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Abstract—While Graph Neural Networks (GNNs) have demon-
strated remarkable achievements in knowledge graph reasoning,
their computational efficiency on conventional computing plat-
forms is impeded by the memory wall problem. To overcome these
challenges, we introduce an innovative algorithm-hardware solu-
tion that harnesses the potential of hyperdimensional computing
(HDC) for robust and memory-centric computation on computing
in-memory (CiM) platforms. Departing from traditional graph
neural networks, the proposed HDC reasoning model employs a
symbolic approach to effectively encode graph entities and their
relationships as high-dimensional neural activity. Complementing
this approach is a customized Computing-in-Memory (CiM) ar-
chitecture based on advanced Ferroelectric Field-Effect Transistor
(FeFET) technology, which incorporates a precise characterization
of non-idealities. This modeling enables the generation of an HDC-
tailored model that faithfully represents the hardware architecture.
Despite the non-idealities inherent in emerging CiM technologies,
our platform demonstrates performance on par with traditional
von Neumann architectures for substantial combinations of
FeFET device parameters. Our solution overcomes FeFET CiM
the increased non-idealities from down-scaled 3nm, operating
effectively under all possible configurations when 50 graph edges
are considered. Scenarios with less than 4-bit precision per FeFET
device cannot handle graphs with more than 200 edges, whereas
the 4-bit case can achieve a 90.3% graph reconstruction rate on
the worst-case scenario of 80% of noise.

I. INTRODUCTION

The remarkable achievements of artificial intelligence (AI) models
can be attributed, in part, to their exceptional reasoning capabilities
and the ability to derive novel interpretations from limited data[l,
2]. Reasoning as an essential capability of Al has been identified
in [3, 4], which relies on prior knowledge and experiential learning.
A Knowledge Graph (KG) is a graph-based data structure that
leverages semantic relationships to organize and represent knowledge,
facilitating efficient information retrieval and enabling complex
reasoning tasks in a structured manner. Knowledge graph reasoning
(KGR) uses these KGs and facilitates the derivation of previously
undiscovered relationships among entities, thereby enriching the
underlying knowledge graphs and empowering advanced applications.
Notably, KGR models exhibit promising performance in various
Al applications, including question-answering and recommendation
systems|[5, 6].

Graph Neural Networks (GNNs) have shown outstanding success
in KG reasoning tasks[7]. These state-of-the-art algorithms utilize
the graph structure to perform node and edge-level computations,
enabling complex reasoning capabilities. However, the computational
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Fig. 1. Traditional computing on graph reasoning tasks is costly. Computing in
memory is an emerging technology that brings the costs down exponentially but
generates non-idealities that GNNs cannot handle. Our HDC-based Algorithm
can perform with the anomalies introduced.

efficiency of GNNs on traditional computing platforms is hindered
by the memory wall problem, resulting in a severe bottleneck of data
transfers from the memory to the processing units[8].

Brain-inspired computing represents a compelling paradigm that
closely replicates the human brain’s intricate workings[9-11]. Our
brains exhibit remarkable characteristics such as efficient learning,
resilience to noise, and works based on the in-memory computing
principle[12—-15]. In contrast, traditional von Neumann architectures,
which separate memory and processing units, face limitations due to
the inherent costs associated with data movement. To address these
challenges, computing in memory (CiM) has emerged as a promising
approach by seamlessly integrating memory and processing elements.
CiM addresses the pressing concerns surrounding scalability and
efficiency in conventional architectures by enabling parallel processing
and minimizing data movement. Nonetheless, existing graph neural
network (GNN) models do not inherently possess a memory-centric
nature. They are vulnerable to the adverse effects of technology non-
idealities that often present themselves as noise, leading to suboptimal
quality and computational efficiency when deployed on emerging CiM
architectures.

This paper introduces a novel algorithm technology co-design
that revolutionizes graph reasoning algorithms by harnessing the
potential of hyperdimensional computing (HDC) for robust and
memory-centric computation on CiM platforms. Departing from
conventional GNNs, our HDC reasoning model adopts a symbolic
approach to effectively store graph entities and their relationships
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as high-dimensional neural activity. By optimizing the distribution
of graph information across redundant high-dimensional vectors, our
HDC reasoning algorithms facilitate highly parallel and fault-tolerant
computation. This innovative approach, supported by the mathematical
underpinnings of HDC, presents a promising solution for advancing
knowledge graph reasoning and augmenting the capabilities of existing
reasoning models.

Prior research has exhibited the intrinsic suitability of HDC models
for optimization through hardware acceleration[16-20]. To enable
efficient execution of HDC algorithms, we designed a tailored CiM
architecture in order to optimize the HDC algebraic operations. The
hardware platform presented in this study is based on advanced Ferro-
electric Field-Effect Transistor (FeFET) technology and incorporates
precise modeling of its non-idealities. This meticulous modeling allows
for the generation of a specialized model that accurately represents the
hardware platform. Leveraging the inherent advantages of CiM, such
as having novel multi-bit CiM cells, parallel processing and reduced
data movement, our algorithm effectively adapts to the inherent non-
idealities prevalent in CiM devices such as scaling noise, temperature
noise and low bit-precision.

Despite the challenges stemming from this emerging technology,
our algorithm demonstrates comparable performance to traditional von
Neumann architectures and improvements against GNNs. Our platform
demonstrates superior performance in reasoning tasks compared to the
Relational Graph Convolutional Network (RGCN) model, achieving
an approximate 12.5% improvement in Mean Reciprocal Rank (MRR),
which is a crucial metric for assessing graph reasoning. Furthermore,
our framework exhibits 87-fold enhanced robustness against noise,
highlighting its resilience in challenging environments. Notably, our
solution overcomes significant limitations related to scalability and
spatial constraints in FeFET CiM by successfully operating despite
the non-idealities, including 3nm thick back-gate FeFET cells and
elevated temperatures of 80 degrees Celsius, without any observable
loss in performance. For graphs with up to 200 edges, the performance
of 2-bit and 3-bits starts to fall down once we insert noises higher
than 50%, but the 4-bit architecture is able to perform well once noise
is introduced during learning phase, as the model learns to handle
with a graph reconstruction rate of 90%.

II. BACKGROUND & RELATED WORK

A. Computing in Memory

Given the high number of matrix-vector multiplications in HDC
algorithms, traditional von-Neumann processing architectures become
in-adequate to satisfy the design space. CiM is a processing paradigm
where the properties of the memory devices are exploited to perform
calculations in-situ. CiM can be achieved by non-volatile memory
(NVM) devices, such as FEFET or RRAM, configured in a crossbar
array structure, which perform in-situ vector-matrix multiplications
(VMM) in constant complexity, utilizing the analog domain.[21]. The
operational procedure of the crossbar array is summarized as follows:
(1) weight values are programmed as resistance levels into the NVM
devices; (2) input values, encoded as voltage levels, are applied to
the row bit lines; (3) the output of each NVM device, governed by
Ohm’s Law, is then summed in the column word lines by Kirchhoff’s
current law; (4) finally the summed current output must then be
converted to a digital value as a registered output. Due to its in-situ
properties, CiM-implemented VMM hardware is highly power efficient
and suitable for low precision, area, and power applications [22].
However, this architecture is fundamentally limited by the necessary
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analog-digital conversions at the input/output interfaces between
the crossbar unit to peripheral units or routing buses. Furthermore,
computations performed in the analog domain by NVM devices, such
as FeFet, must tolerate additional noise introduced by device variation,
analog-digital conversion resolution, and limited device precision. For
these reasons, HDC, through its inherent algorithmic redundancy
and robustness, is prime candidate for acceleration with CiM using
emerging technologies such as FeFet[23-25].

B. Graph Learning

The acceleration of graph-related algorithms, such as Graph Neural
Networks (GNNs), using domain-specific accelerators (DSAs) such
as Field-Programmable Gate Arrays (FPGAs) [26, 27], Application-
Specific Integrated Circuits (ASICs) [28], and CiM [29], has garnered
significant attention in recent times. Unlike traditional machine
learning tasks, graph-based learning tasks typically involve large-scale
datasets, necessitating the design of hardware accelerators. However,
most previous studies have focused on accelerating graph neural
networks and mining. More recently, the graph learning framework
based on hyperdimensional computing has gained substantial inter-
est [30-32].

In particular, a FeFET-based CiM hyperdimensional graph classifica-
tion accelerator was demonstrated in the work by [31]. This study cen-
tered on accelerating HDC-based graph learning and compared it with
previous graph neural network acceleration methods. However, the
work did not mention any contributions towards brain-inspired graph
reasoning acceleration [31]. On the other hand, [32] introduced the
first hyperdimensional computing-based graph reasoning framework.
The authors proposed a hyperdimensional graph reasoning model and a
digital CiM hardware platform. Nevertheless, this work only explored
basic digital CiM acceleration and paid limited attention to model
quantization, error analysis, and analog CiM acceleration. Leveraging
model quantization and ensuring robustness become imperative to
achieve efficient acceleration of HDC-based graph models using high-
speed analog CiM.

C. FeFET Basics

A FeFET is a type of transistor that uses a HfO,-based ferro-
electric layer (FE layer) in the gate stack to control the channel
conductivity [33]. The FE layer is highlighted in red in Fig. 2 and
comprises many domains that can be polarized individually [34].
Depending on their polarization, the channel conductivity changes,
which is mapped to logic states. Additionally, the domains retain their
polarization without a voltage making FeFET technology a multi-level
non-volatile memory. To polarize the domains in the same direction,
a write pulse of -4V or +4 V is applied, typically with a duration of
1 ps [33]. If the pulse has a lower voltage, not all domains are flipped,
and the FeFET’s conductance has an intermediate level. Consequently,
a multi-level cell (MLC) is created. A small voltage is applied during
a read operation, and the conducted current is measured. This voltage
causes read disturbance since some domains could be flipped during
a read [35].

Another challenge is the thickness of the FE layer, which is typically
about 10nm [36]. A thicker layer increases the memory window, the
difference between the low and highly polarized state, and a metric to
maximize. On the one hand, a thicker layer also hurts the ferroelectric
properties and prevents scaling the underlying transistor. On the other
hand, a thinner layer reduces the number of domains, and each domain
becomes more impactful on the overall polarization of the device.
Because the domain’s polarization change is a stochastic process,
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Fig. 2. Adding a ferroelectric (FE) layer to the regular gate stack allows the
channel conductivity to be controlled within a range known as the memory
window. The size of this window can be increased by incorporating a back gate.
The right image shows the hysteresis behavior of ferroelectric cells, which is
influenced by bit precision, where higher precision amplifies hysteresis effects
and lower precision diminishes them. The choice of precision depends on
specific application requirements.

the variability increases for highly-scaled FeFET devices with fewer
domains [37]. This results in a device that suffers more from non-
idealities.

Advanced dual-gate FeFET: To address both challenges, a FeFET
with an additional back gate has been recently proposed [38]. By
introducing this back gate and reading through it, the domains in the
FE layer are no longer disturbed. The FeFET is still written through
the front gate to change the FE layer’s polarization. In addition,
the memory window is amplified by the body effect factor [39] if
the FeFET is read through the back gate. A negative aspect is an
increasing variability because of the increased distance between the
channel and the back gate compared to the front gate [37].

III. GRAPH ENCODING IN HYPERDIMENSIONAL ENCODING

This section describes the utilization of a hyperdimensional
algorithm inspired by the workings of the human brain for the
purpose of learning and memorizing the given graph. Additionally,
adaptations to the algorithm were made to optimize its performance
and accommodate the inherent non-idealities associated with FeFET
technology, as depicted in Figure 3.

The initial phase of graph memorization involves initializing five
key parameters, namely B, D, G, and M.. B denotes the number
of bits employed in the encoding process, while D represents the
dimensionality of the hyperdimensional space utilized. The graph
G = (V,E) comprises a set of vertices V and a set of edges E that need
to be memorized. Furthermore, the current matrix M. encompasses the
mapping values that facilitate the computation of similarities between
graph elements. Subsequently, the encoding procedure is executed to
encode the given graph into the hyperdimensional representation.

In the subsequent step, the model proceeds to encode the given
graph G into a hyperdimensional space. To accomplish this, D-
dimensional vectors, denoted as Ijlv € RP, are generated for each
vertex v € V. These vectors are sampled from a normal distribution,
specifically from the set {A\(0, 1)}D . Subsequently, memory node
hypervectors, represented as M, € RP, are computed by aggregating
the hypervectors of neighboring vertices for each vertex v € V,
as visually depicted in Figure4. In other words, for each edge
ei = (vi,u;) € E, the hypervectors I:I‘V,. and ﬁui of vertices v; and
u;, respectively, are merged to form Mv and Mu. Finally, as illustrated
in Figure 5, the graph memory Gis computed as the summation over
all vertices i € V of the element-wise multiplication (denoted by

Algorithm 1 Graph Encoding Refinement

Input:
G(V,E): Undirected graph consisted of vertex set V

and edge set E to encode

9:

10:
11:

20:

: procedure GRAPHENCODINGREFINEMENT(G, é H,)

1
2
3
4:
S:
6
7
8

G: Previously encoded graph memory
H,: Vertex hypervectors
Output:
G': Refined graph memory
T: Threshold

A0 G,

forie {1,2,...,n-1} do
M)« GxH,—-nY

elld for =

[HI, MY + [qH,), qi™)]

Spos — {(v,u) € V x V|(v,u) € E}

Sneg < {(v,u) € VX V|(v,u) & E}

sty H, x H, M,(j)

S omes, SMLHTY S o §(MI,HT)
T g | =+ T )
for i € V do
forjecV do
6(M"
if < T and (i,j) € E then
M <— M + aH
else 1f > T and (i,j) ¢ E then
M; + M aH
end if
end for
end for

g’ — Zievﬁi *M,‘
end procedure

Algorithm 2 Graph Decoding

Input:

G: Encoded graph memory

H,: Vertex hypervectors

T: Threshold
Output:

E’: Edge set of reconstructed graph
procedure GRAPHDECODING(G, H,, T)

MO — G+ H,

fori e {1,2,...,n-1} do

M « G« H, -7 Dk H, * H, « M)

end for
[HY, M) + [qH,), qi™))
E 0
for i € V do
for j € V do
if ——~ 80 B > T then
E + E'U{Gipn}
end if
end for
end for

: end procedure
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Fig. 3. General overview of our proposed framework. We begin by generating
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in Memory architecture.

*) between the hypervector H; and the correspondmg memory node
hypervector M;, resulting in G= Y iy Hix M;.

A. Node memory reconstruction

In order to retrieve node memory M, using encoded graph memory
G and vertex hypervectors H,, iterative node memory reconstruction
is conducted. The initial estimation M{" for node memory M, is
computed by A7I$.1) = J * I-HIV. However, the first estimation contains
noise which is introduced by:

é* I:I'V =H,

I _, . _
=H, x H, * M, + noise ~ M,.

To cancel noise iterative]y, the next estimation MY of MO s
computed by MV = G« H, -1, o Hy H, + M™ where n € R
indicates noise cancellation rate. Node memory reconstruction is
conducted at the beginning of each encoding refinement iteration
(Algorithm 1 line 4) and graph decoding process (Algorithm 2 line
4).

B. Graph memory refinement

Memory refinement is done in an iterative process to have a better
encoding of G A single iteration for this graph memory refinement
process is described in Algorithm 1. For each memory refinement step,
we update memory node hypervectors using every pair of vertices
(v,u) € V x V as follows:

if 8(g(M™), q(H,))/D < T and (v,u) € E

MV = Mv + O[ﬁu
if 5(g(M™), q(H))D > T and (v,u) ¢ E

M, =M, - aH,

where o € R indicates the refinement rate. M is used in J, a function
for computing similarity between the given hypervectors. At the end
of each iterative refinement, G is computed from updated M,.

C. Decoding of the graph

To decode the graph, we test for every pair of vertices (v,u) € VxV
to determine whether or not an edge (v, u) exists. The existence of
an edge (v, u) is determined by 6(q(1l7lf,”)),q(1?1u))/D > T after getting
estimated node memory M from G. If the inequality is satisfied,
it considers the edge as a part of the graph. This graph decoding
process is described in Algorithm 2.

D. Adaptation of graph memorization to Computing in Memory

Next, we present the adaptations undertaken to our pre-established
algorithm in order to effectively harmonize it with the prevalent
non-idealities inherent to the device.

4

1) Projection of the model: During the graph projection process,
we proceed to ensure that the full-precision hypervectors H, and M, are
transformed into B-bit precision representations to be compatible with
the CiM architecture. This quantization operation is carried out within
the model projection step, where the components of the hypervectors
are quantized to B-bit symbols. Given that the feature values do
not typically conform to a uniform distribution, we do not perform
uniform quantization. Instead, the values of the HDC components are
calculated, and the cumulative normal distribution function (cdf) is
utilized for feature value quantization. As a result, the quantized vertex
hypervectors q(H ) and quantlzed memory node hypervectors q(M )
are obtained from the original H, and M,, respectively, as shown in
Figure 6.

2) Similarity function setup: The HDC algebra relies on a
similarity metric for its learning tasks. In our CiM architecture, the
traditional dot product or cosine similarity operations are replaced
by function that compares bit values within the device. This enables
efficient similarity evaluations while considering the limited computa-
tional resources. Given two B-bit(s) hypervectors H, and H, current
similarity 8(H,, H,) is computed using d= |FI| —ﬁ2| and M¢ indicating
current matrix containing mapping values for computing similarities.
Now, the similarity is computed as follows.

D-1
S(H\, Hy) =Y M
=0
Note that 0 < d; < |M¢| = 25,

3) FeFET noise application to the graph framework: For the

purpose of applying noise, given a modeled probability distribution,
the noise makes a bit-symbol v increase or decrease to v+ 1 or v—1.
Each value in the quantized hypervector has the same probability
of random value changing. For instance, if the random changing
probability is p, a value v in the hypervector will be changed to the
value of v+1 in p/2 probability and v—1 in p/2 probability. But, if v—1
is 0 or v+ 1 is 2% — 1, only an increase or decrease will be applied in
p probability, respectively. The application of random value-changing
noise can be described as follows:
The noise is introduced between the model projection and the inference
steps, affecting the test set. The changed values persist until the
subsequent model projection occurs. We study two different scenarios
where the noise is introduced. The first one includes the noise during
decoding, meaning the encoding process of the graph is not affected
by value changes. Instead, the noise is applied to a copied model
during the iterative refinement of graph encoding. The second one
introduces the noise during the generation of hypervector G

E. Capacity of hardware-based HDC

Capacity plays a vital role in Hyperdimensional Computing (HDC),
influencing its effectiveness and efficiency. It refers to the system’s
capability to process and manage a substantial volume of information
within its high-dimensional vectors. A greater capacity enables HDC
to represent and manipulate a larger number of distinct entities. The
concept of capacity is crucial for accurately encoding, storing, and
reasoning with complex data, including graphs and knowledge bases.
In this section, we introduce a theoretical formulation and modified
approach tailored to model quantization. In line with the approach
described in [40], the memory capacity is defined as the information
content of the memory, specifically the mutual information between
the true nodes and the nodes that can be retrieved from the model
S. It is important to note that since the model is solely used for
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of the hypervectors H; and M; and doing a density-based quantization given a
specific bit-precision.

detection purposes, the analysis of mutual information focuses on the

distribution of node membership rather than the nodes themselves.

Let 5 be the random variable of the detector output and s be the
membership of a query. For simplicity, let the support of §,s be
{0, 1}, indicating undetected/detected for § and not present/present
for s, respectively. Therefore, under fixed parameter p, and threshold
¢’, the mutual information between the set of nodes {§(1)} and the
model § is

1({57}, 8) = Dk (Pr(3, 5)|| Pr(3) Pr(s))

> PrE=i.s=j)log, 5
ijeq{0,1}
Where Dg; is the KL divergence [41]. By definition, Pr(s) is described
succinctly by ps (Pr(s = 1) =p,). PrG=1)=tp - ps +fp - (1 —py) is

Pr(s =i,s =)
r(s = i) Pr(s =)

the marginal probability with which the detector outputs “detected”.

The joint probability Pr(s,s) can be computed by the conditional
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probability, whose values are the true/false positive/negative rates of
the detector. The memory capacity is simplified as

1{S?},S) = py(plogtp + (1 — p) log(1 — 1p) — log Z)
+ (1= po)(fplogfp + (1 - fp) log(1 — fp) — log(1l — 2))

where Z=Pr(s=1)=1tp-ps+fp - (1 -ps), and &' is implicit.

We analyze the impact of quantization using high-resolution
quantization theory. As this quantization method takes into account
the statistics of all hypervector components (D of them), and each
component is quantized to the same amount of bits (encoding rate is
fixed), it is classified as a fixed-rate D—dimensional quantizer. As a
result, the quality of the quantizer 6p(R) has an upper bound of

§D(R) =~ MD61)0'2272R

Where p(R) is the operational rate-distortion function of the quantizer,
and MSE measures the distortion. R is the bit rate, Zp(R) is the Zador-
Gersho function, Mp ﬂ> (27re)’I is Gersho’s constant [42] that
accounts for the least normalized moment of inertia of D—dimensional
tessellating polytopes, 5p L0, (2me) is Zador’s factor [43], and
o is the standard deviation of the source (assumed gaussian). As
suggested in [44], the high dimensionality of the quantizer allows
close approximation of the constants. Furthermore, the performance
of the D-dimentional quantization method converges to that of the
optimal D-dimentional quantizer as D approaches infinity.

IV. HARDWARE FRAMEWORK

In contrast to conventional hardware computing platforms like
CPU and GPU, HDC models typically exhibit superior execution
performance and energy efficiency when applied to computing in-
memory (CiM) [45, 46]. Compared with digital CiM, crossbar array-
based analog CiM shows more advantages on speedup and energy
efficiency [47]. To enhance the speed of our design even further, we
leverage an analog computer in-memory platform by mapping our
design onto it. For the vertex memory hypervector reconstruction
process, we write the equation as follows:

W% = oG- Z ol ~ ﬁiog'_ﬁioZFgoM;kuMl(k)
JEV\{i} jev

)]
To accelerate vector-to-vector element-wise multiplication and ac-
cumulation operations, we map equation 1 into crossbar array [48].
The analog CiM’s architecture and schematic design are shown in
Figure 7. (a). Here we cut the hypervector into N chunks with each
chunk’s dimension as T. Each processing unit (PU) has one crossbar
array for the element-wise product (EP), as is shown in Figure 7. (b)
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Fig. 7. (a) FeFET-based analog CiM accelerator targetting vertex memory hypervector reconstruction. (b) Vector to vector element-wise product (EP) CiM. (c)

Vector-matrix product (VMP) CiM.

and one array for vector-matrix multiplication (VMP) 7. (c). After
generating each vertex’s memory hypervector, we use FeFET-based
TCAM to accelerate the hamming distance computation between
the query vertex hypervector and vertex memory hypervector when
determining whether two vertices are connected. TCAM-based PIM
is widely used by previous HDC accelerator works [20, 49].

The vector storage is divided into smaller FeFET-based crossbars.
The values are applied to the horizontal word lines as the gate voltages
of the FeFETs. Based on the FeFET’s state, its conductance value is
different, representing the multiplication. All FeFETs of a single
column share a common wire connected to their drain terminal,
combining the conductance values and performing the addition. To
reduce unnecessary power consumption, the drain terminals of the
unselected columns are tied to the ground. Only the active column
is selected through a MUX and connected to the ADC. Since the
crossbar is operated at SO0mV and the ADC at 800mV, a current
mirror [50] is added.

The ADC is based on the ladder principle using transistors, similar
to the architecture described in [51]. The ADC includes buffers to
rectify the output flanks and four full adders to convert the thermometer
output representation into a binary representation.

V. EVALUATION

A. Experimental Setup

The comprehensive framework encompassing graph learning and
reasoning is successfully implemented utilizing the PyTorch deep
learning library. To evaluate the performance of our framework,
a rigorous and systematic assessment is conducted, employing
well-established benchmark models such as the Relational Graph
Convolutional Network (RGCN) as a baseline and FB15K-237 [52]
as the dataset. We employ standard metrics commonly used in KGR
tasks, as shown in Table 1. These metrics include Mean Reciprocal
Rank (MRR), Hits@1 (H@1), Hits@3 (H@3), and Hits@10 (H@10).
MRR measures the average reciprocal rank of predictions, with higher

scores indicating more accurate predictions ranked closer to the top.

Hits@K metrics assess whether the correct prediction is within the top
K predictions, where Hits@1 is stricter than Hits@10 as it requires the
correct prediction to be ranked first. These metrics serve to evaluate
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TABLE I
LINK PREDICTION PERFORMANCE ON FB15K-237 DATASET.
MRR H@10 H@3 He@l
Our Framework  .3259 .5042 3559 2378
RGCN .1948 .3647 2073 1135
‘ Our Framework RGCN ‘
40 100
30 — __ 80
S 13% higher g 60 87%_|°W9"
« 20 1 | performance g quality loss
= g 40
s
10 2
o+ r r r r ] 0 . r r r \
0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 006 008 0.1

Bit Flip Probability (%oo)

Fig. 8. Testing the performance of the different algorithms given different
random bit flip probabilities. The x-axis is based on the per thousand range.

the performance of our model and the baseline in tasks such as
link prediction and missing relationship inference within knowledge
graphs. The results clearly demonstrate the superiority of our proposed
approach, consistently surpassing the performance of the baseline
model across a diverse range of evaluation metrics.

Moreover, to investigate the robustness of our framework under
perturbations and uncertain conditions, we deliberately introduced
noise to the weights of both the RGCN network and our proposed
framework. As shown in Figure 8, our framework exhibited remarkable
resilience to noise, consistently outperforming the baseline model
under noisy conditions. This underscores the robustness and stability
of our framework, validating its suitability for real-world applications
where noise and uncertainties are pervasive.

Additionally, we conducted experiments to evaluate the performance
of our framework considering the FeFET’s non-idealities and different
FFET device configurations.. Specifically, we employed graphs with
varying edge counts of either 50 or 200, while maintaining a fixed
number of 50 nodes. The hyperparameters o and 7 were set to
0.1, and the graph memory refinement used n as the number of
iterations for the node memory reconstruction. These experiments
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TABLE 11
NOISE LEVELS FOR DIFFERENT THICKNESSES OF THE FERROELECTRIC
LAYER, BIT PRECISION, AND TEMPERATURES. BASED ON [37].

Modeled
Noise (%)

0.04
0.74
0.10
1.36
8.88
20.44
11.13
24.21

HfO, Precision
Thickness (nm) (bit)

10 3
10
10
10
10
10
10
10

3

Front/Back
Gate Read

Temepera-
ture (°C)

27
80
27
80
27
80
27
80

27
27
27
27
80

0.73

5.88
4243
20.30
36.71

PRLWOW|[EARARERALLWL
osllesiies Mool oo lios v llor Mo s lile sl ool o]

3
3
3
3

provided valuable insights into the trade-offs between bit-precision,
dimensionality and performance of our framework under different
scenarios, further substantiating the effectiveness and adaptability of
our proposed approach.

B. Performance Evaluation of Framework: Bit Precision and
Dimensionality Analysis in FeFET-based Graph Reasoning

In this section, we present the results of an extensive evaluation
conducted to investigate the performance of our framework across
various bit precisions (2-4 bits) and dimensionalities. The evaluation
metric employed is Graph Reconstruction Accuracy (GRA), quantify-
ing the percentage of nodes accurately retrieved its neighboring nodes
from the memorized graph. The noise modeling and probabilities are
applied to the graph memory hypervectors during inference.

For comparison, we establish a baseline configuration of a 10nm
thick FE layer and 27 degrees Celsius. This configuration is chosen
because it exhibits the least noise and a low probability impact within
our framework, exhibiting a low probability of error of 0.10% for 3-bit
precision and 11.13% for 4-bit precision. Additionally, two distinct
configurations of FeFET cells, namely front gate and back gate, are
considered in our study.

We explore various combinations of thickness (10 nm or 3 nm) and
temperature (27 or 80 degrees Celsius) to comprehensively evaluate
the framework’s performance, as shown in Table II For the front gate
configuration, as shown in Figure 9, with 3-bit precision and 50 edges,
the most challenging scenario arises when operating at 3 nm thickness
and 80 degrees Celsius, resulting in a substantial 42.43% probability
of noise. To achieve performance comparable to the baseline in this
challenging scenario, a minimum hypervector dimensionality of 7168
is required for both 3-bit and 4-bit precisions. Conversely, when
dealing with 200 edges, the 3-bit precision falls short in achieving
satisfactory performance, while the 4-bit precision necessitates a
maximum dimensionality of 10240 to match the performance of the
traditional von Neumann architecture under zero noise conditions.

In the case of the back gate configuration, the probabilities of
error are reduced, with worst-case scenarios yielding 5.88% and
36.71% probabilities of error for 3-bit and 4-bit precisions, respectively.
Notably, minimum hypervector dimensionality of 4096 is sufficient
for all combinations involving 50 edges. With 200 edges, both 3-bit
and 4-bit precisions exhibit satisfactory performance in the worst-case
scenario as shown in Figure 10, requiring a minimum dimensionality
of 7168 to achieve desirable results.

C. Hollistic noise exploration on our framework

In this experiment, we present a comprehensive analysis that
explores the influence of bit-precision, noise probabilities of error,
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TABLE III
CROSS PLATFORM COMPARISON OF THE MEMORY HYPERVECTOR
RECONSTRUCTION PROCESS. THE HYPERVECTOR DIMENSION 1S 10000 AND
50 VERTICES ARE IN THE GRAPH.

Jetson  i9-12900 RTX 3090 DCiM  ACiM 10nm*  ACiM 3nm*
Latency (ms) 702.5 2375 9.25 17.75 15x 1070 34x 1070
Power (W) 60 53 61 6 0.297 0.171

* Only includes crossbars, not a complete computing system.

and dimensionality on the performance of our graph reasoning
framework. In this analysis, the noise is not explicitly associated
with specific configurations, allowing for a more generalized search.
Noise probabilities ranging from 0% to 80% are considered, while
dimensionalities span from 4012 to 10240.

Our framework is assessed under two noise introduction scenarios:
during encoding and memorization of the graph and during inference.
This evaluation sheds light on the framework’s resilience to noise and
capacity to adapt during learning.

Figure 11 presents the results for a graph with 50 edges with 2 bits
where the model’s performance falls short of traditional computing;
however, it demonstrates an average improvement of 25% when noise
is introduced during graph learning. Notably, our framework performs
comparably to ideal conditions for the 3-bit and 4-bit scenarios,
showcasing its robustness against noise. This observation underscores
the framework’s adaptability and ability to handle noise during the
learning phase effectively.

In Figure 12, we shift our focus to a more challenging scenario
involving 200 edges. In this case, both the 2-bit and 3-bit scenarios
fail to achieve performance comparable to the ideal case. Neverthe-
less, when noise is introduced during training, substantial average
improvements of up to 10.66% and 24.25% are observed for the
2-bit and 3-bit scenarios, respectively. Notably, for the 4-bit scenario,
while the performance is not comparable when noise is introduced
during inference, the introduction of noise during training yields
highly promising results, with an average GRA of almost 90.3%.

These empirical findings highlight the robustness and adaptability
of our framework in the presence of noise, particularly when noise
is introduced during the learning phase. The results underscore the
framework’s potential to achieve high GRAs, even in challenging
scenarios, positioning it as a viable solution for real-world applications
requiring reliable and noise-tolerant graph reasoning capabilities.

D. Power and latency comparison

In this work, the power is modeled for the crossbar and the ADC.
The contribution from the current mirror and the digital logic (inverters,
adders) is negligible. The conductance values of the FeFETs and thus
the power consumption is averaged for the crossbar (i.e., no data
dependency). Additional digital logic such as an adder tree to combine
the results from the individual crossbars into the full similarity and
vector values is not considered. Similarly, the latency is based on
electrical-level SPICE simulations for the crossbar and the ADC but
not for the entire computing system.

Table V-D presents a comparative analysis across different platforms
to highlight the advantages of the proposed framework with a CiM
architecture. The original HDC graph reasoning model is implemented
and tested on various existing CPU and GPU platforms, namely
NVIDIA Jetson Orin SoC (referred to as ”Jetson”), Intel 19-12900 CPU
(referred to as ”i9-12900), and NVIDIA RTX 3090 GPU (referred
to as "RTX 30907). Additionally, we include the performance results
of a previous study [44] that employed digital CiM acceleration, to
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Fig. 9. Performance of proposed memory HDC learning of Graph HDC framework modeling the temperature for 10nm and 3nm thick on the Front gate

FeFET configuration.
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Fig. 10. Performance of proposed memory HDC learning of Graph HDC
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gate FeFET configuration.
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Fig. 11. Exploration of 2-bit proposed memory HDC learning of Graph HDC
framework for different noise probabilities.

underscore the benefits of our proposed quantization method and
analog CiM (ACiM). In this analysis, we assume all hypervectors
dimension are 10000 and the graph size is 50 vertices and 200 edges.
With our CiM architecture, all the data is stored in 8x16 FeFET-based
crossbars enabling massive parallelism for the computations. Hence,
the latency given in Table V-D is at nanosecond scale — two orders
of magnitude faster than other platforms. Note that only the crossbar
and ADC latency is modeled, modeling a complete computing system
is deferred as part of future work. Nevertheless, the remaining digital
logic is not expected to negate this advantage from the massive
parallelism in the primary computations. The different in latency for
the 10nm and 3nm FE layer thickness stems from the difference in
current that the FEFETs conduct. At 3nm, the conductance is higher
and thus the ladder ADC is slower, but consumes less power.
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Fig. 12. Exploration of multi-bit proposed memory HDC learning of Graph
HDC framework for different noise probabilities: (a) noise during decoding
and (b) noise during encoding.

VI. CONCLUSIONS

Our study presents an innovative algorithm-hardware solution for
efficient knowledge graph reasoning in Al systems. By harnessing
hyperdimensional computing (HDC) and computing-in-memory (CiM)
platforms, we overcome the memory wall problem and achieve robust
computation. Through symbolic encoding and optimized information
distribution, our HDC reasoning model enables parallel and fault-
tolerant processing. The customized CiM architecture, based on FeFET
technology, accurately represents the hardware platform. Our solution
demonstrates comparable performance to traditional architectures,
highlighting the potential of HDC and CiM for efficient Al reasoning.
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