, the next estimation M(n+1)
v of M(n)

v is

computed by M⃗(n+1)
v = G⃗ ∗ H⃗v – ¸

∑

u ̸=v
H⃗v ∗ H⃗u ∗ M⃗(n)

u where ¸ ∈ R

indicates noise cancellation rate. Node memory reconstruction is

conducted at the beginning of each encoding refinement iteration

(Algorithm 1 line 4) and graph decoding process (Algorithm 2 line

4).

B. Graph memory refinement

Memory refinement is done in an iterative process to have a better

encoding of G⃗. A single iteration for this graph memory refinement

process is described in Algorithm 1. For each memory refinement step,

we update memory node hypervectors using every pair of vertices

(v, u) ∈ V × V as follows:
{

M⃗v = M⃗v + ³H⃗u if ¶(q(M⃗(n)
v), q(H⃗u))/D < T and (v, u) ∈ E

M⃗v = M⃗v – ³H⃗u if ¶(q(M⃗(n)
v), q(H⃗u))/D > T and (v, u) /∈ E

where ³ ∈ R indicates the refinement rate. Mc is used in ¶, a function

for computing similarity between the given hypervectors. At the end

of each iterative refinement, G⃗ is computed from updated M⃗v.

C. Decoding of the graph

To decode the graph, we test for every pair of vertices (v, u) ∈ V×V

to determine whether or not an edge (v, u) exists. The existence of

an edge (v, u) is determined by ¶(q(M⃗(n)
v), q(H⃗u))/D g T after getting

estimated node memory M⃗(n)
v from G⃗. If the inequality is satisfied,

it considers the edge as a part of the graph. This graph decoding

process is described in Algorithm 2.

D. Adaptation of graph memorization to Computing in Memory

Next, we present the adaptations undertaken to our pre-established

algorithm in order to effectively harmonize it with the prevalent

non-idealities inherent to the device.

1) Projection of the model: During the graph projection process,

we proceed to ensure that the full-precision hypervectors H⃗v and M⃗v are

transformed into B-bit precision representations to be compatible with

the CiM architecture. This quantization operation is carried out within

the model projection step, where the components of the hypervectors

are quantized to B-bit symbols. Given that the feature values do

not typically conform to a uniform distribution, we do not perform

uniform quantization. Instead, the values of the HDC components are

calculated, and the cumulative normal distribution function (cdf) is

utilized for feature value quantization. As a result, the quantized vertex

hypervectors q(H⃗v) and quantized memory node hypervectors q(M⃗v)

are obtained from the original H⃗v and M⃗v, respectively, as shown in

Figure 6.

2) Similarity function setup: The HDC algebra relies on a

similarity metric for its learning tasks. In our CiM architecture, the

traditional dot product or cosine similarity operations are replaced

by function that compares bit values within the device. This enables

efficient similarity evaluations while considering the limited computa-

tional resources. Given two B-bit(s) hypervectors H1 and H2, current

similarity ¶(H⃗1, H⃗2) is computed using d⃗ = |H⃗1 –H⃗2| and Mc indicating

current matrix containing mapping values for computing similarities.

Now, the similarity is computed as follows.

¶(H⃗1, H⃗2) =

D–1
∑

i=0

M
c

d⃗i

Note that 0 f d⃗i < |Mc| = 2B.

3) FeFET noise application to the graph framework: For the

purpose of applying noise, given a modeled probability distribution,

the noise makes a bit-symbol v increase or decrease to v + 1 or v – 1.

Each value in the quantized hypervector has the same probability

of random value changing. For instance, if the random changing

probability is p, a value v in the hypervector will be changed to the

value of v+1 in p/2 probability and v–1 in p/2 probability. But, if v–1

is 0 or v + 1 is 2B – 1, only an increase or decrease will be applied in

p probability, respectively. The application of random value-changing

noise can be described as follows:

The noise is introduced between the model projection and the inference

steps, affecting the test set. The changed values persist until the

subsequent model projection occurs. We study two different scenarios

where the noise is introduced. The first one includes the noise during

decoding, meaning the encoding process of the graph is not affected

by value changes. Instead, the noise is applied to a copied model

during the iterative refinement of graph encoding. The second one

introduces the noise during the generation of hypervector G⃗

E. Capacity of hardware-based HDC

Capacity plays a vital role in Hyperdimensional Computing (HDC),

influencing its effectiveness and efficiency. It refers to the system’s

capability to process and manage a substantial volume of information

within its high-dimensional vectors. A greater capacity enables HDC

to represent and manipulate a larger number of distinct entities. The

concept of capacity is crucial for accurately encoding, storing, and

reasoning with complex data, including graphs and knowledge bases.

In this section, we introduce a theoretical formulation and modified

approach tailored to model quantization. In line with the approach

described in [40], the memory capacity is defined as the information

content of the memory, specifically the mutual information between

the true nodes and the nodes that can be retrieved from the model

S⃗. It is important to note that since the model is solely used for

4

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:48:23 UTC from IEEE Xplore. Restrictions apply.

��

��

��

&

��

�$ �$

��

��

�� ��

��
��

��

��

��

·

�� =	 %
�*��

��

��

=

��

Fig. 4. Example of memory generation for a specific Graph G⃗ and node H⃗2. We achieve so by bundling all the graph hypervectors that are connected to the
node.

� = 	$
�*�	

��·��

��

��

�� ��

��

��

��

��

��&
��

��

��&
��

·

·

·
·

!	

�

� 	�� �

Fig. 5. Once we generate all the memory node hypervectors for every node, we

memorize the model by binding each node hypervector H⃗i with its respective

memory vector M⃗i.

��

��

&

��

��

��

&

��

��

��

&

��

��

��

&

��

Fig. 6. Projection step, achieved by gathering the values inside the dimensions

of the hypervectors H⃗i and M⃗i and doing a density-based quantization given a
specific bit-precision.

detection purposes, the analysis of mutual information focuses on the

distribution of node membership rather than the nodes themselves.

Let ŝ be the random variable of the detector output and s be the

membership of a query. For simplicity, let the support of ŝ, s be

{0, 1}, indicating undetected/detected for ŝ and not present/present

for s, respectively. Therefore, under fixed parameter ps and threshold

¹′, the mutual information between the set of nodes {⃗S(i)} and the

model S⃗ is

I({⃗S
(i)}, S⃗) = DKL(Pr(̂s, s)|| Pr(̂s) Pr(s))

=
∑

i,j∈{0,1}

Pr(̂s = i, s = j) log2

Pr(̂s = i, s = j)

Pr(̂s = i) Pr(s = j)

Where DKL is the KL divergence [41]. By definition, Pr(s) is described

succinctly by ps (Pr(s = 1) = ps). Pr(̂s = 1) = tp · ps + fp · (1 – ps) is

the marginal probability with which the detector outputs “detected”.

The joint probability Pr(̂s, s) can be computed by the conditional

probability, whose values are the true/false positive/negative rates of

the detector. The memory capacity is simplified as

I({⃗S
(i)}, S⃗) = ps(tp log tp + (1 – tp) log(1 – tp) – log Z)

+ (1 – ps)(fp log fp + (1 – fp) log(1 – fp) – log(1 – Z))

where Z = Pr(̂s = 1) = tp · ps + fp · (1 – ps), and ¹′ is implicit.

We analyze the impact of quantization using high-resolution

quantization theory. As this quantization method takes into account

the statistics of all hypervector components (D of them), and each

component is quantized to the same amount of bits (encoding rate is

fixed), it is classified as a fixed-rate D–dimensional quantizer. As a

result, the quality of the quantizer ¶D(R) has an upper bound of

¶D(R) ∼= MD´DÃ
2
2

–2R

Where ¶D(R) is the operational rate-distortion function of the quantizer,

and MSE measures the distortion. R is the bit rate, ZD(R) is the Zador-

Gersho function, MD
D→0
−−−→ (2Ãe)–1 is Gersho’s constant [42] that

accounts for the least normalized moment of inertia of D–dimensional

tessellating polytopes, ´D
D→0
−−−→ (2Ãe) is Zador’s factor [43], and

Ã is the standard deviation of the source (assumed gaussian). As

suggested in [44], the high dimensionality of the quantizer allows

close approximation of the constants. Furthermore, the performance

of the D-dimentional quantization method converges to that of the

optimal D-dimentional quantizer as D approaches infinity.

IV. HARDWARE FRAMEWORK

In contrast to conventional hardware computing platforms like

CPU and GPU, HDC models typically exhibit superior execution

performance and energy efficiency when applied to computing in-

memory (CiM) [45, 46]. Compared with digital CiM, crossbar array-

based analog CiM shows more advantages on speedup and energy

efficiency [47]. To enhance the speed of our design even further, we

leverage an analog computer in-memory platform by mapping our

design onto it. For the vertex memory hypervector reconstruction

process, we write the equation as follows:

M⃗
(k+1)
i = H⃗i ◦G⃗ –H⃗i ◦

∑

j∈V\{i}

H⃗j ◦M⃗
(k)
j ≈ H⃗i ◦G⃗ –H⃗i ◦

∑

j∈V

H⃗j ◦M⃗
(k)
j +M⃗

(k)
i

(1)

To accelerate vector-to-vector element-wise multiplication and ac-

cumulation operations, we map equation 1 into crossbar array [48].

The analog CiM’s architecture and schematic design are shown in

Figure 7. (a). Here we cut the hypervector into N chunks with each

chunk’s dimension as T. Each processing unit (PU) has one crossbar

array for the element-wise product (EP), as is shown in Figure 7. (b)

5

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:48:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. (a) FeFET-based analog CiM accelerator targetting vertex memory hypervector reconstruction. (b) Vector to vector element-wise product (EP) CiM. (c)
Vector-matrix product (VMP) CiM.

and one array for vector-matrix multiplication (VMP) 7. (c). After

generating each vertex’s memory hypervector, we use FeFET-based

TCAM to accelerate the hamming distance computation between

the query vertex hypervector and vertex memory hypervector when

determining whether two vertices are connected. TCAM-based PIM

is widely used by previous HDC accelerator works [20, 49].

The vector storage is divided into smaller FeFET-based crossbars.

The values are applied to the horizontal word lines as the gate voltages

of the FeFETs. Based on the FeFET’s state, its conductance value is

different, representing the multiplication. All FeFETs of a single

column share a common wire connected to their drain terminal,

combining the conductance values and performing the addition. To

reduce unnecessary power consumption, the drain terminals of the

unselected columns are tied to the ground. Only the active column

is selected through a MUX and connected to the ADC. Since the

crossbar is operated at 50 mV and the ADC at 800 mV, a current

mirror [50] is added.

The ADC is based on the ladder principle using transistors, similar

to the architecture described in [51]. The ADC includes buffers to

rectify the output flanks and four full adders to convert the thermometer

output representation into a binary representation.

V. EVALUATION

A. Experimental Setup

The comprehensive framework encompassing graph learning and

reasoning is successfully implemented utilizing the PyTorch deep

learning library. To evaluate the performance of our framework,

a rigorous and systematic assessment is conducted, employing

well-established benchmark models such as the Relational Graph

Convolutional Network (RGCN) as a baseline and FB15K-237 [52]

as the dataset. We employ standard metrics commonly used in KGR

tasks, as shown in Table I. These metrics include Mean Reciprocal

Rank (MRR), Hits@1 (H@1), Hits@3 (H@3), and Hits@10 (H@10).

MRR measures the average reciprocal rank of predictions, with higher

scores indicating more accurate predictions ranked closer to the top.

Hits@K metrics assess whether the correct prediction is within the top

K predictions, where Hits@1 is stricter than Hits@10 as it requires the

correct prediction to be ranked first. These metrics serve to evaluate

TABLE I
LINK PREDICTION PERFORMANCE ON FB15K-237 DATASET.

MRR H@10 H@3 H@1

Our Framework .3259 .5042 .3559 .2378
RGCN .1948 .3647 .2073 .1135

0

10

20

30

40

0 0.02 0.04 0.06 0.08 0.1

Our Framework RGCN

Bit Flip Probability (1)

M
R

R
 (

%
)

0

20

40

60

80

100

0 0.02 0.04 0.06 0.08 0.1

M
R

R
 L

o
ss

 (
%

)

13% higher

performance

87% lower

quality loss

Fig. 8. Testing the performance of the different algorithms given different
random bit flip probabilities. The x-axis is based on the per thousand range.

the performance of our model and the baseline in tasks such as

link prediction and missing relationship inference within knowledge

graphs. The results clearly demonstrate the superiority of our proposed

approach, consistently surpassing the performance of the baseline

model across a diverse range of evaluation metrics.

Moreover, to investigate the robustness of our framework under

perturbations and uncertain conditions, we deliberately introduced

noise to the weights of both the RGCN network and our proposed

framework. As shown in Figure 8, our framework exhibited remarkable

resilience to noise, consistently outperforming the baseline model

under noisy conditions. This underscores the robustness and stability

of our framework, validating its suitability for real-world applications

where noise and uncertainties are pervasive.

Additionally, we conducted experiments to evaluate the performance

of our framework considering the FeFET’s non-idealities and different

FFET device configurations.. Specifically, we employed graphs with

varying edge counts of either 50 or 200, while maintaining a fixed

number of 50 nodes. The hyperparameters ³ and ¸ were set to

0.1, and the graph memory refinement used n as the number of

iterations for the node memory reconstruction. These experiments

6

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:48:23 UTC from IEEE Xplore. Restrictions apply.

TABLE II
NOISE LEVELS FOR DIFFERENT THICKNESSES OF THE FERROELECTRIC

LAYER, BIT PRECISION, AND TEMPERATURES. BASED ON [37].

HfO2

Thickness (nm)
Precision

(bit)
Front/Back
Gate Read

Temepera-
ture (°C)

Modeled
Noise (%)

10 3 B 27 0.04
10 3 B 80 0.74
10 3 F 27 0.10
10 3 F 80 1.36
10 4 B 27 8.88
10 4 B 80 20.44
10 4 F 27 11.13
10 4 F 80 24.21

3 3 B 27 0.73
3 3 B 27 5.88
3 3 F 27 42.43
3 4 F 27 20.30
3 4 F 80 36.71

provided valuable insights into the trade-offs between bit-precision,

dimensionality and performance of our framework under different

scenarios, further substantiating the effectiveness and adaptability of

our proposed approach.

B. Performance Evaluation of Framework: Bit Precision and

Dimensionality Analysis in FeFET-based Graph Reasoning

In this section, we present the results of an extensive evaluation

conducted to investigate the performance of our framework across

various bit precisions (2-4 bits) and dimensionalities. The evaluation

metric employed is Graph Reconstruction Accuracy (GRA), quantify-

ing the percentage of nodes accurately retrieved its neighboring nodes

from the memorized graph. The noise modeling and probabilities are

applied to the graph memory hypervectors during inference.

For comparison, we establish a baseline configuration of a 10nm

thick FE layer and 27 degrees Celsius. This configuration is chosen

because it exhibits the least noise and a low probability impact within

our framework, exhibiting a low probability of error of 0.10% for 3-bit

precision and 11.13% for 4-bit precision. Additionally, two distinct

configurations of FeFET cells, namely front gate and back gate, are

considered in our study.

We explore various combinations of thickness (10 nm or 3 nm) and

temperature (27 or 80 degrees Celsius) to comprehensively evaluate

the framework’s performance, as shown in Table II For the front gate

configuration, as shown in Figure 9, with 3-bit precision and 50 edges,

the most challenging scenario arises when operating at 3 nm thickness

and 80 degrees Celsius, resulting in a substantial 42.43% probability

of noise. To achieve performance comparable to the baseline in this

challenging scenario, a minimum hypervector dimensionality of 7168

is required for both 3-bit and 4-bit precisions. Conversely, when

dealing with 200 edges, the 3-bit precision falls short in achieving

satisfactory performance, while the 4-bit precision necessitates a

maximum dimensionality of 10240 to match the performance of the

traditional von Neumann architecture under zero noise conditions.

In the case of the back gate configuration, the probabilities of

error are reduced, with worst-case scenarios yielding 5.88% and

36.71% probabilities of error for 3-bit and 4-bit precisions, respectively.

Notably, minimum hypervector dimensionality of 4096 is sufficient

for all combinations involving 50 edges. With 200 edges, both 3-bit

and 4-bit precisions exhibit satisfactory performance in the worst-case

scenario as shown in Figure 10, requiring a minimum dimensionality

of 7168 to achieve desirable results.

C. Hollistic noise exploration on our framework

In this experiment, we present a comprehensive analysis that

explores the influence of bit-precision, noise probabilities of error,

TABLE III
CROSS PLATFORM COMPARISON OF THE MEMORY HYPERVECTOR

RECONSTRUCTION PROCESS. THE HYPERVECTOR DIMENSION IS 10000 AND

50 VERTICES ARE IN THE GRAPH.

Jetson i9-12900 RTX 3090 DCiM ACiM 10nm* ACiM 3nm*

Latency (ms) 702.5 237.5 9.25 17.75 15 × 10−6 34 × 10−6

Power (W) 60 53 61 6 0.297 0.171

* Only includes crossbars, not a complete computing system.

and dimensionality on the performance of our graph reasoning

framework. In this analysis, the noise is not explicitly associated

with specific configurations, allowing for a more generalized search.

Noise probabilities ranging from 0% to 80% are considered, while

dimensionalities span from 4012 to 10240.

Our framework is assessed under two noise introduction scenarios:

during encoding and memorization of the graph and during inference.

This evaluation sheds light on the framework’s resilience to noise and

capacity to adapt during learning.

Figure 11 presents the results for a graph with 50 edges with 2 bits

where the model’s performance falls short of traditional computing;

however, it demonstrates an average improvement of 25% when noise

is introduced during graph learning. Notably, our framework performs

comparably to ideal conditions for the 3-bit and 4-bit scenarios,

showcasing its robustness against noise. This observation underscores

the framework’s adaptability and ability to handle noise during the

learning phase effectively.

In Figure 12, we shift our focus to a more challenging scenario

involving 200 edges. In this case, both the 2-bit and 3-bit scenarios

fail to achieve performance comparable to the ideal case. Neverthe-

less, when noise is introduced during training, substantial average

improvements of up to 10.66% and 24.25% are observed for the

2-bit and 3-bit scenarios, respectively. Notably, for the 4-bit scenario,

while the performance is not comparable when noise is introduced

during inference, the introduction of noise during training yields

highly promising results, with an average GRA of almost 90.3%.

These empirical findings highlight the robustness and adaptability

of our framework in the presence of noise, particularly when noise

is introduced during the learning phase. The results underscore the

framework’s potential to achieve high GRAs, even in challenging

scenarios, positioning it as a viable solution for real-world applications

requiring reliable and noise-tolerant graph reasoning capabilities.

D. Power and latency comparison

In this work, the power is modeled for the crossbar and the ADC.

The contribution from the current mirror and the digital logic (inverters,

adders) is negligible. The conductance values of the FeFETs and thus

the power consumption is averaged for the crossbar (i.e., no data

dependency). Additional digital logic such as an adder tree to combine

the results from the individual crossbars into the full similarity and

vector values is not considered. Similarly, the latency is based on

electrical-level SPICE simulations for the crossbar and the ADC but

not for the entire computing system.

Table V-D presents a comparative analysis across different platforms

to highlight the advantages of the proposed framework with a CiM

architecture. The original HDC graph reasoning model is implemented

and tested on various existing CPU and GPU platforms, namely

NVIDIA Jetson Orin SoC (referred to as ”Jetson”), Intel i9-12900 CPU

(referred to as ”i9-12900”), and NVIDIA RTX 3090 GPU (referred

to as ”RTX 3090”). Additionally, we include the performance results

of a previous study [44] that employed digital CiM acceleration, to

7

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:48:23 UTC from IEEE Xplore. Restrictions apply.

Dimension of hypervectors

90

95

100

40
96

51
20

61
44

71
68

81
92

92
16

10
24
0

90

95

100

40
96

51
20

61
44

71
68

81
92

92
16

10
24
0

G
R

A
 (

%
)

3-BIT 10nm 27C (00.10%) 3-BIT 10nm 80C (01.36%) 3-BIT 3nm 27C (42.43%) 4-BIT 10nm 27C (11.13%) 4-BIT 10nm 80C (24.21%)

0

20

40

60

80

100

40
96

51
20

61
44

71
68

81
92

92
16

10
24
0

30

44

58

72

86

100

40
96

51
20

61
44

71
68

81
92

92
16

10
24
0

(a) � = �� (b) � = ���

Fig. 9. Performance of proposed memory HDC learning of Graph HDC framework modeling the temperature for 10nm and 3nm thick on the Front gate
FeFET configuration.

4K

5K

6K

7K

8K

9K

10K

3-bit 4-bit

10nm
 2

7C

3nm
 2

7C

10nm
 8

0C

3nm
 8

0C

10nm
 2

7C

3nm
 2

7C

10nm
 8

0C

3nm
 8

0C

100

0

G
R

A
 (

%
)

D
im

e
n

si
o

n
 o

f
h

y
p

e
rv

e
ct

o
rs

Fig. 10. Performance of proposed memory HDC learning of Graph HDC
framework modeling the temperature for 10nm and 3nm thick on the Back
gate FeFET configuration.

D
im

e
n

si
o

n
 o

f
H

y
p

e
rv

e
ct

o
rs

4K

5K

6K

7K

8K

9K

10K

Noise during decoding

State Shift Probability (%)

0 20 40 60 800 20 40 60 80

100

0

G
R

A
 (

%
)

Noise during encoding

Fig. 11. Exploration of 2-bit proposed memory HDC learning of Graph HDC
framework for different noise probabilities.

underscore the benefits of our proposed quantization method and

analog CiM (ACiM). In this analysis, we assume all hypervectors

dimension are 10000 and the graph size is 50 vertices and 200 edges.

With our CiM architecture, all the data is stored in 8x16 FeFET-based

crossbars enabling massive parallelism for the computations. Hence,

the latency given in Table V-D is at nanosecond scale – two orders

of magnitude faster than other platforms. Note that only the crossbar

and ADC latency is modeled, modeling a complete computing system

is deferred as part of future work. Nevertheless, the remaining digital

logic is not expected to negate this advantage from the massive

parallelism in the primary computations. The different in latency for

the 10nm and 3nm FE layer thickness stems from the difference in

current that the FeFETs conduct. At 3nm, the conductance is higher

and thus the ladder ADC is slower, but consumes less power.

D
im

e
n

si
o

n
 o

f
H

y
p

e
rv

e
ct

o
rs

4K

5K

6K

7K

8K

9K

10K

100

0

G
R

A
 (

%
)

2-BIT 3-BIT 4-BIT

(A) Noise during decoding

(B) Noise during encoding

State Shift Probability (%)

4K

5K

6K

7K

8K

9K

10K

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

Fig. 12. Exploration of multi-bit proposed memory HDC learning of Graph
HDC framework for different noise probabilities: (a) noise during decoding
and (b) noise during encoding.

VI. CONCLUSIONS

Our study presents an innovative algorithm-hardware solution for

efficient knowledge graph reasoning in AI systems. By harnessing

hyperdimensional computing (HDC) and computing-in-memory (CiM)

platforms, we overcome the memory wall problem and achieve robust

computation. Through symbolic encoding and optimized information

distribution, our HDC reasoning model enables parallel and fault-

tolerant processing. The customized CiM architecture, based on FeFET

technology, accurately represents the hardware platform. Our solution

demonstrates comparable performance to traditional architectures,

highlighting the potential of HDC and CiM for efficient AI reasoning.

VII. ACKNOWLEDGEMENTS

This work was supported in part by DARPA Young Faculty Award,

National Science Foundation #2127780 and #2312517, and #2319198,

Semiconductor Research Corporation (SRC), Office of Naval Research,

grants #N00014-21-1-2225 and #N00014-22-1-2067, the Air Force

Office of Scientific Research under award #FA9550-22-1-0253, by

Advantest as part of the Graduate School “Intelligent Methods for

Test and Reliability” (GS-IMTR) at the University of Stuttgart, and

generous gifts from Xilinx and Cisco.

REFERENCES

[1] N. Lao et al., “Random walk inference and learning in a large
scale knowledge base,” ser. EMNLP ’11, Edinburgh, United Kingdom:
Association for Computational Linguistics, 2011, pp. 529–539.

8

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:48:23 UTC from IEEE Xplore. Restrictions apply.

[2] A. Neelakantan et al., “Compositional vector space models for knowl-
edge base completion,” arXiv preprint arXiv:1504.06662, 2015.

[3] K. Liang et al., Relational symmetry based knowledge graph contrastive

learning, 2022. arXiv: 2211.10738 [cs.AI].
[4] E. Shortliffe, “Computer-based medical consultations: Mycin,” Artificial

Intelligence - AI, vol. 388, 1976.
[5] S. Ji et al., “A survey on knowledge graphs: Representation, acquisition,

and applications,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 33, no. 2, pp. 494–514, 2022.

[6] C.-M. Wong et al., “Improving conversational recommender system by
pretraining billion-scale knowledge graph,” in IEEE ICDE 2021, 2021,
pp. 2607–2612.

[7] M. Schlichtkrull et al., Modeling relational data with graph convolu-

tional networks, 2017. arXiv: 1703.06103 [stat.ML].
[8] Y. Wang et al., “A gnn computing-in-memory macro and accelerator

with analog-digital hybrid transformation and camenabled search-reduce,”
in IEEE CICC 2023, 2023, pp. 1–2.

[9] Y. Ni et al., “Neurally-inspired hyperdimensional classification for
efficient and robust biosignal processing,” in Proceedings of the 41st

IEEE/ACM International Conference on Computer-Aided Design, 2022,
pp. 1–9.

[10] N. McDonald et al., “Integrating complex valued hyperdimensional
computing with modular artificial neural networks,” in Disruptive

Technologies in Information Sciences VII, SPIE, vol. 12542, 2023,
pp. 152–170.

[11] N. McDonald, “Modularizing and assembling cognitive map learners
via hyperdimensional computing,” arXiv preprint arXiv:2304.04734,
2023.

[12] Z. Zou et al., “Scalable edge-based hyperdimensional learning system
with brain-like neural adaptation,” in Proceedings of the International

Conference for High Performance Computing, Networking, Storage and

Analysis, ser. SC ’21, St. Louis, Missouri: Association for Computing
Machinery, 2021.

[13] Z. Zou et al., “Memory-inspired spiking hyperdimensional network for
robust online learning,” Scientific Reports, vol. 12, no. 1, p. 7641, 2022.

[14] Z. Zou et al., “Eventhd: Robust and efficient hyperdimensional learning
with neuromorphic sensor,” Frontiers in Neuroscience, vol. 16, 2022.

[15] A. Hernandez-Cane et al., “Onlinehd: Robust, efficient, and single-pass
online learning using hyperdimensional system,” in DATE, IEEE, 2021,
pp. 56–61.

[16] H. Chen et al., “Full stack parallel online hyperdimensional regression
on fpga,” in IEEE ICCD 2022, IEEE, 2022, pp. 517–524.

[17] H. Chen et al., “Darl: Distributed reconfigurable accelerator for
hyperdimensional reinforcement learning,” in Proceedings of the 41st

IEEE/ACM International Conference on Computer-Aided Design, 2022,
pp. 1–9.

[18] Y. Ni et al., “Algorithm-hardware co-design for efficient brain-inspired
hyperdimensional learning on edge,” in 2022 Design, Automation &

Test in Europe Conference & Exhibition (DATE), 2022, pp. 292–297.
[19] Y. Ni et al., “Hdpg: Hyperdimensional policy-based reinforcement

learning for continuous control,” in Proceedings of the 59th ACM/IEEE

Design Automation Conference, 2022, pp. 1141–1146.
[20] Z. Zou et al., “Biohd: An efficient genome sequence search platform

using hyperdimensional memorization,” in Proceedings of the 49th

Annual International Symposium on Computer Architecture, 2022,
pp. 656–669.

[21] S. Mittal, “A survey of reram-based architectures for processing-in-
memory and neural networks,” Machine Learning and Knowledge
Extraction, vol. 1, no. 1, pp. 75–114, 2019.

[22] S. Tang et al., “Aepe: An area and power efficient rram crossbar-based
accelerator for deep cnns,” in 2017 IEEE 6th Non-Volatile Memory

Systems and Applications Symposium (NVMSA), 2017, pp. 1–6.
[23] A. Kazemi et al., “Achieving software-equivalent accuracy for hyperdi-

mensional computing with ferroelectric-based in-memory computing,”
Scientific Reports, vol. 12, no. 1, p. 19 201, 2022.

[24] H. Amrouch et al., “Brain-inspired hyperdimensional computing for
ultra-efficient edge ai,” in 2022 International Conference on Hard-

ware/Software Codesign and System Synthesis (CODES+ISSS), 2022,
pp. 25–34.

[25] H. E. Barkam et al., “Hdgim: Hyperdimensional genome sequence
matching on unreliable highly scaled fefet,” in 2023 Design, Automation

& Test in Europe Conference & Exhibition (DATE), 2023, pp. 1–6.

[26] T. Geng et al., “I-GCN: A graph convolutional network accelerator
with runtime locality enhancement through islandization,” in IEEE/ACM

MICRO-54, 2021, pp. 1051–1063.
[27] H. Zeng et al., “GraphACT: Accelerating GCN training on CPU-FPGA

heterogeneous platforms,” in ACM/SIGDA FPGA 2020, 2020, pp. 255–
265.

[28] M. Yan et al., “HyGCN: A GCN accelerator with hybrid architecture,”
in IEEE HPCA 2020, IEEE, 2020, pp. 15–29.

[29] Y. Wang et al., “A gnn computing-in-memory macro and accelerator
with analog-digital hybrid transformation and camenabled search-reduce,”
in 2023 IEEE Custom Integrated Circuits Conference (CICC), IEEE,
2023, pp. 1–2.

[30] I. Nunes et al., “Graphhd: Efficient graph classification using hyperdi-
mensional computing,” in 2022 Design, Automation & Test in Europe

Conference & Exhibition (DATE), IEEE, 2022, pp. 1485–1490.
[31] J. Kang et al., “Relhd: A graph-based learning on fefet with hyperdi-

mensional computing,” in 2022 IEEE 40th International Conference on

Computer Design (ICCD), IEEE, 2022, pp. 553–560.
[32] P. Poduval et al., “Graphd: Graph-based hyperdimensional memorization

for brain-like cognitive learning,” Frontiers in Neuroscience, p. 5, 2022.
[33] S. Dünkel et al., “A fefet based super-low-power ultra-fast embedded

nvm technology for 22nm fdsoi and beyond,” in 2017 IEEE International

Electron Devices Meeting (IEDM), IEEE, 2017, pp. 19–7.
[34] K. Ni et al., “On the channel percolation in ferroelectric fet towards

proper analog states engineering,” in 2021 IEEE International Electron

Devices Meeting (IEDM), 2021, pp. 15.3.1–15.3.4.
[35] P. R. Genssler et al., “On the reliability of fefet on-chip memory,” IEEE

Transactions on Computers, vol. 71, no. 4, pp. 947–958, 2021.
[36] H. Mulaosmanovic et al., “Ferroelectric field-effect transistors based on

hfo2: A review,” Nanotechnology, vol. 32, no. 50, p. 502 002, 2021.
[37] S. Chatterjee et al., “Comprehensive variability analysis in dual-port

fefet for reliable multi-level-cell storage,” IEEE TED, 2022.
[38] H. Mulaosmanovic et al., “Ferroelectric transistors with asymmetric

double gate for memory window exceeding 12 v and disturb-free read,”
Nanoscale, vol. 13, no. 38, pp. 16 258–16 266, 2021.

[39] H.-K. Lim and J. G. Fossum, “Threshold voltage of thin-film silicon-on-
insulator (soi) mosfet’s,” IEEE Transactions on electron devices, vol. 30,
no. 10, pp. 1244–1251, 1983.

[40] E. P. Frady et al., “A theory of sequence indexing and working memory
in recurrent neural networks,” Neural Computation, 2018.

[41] S. Kullback et al., “On information and sufficiency,” The annals of
mathematical statistics, 1951.

[42] A. Gersho, “Asymptotically optimal block quantization,” IEEE Transac-
tions on information theory, 1979.

[43] P. L. Zador, Development and evaluation of procedures for quantizing
multivariate distributions. Stanford University, 1964.

[44] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE transactions on
information theory, 1998.

[45] M. Imani et al., “Exploring hyperdimensional associative memory,” in
IEEE HPCA, IEEE, 2017, pp. 445–456.

[46] M. Imani et al., “Dual: Acceleration of clustering algorithms using
digital-based processing in-memory,” in 2020 53rd Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), IEEE, 2020,
pp. 356–371.

[47] S. Angizi et al., “Accelerating deep neural networks in processing-
in-memory platforms: Analog or digital approach?” In 2019 IEEE

Computer Society Annual Symposium on VLSI (ISVLSI), IEEE, 2019,
pp. 197–202.

[48] M. Imani et al., “Floatpim: In-memory acceleration of deep neural
network training with high precision,” in Proceedings of the 46th

International Symposium on Computer Architecture, 2019, pp. 802–815.
[49] S. Thomann et al., “Hw/sw co-design for reliable tcam-based in-memory

brain-inspired hyperdimensional computing,” IEEE Transactions on
Computers, 2023.

[50] K. Monfaredi and H. Faraji Baghtash, “An extremely low-voltage
and high-compliance current mirror,” Circuits, Systems, and Signal
Processing, vol. 39, no. 1, pp. 30–53, 2020.

[51] T. Soliman et al., “Felix: A ferroelectric fet based low power mixed-
signal in-memory architecture for dnn acceleration,” ACM Trans. Embed.
Comput. Syst., vol. 21, no. 6, 2022.

[52] K. Toutanova and D. Chen, “Observed versus latent features for
knowledge base and text inference,” in Proceedings of the 3rd workshop

on continuous vector space models and their compositionality, 2015,
pp. 57–66.

9

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:48:23 UTC from IEEE Xplore. Restrictions apply.

