
HyperGRAF: Hyperdimensional Graph-based

Reasoning Acceleration on FPGA

Hanning Chen∗, Ali Zakeri∗, Fei Wen†, Hamza Errahmouni Barkam∗ and Mohsen Imani∗

∗University of California, Irvine, Irvine, CA 92697, USA
†Texas A&M University, College Station, TX 77843, USA

Email: ∗{hanningc, azakerij, herrahmo, m.imani}@uci.edu, †fei8wen@gmail.com

Abstract—The latest hardware accelerators proposed for graph
applications primarily focus on graph neural networks (GNNs)
and graph mining. High-level graph reasoning tasks, such as graph
memorization and neighborhood reconstruction, have barely been
addressed. Compared to low-level learning applications like node
classification and clustering, high-level reasoning typically requires
a more complex model to mimic human brain functionalities.
Brain-inspired Hyper-Dimensional Computing (HDC) has recently
introduced a promising lightweight and efficient machine learn-
ing solution, particularly for symbolic representation. General-
purpose computing platforms (CPU/GPU) have been revealed
to be inefficient for HDC applications. Therefore, it becomes
essential to design a domain-specific accelerator targeting HDC-
based graph reasoning algorithms.

In this work, we propose the first domain-specific accelerator
for HDC-based graph reasoning, HyperGRAF. We first develop a
scheduler to balance the sparse matrix computation workloads,
before parallelizing the hypervector calculations on two levels
for the graph memorization task. Finally, we design a pipeline-
style matrix multiplication accelerator for the neighborhood
reconstruction task. We evaluate our design under a wide range
of generated graphs with different sizes and sparsity. The results
show that HyperGRAF achieves over 100× improvement in both
speedup and energy efficiency of graph reasoning compared to
NVIDIA Jetson Orin.

I. INTRODUCTION

Designing domain specific accelerators (DSA) targeting

graph-based applications has drawn the attention of researchers

in recent years. Most of the previous acceleration works focus

on accelerating low-level graph learning applications, such as

graph node classification and graph mining [1], [2] and barely

consider high-level graph reasoning tasks. Unlike computer

programs, the human brain memorizes graph information and

retrieves node information at an astonishing speed. A principal

advantage of the brain over computer programs is the fact

that the former effectively uses billions of neurons to conduct

computing, while sample-based deep neural networks (DNNs)

and recursive algorithms are naturally much less efficient.

Therefore, to conduct high-level graph reasoning tasks more

efficiently, using a novel model that closely mimics the brain

functionalities is beneficial.

Recently, Hyper-dimensional Computing (HDC) has been

introduced as a brain-inspired computational model for high-

efficiency and noise-tolerant computation [3]. Unlike DNN,

HDC is a model of the cerebellum cortex, which biologically

represents the human memory. HDC is motivated by the obser-

vation that the cerebellum cortex operates on high-dimensional

data representations [4]. Recently, HDC-based machine learn-

ing models have shown promising results in various cognitive

tasks on various types of data including text, graph, voice,

genome sequence, and image [5]–[18]. Graphd [19] is the

first proposed framework for human brain’s high-level graph

information memorization and neighborhood reconstruction.

While Graphd [19] achieves great accuracy on the high-

level graph reasoning, it also reveals that performing HDC-

based graph reasoning (HGR) applications require a signif-

icant amount of computation time. To approach the issue,

Graphd [19] also designs an accelerator based on digital

processing in memory (DPIM). However, much more potential

improvements in HGR acceleration on the DSA platform have

yet to be exploited from the perspective of computer archi-

tecture research. First, Graphd [19] does not consider graph

sparsity, specifically for computing workload unbalance during

the sparse matrix multiplication (SpMM) process [20]. Second,

to apply PIM to graph processing, previous works have shown

that pre-processing over the input graph is necessary [21],

[22]. However, graph pre-processing generally requires a large

amount of computation time, which obstructs the accelerator’s

online learning capability. Last but not least, compared to

other computing platforms, such as ASIC and FPGA, PIM

lacks computing flexibility and is hard to be deployed on edge

devices.

To the best of our knowledge, we propose the first FPGA-

based hyperdimensional graph reasoning acceleration plat-

form, called HyperGRAF. We conducted hardware-software co-

design to maximize graph reasoning throughput by considering

FPGA’s resource utilization. Here are the main contributions of

the paper:

• We analyze the previous HGR algorithms and identify their

computing bottlenecks by comparison with traditional GNN

workloads.

• We propose a software scheduler running on the host CPU

to balance the computing workload when processing sparse

graphs.

• We parallelize the graph memorization computing at both

node level and intra-hypervector level. The computation of

hypervector chunks is pipelined.

• We design a pipeline-style decoder IP to accelerate node

reconstruction, which achieves a balance between execution

speedup and resource utilization.

We also evaluate our approach on a wide range of generated

34

2023 33rd International Conference on Field-Programmable Logic and Applications (FPL)

1946-1488/23/$31.00 ©2023 IEEE
DOI 10.1109/FPL60245.2023.00013

20
23

 3
3r

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 F
ie

ld
-P

ro
gr

am
m

ab
le

 Lo
gi

c a
nd

 A
pp

lic
at

io
ns

 (F
PL

) |
 9

79
-8

-3
50

3-
41

51
-5

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

OI
: 1

0.
11

09
/F

PL
60

24
5.

20
23

.0
00

13

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:52:24 UTC from IEEE Xplore. Restrictions apply.

�

��

�

�

�

�� ��� ��� ���

��� ��� �����

������ ����	

��

�

�

��������
����
���

������ ���

���

���

�� ��

�

�

	

�

�����������

�� �� �� �

��

��� ��� ��� ��

��

� � �			
��������������

�

�

�

�

��������
����
��������
����

�� ��

�� ��

��

� � �

�
��
���

��� ���

��� ���

�����
���

��� ��� ���

��� ��� ���

�����
����� �
��
���
��
���

Fig. 1. Hyperdimensional graph reasoning (HGR) example. a. Example input
graph. b. Memory node hypervector generation. c. Graph memory hypervector
generation (memorization). d. Node memory reconstruction.

graphs. The results show that the FPGA platform provides, on

average, over 100× and 10× improvement for both reasoning

speedup and energy efficiency compared to the Jetson Orin and

previous acceleration methods running on DPIM, respectively.

II. HYPERDIMENSIONAL GRAPH REASONING

This section introduces hyperdimensional graph reasoning

(HGR) from an algorithmic perspective. Section II-A sum-

marizes HGR’s core operations, initially developed by [19].

Section II-B compares HGR with graph neural networks

(GNNs) [23] and shows their difference. In Sections II-C, we

analyze the most time-consuming part of HGR and illustrate

that developing domain-specific accelerators (DSA) targeting

graph reasoning applications is necessary.

A. Hyperdimensional Graph Reasoning

Figure 1 shows the general HGR procedure. HGR sup-

ports two high-level reasoning tasks: graph memorization

(memorization) and graph reconstruction (reconstruction).

Graph memorization is the process of compressing the informa-

tion of a graph into a single hypervector. Graph reconstruction

aims to rebuild the relations between entities based on the

previously done memorization.

Graph Memorization The memorization process (Figure 1(a))

includes two steps: the node memory hypervector generation,

and node memory bundling. Suppose we assign a random

hypervector �Hi to each node as its feature vector and use

matrix H to represent the concatenation of all the generated

hypervectors for nodes (i.e. the feature matrix). The dimension

of matrix H is |V |×D, where |V | is the number of nodes in the

graph, and D is the dimension of hypervectors. The memory

hypervector is generated by aggregating each node’s neighbors’

feature hypervectors: M = Ag · H, where M is the matrix

representation of graph node memories, and Ag is the graph’s

adjacency matrix. Figure 1(b) provides an example of node

memory hypervectors generation based on the graph shown in

Figure 1(a). The memory bundling process consists of binding

each node’s hypervector with its memory hypervector and

bundling the results across all nodes, as shown in Figure 1(c):

�G =

V∑

i=1

�Hi ◦ �Mi (1)

TABLE I
COMPARISON OF HDC-BASED GRAPH REASONING (HGR) WITH GNN.

Task Level Kernel Datasets Sparsity

HGR high level Hypervector Small ∼ Large High
GNN low level Neural Network Large High

Where �G represents the final graph hypervector, ◦ is the

element-wise multiplication (Hadamard product) which per-

forms binding, and the sum operation represents bundling. Also

note that the binding operation associates two hypervectors’

information, whereas the bundling operation synthesizes the

information of all the hypervectors it is used on [24].

Graph Reconstruction Figure 1(d) gives an example of graph

node memory reconstruction. To determine each node’s neigh-

bor nodes, first we need to reconstruct each node memory hy-

pervector. Since randomly generated hypervectors are orthog-

onal [24], the node memory computation can be approximated

as:
�Mi = �G ◦ �Hi where i ∈ [1 : V] (2)

However, as the graph size (|V |) increases, the node memory

matrix generated by Equation 2 will have high amounts of noise

which undermines subsequent neighbor node reconstruction.

Graphd [19] proposes an iterative computing method to mitigate

the noise:

�Mk
i = �Hi · (�G− Σj �=i

�Hj · �Mk−1

j) where k > 0 (3)

Here k is the iteration cycle. Say we have an auxiliary hollow

matrix IA of shape |V |× |V | whose diagonal elements are zero

and all others are 1. By introducing IA, Equation 2 becomes:

M
k = G ◦H− IA · (Mk−1 ◦H) ◦H where k > 0 (4)

With the memory hypervector generated from each node, we

can determine whether two nodes are connected, by checking

the cosine similarity between node A’s memory hypervector

(�MA) and node B’s feature hypervector (�HB). Here we denote

this cosine similarity by f(A,B), then A and B are determined

to be connected if f(A,B) ≈ 1, or disconnected if f(A,B) ≈ 0.

B. Comparison with Graph Neural Network

Although the graph memorization of HGR resembles the

graph neural network (GNN)’s aggregation phase, its nature is

different. GNN has been widely adopted for traditional machine

learning tasks, such as classification and clustering, over graph

datasets [1], [21]. While GNN manifests excellent learning

capabilities, it does not support high-level reasoning such as

memorization and knowledge extraction. The underlying reason

is that neural networks generally excel in learning, but not

storing information. By contrast, hyperdimensional learning

relies on symbolic hypervectors and therefore has brain-like

solid reasoning capabilities [19]. Besides the distinct target

tasks, the computing procedure is also different. GNN repeats

the nodes aggregation operation over multiple layers, whereas

that only happens once during the memorization phase as for

HGR. We tabulate the comparisons between HGR and GNN in

Table I.

35

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:52:24 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. (a) Amount of wasted computation in GOPS vs. graph size, for different
graph densities. (b) Volumes of DRAM accesses in MB vs. graph size, for
different dimensions.

�����
��
���

���

 ����!
"��#

��

�������

�$%

&&

�

�

��

'%(

�

)***+

)***+

)***+

,�� - !,��

�
�
,�
�
&

�

��
!�
.�

�.����!��

..

(
'
��
�

(
'
��
(

.��
��
���/

�.

&
�
00�

�

���

���

�1��'

���

�����

('��

�,2�
�
� (

Fig. 3. Top Architecture. (a) Generate CSR representation. (b) Load CSR
matrix into out of order scheduler. (c) Offload hyperdimensional computing
activities into the FPGA kernel. (d) Transaction IP (TXIP) accesses a node’s
feature vector from high bandwidth memory (HBM) channel. (e) Concatenate
each TXIP’s chunk vector and generate the final result hypervector.

C. HGR Computing Bottleneck Analysis

While Graphd [19] presents a novel hyperdimensional graph

reasoning method, we identified certain inefficiency and per-

formance bottlenecks in the two processes: graph information

memorization and reconstruction. For the memorization pro-

cess, Graphd [19] does not consider graph sparsity, and hence

incurs a notable amount of inconsequential computation as

shown in Figure 2(a). The reconstruction process, represented

by Equation 4, is composed of an inner product and Hadamard

products which are not commutative. Therefore each iteration

requires three consecutive matrix multiplication operations. As-

suming that we use GPU to accelerate Equation 4, an analysis

of DRAM accesses in Figure 2(b) suggests that excessive time

and energy is consumed by data transfer between the host CPU

and kernel GPU. In Section III, we design a domain-specific

accelerator (DSA) to address this challenge.

III. FPGA ACCELERATION OF HyperGRAF

In this section, we present HyperGRAF’s architecture design.

Based on bottleneck analysis in Section II-C, we conduct a

hardware-software co-design for both the memorization and

reconstructions phase. In Section III-A, we give an overview

of the CPU-FPGA heterogeneous platform. Section III-B gives

the algorithm of the out-of-order (OoO) scheduler, which helps

to reduce the sparsity and balance the computing workload. We

show actual computing unit architecture for memorization and

reconstruction in Sections III-C and III-D.

A. Top Architecture

Figure 3 is an overview of the CPU-FPGA heterogeneous

platform. We first convert the graph representation from adja-

�

#
�1

����� #�3�.��
����,-

#
�
�
�
1
"
�
�

� � 4 5 6 � 7 8�

�

� 1 �

496 497
69� 694
79� 795

�
1
�

�
�
��
!!�
!

�,��!,��

� � 1 " �

7 :�	���5�
;���

.
!��!

.
!��-
�46 �47

6 7

<�= <&= <.= <�=�$%
0
����

 >
>
�.����!�

"

�

Fig. 4. Sparse Matrix to Dense Matrix Multiplication Optimization. (a)
Example graph (b) Adjacency matrix representation of graph (c) CSR format
of a graph (d) Out-of-order (OoO) schedule of CSR-based graph processing

cency matrix format into compressed sparse row (CSR) format.

Although the CSR format successfully diminishes the matrix’s

sparsity, it also incurs the computing workload imbalance

problem as discussed by previous works [20], [25]. To fix this

issue, we design an out-of-order (OoO) style, density-aware

scheduler running on the CPU. The scheduler will offload actual

hyperdimensional computing (HDC) activities on kernel FPGA.

Here suppose the hypervector dimension is D. To parallelize

the matrix multiplication (MM), we split each graph node’s

hypervector into T chunks. Each chunk’s dimension Dc = D
T

.

As shown in Figure 3, those T vectors will be first loaded

into T high bandwidth memory (HBM)’s channels and then

accessed by T independent transaction IP (TXIP). Inside each

TXIP, there is one aggregator IP (aIP) and one decoder IP (dIP).

The aggregator IP will conduct memorization computing, and

the decoder IP will conduct reconstruction computing. After

each TXIP finishes its computing activities, we concatenate

each channel’s chunk and generate the final result hypervector.

B. Density-aware Scheduler

As discussed in Section II-C, effective sparsity reduction is

critical for graph memorization computing. Figure 4 illustrates

an example of the sparsity problem. Figure 4(a) is the target

graph, and Figure 4(b) is the adjacency matrix representation.

The blank region of the matrix are the elements of zero

value, i.e., the source of sparsity. For such a sparse matrix,

each vertex’s neighbor aggregation process, as represented by

Equation 1, is a sparse matrix multiplication problem (SpMM).

A common approach to reduce matrix sparsity is to represent

the graph in the CSR format, as is shown in Figure 4(c).

However, CSR is a vertex-centric graph format that potentially

incurs poor computing workload balancing, due to the dis-

crepancy in vertices’ neighbor sizes. Specifically, if we solely

parallelize the computing by matrix’s row pointer (rowPtr),

each threads’ computing complexity will be different [26].

Previous works [21], [27], proposed graph pre-processing, such

as graph clustering, to group vertices with the common neigh-

bor. However, the pre-processing is time-consuming and graph-

specific. Alternatively we propose an out-or-order (OoO) style,

density-aware scheduler to balance the computing workload, as

described in algorithm 1. This idea was inspired by the famous

Tomasulo’s algorithm [28], in the sense that it dynamically

offloads vertices with the same neighbor count to the kernel

FPGA. In addition to exploiting the parallelism among differ-

ent vertices, we also pipeline each vertex’s neighbor feature

vector aggregation process. The scheduler will scan the CSR

36

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:52:24 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Density-aware Scheduler

Input: rowPtr, colIdx, colVal, Nc

/* i is the vertex’s index */

1 i = 0;

2 H = map<int, list>;

3 while i < V do
/* count is vertex’s neighbor size, H[count]

is a C++ STL list storing indices */

4 count = rowPtr[i+ 1] - rowPtr[i];
5 H[count].add(i);

6 if H[count].size == Nc then
/* kernel is the FPGA accelerator */

7 call kernel(H[count], rowPtr, colIdx, colVal);

8 H[count].clear;

9 end

10 i++;

11 end

/* Finish the remaining computation */

12 count = 0;

13 while count < H.size do

14 if H[count].size > 0 then

15 call kernel(H[count], rowPtr, colIdx, colVal);

16 H[count].clear;

17 end

18 count++;

19 end

�%#��8

�8?�
&,�

�
!

./
�

�
!

./
�

�
!

./
�
@

�.

��

�.

�.

���

���

���.

��
!,�

�.
?
�1
��

.

�
.�
��
�
�
��

�,3/

�,

@,3

� ,�

�
����,��
��,�
��

#
'
�
�

�
�

��

�
.

�
� �
��
�
�

�
�
�

&�00��

��
�
�
.�,

�

��

�.

�

�

�.

�

�

�.

�

�

���

���

���.�
��

���

AB

�����
���.�,�����.�
��

44

		

�� &&

..

Fig. 5. Aggregator IP architecture. (a) General architecture. (b) Computing
Unit (CU) microarchitecture. (c) Match IP architecture.

matrix, and store each vertex’s id into a hashmap. The key

of the hashmap is neighbor size and the value is a list of the

related vertices’ IDs. Assume that the kernel FPGA supports

a maximum of Nc concurrent vertex aggregation computing,

then whenever the size of the list grows to Nc, we offload the

corresponding vertex hypervetor computation into the kernel

FPGA. After the kernel computing finishes, we clear this list

and continue the scanning. Figure 4(d) shows an example where

vertex C, E, and G have the same neighbor size, therefore the

scheduler will pack their computation tasks onto the kernel

FPGA.

C. Encoder Architecture

Figure 5 presents the architecture design of the encoder IP,

which is responsible for the hyperdimensional graph memo-

rization. Let Nc denote the on-chip node parallelism, i.e., the

number of nodes that HyperGRAF can simultaneously process.

Here, Nc is directly determined by the amount of FPGA on-

chip resources, such as the lookup tables (LUT). The encoder

IP first loads vertex hypervector chunks from the corresponding

HBM channels. We store each vertex’s neighbor feature vector

to BRAM for later pipeline processing and forward the vertex’s

feature vector to the on-chip buffer. In Figure 5, there are

Nc independent processing element (PE) IP and each PE IP

has Dc computing unit (CU) IP. Figure 5 also provides the

microarchitecture of the CU IP. Let hik be the kth feature vector

element of vertex i, and let rijk represent vertex i’s neighbor

feature vector element, with j as the pipeline stage index. Vij

stands for the edge value, which is always 1 for unweighted

graphs. The computation executed by CU IP can be written as:

M
′

ik = M
′

ik + hik × hijk × Vij where k ∈ [1 : Dc] (5)

The last step inside CU IP is to accumulate the previous

multiplication product and to generate each vertex’s memory

vector �M ′. Please note that the memory hypervector �M ′ in

Figure 5 is already the Hadmard product of the memory

hypervector and vertex feature vector: �M
′

i = �Mi ◦ �Hi. At the

end of the pipeline, we aggregate all Nc PE IP’s results to

generate the partial graph memorization hypervector.

D. Decoder Architecture

The graph reconstruction is the most time-consuming part of

HGR due to two facts. First, we need to iteratively remove noise

from the memory node hypervector. Our solution is to increase

the hypervector dimension, and hence increase the hypervector

orthogonality. Second, Equation 4 takes a long time to complete

if without any hardware optimization. In that respect, we design

a domain-specific accelerator, called decoder IP. If we take a

closer look at Equation 4, the main computing overhead is

attributed to the second term, since the first term stays constant

during iteration. Here we rewrite the second term as M’:

M
′ = IA · (Mk−1 ◦H) ◦H where k > 0 (6)

Equation 6 comprises one matrix inner product and two con-

secutive matrix Hadmard products. To accelerate those matrix

operations on FPGA, the most straightforward method is de-

ploying two systolic arrays, one for the inner product and the

other for the Hadmard Product. Although the optimistic time

complexity is O(Nc +Dc + 1); however, due to the hardware

resource limit, it is impractical to fully parallelize Hadmard

product and match the time complexity of O(1). To make

our design more generic and resource-efficient, we present the

pipeline decoder IP (dIP) in Figure 6. The dimension of this

decoder IP is Nc × Dc. For each row of the noise memory

matrix M’
i , we have:

M
′

i = (
∑

j �=i

�Mj ◦ �Hj) ◦ �Hi where i, j ∈ [1, Nc] (7)

37

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:52:24 UTC from IEEE Xplore. Restrictions apply.

�1

�%#�
�8

��
&,��

�, �,

�3

�
�

&
,��

�.

�.

�,/ �,/

�3/

%��

�,�

�
��

.���

%��

� ,/

.!/

�1 �1

�1 �1 �1

�1 �1 �1

�
��
��

�������

		

��

��
.���,��
1!�����
��

<&=

��'

	

��'

.���

44

Fig. 6. Pipeline Style Decoder Architecture.

Since i is independent of summation, we can fuse two

Hadmard products into one stage:

M
′

i =
∑

j �=i

�Mj ◦ �Hj ◦ �Hi where i, j ∈ [1, Nc] (8)

In Figure 6, we unroll the summation of Equation 8 over

dIP’s Nc row and distribute each element of feature vector over

dIP’s Dc column. As a result, we achieve a timing complexity

of O(Nc+Nc) for a single iteration under the limited resource.

As shown in Figure 6, each PE stores its own row index and

it only accumulates those product results with a different row

index. We believe this pipeline-style dIP successfully strikes a

balance between performance and resource utilization.

IV. EVALUATION

A. Experiment Setup

We synthesize and implement HyperGRAF on a CPU-FPGA

heterogeneous computing platform, with the FPGA serving

kernel acceleration. Specifically the CPU is Intel Core i9-12900

running at 3.2 GHz, the FPGA is Xilinx Alveo U50, and the

connection between them is PCIe generated by the Xilinx Vitis

framework [29]. The scheduler is developed with the Vitis

Unified Software Platform which provides APIs, kernel drivers,

board utilities, and firmware, to facilitate communication with

the FPGA accelerator. We choose the generated graphs from

work [30] as the workloads, and evaluate our design in terms

of accuracy and speedup. We also analyze the impact of graph

attributes, such as sparsity, on our accelerator’s performance.

B. Graph Reasoning Accuracy

Figure 8(a) shows the effect of hypervector dimensionality

and the number of edges on the quality of information retrieval.

The number of nodes is set to 150 for all experiments. The

results suggest that larger graphs require higher dimensionality

to ensure full graph reconstruction. For example, graphs with

600 and 1000 edges can only be accurately stored and recon-

structed using hypervectors with at least D = 2k and D = 3k

dimensionality, respectively.

Figure 8(b) inspects the quality of graph matching using

hypervectors with different dimensions. For all tests, the graph

size is assumed to be fixed (50 nodes and 200 edges). Ideally

there should be no edge mismatch, but that is untenable

TABLE II
FPGA RESOURCE UTILIZATION ON XILINX ALVEO U50 WHERE THE

FREQUENCY IS 200MHZ AND THE POWER CONSUMPTION IS 29.8W.

LUT FF BRAM∗ UltraRAM∗ DSP

aIP 244.4K 101.7K 128 0 0
dIP 268.3K 122.8K 0 64 2048

HBM 4320 3496 16 0 0
Other 72.1K 80.6K 94 0 0

Total 589.1K (83.6%) 308.7K (21.8%) 238 (21.3%) 64 (11.7%) 2048 (41.6%)

 !�

 !�

 !�

 !"

�

�# �# �# �# �# �# ��# � # ��# � # $%&

	�������'�(�&����)()�

*��+����,�+���-�� *��+�,�+���-��

.
(
�/
��-���

���
�
��
�
��
��0

�

Fig. 7. The processing element (PE)’s utilization rate. The graph’s vertex size
(|V |) is constantly set to 1K. With the edge size (|E|) increase, the density of
the graph also increase.

except for an oracle HDC model with zero noise and strictly

orthogonal vectors. The x-axis in the plot shows the total

number of edge differences, while the y-axis shows the error

(i.e. number of mismatched edges) from our predictions. Each

data point is the average of over 50 trials. The results show

that decreasing the number of dimensions will give rise to the

amount of noise in our estimation.

C. Resource Utilization

Table II presents the FPGA resource utilization when D =
2K, Dc = 128, T = 16, and Nc = 4. The precision

of each hypervector’s element is 8 bits. The frequency and

power consumption of HyperGRAF are 200 MHz and 29.8

W. As is shown in Figure 3, we implement both aggregator

IP and decoder IP on the same FPGA board. However, as

discussed in Sections III-C and III-D, the graph memorization

and reconstruction processes are independent, allowing us to

implement the two IPs on separate FPGA boards. Another

important detail is that the on-chip storage resources (BRAM

and UltraRAM) in table II may vary with the graph changing.

Specifically, the usage of BRAM is related to the graph’s

sparsity, as it stores each node’s neighbor feature hypervector,

and the usage of UltraRAM depends on the graph node size,

as it is used to store each node’s feature hyperevector during

graph reconstruction. We will discuss more about resources and

performance trade-off in Section IV-E.

D. Effect of Scheduler on HyperGRAF

Figure 7 illustrates the impact of a scheduler on increas-

ing the utilization rate of processing elements (PEs) as the

graph sparsity changes. To be specific, a PE is considered

utilized/active when it has a computation load, rather than

waiting for other PEs to finish their tasks. A higher utilization

rate indicates a more balanced distribution of computation tasks

across each PE. Figure 7 shows that, without a scheduler,

38

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:52:24 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. (a) Graph reconstruction accuracy vs. dimensionality, for different
numbers of edges (b) Graph matching error vs. number of edge differences
between the two graphs

approximately 40% of PEs remain idle during the graph memo-

rization computation. In contrast, the average utilization rate of

HyperGRAF exceeds 95% with the scheduler. The substantial

difference demonstrates the scheduler’s ability to optimize task

allocation and improve load balancing across PEs.

E. Cross Platform Comparison

Starting from this section, we discuss HyperGRAF’s hard-

ware acceleration performance from different perspectives. Fig-

ure 9 presents the graph reasoning accelerations performance on

different hardware platforms. We implemented HDR algorithm

proposed in [19] using PyTorch [31] and tested the program

on NVIDIA Jetson Orin, NVIDIA GTX 1660, NVIDIA RTX

3090, and Intel i9-12900, while the digital processing in

memory (DPIM) acceleration performance is based on [19]. A

generated graph from [30] with the node size NV =1000 and the

average degree davg=2 is used in the experiments. Since graph

memorization takes most of the execution time of the graph

matching task, in Figure 9, we choose to use this task to bench-

mark the memorization performance. As shown in Figure 9,

HyperGRAF achieves on average over 100× improvement over

embedded system-on-chip (Jetson Orin) and CPU for both

speedup and energy-delay product (EDP). With the increase of

dimensionality, the advantage of HyperGRAF becomes more

evident. When compared with DPIM, HyperGRAF shows on

average over 10× speedup improvement. Even though both

FPGA and DPIM have strong parallelism, DPIM’s computing

capability is restricted when it comes to sparse matrices. For

HyperGRAF, however, a scheduler is running on the host CPU,

that offloads HDC operations to kernel FPGA, balancing the

computing workload and resulting in a significant improvement

in the accelerator’s performance. When it comes to energy

efficiency, FPGA-based HyperGRAF shows an advantage over

DPIM, although it is not as strong as the speedup difference

as a result of FPGA’s power consumption being much higher

compared to PIM. For our design with 32 HBM channels usage,

the power consumption is around 30W. Since Graphd [19] does

not disclose the exact power consumption of their DPIM design,

we are not able to do an in-depth power comparison.

F. Throughput vs Resource Utilization

Figures 10 and 11 present the trade-off between

HyperGRAF’s throughput and FPGA on-chip resource

utilization. Here the hypervector dimension (D) is 4K, and the

TABLE III
COMPARISON WITH PREVIOUS GRAPH LEARNING FPGA ACCELERATOR

Work [33] HP-GNN [34] HyperGRAF

Device Alveo U200 Alveo U250 Alveo U50
Task GNN Inference GNN Training Graph Reasoning

Dimension 300∼600 200∼600 512∼4K
Model GCN GCN and GraphSAGE HGR

Precision float32 float32 uint8

Frequency 250 MHz 300 MHz 200 MHz
Power ∼ ∼ 29.8 W

Throughput 2.64 MENPS 10.77 MENPS 0.9∼18.42 MENPS

precision of each hypervector’s element is 8 bits. Figure 10(a)

gives the HyperGRAF’s memorization throughput change

and corresponding LUT usage when increasing the on-chip

node parallelism (Nc). Here we use million embedded nodes

per second (MENPS) to measure the node memorization

throughput of HyperGRAF. MENPS is also used by previous

FPGA-based graph processing accelerator designs [32], [33].

With the node processing parallelism (Nc) increasing, both

the throughput and LUT utilization will increase. However

for Xilinx Alveo U50, the maximum Nc is 16. If we keep

increasing Nc, HyperGRAF’s memorization throughput

(MENPS) will not increase. In such case, to keep increasing

throughput, we need to use larger FPGA board such as Alveo

U280. Figure 10.(b) presents the influence of graph sparsity

over HyperGRAF’s memorization throughput. With the graph

edge size increase, to maintain the constant reasoning speed

(MENPS), we need to also increase on-chip node parallelism

(Nc).

Figure 11(a) presents the effect of changing hypervector

dimensionality (D) on HyperGRAF’s performance. Figure 11(a)

shows the performance comparison between systolic array style

reconstruction IP (dIP) and pipeline style dIP. When dimen-

sionality is low, systolic array style dIP offers high throughput

at its high parallelism. However, with dimensionality increas-

ing, pipeline-style dIP shows a better balance between resource

utilization and reasoning throughput. Figure 11(b) shows that

the on-chip storage (UltraRAM) will increase with dimension-

ality, as more space is needed to store the feature hypervectors.

G. Comparison with Previous FPGA Acceleration Works

While HyperGRAF is the first work that utilizes FPGA

acceleration for the HDC graph reasoning model, we compared

it with previous works on FPGA acceleration for graph learning

in Table III. At the model level, HyperGRAF differs from

traditional GNN models in that it stores graph information in

a single HDV and reconstructs each vertex’s neighbors. At the

hardware level, due to HDC’s holographic representations [35],

the bit precision of each HDV’s element is relatively low, but

the embedding dimension (HDV dimension) is quite large. By

parallelizing the graph memorization computation at both the

node and intra-hypervector level, HyperGRAF achieves high

computation throughput on a relatively small FPGA platform.

Table III shows that HyperGRAF’s throughput is influenced

by factors such as graph sparsity, HDV dimension, and FPGA

resources. To further extend our findings, future work could

39

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:52:24 UTC from IEEE Xplore. Restrictions apply.

��� �# �# �#
� 1�

�

� �

� �

� �

��� �# �# �#

,
2
�
�
�
�
2
��3

���
�
�
�

� 1�

�

� �

� �

� �(
4
.
�5�

2
��
%
��3

���
�
�
�

��� �# �# �#

���2+�
���+��& 	������������������ ���2+�
���+��& 	������������������

�46�4����������4� �46�4����������4�

	6545$�7������3��� 5���-��81��8 	6545$��9:���� 	6545$��9:�� 8 4.5
 :�-��;�$-%�� /�

��� �# �# �#

Fig. 9. Hyperdimensional graph reasoning (HGR) acceleration performance on different platforms. Here EDP represents energy delay product. We report the
digital processing in memory (DPIM) acceleration result based on Graphd [19].

�

�

�

�

�

�

�

�

"

�

� � " �� ��

(
	
.
,

</
9
�/
��
&
�
�0

�

	�

(., </9�/��&�

 !�

�

�!�

�

�

�

"

�

�# �# �# �#

</
9
�/
��
&
�
�0

�

(
	
.
,

(�&�

	��"

	��� 	���

	����

	� </9�/��&�
(.,
��� ���

Fig. 10. (a) Vertex memorization throughput and LUT usage with different
on-chip parallelism. (b) Vertex memorization throughput and LUT usage with
different graph sparsity. We set the graph edge size as 1K in (a), and the graph
node size V as 1K in both (a) and (b).

�

�

�

�

�

�

��� �# �# �#

(
	
.
,

,=���-���$���=.�2�-������

��

�

>�

�

��

�

>�

�

��� �# �# �#

</9/�$
���

</
9
�/
��-���

���
�
��0

�

/
�
$

�/
��-���

���
�
��0

�

4 4

Fig. 11. (a) Neighborhood reconstruction with different hypervector dimension
on two different architectures. (b) Pipeline-style reconstruction accelerator’s
Lookup table (LUT) and UltraRAM (URAM) utilization with different dimen-
sionalities. We set the number of nodes |V | as 1K and the average node degree
davg as 6, in both (a) and (b).

involve deploying HyperGRAF on larger FPGA boards to eval-

uate its performance and scalability in more complex scenarios.

V. RELATED WORKS

Accelerating graph-related algorithms, such as GNNs on

DSA, including FPGA [1], [27], [36], [37], ASIC [38], and

PIM [21], has recently amassed considerable attention. Pre-

vious works focus on accelerating graph learning applica-

tions, such as classification [39] and graph mining [40], but

rarely address high-level graph reasoning applications like

graph memorization and reconstruction. [41], [42] inspire the

possibility of interconnecting multiple FPGAs or heteroge-

neous systems for larger scale tasks, while [43]–[47] address

the ever-increasing memory/storage requirement. Hyperdimen-

sional computing (HDC) has recently shown much more poten-

tial in graph applications compared to traditional machine learn-

ing methods such as CNN or GNN [6], [19], [48], [49]. The

work in [6] encodes a graph into an hypervector and performs

graph classification. The study conducted by [48] presents a

novel approach utilizing a ferroelectric field-effect transistor

(FeFET)-based processing in-memory (PIM) hardware accel-

erator specifically designed for enhancing the performance of

HDC-based graph models. Graphd [19] proposes the first HDC-

based graph reasoning algorithm, which has been revealed

to be infeasible for traditional computing platforms, namely

CPU and GPU. It also attempts to accelerate its application

with NVMe-based PIM but it fails to consider graph sparsity

and workload balance. Moreover, PIM is hard to deploy and

lacks flexibility compared to FPGA. The application of HDC

models on the FPGA platform has demonstrated exceptional

performance capabilities [50]–[55]. In particular, the study

conducted by [53] aims to enhance the efficiency of HDC

model learning on FPGAs, with a focus on classification

tasks. Another research endeavor, conducted by [50], endeavors

to expedite HDC regression model computations on FPGAs.

Additionally, [51] explores the utilization of FPGA acceler-

ation for HDC reinforcement learning models. Based on all

these observation, we propose HyperGRAF, the first FPGA-

based hardware acceleration of the HDC-based graph reasoning

algorithms.

VI. CONCLUSION

In this paper we conduct a software-hardware co-design

to propose the first FPGA-based hyperdimensional graph rea-

soning acceleration platform. We design a scheduler to bal-

ance the FPGA kernel computing workload from the software

perspective, while exploring the trade-off between reasoning

throughput, on-chip resource utilization and graph parameters

on the hardware side. We evaluate our design under a wide

range of generated graphs. The results show that HyperGRAF

platform provides over 100× and 10× improvement for both

speedup and energy efficiency, compared to the Jetson Orin and

prior DPIM-based accelerator, respectively.

VII. ACKNOWLEDGEMENT

This work was supported in part by DARPA, National

Science Foundation #2127780 and #2312517, Semiconductor

Research Corporation (SRC), Office of Naval Research, grants

#N00014-21-1-2225 and #N00014-22-1-2067, the Air Force

Office of Scientific Research under award #FA9550-22-1-0253,

and generous gifts from Xilinx and Cisco.

40

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:52:24 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] T. Geng et al., “I-GCN: A graph convolutional network accelerator
with runtime locality enhancement through islandization,” in IEEE/ACM

MICRO-54, pp. 1051–1063, 2021.

[2] X. Chen et al., “FlexMiner: A pattern-aware accelerator for graph
pattern mining,” in ACM/IEEE ISCA 2021, pp. 581–594, IEEE, 2021.

[3] P. Kanerva, “Hyperdimensional computing: An introduction to com-
puting in distributed representation with high-dimensional random
vectors,” Cognitive computation, vol. 1, no. 2, pp. 139–159, 2009.

[4] Z. Zou et al., “Scalable edge-based hyperdimensional learning system
with brain-like neural adaptation,” in ACM SC, pp. 1–15, 2021.

[5] F. Liu et al., “L3E-HD: A framework enabling efficient ensemble in
high-dimensional space for language tasks,” in ACM SIGIR, pp. 1844–
1848, 2022.

[6] I. Nunes et al., “GraphHD: Efficient graph classification using hyper-
dimensional computing,” in DATE 2022, pp. 1485–1490, IEEE, 2022.

[7] M. Imani et al., “Voicehd: Hyperdimensional computing for efficient
speech recognition,” in IEEE ICRC 2017, pp. 1–8, IEEE, 2017.

[8] M. Imani, A. Zakeri, H. Chen, et al., “Neural computation for robust
and holographic face detection,” in Proceedings of the 59th ACM/IEEE
Design Automation Conference, pp. 31–36, 2022.

[9] M. Issa et al., “Hyperdimensional hybrid learning on end-edge-cloud
networks,” in 2022 IEEE 40th International Conference on Computer
Design (ICCD), pp. 652–655, IEEE, 2022.

[10] Y. Ni et al., “Hdpg: Hyperdimensional policy-based reinforce-
ment learning for continuous control,” in Proceedings of the 59th
ACM/IEEE Design Automation Conference, pp. 1141–1146, 2022.

[11] Y. Ni et al., “Neurally-inspired hyperdimensional classification for
efficient and robust biosignal processing,” in Proceedings of the
41st IEEE/ACM International Conference on Computer-Aided Design,
pp. 1–9, 2022.

[12] Y. Ni et al., “Algorithm-hardware co-design for efficient brain-
inspired hyperdimensional learning on edge,” in 2022 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE), pp. 292–
297, IEEE, 2022.

[13] Z. Zou et al., “Biohd: an efficient genome sequence search platform
using hyperdimensional memorization,” in Proceedings of the 49th
Annual International Symposium on Computer Architecture, pp. 656–
669, 2022.

[14] Z. Zou et al., “Eventhd: Robust and efficient hyperdimensional learn-
ing with neuromorphic sensor,” Frontiers in Neuroscience, vol. 16,
2022.

[15] C.-K. Liu et al., “Cosime: Fefet based associative memory for
in-memory cosine similarity search,” in Proceedings of the 41st
IEEE/ACM International Conference on Computer-Aided Design,
pp. 1–9, 2022.

[16] H. E. Barkam et al., “Hdgim: Hyperdimensional genome sequence
matching on unreliable highly scaled fefet,” in 2023 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), pp. 1–6,
IEEE, 2023.

[17] Z. Zou et al., “Memory-inspired spiking hyperdimensional network
for robust online learning,” Scientific Reports, vol. 12, no. 1, p. 7641,
2022.

[18] M. Imani et al., “Hierarchical, distributed and brain-inspired learning
for internet of things systems,” in IEEE International Conference on
Distributed Computing Systems (ICDCS), IEEE, 2023.

[19] P. Poduval et al., “Graphd: Graph-based hyperdimensional memoriza-
tion for brain-like cognitive learning,” Frontiers in Neuroscience, p. 5,
2022.

[20] L. Song et al., “Sextans: A streaming accelerator for general-purpose
sparse-matrix dense-matrix multiplication,” in ACM/SIGDA FPGA
2022, pp. 65–77, 2022.

[21] Y. Zhu et al., “Exploiting parallelism with vertex-clustering in
processing-in-memory-based GCN accelerators,” in DATE 2022,
pp. 652–657, IEEE, 2022.

[22] Y. Huang et al., “Accelerating graph convolutional networks using
crossbar-based processing-in-memory architectures,” in IEEE HPCA
2022, pp. 1029–1042, IEEE, 2022.

[23] T. N. Kipf et al., “Semi-supervised classification with graph convolu-
tional networks,” arXiv preprint arXiv:1609.02907, 2016.

[24] L. Ge et al., “Classification using hyperdimensional computing: A
review,” IEEE Circuits and Systems Magazine, vol. 20, no. 2, pp. 30–
47, 2020.

[25] C. Hong et al., “Efficient sparse-matrix multi-vector product on
GPUs,” in HPDC 2018, pp. 66–79, 2018.

[26] N. Srivastava et al., “Matraptor: A sparse-sparse matrix multiplication
accelerator based on row-wise product,” in IEEE/ACM MICRO-53,
pp. 766–780, IEEE, 2020.

[27] H. Zeng et al., “GraphACT: Accelerating GCN training on CPU-
FPGA heterogeneous platforms,” in ACM/SIGDA FPGA 2020,
pp. 255–265, 2020.

[28] R. M. Tomasulo, “An efficient algorithm for exploiting multiple arith-
metic units,” IBM Journal of research and Development, vol. 11, no. 1,
pp. 25–33, 1967.

[29] V. Kathail, “Xilinx vitis unified software platform,” in ACM/SIGDA
FPGA 2020, pp. 173–174, 2020.

[30] R. A. Rossi et al., “The network data repository with interactive graph
analytics and visualization,” in AAAI, 2015.

[31] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances
in neural information processing systems, vol. 32, 2019.

[32] S. Zhou, C. Chelmis, and V. K. Prasanna, “High-throughput and
energy-efficient graph processing on FPGA,” in 2016 IEEE 24th
Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pp. 103–110, IEEE, 2016.

[33] B. Zhang, H. Zeng, and V. Prasanna, “Hardware acceleration of large
scale GCN inference,” in 2020 IEEE 31st International Conference on
Application-specific Systems, Architectures and Processors (ASAP),
pp. 61–68, IEEE, 2020.

[34] Y.-C. Lin, B. Zhang, and V. Prasanna, “Hp-gnn: generating high
throughput gnn training implementation on cpu-fpga heterogeneous
platform,” in Proceedings of the 2022 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pp. 123–133, 2022.

[35] A. Rahimi and etc, “A robust and energy-efficient classifier using
brain-inspired hyperdimensional computing,” in Proceedings of the
2016 international symposium on low power electronics and design,
pp. 64–69, 2016.

[36] R. Sarkar et al., “Flowgnn: A dataflow architecture for real-time
workload-agnostic graph neural network inference,” in 2023 IEEE In-
ternational Symposium on High-Performance Computer Architecture
(HPCA), pp. 1099–1112, IEEE, 2023.

[37] T. Geng et al., “Awb-gcn: A graph convolutional network accelerator
with runtime workload rebalancing,” in 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 922–
936, IEEE, 2020.

[38] M. Yan et al., “HyGCN: A GCN accelerator with hybrid architecture,”
in IEEE HPCA 2020, pp. 15–29, IEEE, 2020.

[39] S. Mondal et al., “GNNIE: GNN inference engine with load-balancing
and graph-specific caching,” in DAC, pp. 565–570, 2022.

[40] P. Yao et al., “A locality-aware energy-efficient accelerator for graph
mining applications,” in IEEE/ACM MICRO 2020, pp. 895–907, IEEE,
2020.

[41] J. Yen et al., “Meeting slos in cross-platform nfv,” CoNEXT, 2020.
[42] J. Wang et al., “Quadrant: A cloud-deployable nf virtualization plat-

form,” in 13th SoCC, ACM, 2022.
[43] G. Zhang et al., “Cocktail: Mixing data with different characteristics

to reduce read reclaims for nand flash memory,” IEEE-TCAD, 2022.
[44] F. Wen et al., “An fpga-based hybrid memory emulation system,” in

31st FPL, IEEE, 2021.
[45] F. Wen et al., “Hardware memory management for future mobile

hybrid memory systems,” IEEE-TCAD, vol. 39, no. 11, 2020.
[46] F. Zhang et al., “Max-pim: Fast and efficient max/min searching in

dram,” in 58th ACM/IEEE Design Automation Conference, 2021.
[47] C. Yu et al., “A 65-nm 8t sram compute-in-memory macro with

column adcs for processing neural networks,” IEEE-JSSC, 2022.
[48] J. Kang et al., “Relhd: A graph-based learning on fefet with hyperdi-

mensional computing,” in 2022 IEEE 40th International Conference
on Computer Design (ICCD), pp. 553–560, IEEE, 2022.

[49] N. McDonald, “Modularizing and assembling cognitive map learners
via hyperdimensional computing,” arXiv preprint arXiv:2304.04734,
2023.

[50] H. Chen et al., “Full stack parallel online hyperdimensional regression
on fpga,” in 2022 IEEE 40th International Conference on Computer
Design (ICCD), pp. 517–524, IEEE, 2022.

[51] H. Chen et al., “Darl: Distributed reconfigurable accelerator for hy-
perdimensional reinforcement learning,” in Proceedings of the 41st
IEEE/ACM International Conference on Computer-Aided Design,
pp. 1–9, 2022.

[52] H. Chen and M. Imani, “Density-aware parallel hyperdimensional
genome sequence matching,” in 2022 IEEE 30th Annual International
Symposium on Field-Programmable Custom Computing Machines
(FCCM), pp. 1–4, IEEE, 2022.

[53] M. Imani et al., “Revisiting hyperdimensional learning for fpga and
low-power architectures,” in 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), pp. 221–234,
IEEE, 2021.

[54] S. Duan et al., “A brain-inspired low-dimensional computing classifier
for inference on tiny devices,” arXiv preprint arXiv:2203.04894, 2022.

[55] S. Duan et al., “Lehdc: Learning-based hyperdimensional computing
classifier,” in Proceedings of the 59th ACM/IEEE Design Automation
Conference, pp. 1111–1116, 2022.

41

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:52:24 UTC from IEEE Xplore. Restrictions apply.

