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Abstract—In this paper, we propose a Hyper-Dimensional
genome analysis platform. Instead of working with original
sequences, our method maps the genome sequences into high-
dimensional space and performs sequence matching with simple
and parallel similarity searches. At the algorithm level, we revisit
the sequence searching with brain-like memorization that Hyper-
Dimensional computing natively supports. Instead of working on
the original data, we map all data points into high-dimensional
space, enabling the main sequence searching operations to process
in a hardware-friendly way. We accordingly design a density-
aware FPGA implementation. Our solution searches the similar-
ity of an encoded query and large-scale genome library through
different chunks. We exploit the holographic representation of
patterns to stop search operations on libraries with a lower
chance of a match. This translates our computation from dense
to highly sparse just after a few chuck-based searches. Our
evaluation shows that our accelerator can provide 46x speedup
and 188 x energy efficiency improvement compared to a state-of-
the-art GPU implementation. Results show that our accelerator
achieves up to 3440.6 GCUPS using a single Xilinx Alveo U280
board.

I. INTRODUCTION

Sequence pattern matching is one of the key algorithms
in identifying and analyzing genomic data. Unfortunately,
the optimal solution for the sequence matching scales poorly
with the number of sequences. An underlying reason is that
data movement costs between the processor and memory
still hinder the higher efficiency of application performance,
although new processor technology has evolved to serve
computationally complex tasks more efficiently.

A sequence matching solution requires performing multiple
sequence searching as a fundamental procedure, i.e., checking
the existence of a gene series in a database [1]. At heart,
the problem is equivalent to memorization in that we should
memorize and recall genomic/proteomic sequences. Tradi-
tionally, sequence searching application is based on Needle-
man—Wunsch Algorithm(NWA) [2] or Smith—Waterman Algo-
rithm(SWA) [3]. The vast majority of sequence aligners based
on those two algorithm relied on Dynamic Programming (DP)
which naturally have non-linear execution time and memory.
Currently most of the genome sequence matching acceleration
on GPU or FPGA are based on SWA or NWA [4], [5], [6].
To overcome DP long execution time, we need to give up the
traditional DP-matrix style searching method. Therefore in this
paper, we accelerate the sequence searching in hardware by
redesigning the sequence searching based on a new computing
paradigm, Hyper-Dimensional Computing (HDC) [7], [8], [9],
[10]. HDC is a human memory-inspired method to implement
efficient memorization using high-dimensional vectors, called
hypervectors. The HDC provides several features that make
it well-suited to address the sequence matching problem: (i)
it transforms inherent sequential processes of the sequence

979-8-3503-2599-7/23/$31.00 ©2023 IEEE

searching to highly-parallelizable computation tasks, where
the operations can be supported by FPGA [11], (i) HDC
is memory-centric and highly-parallel, making FPGA archi-
tecture an ideal platform for hardware acceleration [12], (iii)
it provides strong robustness to noise — a key strength for
enabling approximation [13].

In this paper, we propose HyMATCH, a Hyper-Dimensional
genome analysis platform. Instead of working with original
sequences, HyMATCH maps the genome sequences into high-
dimensional space and performs sequence matching with sim-
ple and parallel similarity searches. At the algorithm level,
HyMATCH revisits the sequence searching with brain-like
memorization that HDC natively supports. Instead of working
on the original data, HYMATCH maps all data points into
high-dimensional space, enabling the main sequence search-
ing operations to process in a hardware-friendly way. Our
FPGA accelerator parallelizes both the encode and search pro-
cess and efficiently track different libraries’ searching states.
Combining our statistical simulation, our kernel transfers the
traditional sequential searching process into of order parallel
searching process. Besides large innovation inside the kernel,
we also integrate the HBM inside-out accelerator to improve
the data level searching parallelism [14]. HyMATCH searches
the similarity of an encoded query and large-scale genome
library through different chunks. We exploit the holographic
representation of patterns to stop search operations on libraries
with a lower chance of matching. This translates our computa-
tion from dense to highly sparse just after a few chuck-based
searches.

II. HYPERDIMENSIONAL GENOME MATCHING

Figure 1 shows an overview of HyMATCH sequence match-
ing in high-dimensional space. HyMATCH supports exact
and approximate sequence matching. HyMATCH maps each
genome sequence into an orthogonal high-dimensional space,
regardless of their similarity in the original space(Figure 1a).

After generating the encoded sequences, HyMATCH mem-
orizes multiple sequences into a single reference hypervector,
R =V, +Vo+ Vs, where V€ {~1,+1}P or V € {9 : 0 ~
p(w)}P, here D is the dimension of hypervector. As Figure 1b
shows, each reference hypervector can store the information
of thousands of sequence patterns in a compressed way.
The number of patterns that can be stored in each reference
depends on the orthogonality of the encoded patterns and the
dimensionality of the reference hypervector. The orthogonality
determines by the encoding methods, and dimensionality di-
rectly increases the computation cost. HyMATCH aggregates
all encoded protein sequences to generate a reference genome,
called HDC Library. HDC library consists of several reference
hypervectors, where each hypervector memorizes thousands of
genome sequences in high-dimensional space.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:50:59 UTC from IEEE Xplore. Restrictions apply.



a Query Sequence

ACTAGATCA

Query (Q)

1
1
1
1
Pattern \ Similarity
Matching ' Search
AGTCTAGTGGCGG i N
AAGAGATTCGCAG | <
TGACCTAGACGCT - 2
000 H @ N
: \
!

Reference Genome H \ HDC Library (R) /

Fig. 1. HyMATCH: pattern matching in high-dimensional space.

During matching, HyMATCH uses the same encoding to
map query sequence into a hypervector. A similarity compu-
tation between a query and each reference hypervector in the
HDC library computes the pattern matching (Figure 1c). A
reference hypervector with a similarity larger than 7" distance
thresholds determines an alignment match. We determine
the distance threshold depending on dimensionality and the
number of sequence patterns stored in each reference hyper-
vectors. Overloading a reference hypervector over its capacity
increases false positive or true negative matches.
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Fig. 2. (a) The theoretical capacity of a hypervector in memorization of
encoded genome patterns, (b) distribution of existing and non-existing patterns
in reference library during similarity search, (c) Capacity of a hypervector as
function of dimensionality.

III. HARDWARE ACCELERATION

HDC based genome sequence alignment application could
be generally divided into two steps: (i) encoding raw data into
hypervector genome library (ii) hypervector pairs matching.
Previous work using HDC to accelerate focused more on
accelerating the HDC vector encoding process but put little
strength on the hypervector matching process itself [15], [16].
In this section, we are going to focus on the latter part.
We will provide a new genome matching algorithm, on the
one hand, different parallel libraries (Iibs) matching process,
on the other hand, conduct early drop to avoid unnecessary
match computing. We also notice that with the matching
process going on, the sparsity of each library will increase
significantly. To fully utilize FPGA computing resources, a
density-aware mechanism dynamically adjusts each library.

A. Basic Concepts

First, we clarify some basic concepts related to our accel-
erator in this section. Due to the large size of the hyperdi-
mensional vector, it sometimes reaches 4k bytes. we cut a D
bytes HDC vector into H chunks. Suppose each chunks’ size
is M bytes, here we have D = H x M. Suppose there are
total N similarity search computing units (ALU). Due to the
nature of HDC vector’s information distribution over the whole
vector, we compute the similarity search (S.S) over maximum
N different libraries, which means at the beginning stage of the
matching process, at each memory request accelerator kernel
will request total N« M bytes from on-chip or off-chip storage.
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Fig. 4. Encoder architecture design.

Each library is proceeded chunk by chunk. Each genome
library and query genome HDC vector similarity search result
will be the accumulation of the total H chunks’ similarity
search result.

B. High Bandwidth Memory Usage

High bandwidth memory (HBM) is widely used in today’s
FPGA accelerator design to overcome the traditional DRAM’s
bottleneck bandwidth. Compared to off-chip DRAM, Xilinx
Ultrascale+ FPGA integrates HBM on-chip, which on the
one hand, reduces the data transmission time; on the other
hand, parallelizes the data reading and writing process. HDC
has natural parallelism with extensive volume data needed,
ideally suited to HBM’s multiple data channel architectures.
Specifically for this genome matching task, due to the large
volume of encoding genome libraries HDC vectors, sometimes
reach 100 MB to 1 GB. Using HBM to parallelize the
large-scale data loading from memory to kernel significantly
improves the searching speed. Also, since all libraries are
independent of each other in high-dimensional space, which
means that random access or cross channel access [17] will not
happen if each HBM pseudo channel (PC) only supplies one
accelerator kernel and if those PC and kernel combinations
are logic independents. In such a case, the high throughput
benefit of HBM will be maximized.

C. HDC Early Drop

Due to the nature of the HDC model, we assume after
encoding, the information of the original genome library is
evenly distributed across the whole large-scale HDC vector.
Unlike the previous HDC matching algorithm, which will
encode and realize the similarity search across the entire
hypervector, we make similarity over all libraries but only a
small chunk. This will increase the parallel calculation of dif-
ferent genome libraries and also saves unnecessary matching
calculation. Assuming library [;, we cut it into several chunks
represented as V;, here ¢ ranges from 1 to H. Suppose we
store this /;’s chunks’ matching result as r;,. In this way we
have the whole size D bytes hypervector matching result as:

r, = Zf:o 8(qj,15). Here d is a dot product operation used as
a similarity search function, 1% indicates jth chunk of library ¢,
and ¢; indicates query the 5" chunk of a hypervector. Unlike
a normal method, conducting a matching process for the whole

hypervector, here we present early stop calculation:
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D. Density Aware Consideration

After HDC vector chunks become the basic computation
units, with the libraries dropping out, a sparse problem will be
raised up and make the on-chip computing resources wasted.
Here, we use the process and threads relationship in operating
system design as an analogy to illustrate the relationship
between genome library and its corresponding HDC vector
chunks. In Figure 3, a simple example is provided to illustrate
the genome library dropping process and the density aware
mechanism. The /;; means the ith genome library’s jth chunk.
At the beginning stage, every library is stored in memory
storage. The libraries will load into the searching kernel for
each memory request cycle. Every square represents an HDC
vector chunk, and its color represents its access situation. For
example, if a square is light blue, this chunk has not been
accessed. At the beginning stage of the matching process, the
accelerator kernel will read one chunk for each library from
memory storage. Let us suppose there are five libraries, and
each library has four chunks (shown in Figure 3). The total
available computing units on-chip is four. However, after the
first similarity searching, the accelerator decided to drop the
4*M library. To fully use the available computing units on-chip,
the 5¢" library will be accessed to replace the 4!" library. This
dropping mechanism only keeps necessary memory access.

Next, we introduce a library density concept (density). We
use operating system concepts as an analogy, where there are
single-threaded and multi-threaded processes. In the genome
matching process, since there are many libraries that have not
been loaded at the initial stage, we restrict our model as a
single library single chunk or said the density of library is
1. However, if we still restrict the density of the library to
be 1, many computing units will be wasted. Figure 3 shows
that for the 3rd memory request cycle, only the first and fifth
libraries are still active. In this situation, if we still restrict
the density of those two libraries to 1, half of the on-chip
computing units will be wasted. To fully utilize the on-chip
computing units, increasing library density becomes critical.
Let us assume the active libraries number (N, .¢;ve) 1 less than
the available computing units (N¢opmp). To avoid resources
waste, we will increase the library density or realize density
aware mechanism during matching acceleration [18]. The math

equation is density = LZJJC(’%J For example, in Figure 3, at
3rd memory request cyclg,c Uactwe is 2 and Neomyp is 4. So
the density of libraries 1 and 5 will increase from one to two.
Thus, both these libraries will process two chunks in the next

cycle.
IV. ARCHITECTURE DESIGN

A. Encoder Microarchitecture

Figure 4 presents the hyperdimensional(HD) encoder archi-
tecture design. Both query sequence and reference sequence
will first be loaded into the encoder via AXI direct memory
access (DMA) as a stream. The scheduler IP will assign each

genome data into its corresponding approximate(approx) IP to
parallel the encoding process. Suppose the genome sequence’s
length is S and there are total T approx IP inside the en-
coder. In this case, each approx IP will conduct association
encoding of K genome data where K = % Each genome
data consists of two parts. The first part is a two-bits index
number representing what kind of alphabet this genome is. For
example, for DNA X = {A, C, G, T}, the corresponding index
number is: ¥ = {00,01,10,11}. This index will be treated
as an address to select the corresponding base hypervector.
The second part is the position index used to control the
shifter IP’s shifting step. To efficient process hypervector on
FPGA, we reshape each hypervector from 1 x D into H x
M as we discussed in section III-A. An H x M, systolic-
array style, processing element (PE) array is used to conduct
the K genome hypervector’s association operation. After every
approx IP finishes its operation, a reduction IP is used to
conduct bundling operation to these T hypervectors. Finally
the encoding genome hypervector will be written into the
HBM via AXI Interconnect IP.

B. Kernel Microarchitecture

The top-level accelerator architecture design is shown in
Figure 5. The query hypervector is stored on-chip and divided
into H chunks. Each chunks’ size is M bytes. The referring
library HDC vector chunks (library) are loaded from storage
memory (DRAM or HBM) via a depth N FIFO (@). For
each memory response, a totally N chunks will be loaded. The
density of each library ranges from 1 to N. Since the similarity
search of each library’s chunk is out of order, borrowed the
concepts from Tomasulo Algorithm [19], we exploit a table
to track each library’s searching “progress”. The contents of
the tracking table include library index, chunk index, library
density, and validness of current table entry. Here the library
index is used to construct the global memory address so the
kernel can send memory requests via the AXI interface (further
discussed in IV-C. For each of the loading library chunks, it
will have its corresponding refer chunks. Here, a select IP
is used to map refer chunks to each library chunks based
on the N library index. N parallel ALU IPs are used to
conduct similarity search (@) operation between query and
library chunks. Inside each ALU, an M-byte multipliers is
concatenated with an M inputs tree adder. One thing that
need to notice is that, here the M -byte multipliers is a tuple to
tuple direct multiplier. Suppose each tuple’s size is 1 bit , then
the tuple to tuple multiply operation will becomes single bit
XNOR operation. After each ALU’s similarity search process,
one byte will be generated. Totally, N bytes will be generated
as a similarity search result. Those similarity search results
will be accumulated to its corresponding library (@). There
are N accumulation IPs (ACC IP). Inside the ACC IP, each
accumulating operation has two steps. Since each library’s
density ranges from 1 to N, for each memory request cycle,
we use logo N different tree adder inside the Acc IP to reduce
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Fig. 6. System design with HBM.

the accumulation time (@). The Two-level interconnect IP
will route searching results to their corresponding Tree Adder
based on index begin and size. After summing the similarity
search result, a comparator is used to decide whether this
library’s search process will continue or just stop (@). The
library sum on-chip storage (RAM) will also be flushed with
0 if it is decided to be dropped out.

Based on accumulation and comparison results, the tracking
table is updated entry by entry (@). Suppose the library is
decided to be dropped. In that case, its corresponding tracking
table entry will be replaced with another library index or
directly invalid if there are no more new libraries inside global
memory. When it is replaced with another library index, the
other parameters of this entry, such as chunk index, will be
set as O since the search needs to start over again for this new
library. In contrast, if the library is decided to be kept, there are
also two situations. The first is that all chunks of this library
have been searched. The kernel will keep this library’s index
inside the on-chip BRAM since this library has a high chance
to be the successful matching one. Otherwise, the library’s
corresponding chunk index will increase by its current library’s
chunk density, and the search will continue. After updating all
the entries of the tracking table, the kernel will send a new
memory request (@) to the global memory based on current
tracking table information.

C. System Design with HBM

To avoid HBM cross channel access problem, each ac-
celerator kernel have its own corresponding HBM PCs, as
shown in Figure 6. Since on Xilinx Ultrascale+ FPGA, the
HBM’s PCs have AXI interface, the connection between
accelerator kernel and HBM is bridged by AXI interconnect
IP. Since inside accelerator kernel, we only store library
index, chunk index, and chunks size as shown in Figure 5,
to realize AXI burst reading operation, a customized AXI
adapter IP is designed. The core function inside the adapter
iSSARADDR = ADDRygse + indexyy * D + index cnunk.
Besides kernel accelerator and HBM, here we also give a
quick introduction of other IP used in Figure 6. First, a logic
controller is designed to start and stop the kernel execution.
To load genome library HDC vector into HBM, a Mciroblaze
softcore CPU is also used here. MicroBlaze CPU realizes
HBM writing operation through AXI interconnect IP. Besides
loading data, Microblaze also realizes the logic control of the
accelerator via GPIO IP. After loading genome data into HBM,
MicroBlaze will send a high pulse into logic controller IP via
GPIO. We synthesize and generate the bitstream from Xilinx
Vivado software, and other genome matching C program is
tested on Xilinx Vitis unified software platform. We debug
and check the C program output information on the Linux
terminal via UART IP. One of the most interesting design
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Fig. 7. (a) Distribution of existing and non-existing patterns in reference
hypervector. (b) The ROC curve showing trade-off between true and false
positive rates based on threshold value.

False Positive

details we want to mention is that our kernel accelerator’s
operating frequency differs from HBM IP’s frequency. Based
on Xilinx official documents, the maximum frequency of HBM
can achieve 900 MHz, which is far beyond our accelerator’s
operation range. To overcome this cross-domain clock (CDC)
problem, we adapt two asynchronous first in first out interface
(AFIFO) between accelerator kernel and AXI adapter IP to
avoid metastability [20].

V. EVALUATION
A. Experimental Setup

All kernel IPs are coded either using Verilog or Sys-
temVerilog. We verified and tested our design on the Xilinx
Alveo U280 accelerator card. The C program running on the
MicroBlaze CPU is written from the host CPU via Xilinx
Vitis unified software platform. Two main tasks are conducted
in the C program. The first is written HD genome library into
HBM. Two AXI interconnect IP are used; each of them has 16
AXI input and output ports. Since one of the 32 ports is kept
for Microblaze, there will be 31 AXI channels in our system.
Thus, a total of 31 independent accelerators will be deployed.
To avoid cross channel access, each channel only accesses
its own corresponding HBM PC. The second task is to send
and receive signals from the accelerator kernel via GPIO. We
test HyMAT CH efficiency on popular genomic data, including
dataset such as Escherichia coli [21], Human chromosome
14 [21], COVID-19 DNA reference [22]. All reported results
are averaged among the above-listed datasets.

B. Quality of HYMATCH Sequence Searching

As is shown in Figure 2.(b), when tuning the threshold (T),
the pattern match accuracy will also change. For the rest of
the discussions, we make sure that T is low enough so the
accuracy is high. Besides threshold, in the reference library,
each hypervector has a limited memorization capacity. This
capacity is determined by the hypervector dimensionality and
precision. Low dimensional hypervectors can store a limited
amount of information. Similarly, hypervectors with lower
precision have less capacity to store information. To show
the capacity of each reference library, Figure 7a shows the
distribution of the existing (blue) and non-existing (orange)
queries in each reference hypervector. We can identify the
existence of a query in a reference using a single threshold
method. If a similarity of a query and reference hypervector
is larger than a defined threshold (§(R,Q) > T), we can
consider the query as an existing pattern in the reference.
The threshold value is a key in determining the correctness of
the match. It also creates a trade-off between true and false-
positive matches.

Figure 7b is a Receiver Operating Characteristic (ROC)
curve that shows the quality of the match based on false
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positive and true positive using different threshold values. We
have this trade-off since the non-existing patterns overlap with
the main signal. The reason for the overlap is that the reference
hypervector stored more patterns than its theoretical capacity.
As the graphs show, lowering the threshold value results in a
higher true positive rate. This can be achieved at the cost of a
higher false-positive rate. Similarly, a higher threshold value
reduces the true positive rate as the penalty of a lower true pos-
itive. In the context of our genome matching application, the
low threshold is equivalent to reference libraries that wrongly
match with a query, but we can ensure the correct matches
are all selected. This improves our computational cost as one
needs to process and verify the filtered patterns to ensure
the existing. On the other hand, a higher threshold reduces
the number of references that match a query, thus reducing
post-processing cost. But that could result in lower quality
of the match. Depending on the application requirements and
available resources, one can select a suitable threshold value.

C. Statistical Result

Figure 8a visualizes our chunk-based search using 64-
dimension chunk size. Our evaluation shows that a search
starts initially from dense computation in the first chunk.
Going further through the chunks, the search will terminate
in many libraries. This makes the distance computation highly
sparse. Figure 8b shows the percentage of active libraries dur-
ing a chunk-based search. The results are reported for different
chunk sizes. Our results indicate that using smaller chunk size,
our search has a higher capability of early termination.

D. Accelerator Performance

This section presents the accelerator’s performance based on
three genome libraries’ test average results. We first report the
accelerator’s encoding runtime and then the matching runtime.
Finally, we will provide the total execution latency of genome
sequence matching of three datasets. In Figure 9.a, we com-
pare HyMAT CH’s encoding runtime with the two latest HDC-
based genome matching accelerator works GenieHD [15] and
HYPERS [16]. Here the baseline is the FPGA acceleration
result of the vanilla HDC encoding without any hardware
and software optimization. The number of Approx IP (T)
that we choose in Figure 9.a is 8. HYMATCH’s encoding
performance is better than the other two HDC works since, on
the one hand, HyMATCH’s parallel the hypervector encoding
process, and on the other hand, the association computing
inside each Approx IP of HyMATCH is accelerated by a
fine-tuned systolic array. However, the increase of parallelism
results in more LUT usage, as shown in Figure 9.b. When
deploying HyMATCH on a FPGA platform with limited re-
sources condition, a reasonable T needs to be decided.

Five different platforms are investigated in this paper for
matching speed, including the state of the art HDC based
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Fig. 10. Performance and energy consumption of HyMATCH on different
platforms. Here GPU represents [15]’s GPU acceleration result.

sequence matching application acceleration on GPU [15],
basic parallel FPGA accelerator (baseline FPGA), baseline
FPGA with HBM, HyMATCH, and HyMATCH with HBM.
Here we present the latency and energy efficiency result in
Figure 10. It is worthy to make it clear that although in [15],
the authors present their work on AISC, FPGA, and GPU, in
this paper we only choose the GPU version as the baseline. As
is reported in [15], the acceleration speedup on GPU is better
than on FPGA. Here we focus on the comparison of HDC
based methods. In Table.I, we compare the performance of
our HyMATCH with the state of the art FPGA accelerators for
genome searching. More discussion of Table.I will be included
in VL.

As is shown in Figure 10, the performance of GPU is better
than the basic FPGA accelerator. Although for basic design,
the HDC vector similarity search process is parallel but due to
the low frequency of FPGA, as shown in TABLE.II, standing
on the execution latency point, the FPGA’s performance is not
as great as GPU. After deploying HBM, data-level parallelism
is significantly improved, the FPGA’s performance is better
than GPU for both execution latency and energy efficiency.
Due to statistical analysis in Figure 8, for the HDC pattern-
matching task, it is unnecessary to conduct the whole HDC
vector searching process. From an FPGA acceleration perspec-
tive, loading the whole HDC vector from global memory into
the kernel is a really high burden even the FPGA is integrated
with HBM. In such a case, we can see after adopting an
early dropping mechanism, HyMATCH achieves over 40%
improvement over GPU for searching speed even though our
accelerator is provided with a much lower frequency. From
an energy efficiency perspective, HyMATCH achieved up to
180 improvement.

The optimized FPGA accelerator achieves excellent im-
provement on both speed and energy efficiency. Besides
the most straightforward performance result, there are also
some interesting points. (i) Since there is only very basic
multiplication and addition operation involved in HDC, there
is no DSP resources utilization for our HDC based FPGA
accelerator which makes the kernel power consumption less
than 3W based on Xilinx Power Estimator (XPE). The total
Alveo U280 board power consumption is around 23.65W (ii)
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TABLE I
PEAK GCUPS OF DIFFERENT FPGA ACCELERATION OF GENOME PAIRS
MATCHING METHODS.

| Year | Device | Freq(MHz) GCUPS
Ours | 2022 | Xilinx Virtex Ultrascale+ XCU280 140 3440.6
[6] 2021 2x Xilinx Virtex U+ XCVU37P 200 2073.7
[6] 2021 | 1x Xilinx Virtex U+ XCVU37P 200 1251.7
[4] 2021 Xilinx Virtex Ultrascale+ XCU280 225 270.3
[23] 2018 | Altera Stratix V N/A 58.4

TABLE II
XILINX ALVEO U280 FPGA RESOURCE UTILIZATION WHEN D = 2K
BYTES, N =32, T =8, ANDM = 64 BYETS.

LUTs FF DSP BRAM Power(W) Frequency
Encoder 277040 35852 0 48 1.046 140MHz
Accelerator Kernel 393344 736320 0 62 2.107 140MHz
Peripheral IP 117803 112171 0 20 21.543 400MHz
Overall 788187 884343 0 130 24.696 -
Utilization 60.4% 33.9% 0 6.04% - -

Although HBM improves the data parallelism, it significantly
increases the power consumption. (iii) We found that we can
achieve maximum accelerator performance by using chunks
size equals 64 bytes. Restricted by Xilinx AXI Interconnect
IP bandwidth, further increasing the chunk size will saturate
the on-chip memory bandwidth.

E. Comparison with State-of-the-Art

The comparison of HyMATCH with previous FPGA ac-
celerators [4], [6], [23] is shown in Table.I. Here we use
Giga Cell Per Second (GCUPS) [24] as the performance
metric to compare our HyMATCH with the other works.
One thing that needs to notice is that the best performance
of [6] is achieved by using two Xilinx Virtex U+ FPGAs.
For single FPGA acceleration performance, our work achieves
2.7x more GCUPS than [6]. When compared with [4], our
design achieved 12.7x more GCUPS. We believe, compared
to traditional SWA-based matching algorithm, HDC based
sequence searching operation has linear time complexity and
much simpler operation, therefore resulting in much better
acceleration performance on FPGA.

VI. RELATED WORK

Sequence matching acceleration on FPGA has been widely
studied by recent works [4], [25], [26], [6], [27], [23], [28].
Hyperdimensional computing (HDC) is also introduced as
promising solution to accelerate genome sequence matching
[15], [16]. Compared to previous traditional sequence match-
ing algorithms [4], [25], HDC-based matching process hap-
pens in high-dimensional space, where the original recursive
DP-based alignment process is transferred into hypervector
to hypervector similarity search. However, the existing HDC-
based genome matching techniques [15], [16] are only focused
on accelerating the encoding process. However, for the genome
matching task, HDC encoding is a one-time task. Therefore, it
is also crucial to accelerating the hyperdimensional sequence
matching process. Besides, the encoding method presented in
work [15] and work [16] are not hardware friendly. Work [15]
tried to eliminate redundant encoding operations, but its algo-
rithm is sequential. Work [16] tries to parallel the encoding
process based on hypervector approximate matching. However,
its hardware design is too simple due to the lack of considering
the FPGA platform’s parallelism.

VII. CONCLUSION

In this paper, we propose a Hyper-Dimensional genome
analysis platform. Instead of working with original sequences,

our method maps the genome sequences into high-dimensional
space and performs sequence matching with simple and par-
allel similarity searches. At the algorithm level, we revisit the
sequence searching with brain-like memorization that HDC
natively supports. We then design a density-aware FPGA
implementation. Our solution searches the similarity of an
encoded query and large-scale genome library through chunks.
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