2023 33rd International Conference on Field-Programmable Logic and Applications (FPL) | 979-8-3503-4151-5/23/$31.00 ©2023 IEEE | DOI: 10.1109/FPL60245.2023.00013

2023 33rd International Conference on Field-Programmable Logic and Applications (FPL)

HyperGRAF: Hyperdimensional Graph-based
Reasoning Acceleration on FPGA

Hanning Chen*, Ali Zakeri*, Fei Wen', Hamza Errahmouni Barkam* and Mohsen Imani*
*University of California, Irvine, Irvine, CA 92697, USA
TTexas A&M University, College Station, TX 77843, USA
Email: *{hanningc, azakerij, herrahmo, m.imani} @uci.edu, TfeiSwen@ gmail.com

Abstract—The latest hardware accelerators proposed for graph
applications primarily focus on graph neural networks (GNNs)
and graph mining. High-level graph reasoning tasks, such as graph
memorization and neighborhood reconstruction, have barely been
addressed. Compared to low-level learning applications like node
classification and clustering, high-level reasoning typically requires
a more complex model to mimic human brain functionalities.
Brain-inspired Hyper-Dimensional Computing (HDC) has recently
introduced a promising lightweight and efficient machine learn-
ing solution, particularly for symbolic representation. General-
purpose computing platforms (CPU/GPU) have been revealed
to be inefficient for HDC applications. Therefore, it becomes
essential to design a domain-specific accelerator targeting HDC-
based graph reasoning algorithms.

In this work, we propose the first domain-specific accelerator
for HDC-based graph reasoning, HyperGRAF. We first develop a
scheduler to balance the sparse matrix computation workloads,
before parallelizing the hypervector calculations on two levels
for the graph memorization task. Finally, we design a pipeline-
style matrix multiplication accelerator for the neighborhood
reconstruction task. We evaluate our design under a wide range
of generated graphs with different sizes and sparsity. The results
show that HyperGRAF achieves over 100x improvement in both
speedup and energy efficiency of graph reasoning compared to
NVIDIA Jetson Orin.

I. INTRODUCTION

Designing domain specific accelerators (DSA) targeting
graph-based applications has drawn the attention of researchers
in recent years. Most of the previous acceleration works focus
on accelerating low-level graph learning applications, such as
graph node classification and graph mining [1], [2] and barely
consider high-level graph reasoning tasks. Unlike computer
programs, the human brain memorizes graph information and
retrieves node information at an astonishing speed. A principal
advantage of the brain over computer programs is the fact
that the former effectively uses billions of neurons to conduct
computing, while sample-based deep neural networks (DNNs)
and recursive algorithms are naturally much less efficient.
Therefore, to conduct high-level graph reasoning tasks more
efficiently, using a novel model that closely mimics the brain
functionalities is beneficial.

Recently, Hyper-dimensional Computing (HDC) has been
introduced as a brain-inspired computational model for high-
efficiency and noise-tolerant computation [3]. Unlike DNN,
HDC is a model of the cerebellum cortex, which biologically
represents the human memory. HDC is motivated by the obser-
vation that the cerebellum cortex operates on high-dimensional

data representations [4]. Recently, HDC-based machine learn-
ing models have shown promising results in various cognitive
tasks on various types of data including text, graph, voice,
genome sequence, and image [5]-[18]. Graphd [19] is the
first proposed framework for human brain’s high-level graph
information memorization and neighborhood reconstruction.

While Graphd [19] achieves great accuracy on the high-
level graph reasoning, it also reveals that performing HDC-
based graph reasoning (HGR) applications require a signif-
icant amount of computation time. To approach the issue,
Graphd [19] also designs an accelerator based on digital
processing in memory (DPIM). However, much more potential
improvements in HGR acceleration on the DSA platform have
yet to be exploited from the perspective of computer archi-
tecture research. First, Graphd [19] does not consider graph
sparsity, specifically for computing workload unbalance during
the sparse matrix multiplication (SpMM) process [20]. Second,
to apply PIM to graph processing, previous works have shown
that pre-processing over the input graph is necessary [21],
[22]. However, graph pre-processing generally requires a large
amount of computation time, which obstructs the accelerator’s
online learning capability. Last but not least, compared to
other computing platforms, such as ASIC and FPGA, PIM
lacks computing flexibility and is hard to be deployed on edge
devices.

To the best of our knowledge, we propose the first FPGA-
based hyperdimensional graph reasoning acceleration plat-
form, called HyperGRAF. We conducted hardware-software co-
design to maximize graph reasoning throughput by considering
FPGA'’s resource utilization. Here are the main contributions of
the paper:

o We analyze the previous HGR algorithms and identify their
computing bottlenecks by comparison with traditional GNN
workloads.

« We propose a software scheduler running on the host CPU
to balance the computing workload when processing sparse
graphs.

o We parallelize the graph memorization computing at both
node level and intra-hypervector level. The computation of
hypervector chunks is pipelined.

o We design a pipeline-style decoder IP to accelerate node
reconstruction, which achieves a balance between execution
speedup and resource utilization.

We also evaluate our approach on a wide range of generated

1946-1488/23/$31.00 ©2023 IEEE 34
DOI 10.1109/FPL60245.2023.00013
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:52:24 UTC from IEEE Xplore. Restrictions apply.

Q Input Graph Q Node memory HDV

£2 2

Hz+H4+Hs =H1+Hs =H1 +Hs

Hi [hulhao[= Iﬂ ®x m11[m12[]mm]Ml
m21[mzz] -
| ;

HZ[h21[h221 [m20M2

Fig. 1. Hyperdimensional graph reasoning (HGR) example. a. Example input
graph. b. Memory node hypervector generation. c. Graph memory hypervector
generation (memorization). d. Node memory reconstruction.

graphs. The results show that the FPGA platform provides, on
average, over 100x and 10x improvement for both reasoning
speedup and energy efficiency compared to the Jetson Orin and
previous acceleration methods running on DPIM, respectively.

II. HYPERDIMENSIONAL GRAPH REASONING

This section introduces hyperdimensional graph reasoning
(HGR) from an algorithmic perspective. Section II-A sum-
marizes HGR’s core operations, initially developed by [19].
Section II-B compares HGR with graph neural networks
(GNNs) [23] and shows their difference. In Sections II-C, we
analyze the most time-consuming part of HGR and illustrate
that developing domain-specific accelerators (DSA) targeting
graph reasoning applications is necessary.

A. Hyperdimensional Graph Reasoning

Figure 1 shows the general HGR procedure. HGR sup-
ports two high-level reasoning tasks: graph memorization
(memorization) and graph reconstruction (reconstruction).
Graph memorization is the process of compressing the informa-
tion of a graph into a single hypervector. Graph reconstruction
aims to rebuild the relations between entities based on the
previously done memorization.

Graph Memorization The memorization process (Figure 1(a))
includes two steps: the node memory hypervector generation,
and node memory bundling. Suppose we assign a random
hypervector ﬁz to each node as its feature vector and use
matrix H to represent the concatenation of all the generated
hypervectors for nodes (i.e. the feature matrix). The dimension
of matrix His |V'| x D, where |V| is the number of nodes in the
graph, and D is the dimension of hypervectors. The memory
hypervector is generated by aggregating each node’s neighbors’
feature hypervectors: M = A, - H, where M is the matrix
representation of graph node memories, and A, is the graph’s
adjacency matrix. Figure 1(b) provides an example of node
memory hypervectors generation based on the graph shown in
Figure 1(a). The memory bundling process consists of binding
each node’s hypervector with its memory hypervector and
bundling the results across all nodes, as shown in Figure 1(c):

=Y H;oM; (1)

i=1

TABLE 1
COMPARISON OF HDC-BASED GRAPH REASONING (HGR) wiTH GNN.

\ Task Level Kernel Datasets Sparsity
HGR | high level Hypervector Small ~ Large High
GNN low level Neural Network Large High

Where G represents the final graph hypervector, o is the
element-wise multiplication (Hadamard product) which per-
forms binding, and the sum operation represents bundling. Also
note that the binding operation associates two hypervectors’
information, whereas the bundling operation synthesizes the
information of all the hypervectors it is used on [24].
Graph Reconstruction Figure 1(d) gives an example of graph
node memory reconstruction. To determine each node’s neigh-
bor nodes, first we need to reconstruct each node memory hy-
pervector. Since randomly generated hypervectors are orthog-
onal [24], the node memory computation can be approximated
as:

M; = GoH; whereic|[1:V] 2)

However, as the graph size (|V|) increases, the node memory
matrix generated by Equation 2 will have high amounts of noise
which undermines subsequent neighbor node reconstruction.
Graphd [19] proposes an iterative computing method to mitigate
the noise:

MF=H; (G—.H; M) where k > 0 (3)

7

Here k is the iteration cycle. Say we have an auxiliary hollow
matrix I, of shape |V| x |V | whose diagonal elements are zero
and all others are 1. By introducing I, Equation 2 becomes:

=GoH-Ip-(M"1oH)oH where k > 0 (4)

With the memory hypervector generated from each node, we
can determine whether two nodes are connected, by checking
the cosine similarity between node A’s memory hypervector
(M 4) and node B’s feature hypervector (H B). Here we denote
this cosine similarity by f(A,B), then A and B are determined
to be connected if f(A,B) &~ 1, or disconnected if f(A,B) ~ 0.

B. Comparison with Graph Neural Network

Although the graph memorization of HGR resembles the
graph neural network (GNN)’s aggregation phase, its nature is
different. GNN has been widely adopted for traditional machine
learning tasks, such as classification and clustering, over graph
datasets [1], [21]. While GNN manifests excellent learning
capabilities, it does not support high-level reasoning such as
memorization and knowledge extraction. The underlying reason
is that neural networks generally excel in learning, but not
storing information. By contrast, hyperdimensional learning
relies on symbolic hypervectors and therefore has brain-like
solid reasoning capabilities [19]. Besides the distinct target
tasks, the computing procedure is also different. GNN repeats
the nodes aggregation operation over multiple layers, whereas
that only happens once during the memorization phase as for
HGR. We tabulate the comparisons between HGR and GNN in
Table 1.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:52:24 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

S @ 600 @ 4000

£ & 500 | 005 =015 s 1K = 2K -=4K

g 025 035 & 3000 - Dimensions

2 = 400 1 pensity @

E 300 S 2000 -

S 200 < -

- = 1000

2 100 < L

Y - R ==t

= 2K aK 8K 16K 2K aK 8K 16K
Graph Size Graph Size

Fig. 2. (a) Amount of wasted computation in GOPS vs. graph size, for different
graph densities. (b) Volumes of DRAM accesses in MB vs. graph size, for
different dimensions.

index list

Host CPU PCle Kernel FPGA TXIP

Fig. 3. Top Architecture. (a) Generate CSR representation. (b) Load CSR
matrix into out of order scheduler. (c) Offload hyperdimensional computing
activities into the FPGA kernel. (d) Transaction IP (TXIP) accesses a node’s
feature vector from high bandwidth memory (HBM) channel. (¢) Concatenate
each TXIP’s chunk vector and generate the final result hypervector.

C. HGR Computing Bottleneck Analysis

While Graphd [19] presents a novel hyperdimensional graph
reasoning method, we identified certain inefficiency and per-
formance bottlenecks in the two processes: graph information
memorization and reconstruction. For the memorization pro-
cess, Graphd [19] does not consider graph sparsity, and hence
incurs a notable amount of inconsequential computation as
shown in Figure 2(a). The reconstruction process, represented
by Equation 4, is composed of an inner product and Hadamard
products which are not commutative. Therefore each iteration
requires three consecutive matrix multiplication operations. As-
suming that we use GPU to accelerate Equation 4, an analysis
of DRAM accesses in Figure 2(b) suggests that excessive time
and energy is consumed by data transfer between the host CPU
and kernel GPU. In Section III, we design a domain-specific
accelerator (DSA) to address this challenge.

I11. FPGA ACCELERATION OF HyperGRAF

In this section, we present HyperGRAF’s architecture design.
Based on bottleneck analysis in Section II-C, we conduct a
hardware-software co-design for both the memorization and
reconstructions phase. In Section III-A, we give an overview
of the CPU-FPGA heterogeneous platform. Section III-B gives
the algorithm of the out-of-order (OoO) scheduler, which helps
to reduce the sparsity and balance the computing workload. We
show actual computing unit architecture for memorization and
reconstruction in Sections III-C and III-D.

A. Top Architecture

Figure 3 is an overview of the CPU-FPGA heterogeneous
platform. We first convert the graph representation from adja-

(a) Graph

(b) Adjacency Matrix (d) 000 schedule
/112\3 45678

I €pfr¢ [IIICEGET]

[/]BV_J rothr pipeline
w7 colldx =157 T~] Tc 3,5]3,7

(c) CSR format

colVal [=1Vas Vs~ E 5,1 5,3
G[7,2]7.4

3||eJe

Fig. 4. Sparse Matrix to Dense Matrix Multiplication Optimization. (a)
Example graph (b) Adjacency matrix representation of graph (c) CSR format
of a graph (d) Out-of-order (OoO) schedule of CSR-based graph processing

cency matrix format into compressed sparse row (CSR) format.
Although the CSR format successfully diminishes the matrix’s
sparsity, it also incurs the computing workload imbalance
problem as discussed by previous works [20], [25]. To fix this
issue, we design an out-of-order (OoO) style, density-aware
scheduler running on the CPU. The scheduler will offload actual
hyperdimensional computing (HDC) activities on kernel FPGA.
Here suppose the hypervector dimension is D. To parallelize
the matrix multiplication (MM), we split each graph node’s
hypervector into T chunks. Each chunk’s dimension D, = %
As shown in Figure 3, those T vectors will be first loaded
into T high bandwidth memory (HBM)’s channels and then
accessed by T independent transaction IP (TXIP). Inside each
TXIP, there is one aggregator IP (alP) and one decoder IP (dIP).
The aggregator IP will conduct memorization computing, and
the decoder IP will conduct reconstruction computing. After
each TXIP finishes its computing activities, we concatenate
each channel’s chunk and generate the final result hypervector.

B. Density-aware Scheduler

As discussed in Section II-C, effective sparsity reduction is
critical for graph memorization computing. Figure 4 illustrates
an example of the sparsity problem. Figure 4(a) is the target
graph, and Figure 4(b) is the adjacency matrix representation.
The blank region of the matrix are the elements of zero
value, i.e., the source of sparsity. For such a sparse matrix,
each vertex’s neighbor aggregation process, as represented by
Equation 1, is a sparse matrix multiplication problem (SpMM).
A common approach to reduce matrix sparsity is to represent
the graph in the CSR format, as is shown in Figure 4(c).
However, CSR is a vertex-centric graph format that potentially
incurs poor computing workload balancing, due to the dis-
crepancy in vertices’ neighbor sizes. Specifically, if we solely
parallelize the computing by matrix’s row pointer (rowPtr),
each threads’ computing complexity will be different [26].
Previous works [21], [27], proposed graph pre-processing, such
as graph clustering, to group vertices with the common neigh-
bor. However, the pre-processing is time-consuming and graph-
specific. Alternatively we propose an out-or-order (OoO) style,
density-aware scheduler to balance the computing workload, as
described in algorithm 1. This idea was inspired by the famous
Tomasulo’s algorithm [28], in the sense that it dynamically
offloads vertices with the same neighbor count to the kernel
FPGA. In addition to exploiting the parallelism among differ-
ent vertices, we also pipeline each vertex’s neighbor feature
vector aggregation process. The scheduler will scan the CSR

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:52:24 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Density-aware Scheduler
Input: rowPtr, colldx, colVal, Nc
/* i is the vertex’s index */
11=0;
2 H = map<int, list>;
3 while i < V do

/+ count 1is vertex’s neighbor size, H[count]
is a C++ STL list storing indices x/
4 count = rowPtr[i + 1] - rowPtr[i];
5 Hcount].add(i);
6 if H[count].size == N, then
/+ kernel is the FPGA accelerator x/
7 call kernel(H [count], rowPtr, colldx, colVal);
8 Hcount].clear;
9 end
10 i++;
11 end
/* Finish the remaining computation x/

12 count = 0;
13 while count < H.size do
14 if H[count].size > 0 then

15 call kernel(H [count], rowPtr, colldx, colVal);
16 H{count].clear;
17 end
18 count++;
19 end
(a) BRAM18K NexPEIP Ne

o

c

S
-4

33eU33e2U0D

dl uoldNpPal

" TAGHydeis

Match IP

Fig. 5. Aggregator IP architecture. (a) General architecture. (b) Computing
Unit (CU) microarchitecture. (¢c) Match IP architecture.

matrix, and store each vertex’s id into a hashmap. The key
of the hashmap is neighbor size and the value is a list of the
related vertices’ IDs. Assume that the kernel FPGA supports
a maximum of N, concurrent vertex aggregation computing,
then whenever the size of the list grows to N., we offload the
corresponding vertex hypervetor computation into the kernel
FPGA. After the kernel computing finishes, we clear this list
and continue the scanning. Figure 4(d) shows an example where
vertex C, E, and G have the same neighbor size, therefore the
scheduler will pack their computation tasks onto the kernel
FPGA.

C. Encoder Architecture

Figure 5 presents the architecture design of the encoder IP,
which is responsible for the hyperdimensional graph memo-
rization. Let N, denote the on-chip node parallelism, i.e., the
number of nodes that HyperGRAF can simultaneously process.
Here, N, is directly determined by the amount of FPGA on-
chip resources, such as the lookup tables (LUT). The encoder
IP first loads vertex hypervector chunks from the corresponding
HBM channels. We store each vertex’s neighbor feature vector
to BRAM for later pipeline processing and forward the vertex’s
feature vector to the on-chip buffer. In Figure 5, there are
N, independent processing element (PE) IP and each PE IP
has D, computing unit (CU) IP. Figure 5 also provides the
microarchitecture of the CU IP. Let hy, be the k" feature vector
element of vertex i, and let ry represent vertex i’s neighbor
feature vector element, with j as the pipeline stage index. Vj;
stands for the edge value, which is always 1 for unweighted
graphs. The computation executed by CU IP can be written as:

My, = My, + iy, X hiji X Vij where k€ [1:D.] (5

The last step inside CU IP is to accumulate the previous
multiplication product and to generate each vertex’s memory
vector M'. Please note that the memory hypervector M’ in
Figure 5 is already the Hadmard product of the memory
hypervector and vertex feature vector: Mz’ =]\7[Z- o H}. At the
end of the pipeline, we aggregate all N. PE IP’s results to
generate the partial graph memorization hypervector.

D. Decoder Architecture

The graph reconstruction is the most time-consuming part of
HGR due to two facts. First, we need to iteratively remove noise
from the memory node hypervector. Our solution is to increase
the hypervector dimension, and hence increase the hypervector
orthogonality. Second, Equation 4 takes a long time to complete
if without any hardware optimization. In that respect, we design
a domain-specific accelerator, called decoder IP. If we take a
closer look at Equation 4, the main computing overhead is
attributed to the second term, since the first term stays constant
during iteration. Here we rewrite the second term as M :

M =15 -(M*1oH)oH where k > 0 (6)

Equation 6 comprises one matrix inner product and two con-
secutive matrix Hadmard products. To accelerate those matrix
operations on FPGA, the most straightforward method is de-
ploying two systolic arrays, one for the inner product and the
other for the Hadmard Product. Although the optimistic time
complexity is O(N. + D. + 1); however, due to the hardware
resource limit, it is impractical to fully parallelize Hadmard
product and match the time complexity of O(1). To make
our design more generic and resource-efficient, we present the
pipeline decoder IP (dIP) in Figure 6. The dimension of this
decoder IP is N. x D.. For each row of the noise memory
matrix M;, we have:

M; = (" M; o H)) o H; where i,j € [L,Nc] (7)
J#i

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:52:24 UTC from IEEE Xplore. Restrictions apply.

Processing Element IP

16 bits
==

@ @ BRAM 18K
[

Fig. 6. Pipeline Style Decoder Architecture.

Since 7 is independent of summation, we can fuse two
Hadmard products into one stage:
M;:Z]VYjOI—ijﬁi where i,j € [1, Nc] (8)
J#i
In Figure 6, we unroll the summation of Equation 8 over
dIP’s N, row and distribute each element of feature vector over
dIP’s D, column. As a result, we achieve a timing complexity
of O(N.+ N.) for a single iteration under the limited resource.
As shown in Figure 6, each PE stores its own row index and
it only accumulates those product results with a different row
index. We believe this pipeline-style dIP successfully strikes a
balance between performance and resource utilization.

IV. EVALUATION
A. Experiment Setup

We synthesize and implement HyperGRAF on a CPU-FPGA
heterogeneous computing platform, with the FPGA serving
kernel acceleration. Specifically the CPU is Intel Core i9-12900
running at 3.2 GHz, the FPGA is Xilinx Alveo U50, and the
connection between them is PCle generated by the Xilinx Vitis
framework [29]. The scheduler is developed with the Vitis
Unified Software Platform which provides APIs, kernel drivers,
board utilities, and firmware, to facilitate communication with
the FPGA accelerator. We choose the generated graphs from
work [30] as the workloads, and evaluate our design in terms
of accuracy and speedup. We also analyze the impact of graph
attributes, such as sparsity, on our accelerator’s performance.

B. Graph Reasoning Accuracy

Figure 8(a) shows the effect of hypervector dimensionality
and the number of edges on the quality of information retrieval.
The number of nodes is set to 150 for all experiments. The
results suggest that larger graphs require higher dimensionality
to ensure full graph reconstruction. For example, graphs with
600 and 1000 edges can only be accurately stored and recon-
structed using hypervectors with at least D = 2k and D = 3k
dimensionality, respectively.

Figure 8(b) inspects the quality of graph matching using
hypervectors with different dimensions. For all tests, the graph
size is assumed to be fixed (50 nodes and 200 edges). Ideally
there should be no edge mismatch, but that is untenable

TABLE II
FPGA RESOURCE UTILIZATION ON XILINX ALVEO U50 WHERE THE
FREQUENCY IS 200MHZ AND THE POWER CONSUMPTION IS 29.8W.

\ LUT FF BRAM* UltraRAM* DSP
alP 244.4K 101.7K 128 0 0
drp 268.3K 122.8K 0 64 2048
HBM 4320 3496 16 0 0
Other 72.1K 80.6K 94 0 0
Total ‘ 589.1K (83.6%) 308.7K (21.8%) 238 (21.3%) 64 (11.7%) 2048 (41.6%)
I Without Scheduler [With Scheduler
- 1
m
g 0.8
5 o6
5
> 0.4
o
3 0.2
g,
1K 2K 3K 4K 5K 6K 15K 20K 25K 30K Avg

Number of Edges (|E])

Fig. 7. The processing element (PE)’s utilization rate. The graph’s vertex size
(|V']) is constantly set to 1K. With the edge size (| E|) increase, the density of
the graph also increase.

except for an oracle HDC model with zero noise and strictly
orthogonal vectors. The x-axis in the plot shows the total
number of edge differences, while the y-axis shows the error
(i.e. number of mismatched edges) from our predictions. Each
data point is the average of over 50 trials. The results show
that decreasing the number of dimensions will give rise to the
amount of noise in our estimation.

C. Resource Utilization

Table II presents the FPGA resource utilization when D =
2K, D, 128, T' = 16, and N. = 4. The precision
of each hypervector’s element is 8 bits. The frequency and
power consumption of HyperGRAF are 200 MHz and 29.8
W. As is shown in Figure 3, we implement both aggregator
IP and decoder IP on the same FPGA board. However, as
discussed in Sections III-C and III-D, the graph memorization
and reconstruction processes are independent, allowing us to
implement the two IPs on separate FPGA boards. Another
important detail is that the on-chip storage resources (BRAM
and UltraRAM) in table II may vary with the graph changing.
Specifically, the usage of BRAM is related to the graph’s
sparsity, as it stores each node’s neighbor feature hypervector,
and the usage of UltraRAM depends on the graph node size,
as it is used to store each node’s feature hyperevector during
graph reconstruction. We will discuss more about resources and
performance trade-off in Section IV-E.

D. Effect of Scheduler on HyperGRAF

Figure 7 illustrates the impact of a scheduler on increas-
ing the utilization rate of processing elements (PEs) as the
graph sparsity changes. To be specific, a PE is considered
utilized/active when it has a computation load, rather than
waiting for other PEs to finish their tasks. A higher utilization
rate indicates a more balanced distribution of computation tasks
across each PE. Figure 7 shows that, without a scheduler,

38

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:52:24 UTC from IEEE Xplore. Restrictions apply.

=
G

Dimensions
—512 —1K
3 2K 4K

I~
o
S

3
o

@
o

a
=)

Number of Edges
-=-200 -+ 400 600 800
~#-1000 -#-1200 -=-1400 -=-1600

»n
o
Average # of Mismatches

‘ ww
PaaY:

0
512 1K 1.5K 2K 2.5K 3K 3.5K 4K 0 20 40 60 80 100
Number of Dimensions Number of Edge Differences

Reconstruction Accuracy

Fig. 8. (a) Graph reconstruction accuracy vs. dimensionality, for different
numbers of edges (b) Graph matching error vs. number of edge differences
between the two graphs

approximately 40% of PEs remain idle during the graph memo-
rization computation. In contrast, the average utilization rate of
HyperGRAF exceeds 95% with the scheduler. The substantial
difference demonstrates the scheduler’s ability to optimize task
allocation and improve load balancing across PEs.

E. Cross Platform Comparison

Starting from this section, we discuss HyperGRAF’s hard-
ware acceleration performance from different perspectives. Fig-
ure 9 presents the graph reasoning accelerations performance on
different hardware platforms. We implemented HDR algorithm
proposed in [19] using PyTorch [31] and tested the program
on NVIDIA Jetson Orin, NVIDIA GTX 1660, NVIDIA RTX
3090, and Intel i9-12900, while the digital processing in
memory (DPIM) acceleration performance is based on [19]. A
generated graph from [30] with the node size Ny,=1000 and the
average degree dq,,=2 is used in the experiments. Since graph
memorization takes most of the execution time of the graph
matching task, in Figure 9, we choose to use this task to bench-
mark the memorization performance. As shown in Figure 9,
HyperGRAF achieves on average over 100x improvement over
embedded system-on-chip (Jetson Orin) and CPU for both
speedup and energy-delay product (EDP). With the increase of
dimensionality, the advantage of HyperGRAF becomes more
evident. When compared with DPIM, HyperGRAF shows on
average over 10x speedup improvement. Even though both
FPGA and DPIM have strong parallelism, DPIM’s computing
capability is restricted when it comes to sparse matrices. For
HyperGRAF, however, a scheduler is running on the host CPU,
that offloads HDC operations to kernel FPGA, balancing the
computing workload and resulting in a significant improvement
in the accelerator’s performance. When it comes to energy
efficiency, FPGA-based HyperGRAF shows an advantage over
DPIM, although it is not as strong as the speedup difference
as a result of FPGA’s power consumption being much higher
compared to PIM. For our design with 32 HBM channels usage,
the power consumption is around 30W. Since Graphd [19] does
not disclose the exact power consumption of their DPIM design,
we are not able to do an in-depth power comparison.

FE. Throughput vs Resource Utilization

Figures 10 and 11 present the trade-off between
HyperGRAF’s throughput and FPGA on-chip resource
utilization. Here the hypervector dimension (D) is 4K, and the

TABLE III
COMPARISON WITH PREVIOUS GRAPH LEARNING FPGA ACCELERATOR

‘ Work [33] HP-GNN [34] HyperGRAF
Device Alveo U200 Alveo U250 Alveo U50
Task GNN Inference GNN Training Graph Reasoning
Dimension 300~600 200~600 512~4K
Model GCN GCN and GraphSAGE HGR
Precision float32 float32 uint8
Frequency 250 MHz 300 MHz 200 MHz
Power ~ ~ 29.8 W
Throughput 2.64 MENPS 10.77 MENPS 0.9~18.42 MENPS

precision of each hypervector’s element is 8 bits. Figure 10(a)
gives the HyperGRAF’s memorization throughput change
and corresponding LUT usage when increasing the on-chip
node parallelism (/N.). Here we use million embedded nodes
per second (MENPS) to measure the node memorization
throughput of HyperGRAF. MENPS is also used by previous
FPGA-based graph processing accelerator designs [32], [33].
With the node processing parallelism (/V.) increasing, both
the throughput and LUT utilization will increase. However
for Xilinx Alveo U50, the maximum N, is 16. If we keep
increasing N., HyperGRAF’s memorization throughput
(MENPS) will not increase. In such case, to keep increasing
throughput, we need to use larger FPGA board such as Alveo
U280. Figure 10.(b) presents the influence of graph sparsity
over HyperGRAF’s memorization throughput. With the graph
edge size increase, to maintain the constant reasoning speed
(MENPS), we need to also increase on-chip node parallelism
(Ne).

Figure 11(a) presents the effect of changing hypervector
dimensionality (D) on HyperGRAF’s performance. Figure 11(a)
shows the performance comparison between systolic array style
reconstruction IP (dIP) and pipeline style dIP. When dimen-
sionality is low, systolic array style dIP offers high throughput
at its high parallelism. However, with dimensionality increas-
ing, pipeline-style dIP shows a better balance between resource
utilization and reasoning throughput. Figure 11(b) shows that
the on-chip storage (UltraRAM) will increase with dimension-
ality, as more space is needed to store the feature hypervectors.

G. Comparison with Previous FPGA Acceleration Works

While HyperGRAF is the first work that utilizes FPGA
acceleration for the HDC graph reasoning model, we compared
it with previous works on FPGA acceleration for graph learning
in Table III. At the model level, HyperGRAF differs from
traditional GNN models in that it stores graph information in
a single HDV and reconstructs each vertex’s neighbors. At the
hardware level, due to HDC’s holographic representations [35],
the bit precision of each HDV’s element is relatively low, but
the embedding dimension (HDV dimension) is quite large. By
parallelizing the graph memorization computation at both the
node and intra-hypervector level, HyperGRAF achieves high
computation throughput on a relatively small FPGA platform.
Table III shows that HyperGRAF’s throughput is influenced
by factors such as graph sparsity, HDV dimension, and FPGA
resources. To further extend our findings, future work could

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:52:24 UTC from IEEE Xplore. Restrictions apply.

[INVIDIAJetson Orin [inteli9-12900 []NvIDIAGTX 1660 |[EEMENVIDIARTX 3090 [oceiv [Xilinx Alveo USO
w 10° m 103
H S
(] 2 - 2
-3 10 3 10
s £
‘§ 10! g 10!
,:'i 10° -59. 10°
-~ 11

10 £ 107

512 1K 2K 4K 512 1K 2K 4K 512 1k 2k 4K 512 1K 2K 4K

HDV Dimension (D)

Graph I'Vlatching Node Reconstruction

HDV Dimension (D)

Graph Matching Node Reconstruction

Fig. 9. Hyperdimensional graph reasoning (HGR) acceleration performance on different platforms. Here EDP represents energy delay product. We report the
digital processing in memory (DPIM) acceleration result based on Graphd [19].

(b)

[0 MENPS @~ LUT Usage B N — {1 MENPS —A— LUT Usage
100 5 100
c 80 4 € 80
= z =
S 60 33 & 60
@ R
o 40 28 B 40
S S
= 20 I:I 1 = 20
0 0 0
2 4 8 16 32
Nc Edge

Fig. 10. (a) Vertex memorization throughput and LUT usage with different
on-chip parallelism. (b) Vertex memorization throughput and LUT usage with
different graph sparsity. We set the graph edge size as 1K in (a), and the graph
node size V' as 1K in both (a) and (b).

(a) —— Pipeline —@— Systolic Array (b) IIURAM —A— LUT
6 @ = 100 100 %
> c 75 7 2
za g s
z3 5 50 50
a2 = 5
1 S 25 H P
< 3
0 8 Lm I:I 0 =
512 1K 2K 4K 512 1K 2K 4K -~

D D

Fig. 11. (a) Neighborhood reconstruction with different hypervector dimension
on two different architectures. (b) Pipeline-style reconstruction accelerator’s
Lookup table (LUT) and UltraRAM (URAM) utilization with different dimen-
sionalities. We set the number of nodes |V'| as 1K and the average node degree
davg as 6, in both (a) and (b).

involve deploying HyperGRAF on larger FPGA boards to eval-
uate its performance and scalability in more complex scenarios.

V. RELATED WORKS

Accelerating graph-related algorithms, such as GNNs on
DSA, including FPGA [1], [27], [36], [37], ASIC [38], and
PIM [21], has recently amassed considerable attention. Pre-
vious works focus on accelerating graph learning applica-
tions, such as classification [39] and graph mining [40], but
rarely address high-level graph reasoning applications like
graph memorization and reconstruction. [41], [42] inspire the
possibility of interconnecting multiple FPGAs or heteroge-
neous systems for larger scale tasks, while [43]-[47] address
the ever-increasing memory/storage requirement. Hyperdimen-
sional computing (HDC) has recently shown much more poten-
tial in graph applications compared to traditional machine learn-
ing methods such as CNN or GNN [6], [19], [48], [49]. The
work in [6] encodes a graph into an hypervector and performs

40

graph classification. The study conducted by [48] presents a
novel approach utilizing a ferroelectric field-effect transistor
(FeFET)-based processing in-memory (PIM) hardware accel-
erator specifically designed for enhancing the performance of
HDC-based graph models. Graphd [19] proposes the first HDC-
based graph reasoning algorithm, which has been revealed
to be infeasible for traditional computing platforms, namely
CPU and GPU. It also attempts to accelerate its application
with NVMe-based PIM but it fails to consider graph sparsity
and workload balance. Moreover, PIM is hard to deploy and
lacks flexibility compared to FPGA. The application of HDC
models on the FPGA platform has demonstrated exceptional
performance capabilities [50]-[55]. In particular, the study
conducted by [53] aims to enhance the efficiency of HDC
model learning on FPGAs, with a focus on classification
tasks. Another research endeavor, conducted by [50], endeavors
to expedite HDC regression model computations on FPGAs.
Additionally, [51] explores the utilization of FPGA acceler-
ation for HDC reinforcement learning models. Based on all
these observation, we propose HyperGRAF, the first FPGA-
based hardware acceleration of the HDC-based graph reasoning
algorithms.

VI. CONCLUSION

In this paper we conduct a software-hardware co-design
to propose the first FPGA-based hyperdimensional graph rea-
soning acceleration platform. We design a scheduler to bal-
ance the FPGA kernel computing workload from the software
perspective, while exploring the trade-off between reasoning
throughput, on-chip resource utilization and graph parameters
on the hardware side. We evaluate our design under a wide
range of generated graphs. The results show that HyperGRAF
platform provides over 100x and 10x improvement for both
speedup and energy efficiency, compared to the Jetson Orin and
prior DPIM-based accelerator, respectively.

VII. ACKNOWLEDGEMENT

This work was supported in part by DARPA, National
Science Foundation #2127780 and #2312517, Semiconductor
Research Corporation (SRC), Office of Naval Research, grants
#N00014-21-1-2225 and #N00014-22-1-2067, the Air Force
Office of Scientific Research under award #FA9550-22-1-0253,
and generous gifts from Xilinx and Cisco.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:52:24 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] T. Geng et al., “I-GCN: A graph convolutional network accelerator
with runtime locality enhancement through islandization,” in IEEE/ACM
MICRO-54, pp. 1051-1063, 2021.

X. Chen et al., “FlexMiner: A pattern-aware accelerator for graph
pattern mining, in ACM/IEEE ISCA 2021, pp. 581-594, IEEE, 2021.
P. Kanerva, “Hyperdimensional computing: An introduction to com-
puting 1n distributed representation with high-dimensional random
vectors,” Cognitive computation, vol. 1, no. 2, pp. 139-159, 2009.
Z.Zou et al., “Scalable edge-based hyperdimensional learning system
with brain-like neural adaptation,” in ACM SC, pp. 1-15, 2021.

F. Liu et al., “L3E-HD: A framework enabling efficient ensemble in
high-dimensional space for language tasks,” in ACM SIGIR, pp. 1844—
1848, 2022.

I. Nunes et al., “GraphHD: Efficient graph classification using hyper-
dimensional computing,” in DATE 2022, pp. 1485-1490, IEEE, 2022.
M. Imani et al., “Voicehd: Hyperdimensional computing for efficient
speech recognition,” in JEEE ICRC 2017, pp. 1-8, IEEE, 2017.

M. Imani, A. Zakeri, H. Chen, et al., “Neural computation for robust
and holographic face detection,” in Proceedings of the 59th ACM/IEEE
Design Automation Conference, pp. 31-36, 2022.

M. Issa et al., “Hyperdimensional hybrid learning on end-edge-cloud
networks,” in 2022 IEEE 40th International Conference on Computer
Design (ICCD), pp. 652-655, IEEE, 2022.

Y. Ni et al, “Hdpg: Hyperdimensional policy-based reinforce-
ment learning for continuous control,” in Proceedings of the 59th
ACM/IEEE Design Automation Conference, pp. 1141-1146, 2022.

Y. Ni et al., “Neurally-inspired hyperdlmensmnal classification for
efficient and robust biosignal processing,” in Proceedings of the
41st IEEE/ACM International Conference on Computer-Aided Design,
pp. 1-9, 2022.

Y. Ni et al., “Algorithm-hardware co- desrgn for efficient brain-
inspired hyperdlmenslonal learning on edge,” in 2022 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE), pp. 292—
297, IEEE, 2022.

Z. Zou et al., “Biohd: an efficient genome sequence search platform
using hyperdimensional memorization,” in Proceedings of the 49th
Annual International Symposium on Computer Architecture, pp. 656—
669, 2022.

Z.Zou et al., “Eventhd: Robust and efficient hyperdimensional learn-
ing with neuromorphic sensor,” Frontiers in Neuroscience, vol. 16,
2022.

[2]
[3]

[4]
[5]

[6]
[7]
[8]

[9]
[10]

(1]
[12]
[13]

[14]

[15] C-K. Liu et al., “Cosime: Fefet based associative memory for
in-memory cosine similarity search,” in Proceedings of the 41st
IEEE/ACM International Conference on Computer-Aided Design,
pp. 1-9, 2022

[16] H. E. Barkam et al., “Hd%lrm H%/perdlmensronal genome sequence
matching on unreliable highly scaled fefet,” in 2023 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), pp. 1-6,
IEEE, 2023.

[17] Z. Zou et al.,
for robust online learning,” Scienti
2022.

[18] M. Imani et al., “Hierarchical, distributed and brain-inspired learning
for internet of things systems,” in /EEE International Conference on
Distributed Computing Systems (ICDCS), IEEE, 2023.

[19] P.Poduval et al., “Graphd: Graph-based hyperdimensional memoriza-
tion for brain-like cognitive learning,” Frontiers in Neuroscience, p. 5,
2022.

“Memory-inspired spiking hyperdimensional network
¢ Reports, vol. 12, no. 1, p. 7641,

[20] L. Song et al., “Sextans: A streaming accelerator for general-purpose
sparse-matrix dense-matrix multiplication,” in ACM/SIGDA FPGA
2022, pp. 65-77, 2022.

[21] Y. Zhu et al., “Exploiting parallelism with vertex-clustering in
processing-in-memory-based GCN accelerators,” in DATE 2022,
pp. 652-657, IEEE, 2022.

[22] Y. Huan% et al., “Accelerating graph convolutional networks using
crossbar-based processing-in-memory architectures,” in JEEE HPCA
2022, pp. 1029-1042, IEEE, 2022.

[23] T. N. Kipf et al., “Semi-supervised classification with graph convolu-
tional networks,” arXiv preprint arXiv:1609.02907, 2016.

[24] L. Ge et al., “Classification using hyperdimensional computing: A
review,” IEEE Circuits and Systems Magazine, vol. 20, no. 2, pp. 30—
47, 2020.

[25] C. Hong et al., “Efficient sparse-matrix multi-vector product on
GPUs,” in HPDC 2018, pp. 6679, 2018.

[26] N. Srivastava et al., “Matraptor: A sparse-sparse matrix multiplication
accelerator based on row-wise product,” in IEEE/ACM MICRO-53,
pp. 766-780, IEEE, 2020.

[27] H. Zeng et al., “GraphACT: Accelerating GCN training on CPU-
FPGA heterogeneous platforms,” in ACM/SIGDA FPGA 2020,
pp. 255-265, 2020.

41

[28] R. M. Tomasulo, “An efficient algorithm for exploiting multiple arith-
metic units,” IBM Journal of research and Development, vol. 11, no. 1,
pp. 25-33, 1967.

[29] V. Kathail, “Xilinx vitis unified software platform,”
FPGA 2020, pp. 173-174, 2020.

[30] R. A.Rossi et al., “The network data repository with interactive graph
analytics and vmuallzatlon in AAAI, 2015.

[31] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Glmelsheln L. Antiga, et al., Pytorch An

imperative style, hlgh performance deep learning 11brary Advances

in neural information processing systems, vol. 32, 2019.

S. Zhou, C. Chelmis, and V. K. Prasanna, “High-throughput and

energy—efﬁcient graph processing on FPGA,” in 2016 IEEE 24th

Annual International Symposium on Field-Programmable Custom

Computing Machines (FCCM), pp. 103-110, IEEE, 2016.

B. Zhang, H. Zeng, and V. Prasanna, “Hardware acceleration of large

scale GCN inference,” in 2020 IEEE 31st International Conference on

Application-specific Systems, Architectures and Processors (ASAP),

pp. 61-68, IEEE, 2020.

Y.-C. Lin, B. Zhang, and V. Prasanna, “Hp-gnn: generating high

throughput gnn training implementation on cpu-fpga heterogeneous

platform,” in Proceedings of the 2022 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, pp. 123—-133, 2022.

A. Rahimi and etc, “A robust and energy-efficient classifier using

brain-inspired hyperdimensional computing,” in Proceedings of the

2016 international symposium on low power electronics and design,

pp. 64-69, 2016.

R. Sarkar et al., “Flowgnn: A dataflow architecture for real-time

workload-agnostic graph neural network inference,” in 2023 IEEE In-

ternational Symposium on High-Performance Computer Architecture

(HPCA), pp. 1099-1112, IEEE, 2023.

T. Geng et al., “Awb-gen: A graph convolutional network accelerator

with runtime workload rebalancing,” in 2020 53rd Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), pp. 922—

936, IEEE, 2020.

M. Yan et al., “HyGCN: A GCN accelerator with hybrid architecture,”

in I[EEE HPCA 2020, pp. 15-29, IEEE, 2020.

[39] S.Mondal et al., “GNNIE: GNN inference engine with load-balancing
and graph-specific caching,” in DAC, pp. 565-570, 2022.

[40] P. Yao et al., “A locality-aware energy-efficient accelerator for graph
mining applications,” in I[EEE/ACM MICRO 2020, pp. 895-907, IEEE,
2020.

in ACM/SIGDA

[32]
[33]
[34]
[35]
[36]
[37]

[38]

[41] 1. Yen et al., “Meeting slos in cross-platform nfv,” CONEXT, 2020.

[42] J. Wang et al., “Quadrant: A cloud-deployable nf virtualization plat-
form,” in 13th SoCC, ACM, 2022.

[43] G. Zhang et al., “Cocktail: Mixing data with different characteristics
to reduce read reclaims for nand flash memory,” IEEE-TCAD, 2022

[44] F. Wen et al., “An fpga -based hybrid memory emulation system,”
31st FPL, IEEE, 2021.

[45] F. Wen et al., “Hardware memory management for future mobile
hybrid memory systems,” IEEE-TCAD, vol. 39, no. 11, 2020.

[46] F. Zhang et al., “Max-pim: Fast and efficient max/min searching in
dram,” in 58th ACM/IEEE Design Automation Conference, 2021.

[47] C. Yu et al., “A 65-nm 8t sram compute-in-memory macro with
column adcs for processing neural networks,” IEEE-JSSC, 2022.

[48] J. Kang et al., “Relhd: A graph-based learning on fefet with hyperdi-
mensional computing,” in 2022 IEEE 40th International Conference
on Computer Design (ICCD), pp. 553-560, IEEE, 2022.

[49] N. McDonald, “Modularizing and assembling cognitive map learners
%12];yperdimensional computing,” arXiv preprint arXiv:2304.04734,

[50] H. Chen et al., “Full stack parallel online hyperdimensional regression

on fpga,” in 2022 IEEE 40th International Conference on Computer

Design (ICCD), pp. 517-524, 1EEE, 2022.

H. Chen et al., “Darl: Distributed reconfigurable accelerator for hy-

perdimensional reinforcement learning,” in Proceedings of the 41st

IEEE/ACM International Conference on Computer-Aided Design,

pp. 1-9, 2022.

H. Chen and M. Imani, “Density-aware parallel hyperdimensional

genome sequence matching,” in 2022 IEEE 30th Annual International

Symposium on Field-Programmable Custom Computing Machines

(FCCM), pp. 1-4, IEEE, 2022.

M. Imani et al., “Rev1s1t1ng hyperdimensional learning for fpga and

low-power archltectures in 2021 IEEE International Symposium

on High- Performance Computer Architecture (HPCA), pp. 221-234,

IEEE, 2021.

S. Duan et al., “A brain-inspired low-dimensional computing classifier

for inference on tiny devices,” arXiv preprint arXiv:2203.04894, 2022.

S. Duan et al., “Lehdc: Learning-based hyperdimensional computing

classifier,” in Proceedings of the 59th ACM/IEEE Design Automation

Conference, pp. 1111-1116, 2022.

[51]

[52]

[53]

[54]
[55]

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:52:24 UTC from IEEE Xplore. Restrictions apply.

