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Abstract—The latest hardware accelerators proposed for graph
applications primarily focus on graph neural networks (GNNs)
and graph mining. High-level graph reasoning tasks, such as graph
memorization and neighborhood reconstruction, have barely been
addressed. Compared to low-level learning applications like node
classification and clustering, high-level reasoning typically requires
a more complex model to mimic human brain functionalities.
Brain-inspired Hyper-Dimensional Computing (HDC) has recently
introduced a promising lightweight and efficient machine learn-
ing solution, particularly for symbolic representation. General-
purpose computing platforms (CPU/GPU) have been revealed
to be inefficient for HDC applications. Therefore, it becomes
essential to design a domain-specific accelerator targeting HDC-
based graph reasoning algorithms.

In this work, we propose the first domain-specific accelerator
for HDC-based graph reasoning, HyperGRAF. We first develop a
scheduler to balance the sparse matrix computation workloads,
before parallelizing the hypervector calculations on two levels
for the graph memorization task. Finally, we design a pipeline-
style matrix multiplication accelerator for the neighborhood
reconstruction task. We evaluate our design under a wide range
of generated graphs with different sizes and sparsity. The results
show that HyperGRAF achieves over 100x improvement in both
speedup and energy efficiency of graph reasoning compared to
NVIDIA Jetson Orin.

I. INTRODUCTION

Designing domain specific accelerators (DSA) targeting
graph-based applications has drawn the attention of researchers
in recent years. Most of the previous acceleration works focus
on accelerating low-level graph learning applications, such as
graph node classification and graph mining [1], [2] and barely
consider high-level graph reasoning tasks. Unlike computer
programs, the human brain memorizes graph information and
retrieves node information at an astonishing speed. A principal
advantage of the brain over computer programs is the fact
that the former effectively uses billions of neurons to conduct
computing, while sample-based deep neural networks (DNNs)
and recursive algorithms are naturally much less efficient.
Therefore, to conduct high-level graph reasoning tasks more
efficiently, using a novel model that closely mimics the brain
functionalities is beneficial.

Recently, Hyper-dimensional Computing (HDC) has been
introduced as a brain-inspired computational model for high-
efficiency and noise-tolerant computation [3]. Unlike DNN,
HDC is a model of the cerebellum cortex, which biologically
represents the human memory. HDC is motivated by the obser-
vation that the cerebellum cortex operates on high-dimensional

data representations [4]. Recently, HDC-based machine learn-
ing models have shown promising results in various cognitive
tasks on various types of data including text, graph, voice,
genome sequence, and image [5]-[18]. Graphd [19] is the
first proposed framework for human brain’s high-level graph
information memorization and neighborhood reconstruction.

While Graphd [19] achieves great accuracy on the high-
level graph reasoning, it also reveals that performing HDC-
based graph reasoning (HGR) applications require a signif-
icant amount of computation time. To approach the issue,
Graphd [19] also designs an accelerator based on digital
processing in memory (DPIM). However, much more potential
improvements in HGR acceleration on the DSA platform have
yet to be exploited from the perspective of computer archi-
tecture research. First, Graphd [19] does not consider graph
sparsity, specifically for computing workload unbalance during
the sparse matrix multiplication (SpMM) process [20]. Second,
to apply PIM to graph processing, previous works have shown
that pre-processing over the input graph is necessary [21],
[22]. However, graph pre-processing generally requires a large
amount of computation time, which obstructs the accelerator’s
online learning capability. Last but not least, compared to
other computing platforms, such as ASIC and FPGA, PIM
lacks computing flexibility and is hard to be deployed on edge
devices.

To the best of our knowledge, we propose the first FPGA-
based hyperdimensional graph reasoning acceleration plat-
form, called HyperGRAF. We conducted hardware-software co-
design to maximize graph reasoning throughput by considering
FPGA'’s resource utilization. Here are the main contributions of
the paper:

o We analyze the previous HGR algorithms and identify their
computing bottlenecks by comparison with traditional GNN
workloads.

« We propose a software scheduler running on the host CPU
to balance the computing workload when processing sparse
graphs.

o We parallelize the graph memorization computing at both
node level and intra-hypervector level. The computation of
hypervector chunks is pipelined.

o We design a pipeline-style decoder IP to accelerate node
reconstruction, which achieves a balance between execution
speedup and resource utilization.

We also evaluate our approach on a wide range of generated
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Fig. 1. Hyperdimensional graph reasoning (HGR) example. a. Example input
graph. b. Memory node hypervector generation. c. Graph memory hypervector
generation (memorization). d. Node memory reconstruction.

graphs. The results show that the FPGA platform provides, on
average, over 100x and 10x improvement for both reasoning
speedup and energy efficiency compared to the Jetson Orin and
previous acceleration methods running on DPIM, respectively.

II. HYPERDIMENSIONAL GRAPH REASONING

This section introduces hyperdimensional graph reasoning
(HGR) from an algorithmic perspective. Section II-A sum-
marizes HGR’s core operations, initially developed by [19].
Section II-B compares HGR with graph neural networks
(GNNs) [23] and shows their difference. In Sections II-C, we
analyze the most time-consuming part of HGR and illustrate
that developing domain-specific accelerators (DSA) targeting
graph reasoning applications is necessary.

A. Hyperdimensional Graph Reasoning

Figure 1 shows the general HGR procedure. HGR sup-
ports two high-level reasoning tasks: graph memorization
(memorization) and graph reconstruction (reconstruction).
Graph memorization is the process of compressing the informa-
tion of a graph into a single hypervector. Graph reconstruction
aims to rebuild the relations between entities based on the
previously done memorization.

Graph Memorization The memorization process (Figure 1(a))
includes two steps: the node memory hypervector generation,
and node memory bundling. Suppose we assign a random
hypervector ﬁz to each node as its feature vector and use
matrix H to represent the concatenation of all the generated
hypervectors for nodes (i.e. the feature matrix). The dimension
of matrix His |V'| x D, where |V| is the number of nodes in the
graph, and D is the dimension of hypervectors. The memory
hypervector is generated by aggregating each node’s neighbors’
feature hypervectors: M = A, - H, where M is the matrix
representation of graph node memories, and A, is the graph’s
adjacency matrix. Figure 1(b) provides an example of node
memory hypervectors generation based on the graph shown in
Figure 1(a). The memory bundling process consists of binding
each node’s hypervector with its memory hypervector and
bundling the results across all nodes, as shown in Figure 1(c):

=Y H;oM; (1)

i=1

TABLE 1
COMPARISON OF HDC-BASED GRAPH REASONING (HGR) wiTH GNN.

\ Task Level Kernel Datasets Sparsity
HGR | high level Hypervector Small ~ Large High
GNN low level Neural Network Large High

Where G represents the final graph hypervector, o is the
element-wise multiplication (Hadamard product) which per-
forms binding, and the sum operation represents bundling. Also
note that the binding operation associates two hypervectors’
information, whereas the bundling operation synthesizes the
information of all the hypervectors it is used on [24].
Graph Reconstruction Figure 1(d) gives an example of graph
node memory reconstruction. To determine each node’s neigh-
bor nodes, first we need to reconstruct each node memory hy-
pervector. Since randomly generated hypervectors are orthog-
onal [24], the node memory computation can be approximated
as:

M; = GoH; whereic|[1:V] 2)

However, as the graph size (|V|) increases, the node memory
matrix generated by Equation 2 will have high amounts of noise
which undermines subsequent neighbor node reconstruction.
Graphd [19] proposes an iterative computing method to mitigate
the noise:

MF=H; (G—.H; M) where k > 0 (3)

7

Here k is the iteration cycle. Say we have an auxiliary hollow
matrix I, of shape |V| x |V | whose diagonal elements are zero
and all others are 1. By introducing I, Equation 2 becomes:

=GoH-Ip-(M"1oH)oH where k > 0 (4)

With the memory hypervector generated from each node, we
can determine whether two nodes are connected, by checking
the cosine similarity between node A’s memory hypervector
(M 4) and node B’s feature hypervector (H B). Here we denote
this cosine similarity by f(A,B), then A and B are determined
to be connected if f(A,B) &~ 1, or disconnected if f(A,B) ~ 0.

B. Comparison with Graph Neural Network

Although the graph memorization of HGR resembles the
graph neural network (GNN)’s aggregation phase, its nature is
different. GNN has been widely adopted for traditional machine
learning tasks, such as classification and clustering, over graph
datasets [1], [21]. While GNN manifests excellent learning
capabilities, it does not support high-level reasoning such as
memorization and knowledge extraction. The underlying reason
is that neural networks generally excel in learning, but not
storing information. By contrast, hyperdimensional learning
relies on symbolic hypervectors and therefore has brain-like
solid reasoning capabilities [19]. Besides the distinct target
tasks, the computing procedure is also different. GNN repeats
the nodes aggregation operation over multiple layers, whereas
that only happens once during the memorization phase as for
HGR. We tabulate the comparisons between HGR and GNN in
Table 1.
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Fig. 3. Top Architecture. (a) Generate CSR representation. (b) Load CSR
matrix into out of order scheduler. (c) Offload hyperdimensional computing
activities into the FPGA kernel. (d) Transaction IP (TXIP) accesses a node’s
feature vector from high bandwidth memory (HBM) channel. (¢) Concatenate
each TXIP’s chunk vector and generate the final result hypervector.

C. HGR Computing Bottleneck Analysis

While Graphd [19] presents a novel hyperdimensional graph
reasoning method, we identified certain inefficiency and per-
formance bottlenecks in the two processes: graph information
memorization and reconstruction. For the memorization pro-
cess, Graphd [19] does not consider graph sparsity, and hence
incurs a notable amount of inconsequential computation as
shown in Figure 2(a). The reconstruction process, represented
by Equation 4, is composed of an inner product and Hadamard
products which are not commutative. Therefore each iteration
requires three consecutive matrix multiplication operations. As-
suming that we use GPU to accelerate Equation 4, an analysis
of DRAM accesses in Figure 2(b) suggests that excessive time
and energy is consumed by data transfer between the host CPU
and kernel GPU. In Section III, we design a domain-specific
accelerator (DSA) to address this challenge.

I11. FPGA ACCELERATION OF HyperGRAF

In this section, we present HyperGRAF’s architecture design.
Based on bottleneck analysis in Section II-C, we conduct a
hardware-software co-design for both the memorization and
reconstructions phase. In Section III-A, we give an overview
of the CPU-FPGA heterogeneous platform. Section III-B gives
the algorithm of the out-of-order (OoO) scheduler, which helps
to reduce the sparsity and balance the computing workload. We
show actual computing unit architecture for memorization and
reconstruction in Sections III-C and III-D.

A. Top Architecture

Figure 3 is an overview of the CPU-FPGA heterogeneous
platform. We first convert the graph representation from adja-
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Fig. 4. Sparse Matrix to Dense Matrix Multiplication Optimization. (a)
Example graph (b) Adjacency matrix representation of graph (c) CSR format
of a graph (d) Out-of-order (OoO) schedule of CSR-based graph processing

cency matrix format into compressed sparse row (CSR) format.
Although the CSR format successfully diminishes the matrix’s
sparsity, it also incurs the computing workload imbalance
problem as discussed by previous works [20], [25]. To fix this
issue, we design an out-of-order (OoO) style, density-aware
scheduler running on the CPU. The scheduler will offload actual
hyperdimensional computing (HDC) activities on kernel FPGA.
Here suppose the hypervector dimension is D. To parallelize
the matrix multiplication (MM), we split each graph node’s
hypervector into T chunks. Each chunk’s dimension D, = %
As shown in Figure 3, those T vectors will be first loaded
into T high bandwidth memory (HBM)’s channels and then
accessed by T independent transaction IP (TXIP). Inside each
TXIP, there is one aggregator IP (alP) and one decoder IP (dIP).
The aggregator IP will conduct memorization computing, and
the decoder IP will conduct reconstruction computing. After
each TXIP finishes its computing activities, we concatenate
each channel’s chunk and generate the final result hypervector.

B. Density-aware Scheduler

As discussed in Section II-C, effective sparsity reduction is
critical for graph memorization computing. Figure 4 illustrates
an example of the sparsity problem. Figure 4(a) is the target
graph, and Figure 4(b) is the adjacency matrix representation.
The blank region of the matrix are the elements of zero
value, i.e., the source of sparsity. For such a sparse matrix,
each vertex’s neighbor aggregation process, as represented by
Equation 1, is a sparse matrix multiplication problem (SpMM).
A common approach to reduce matrix sparsity is to represent
the graph in the CSR format, as is shown in Figure 4(c).
However, CSR is a vertex-centric graph format that potentially
incurs poor computing workload balancing, due to the dis-
crepancy in vertices’ neighbor sizes. Specifically, if we solely
parallelize the computing by matrix’s row pointer (rowPtr),
each threads’ computing complexity will be different [26].
Previous works [21], [27], proposed graph pre-processing, such
as graph clustering, to group vertices with the common neigh-
bor. However, the pre-processing is time-consuming and graph-
specific. Alternatively we propose an out-or-order (OoO) style,
density-aware scheduler to balance the computing workload, as
described in algorithm 1. This idea was inspired by the famous
Tomasulo’s algorithm [28], in the sense that it dynamically
offloads vertices with the same neighbor count to the kernel
FPGA. In addition to exploiting the parallelism among differ-
ent vertices, we also pipeline each vertex’s neighbor feature
vector aggregation process. The scheduler will scan the CSR
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Algorithm 1: Density-aware Scheduler
Input: rowPtr, colldx, colVal, Nc
/* i is the vertex’s index */
11=0;
2 H = map<int, list>;
3 while i < V do

/+ count 1is vertex’s neighbor size, H[count]
is a C++ STL list storing indices x/
4 count = rowPtr[i + 1] - rowPtr[i];
5 Hcount].add(i);
6 if H[count].size == N, then
/+ kernel is the FPGA accelerator x/
7 call kernel(H [count], rowPtr, colldx, colVal);
8 Hcount].clear;
9 end
10 i++;
11 end
/* Finish the remaining computation x/

12 count = 0;
13 while count < H.size do
14 if H[count].size > 0 then

15 call kernel(H [count], rowPtr, colldx, colVal);
16 H{count].clear;
17 end
18 count++;
19 end
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Fig. 5. Aggregator IP architecture. (a) General architecture. (b) Computing
Unit (CU) microarchitecture. (¢c) Match IP architecture.

matrix, and store each vertex’s id into a hashmap. The key
of the hashmap is neighbor size and the value is a list of the
related vertices’ IDs. Assume that the kernel FPGA supports
a maximum of N, concurrent vertex aggregation computing,
then whenever the size of the list grows to N., we offload the
corresponding vertex hypervetor computation into the kernel
FPGA. After the kernel computing finishes, we clear this list
and continue the scanning. Figure 4(d) shows an example where
vertex C, E, and G have the same neighbor size, therefore the
scheduler will pack their computation tasks onto the kernel
FPGA.

C. Encoder Architecture

Figure 5 presents the architecture design of the encoder IP,
which is responsible for the hyperdimensional graph memo-
rization. Let N, denote the on-chip node parallelism, i.e., the
number of nodes that HyperGRAF can simultaneously process.
Here, N, is directly determined by the amount of FPGA on-
chip resources, such as the lookup tables (LUT). The encoder
IP first loads vertex hypervector chunks from the corresponding
HBM channels. We store each vertex’s neighbor feature vector
to BRAM for later pipeline processing and forward the vertex’s
feature vector to the on-chip buffer. In Figure 5, there are
N, independent processing element (PE) IP and each PE IP
has D, computing unit (CU) IP. Figure 5 also provides the
microarchitecture of the CU IP. Let hy, be the k" feature vector
element of vertex i, and let ry represent vertex i’s neighbor
feature vector element, with j as the pipeline stage index. Vj;
stands for the edge value, which is always 1 for unweighted
graphs. The computation executed by CU IP can be written as:

My, = My, + iy, X hiji X Vij where k€ [1:D.] (5

The last step inside CU IP is to accumulate the previous
multiplication product and to generate each vertex’s memory
vector M'. Please note that the memory hypervector M’ in
Figure 5 is already the Hadmard product of the memory
hypervector and vertex feature vector: Mz’ = ]\7[Z- o H}. At the
end of the pipeline, we aggregate all N. PE IP’s results to
generate the partial graph memorization hypervector.

D. Decoder Architecture

The graph reconstruction is the most time-consuming part of
HGR due to two facts. First, we need to iteratively remove noise
from the memory node hypervector. Our solution is to increase
the hypervector dimension, and hence increase the hypervector
orthogonality. Second, Equation 4 takes a long time to complete
if without any hardware optimization. In that respect, we design
a domain-specific accelerator, called decoder IP. If we take a
closer look at Equation 4, the main computing overhead is
attributed to the second term, since the first term stays constant
during iteration. Here we rewrite the second term as M :

M =15 -(M*1oH)oH where k > 0 (6)

Equation 6 comprises one matrix inner product and two con-
secutive matrix Hadmard products. To accelerate those matrix
operations on FPGA, the most straightforward method is de-
ploying two systolic arrays, one for the inner product and the
other for the Hadmard Product. Although the optimistic time
complexity is O(N. + D. + 1); however, due to the hardware
resource limit, it is impractical to fully parallelize Hadmard
product and match the time complexity of O(1). To make
our design more generic and resource-efficient, we present the
pipeline decoder IP (dIP) in Figure 6. The dimension of this
decoder IP is N. x D.. For each row of the noise memory
matrix M;, we have:

M; = (" M; o H)) o H; where i,j € [L,Nc]  (7)
J#i
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Since 7 is independent of summation, we can fuse two
Hadmard products into one stage:
M;:Z]VYjOI—ijﬁi where i,j € [1, Nc] (8)
J#i
In Figure 6, we unroll the summation of Equation 8 over
dIP’s N, row and distribute each element of feature vector over
dIP’s D, column. As a result, we achieve a timing complexity
of O(N.+ N.) for a single iteration under the limited resource.
As shown in Figure 6, each PE stores its own row index and
it only accumulates those product results with a different row
index. We believe this pipeline-style dIP successfully strikes a
balance between performance and resource utilization.

IV. EVALUATION
A. Experiment Setup

We synthesize and implement HyperGRAF on a CPU-FPGA
heterogeneous computing platform, with the FPGA serving
kernel acceleration. Specifically the CPU is Intel Core i9-12900
running at 3.2 GHz, the FPGA is Xilinx Alveo U50, and the
connection between them is PCle generated by the Xilinx Vitis
framework [29]. The scheduler is developed with the Vitis
Unified Software Platform which provides APIs, kernel drivers,
board utilities, and firmware, to facilitate communication with
the FPGA accelerator. We choose the generated graphs from
work [30] as the workloads, and evaluate our design in terms
of accuracy and speedup. We also analyze the impact of graph
attributes, such as sparsity, on our accelerator’s performance.

B. Graph Reasoning Accuracy

Figure 8(a) shows the effect of hypervector dimensionality
and the number of edges on the quality of information retrieval.
The number of nodes is set to 150 for all experiments. The
results suggest that larger graphs require higher dimensionality
to ensure full graph reconstruction. For example, graphs with
600 and 1000 edges can only be accurately stored and recon-
structed using hypervectors with at least D = 2k and D = 3k
dimensionality, respectively.

Figure 8(b) inspects the quality of graph matching using
hypervectors with different dimensions. For all tests, the graph
size is assumed to be fixed (50 nodes and 200 edges). Ideally
there should be no edge mismatch, but that is untenable

TABLE II
FPGA RESOURCE UTILIZATION ON XILINX ALVEO U50 WHERE THE
FREQUENCY IS 200MHZ AND THE POWER CONSUMPTION IS 29.8W.

\ LUT FF BRAM* UltraRAM* DSP
alP 244.4K 101.7K 128 0 0
drp 268.3K 122.8K 0 64 2048
HBM 4320 3496 16 0 0
Other 72.1K 80.6K 94 0 0
Total ‘ 589.1K (83.6%)  308.7K (21.8%) 238 (21.3%) 64 (11.7%) 2048 (41.6%)
I Without Scheduler [ With Scheduler
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Fig. 7. The processing element (PE)’s utilization rate. The graph’s vertex size
(|V']) is constantly set to 1K. With the edge size (| E|) increase, the density of
the graph also increase.

except for an oracle HDC model with zero noise and strictly
orthogonal vectors. The x-axis in the plot shows the total
number of edge differences, while the y-axis shows the error
(i.e. number of mismatched edges) from our predictions. Each
data point is the average of over 50 trials. The results show
that decreasing the number of dimensions will give rise to the
amount of noise in our estimation.

C. Resource Utilization

Table II presents the FPGA resource utilization when D =
2K, D, 128, T' = 16, and N. = 4. The precision
of each hypervector’s element is 8 bits. The frequency and
power consumption of HyperGRAF are 200 MHz and 29.8
W. As is shown in Figure 3, we implement both aggregator
IP and decoder IP on the same FPGA board. However, as
discussed in Sections III-C and III-D, the graph memorization
and reconstruction processes are independent, allowing us to
implement the two IPs on separate FPGA boards. Another
important detail is that the on-chip storage resources (BRAM
and UltraRAM) in table II may vary with the graph changing.
Specifically, the usage of BRAM is related to the graph’s
sparsity, as it stores each node’s neighbor feature hypervector,
and the usage of UltraRAM depends on the graph node size,
as it is used to store each node’s feature hyperevector during
graph reconstruction. We will discuss more about resources and
performance trade-off in Section IV-E.

D. Effect of Scheduler on HyperGRAF

Figure 7 illustrates the impact of a scheduler on increas-
ing the utilization rate of processing elements (PEs) as the
graph sparsity changes. To be specific, a PE is considered
utilized/active when it has a computation load, rather than
waiting for other PEs to finish their tasks. A higher utilization
rate indicates a more balanced distribution of computation tasks
across each PE. Figure 7 shows that, without a scheduler,
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approximately 40% of PEs remain idle during the graph memo-
rization computation. In contrast, the average utilization rate of
HyperGRAF exceeds 95% with the scheduler. The substantial
difference demonstrates the scheduler’s ability to optimize task
allocation and improve load balancing across PEs.

E. Cross Platform Comparison

Starting from this section, we discuss HyperGRAF’s hard-
ware acceleration performance from different perspectives. Fig-
ure 9 presents the graph reasoning accelerations performance on
different hardware platforms. We implemented HDR algorithm
proposed in [19] using PyTorch [31] and tested the program
on NVIDIA Jetson Orin, NVIDIA GTX 1660, NVIDIA RTX
3090, and Intel i9-12900, while the digital processing in
memory (DPIM) acceleration performance is based on [19]. A
generated graph from [30] with the node size Ny,=1000 and the
average degree dq,,=2 is used in the experiments. Since graph
memorization takes most of the execution time of the graph
matching task, in Figure 9, we choose to use this task to bench-
mark the memorization performance. As shown in Figure 9,
HyperGRAF achieves on average over 100x improvement over
embedded system-on-chip (Jetson Orin) and CPU for both
speedup and energy-delay product (EDP). With the increase of
dimensionality, the advantage of HyperGRAF becomes more
evident. When compared with DPIM, HyperGRAF shows on
average over 10x speedup improvement. Even though both
FPGA and DPIM have strong parallelism, DPIM’s computing
capability is restricted when it comes to sparse matrices. For
HyperGRAF, however, a scheduler is running on the host CPU,
that offloads HDC operations to kernel FPGA, balancing the
computing workload and resulting in a significant improvement
in the accelerator’s performance. When it comes to energy
efficiency, FPGA-based HyperGRAF shows an advantage over
DPIM, although it is not as strong as the speedup difference
as a result of FPGA’s power consumption being much higher
compared to PIM. For our design with 32 HBM channels usage,
the power consumption is around 30W. Since Graphd [19] does
not disclose the exact power consumption of their DPIM design,
we are not able to do an in-depth power comparison.

FE. Throughput vs Resource Utilization

Figures 10 and 11 present the trade-off between
HyperGRAF’s throughput and FPGA on-chip resource
utilization. Here the hypervector dimension (D) is 4K, and the

TABLE III
COMPARISON WITH PREVIOUS GRAPH LEARNING FPGA ACCELERATOR

‘ Work [33] HP-GNN [34] HyperGRAF
Device Alveo U200 Alveo U250 Alveo U50
Task GNN Inference GNN Training Graph Reasoning
Dimension 300~600 200~600 512~4K
Model GCN GCN and GraphSAGE HGR
Precision float32 float32 uint8
Frequency 250 MHz 300 MHz 200 MHz
Power ~ ~ 29.8 W
Throughput 2.64 MENPS 10.77 MENPS 0.9~18.42 MENPS

precision of each hypervector’s element is 8 bits. Figure 10(a)
gives the HyperGRAF’s memorization throughput change
and corresponding LUT usage when increasing the on-chip
node parallelism (/N.). Here we use million embedded nodes
per second (MENPS) to measure the node memorization
throughput of HyperGRAF. MENPS is also used by previous
FPGA-based graph processing accelerator designs [32], [33].
With the node processing parallelism (/V.) increasing, both
the throughput and LUT utilization will increase. However
for Xilinx Alveo U50, the maximum N, is 16. If we keep
increasing N., HyperGRAF’s memorization throughput
(MENPS) will not increase. In such case, to keep increasing
throughput, we need to use larger FPGA board such as Alveo
U280. Figure 10.(b) presents the influence of graph sparsity
over HyperGRAF’s memorization throughput. With the graph
edge size increase, to maintain the constant reasoning speed
(MENPS), we need to also increase on-chip node parallelism
(Ne).

Figure 11(a) presents the effect of changing hypervector
dimensionality (D) on HyperGRAF’s performance. Figure 11(a)
shows the performance comparison between systolic array style
reconstruction IP (dIP) and pipeline style dIP. When dimen-
sionality is low, systolic array style dIP offers high throughput
at its high parallelism. However, with dimensionality increas-
ing, pipeline-style dIP shows a better balance between resource
utilization and reasoning throughput. Figure 11(b) shows that
the on-chip storage (UltraRAM) will increase with dimension-
ality, as more space is needed to store the feature hypervectors.

G. Comparison with Previous FPGA Acceleration Works

While HyperGRAF is the first work that utilizes FPGA
acceleration for the HDC graph reasoning model, we compared
it with previous works on FPGA acceleration for graph learning
in Table III. At the model level, HyperGRAF differs from
traditional GNN models in that it stores graph information in
a single HDV and reconstructs each vertex’s neighbors. At the
hardware level, due to HDC’s holographic representations [35],
the bit precision of each HDV’s element is relatively low, but
the embedding dimension (HDV dimension) is quite large. By
parallelizing the graph memorization computation at both the
node and intra-hypervector level, HyperGRAF achieves high
computation throughput on a relatively small FPGA platform.
Table III shows that HyperGRAF’s throughput is influenced
by factors such as graph sparsity, HDV dimension, and FPGA
resources. To further extend our findings, future work could
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involve deploying HyperGRAF on larger FPGA boards to eval-
uate its performance and scalability in more complex scenarios.

V. RELATED WORKS

Accelerating graph-related algorithms, such as GNNs on
DSA, including FPGA [1], [27], [36], [37], ASIC [38], and
PIM [21], has recently amassed considerable attention. Pre-
vious works focus on accelerating graph learning applica-
tions, such as classification [39] and graph mining [40], but
rarely address high-level graph reasoning applications like
graph memorization and reconstruction. [41], [42] inspire the
possibility of interconnecting multiple FPGAs or heteroge-
neous systems for larger scale tasks, while [43]-[47] address
the ever-increasing memory/storage requirement. Hyperdimen-
sional computing (HDC) has recently shown much more poten-
tial in graph applications compared to traditional machine learn-
ing methods such as CNN or GNN [6], [19], [48], [49]. The
work in [6] encodes a graph into an hypervector and performs
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graph classification. The study conducted by [48] presents a
novel approach utilizing a ferroelectric field-effect transistor
(FeFET)-based processing in-memory (PIM) hardware accel-
erator specifically designed for enhancing the performance of
HDC-based graph models. Graphd [19] proposes the first HDC-
based graph reasoning algorithm, which has been revealed
to be infeasible for traditional computing platforms, namely
CPU and GPU. It also attempts to accelerate its application
with NVMe-based PIM but it fails to consider graph sparsity
and workload balance. Moreover, PIM is hard to deploy and
lacks flexibility compared to FPGA. The application of HDC
models on the FPGA platform has demonstrated exceptional
performance capabilities [50]-[55]. In particular, the study
conducted by [53] aims to enhance the efficiency of HDC
model learning on FPGAs, with a focus on classification
tasks. Another research endeavor, conducted by [50], endeavors
to expedite HDC regression model computations on FPGAs.
Additionally, [51] explores the utilization of FPGA acceler-
ation for HDC reinforcement learning models. Based on all
these observation, we propose HyperGRAF, the first FPGA-
based hardware acceleration of the HDC-based graph reasoning
algorithms.

VI. CONCLUSION

In this paper we conduct a software-hardware co-design
to propose the first FPGA-based hyperdimensional graph rea-
soning acceleration platform. We design a scheduler to bal-
ance the FPGA kernel computing workload from the software
perspective, while exploring the trade-off between reasoning
throughput, on-chip resource utilization and graph parameters
on the hardware side. We evaluate our design under a wide
range of generated graphs. The results show that HyperGRAF
platform provides over 100x and 10x improvement for both
speedup and energy efficiency, compared to the Jetson Orin and
prior DPIM-based accelerator, respectively.
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