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1. Introduction

We work over the field of complex numbers C. We remark that we expect our results 
to hold over any algebraically closed field of characteristic zero. However, since many 
important references we cite only work over C (e.g. [10,19,20]), this paper will also only 
work over C for consistency.

The theory of generalized pairs (g-pairs for short) is a central topic in modern day bi-
rational geometry. Introduced by Birkar and Zhang in [10] in the study of effective Iitaka 
fibrations, this theory is known to be useful in many aspects of birational geometry, such 
as the proof of the Borisov-Alexeev-Borisov conjecture [3,5], the theory of complements 
[3,43], the connectedness principles [4,14], non-vanishing theorems [39], etc. We refer the 
reader to [6] for a survey on the theory of g-pairs.

An important part of the study of g-pairs is their minimal model program. The foun-
dations of the minimal model program for gklt g-pairs and Q-factorial gdlt g-pairs were 
established in [10,20]. Recently, there is some progress towards the minimal model pro-
gram theory for glc g-pairs. In particular, in [19], the authors proved the cone theorem, 
contraction theorem, and the existence of flips for NQC Q-factorial glc g-pairs. For 
other related works, we refer the reader to [27,28,38,40]. These results almost complete 
the foundation of the minimal model program for Q-factorial NQC glc g-pairs, or for 
NQC g-pairs admitting an lc structure on the ambient variety.

In this paper, we focus on the last part of the minimal model program for NQC 
generalized pairs: the class of possibly non-Q-factorial NQC g-pairs. The main theorem 
of this paper is the following:

Theorem 1.1. Let (X, B, M)/Z be an NQC glc g-pair and A ≥ 0 an R-divisor on X, 
such that (X, B + A, M) is glc and KX + B + A + MX ∼R,Z 0. Then:
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(1) (X, B, M)/Z has a Mori fiber space or a log minimal model (Y, BY , M)/Z.
(2) If KY + BY + MY is nef/Z, then it is semi-ample/Z.
(3) If (X, B, M) is Q-factorial gdlt, then any (KX +B + MX)-MMP/Z with scaling of 

an ample/Z R-divisor terminates.

Theorem 1.1 generalizes [2, Theorem 1.1] (see also [21, Theorem 1.6], [25, The-
orem 1.1]) to the category of g-pairs. We remark that the authors proved Theo-
rem 1.1(1)(3) in [40, Theorem 1.3] while Theorem 1.1 completes the missing part (2). 
Finding this last missing piece is very important, as it allows us to deduce the existence 
of flips for glc g-pairs in full generality.

Theorem 1.2. Let (X, B, M)/U be an NQC glc g-pair and f : X → Z is a (KX+B+MX)-
flipping contraction/U . Then the flip X+ → Z of f exists.

Theorem 1.2 removes the R-Cartier condition of MX as in [19, Theorem 1.2], hence 
gives a complete solution of [20, Conjecture 3.12]. We remark that the proof of The-
orem 1.2 is quite different from the proof of [19, Theorem 1.2]. Indeed, the proof of 
Theorem 1.2 gives an alternative proof of [19, Theorem 1.2].

The next result is the g-pair version of [21, Theorem 1.1] (see also [2, Theorem 1.4], 
[25, Theorem 1.1]) in full generality.

Theorem 1.3. Let (X, B, M)/U be an NQC glc g-pair and U0 ⊂ U a non-empty open 
subset. Let X0 := X ×U U0, B0 := B ×U U0, and M0 := M ×U U0. Assume that

(1) (X0, B0, M0)/U0 has a good minimal model, and
(2) any glc center of (X, B, M) intersects X0.

Then (X, B, M)/U has a good minimal model.

Remark 1.4. When M = 0, Theorem 1.3 is closely related to the properness of the moduli 
functor of stable schemes. Unfortunately, it seems difficult for us to apply Theorem 1.3
in a similar way in the study of the moduli of g-pairs. In general, it is not clear if we can 
extend a glc structure on X0 over U0 to a glc structure on a compactification X of X0

over a compactification U of U0. This is mainly because a nef/U0 divisor on X0 usually 
does not extend to a nef divisor/U on X. In fact, many properties for pairs in families 
do not hold for g-pairs anymore, see [9] for examples where the theory of g-pairs presents 
extreme complications. We refer the reader to [7] for some new techniques about moduli 
for generalized pairs.

We remark that [19, Theorem 1.1] proves Theorem 1.3 under the additional assump-
tion that M0

X0 ∼R,U0 0. The proof of Theorem 1.3 is quite different from the proof of 
[19, Theorem 1.1] as well. Indeed, the proof of Theorem 1.3 also provides an alternative 
proof of [19, Theorem 1.1].



4 J. Liu, L. Xie / Advances in Mathematics 427 (2023) 109126

The following result, which generalizes [2, Theorem 1.5] to the category of g-pairs, is 
also important to the proofs of Theorems 1.1, 1.2, and 1.3. It is interesting to see that, 
although the finite generation of the generalized log canonical ring usually fails, it is still 
useful in the minimal model program for generalized pairs.

Theorem 1.5. Let (X, B, M)/U be a Q-factorial gdlt Q-g-pair such that f : X → U is 
surjective. Let U0 be a non-empty open set of U and X0 := X ×U U0. Assume that

(1) R(X/U, KX + B + MX) is a finitely generated OU -algebra, and
(2) (KX + B + MX)|X0 is semi-ample over U0.

Then (X, B, M)/U has a good minimal model. Moreover, any sequence of steps for the 
(KX +B + MX)-MMP/U with scaling of an ample/U R-divisor terminates with a good 
minimal model of (X, B, M)/U .

The key idea in the proofs of Theorems 1.1, 1.2, and 1.3 is a Kollár-type gluing theory 
which we will establish in Section 4, combined with the minimal model program for 
special g-pairs as in [40] (see also [28]). As an important application of independent 
interest, we show that glc singularities are Du Bois. This is a generalization of [36, 
Theorem 1.4] to the category of generalized pairs, and will allow us to construct many 
Du Bois singularities without any log canonical structure (cf. Example 2.1).

Theorem 1.6. Let (X, B, M) be an NQC glc g-pair. Then any union of glc centers of 
(X, B, M) is Du Bois. In particular, X is Du Bois.

We remark that [18, Theorem 1.1] shows that qlc (quasi-log canonical) singularities 
are Du Bois. Since any qlc pair is always a glc g-pair [16, Remark 1.9], Theorem 1.6
implies [18, Theorem 1.1].

We expect the theorems above to have important applications in future studies of 
g-pairs. We state a few of them here. The first one is the extractability of non-canonical 
places of glc g-pairs:

Theorem 1.7. Let (X, B, M) be an NQC glc g-pair, and E a prime divisor that is excep-
tional over X such that a(E, X, B, M) ∈ [0, 1). Then there exists a birational morphism 
f : Z → X which extracts E such that −E is ample over X.

When M = 0, Theorem 1.7 is proved in [41, Theorem 1].
We show the finite generation of the ring for any integral divisor which avoids glc 

centers:

Theorem 1.8. Let (X, B, M) be an NQC glc g-pair, and D an integral divisor on X, such 
that SuppD does not contain any glc center of (X, B, M). Then R(X, D) is a finitely 
generated OX-algebra.
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When proving the theorems above, we get some counter-examples to some expected 
properties of g-pairs. We will summarize them in Section 2. We hope they will be useful 
in future studies of generalized pairs.

Structure of the paper. In Section 2, we summarize our ideas of the proofs of the main 
theorems and provide some examples of g-pairs satisfying special properties. In Section 3, 
we introduce some preliminary results that will be used in the rest of the paper. In 
Section 4, we introduce the concept of glc crepant log structures, a generalized pair 
version of crepant log structures for lc pairs [31, Definition 4.28], and establish a Kollár-
type gluing theory for this structure. In Section 5, we prove the key theorem Theorem 5.1. 
In Section 6 we explore the Du Bois property coming from glc crepant log structures 
and prove Theorem 6.4. In Section 7, we use Theorem 5.1 and Theorem 6.4 to prove our 
main theorems.
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cussions and constant support. They would like to thank Jingjun Han, Yuchen Liu, and 
Chenyang Xu for useful discussions. We thank the referee for detailed suggestions. The 
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2. Idea of the proof of Theorem 1.1 and some examples

It is clear that the main difficulty of the proof of Theorem 1.1 will appear when gluing 
glc centers. For the usual pair case, there are two methods to resolve this issue:

(1) Show the fact that nef and log abundant implies semi-ample (cf. [17,22,26]).
(2) Show the finiteness of B-representations (cf. [17,22]).

However, the nuances of glc g-pairs seem to pose some serious difficulties. Indeed, we 
will show later that both (1) and (2) have counter-examples.

2.1. Idea of the proof of Theorem 1.1

The key idea in our proof of Theorem 1.1 is that, instead pursuing a more general 
statement as in the proofs of the usual pair case (like the finiteness of B-representations), 
we shall fully utilize all conditions imposed and prove the finiteness of relations and the 
existence of geometric quotients only in this restricted setting.

To better illustrate our idea, let’s start with some cases when we can easily prove the 
finiteness of relations so that a “direct” proof of gluing is possible. For example, suppose 
that W is sdlt, π : Wn → W is the normalization or W , and Dn is the double locus. 
Let LW be a semi-ample line bundle on W which defines a contraction g : W → Y . 
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Let gn : Wn → Y n be the contraction induced by L = π∗LW and Tn ⇒ Y n be the 
relation induced by the relation Dn ⇒ Wn. Then the relation generated by Tn ⇒ Y n is 
automatically finite, and the geometric quotient is just Y .

This observation seems useless, as our goal — the semi-ampleness of LW , where W is 
the non-gklt locus and L is the restricted generalized log canonical divisor — is already 
in the assumptions. Nevertheless, by applying induction on dimension, we may assume 
that LWn := π∗LW is semi-ample. We have a key observation here: by a lemma of 
Kollár [31, Lemma 9.55], to prove the finiteness of relations, we only need to show the 
semi-ampleness of LW over a “good” open subset of W . For arbitrary sdlt varieties W , 
or even if W is the non-gklt locus of an arbitrary gdlt g-pair, such “good” open subset 
may not exist. However, such good open set will automatically exist under the setting 
of Theorem 1.3, where we can let that open subset be the inverse image of U0.

Now the last thing we need to do is to establish a Kollár-type gluing theory under the 
setting of Theorem 1.3. This is also not trivial: when a similar kind of Kollár-type gluing 
theory was introduced in [21,22] in the proof of the existence of lc flips, they ended up 
using the finiteness of B-representations which we want to avoid. Nevertheless, thanks 
to the MMPs developed in [40] (see also [19,28]), we are able to reduce Theorem 1.3 to 
the case when (X0, B0, M0)/U0 is a good minimal model of itself (cf. Theorem 5.1). By 
the generalized canonical bundle formula [13,14,24,30] and induction on dimension, we 
reduce to the case when KX + B + MX is big and nef (Step 2 of Theorem 5.1). Now 
we can get a gluing theory that can be directly applied for this case without using the 
finiteness of B-representations. More precisely, with the help of the generalized canonical 
bundle formula and the structure of P 1-links for glc g-pairs [14], we may apply similar 
arguments as in [31, Chapter 4] to establish a gluing theory for g-pairs with gdlt crepant 
log structures (see Section 4 for details). This eventually provides the gluing theory that 
we need, and all the main theorems will follow.

2.2. Example

In this subsection, we will provide three examples corresponding to three failed ap-
proaches towards Theorem 1.1. These approaches are:

(1) Try to get an lc structure on X and show that a glc flip is also an lc flip.
(2) Try to show that nef and log abundant implies semi-ample (for g-pairs).
(3) Try to prove the finiteness of B-representations (for g-pairs).

All these three approaches are natural approaches and have played crucial roles before. 
Indeed, (2) and (3) are essentially used when proving the existence of lc flips [2,21], while 
(1) is essentially used when proving the existence of Q-factorial glc flips [19]. We hope 
that our examples will illustrate some of the subtleties of working with glc g-pairs and 
be beneficial for future works.
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2.2.1. Glc pair without lc structure
A key observation in [19] indicates that, for any glc g-pair (X, B, M)/U such that 

MX is R-Cartier, any twist of (X, B, M)/U with any ample/U R-divisor will induce an 
lc structure on X (cf. [19, Lemma 5.18]). Actually, this observation leads to the proof of 
Theorem 1.2 when MX is R-Cartier [19, Theorem 1.2].

However, when dealing with non-Q-factorial glc g-pairs, one cannot expect the exis-
tence of an lc structure on X due to the following example:

Example 2.1. Let S be a projective lc variety such that −KS is nef but not big, and 
(S, ∆) is not lc for any ∆ ∈ | −KS |R, i.e. (S, 0) does not have an R-complement. Such 
S exists, even if we additionally require that S is smooth (cf. [42, 1.1 Example], where 
S = PE(V ) is a ruled surface over an elliptic curve E and V is a non-splitting vector 
bundle over E of rank 2).

Let L be an ample line bundle on S. Then the affine cone Y := C(S, L) is not 
potentially lc, i.e. for any BY ≥ 0 on Y , (Y, BY ) is not lc. To see this, let p : X :=
BC(S, L) → C(S, L) = Y be the blow-up of the vertex of Y with exceptional divisor 
E ≃ S, then π : BC(S, L) → S is total space of the line bundle L−1 over S and E is the 
zero section. If there exists BY ≥ 0 such that (Y, BY ) is lc, then

p∗(KY + BY ) = KX + (1 − a)E + BX

where a ≥ 0 and BX := f−1
∗ BY . Since KS is Q-Cartier, KX is Q-Cartier. Since π is 

smooth, we have (KX + E)|E ∼Q KS , hence

KS ∼R −(BX |E + aL).

Since −KS is not big, a = 0. In this case, −KS ∼R BX |E ≥ 0 and (S, BX |E) is lc by 
adjunction. This contradicts our assumption that (S, ∆) is not lc for any ∆ ∈ | −KS |R.

On the other hand, Y does have a glc structure (Y, 0, M), where M = π∗(−KS) is a 
nef Q-divisor on X. By Theorem 1.6, Y is also an example of a variety which is Du Bois 
but has no lc structure.

2.2.2. Nef and log abundant do not imply semi-ample for g-pairs
By adopting and further developing the ideas of Hashizume [27,28], in [40], we are 

able to prove Theorem 1.1(1)(3). We use the additional structure given by the morphism 
f : X → Z as in Theorem 1.1. In fact, by induction on dimension, we can reduce to the 
case when (X, B, M) is log abundant/Z. In the classical minimal model program, nefness 
and log abundance usually imply semi-ampleness (cf. [17,22,26]). Nef and abundant also 
imply semi-ample for gklt g-pairs: the first known proof of this result is [28, Lemma 3.10]; 
see also [11, Theorem 2].

However, we have the following example of a glc g-pair with nef and log abundant but 
not semi-ample generalized log canonical divisor:



8 J. Liu, L. Xie / Advances in Mathematics 427 (2023) 109126

Example 2.2 ([40, Example 1.4]). Let C0 be a nodal cubic in P 2 and l the hyperplane 
class on P 2. Let P1, P2, ..., P12 be twelve distinct points on C0 which are different from 
the nodal point of C0. Let

µ : X = Bl{P1,...,P12} → P 2

be the blow-up of P 2 at the chosen points with the exceptional divisor E =
∑12

i=1 Ei, 
where Ei is the prime exceptional divisor over Pi for each i. Let H := µ∗l and C :=
µ−1
∗ C0. Then C ∼= C0, C ∈ |3H − E|, and KX + C = µ∗(KP2 + C0) = 0.
We consider the big divisor M = 4H − E ∼ H + C. Since H is semi-ample and 

M · C = 0, M is nef. Notice that OC(M) = OC0(4l −
∑12

i=1 Pi) and Pic0(C) ∼= Gm, 
where Gm is the multiplication group of C∗. Let ϵ be any sufficiently small rational 
number, then M − ϵC ∼Q H + (1 − ϵ)C is ample by the Nakai-Moishezon Criterion.

Suppose that P1, ..., P12 are in general position such that OC(M) is a non-torsion in 
Pic0(C). Then M is not semi-ample since M |C is not. However, the normalization Cn

of C is P 1, so M |Cn is semi-ample. We let M := M be the closure of M , i.e. M is the 
b-divisor such that M descends to X and MX = M (cf. [19, Definition 2.9]). Then we 
have a glc g-pair (X, C, M := M) such that both M and KX + C + M are nef and log 
abundant with respect to (X, C, M), but KX + C + M is not semi-ample.

Let f : Y → X be the blow-up at the node of C0. Then KY +C1 +C2 = f∗(KX +C), 
where C2 ∼= P 1 is the f -exceptional divisor and C1 ∼= P 1 is the birational transform of 
C. We have that

(1) (Y, C1 + C2, M) is a smooth gdlt g-pair,
(2) KY + C1 + C2 + MY = MY = f∗M is nef and log abundant with respect to 

(Y, C1 + C2, M),
(3) (KY + C1 + C2 + MY )|Ci is semi-ample, and
(4) KY + (1 − ϵ)C1 + (1 − 2ϵ)C2 + MY ∼ f∗(M − ϵC) is big and semi-ample.

However, KY + C1 + C2 + MY = f∗M is not semi-ample.

We also remark that conditions (1–4) in Example 2.2 show that we will not be able 
to get any similar statement as [2, Theorem 1.7], [22, Corollary 1.5] for glc g-pairs, while 
those results are crucial in the proof of the existence of lc flips.

2.2.3. B-representations for g-pairs are not finite
The main issue to prove Theorem 1.1 is to glue the semi-ample structures on the 

glc centers together. For log canonical pairs, such gluing theory is established in [17,
22] thanks to the finiteness of B-representations. Therefore, we want to investigate the 
finiteness of B-representations for glc g-pairs as well. [29] indicated that the finiteness 
of B-representations is expected to hold for g-pairs under some additional technical 
assumptions. However, we easily get the following very simple counter-example on the 
finiteness of B-representations for g-pairs.
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Example 2.3. Let n be a positive integer and (Pn, 0, M) a g-pair, where M = (n +
2)H ∼ OPn(n + 2) and H is a hyperplane section on Pn. Then the automorphisms 
of Pn which fix H form an infinite subgroup Aut(Pn, H) of Bir(Pn, 0, M). Since the 
representation of Aut(Pn) ∼= PGL(n + 1, C) on H0(Pn, KPn +M) ∼= H0(Pn, OPn(1)) is 
faithful, ρ1(Bir(Pn, 0, M)) is infinite, where ρm : Bir(Pn, 0, M) → Aut(H0(Pn, mKPn +
mM)).

As a consequence of the failure of the finiteness of B-representations, the gluing theory 
for g-pairs is problematic. As shown in Example 4.15 below, the semi-ampleness of a g-
sdlt pair (cf. [29]) is quite subtle and is hard to distinguish from its normalization without 
any extra conditions.

3. Preliminaries

We adopt the standard notation and definitions in [8,32] and will freely use them.

Definition 3.1. Let X → U be a projective morphism and D a Weil divisor on X such 
that |D/U | ̸= ∅. We let

Fix(D/U) :=
∑

P

( inf
D′∈|D/U |

multP D′)P

be the fixed part of D, and let Mov(D) := D − Fix(D) be the movable part of D.

Definition 3.2 (Generalized pairs). For g-pairs, we adopt the same notation as in [19]. In 
particular, a generalized pair (X, B, M)/U consists of a normal quasi-projective variety 
X associated with a projective morphism X → U , an R-divisor B on X, and a nef/U
b-divisor M over X, such that KX +B+MX is R-Cartier. We make the following minor 
changes:

(1) (Trivial glc centers) For any g-(sub-)pair (X, B, M), we will consider X itself as 
a glc center and a non-gklt center of (X, B, M). X will be called the trivial glc 
center/trivial non-gklt center of (X, B, M). We will let Ngklt(X, B, M) be the union 
of all non-trivial non-gklt center of (X, B, M).

(2) (Scheme structure of glc locus) We will always consider Ngklt(X, B, M) as a scheme 
which is associated with the natural reduced scheme structure. In particular, if 
(X, B, M) is gdlt, then ⌊B⌋ = Ngklt(X, B, M) is considered as both a divisor and a 
reduced scheme.

(3) (Gplt) We say that a glc g-pair (X, B, M)/U is generalized plt (gplt for short) if 
(X, B, M) is gdlt and ⌊B⌋ is normal.

We also remark that different definitions of gdlt g-pairs in literature are now equivalent 
to each other thanks to [28, Theorem 6.1].
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Definition 3.3. Let (X, B, M)/U be a sub-glc g-sub-pair and D an R-divisor on X. We 
say that D is abundant/U if κι(X/U, D) = κσ(X/U, D). We say that D is log abundant/U
with respect to (X, B, M) if D is log abundant/U , and for any glc center W of (X, B, M)
with normalization W ν , D|W ν is abundant/U . We say that (X, B, M) is log abundant/U
if KX + B + MX is log abundant/U with respect to (X, B, M).

3.1. Perturbations of generalized pairs

Lemma 3.4 (Cf. [10, Proof of Lemma 4.4], [20, Page 717, Line 5]). Let (X, B, M)/U be 
a gklt g-pair and f : Y → X a birational morphism such that M descends to Y and MY

is big/U . Then there exists a klt pair (X, ∆) such that KX + B + MX ∼R,U KX + ∆.

Proof. Let KY + BY + MY := f∗(KX + B + MX). For any positive integer n, we
may write MY = Hn + 1

nE where Hn is ample/U and E ≥ 0. Fix n ≫ 0, then we 
may pick An ∈ |Hn/U |R such that (Y, BY + 1

nE + An) is sub-gklt. We may let ∆ :=
f∗(BY + 1

nE + An). !

Lemma 3.5. Let (X, B, M)/U be a Q-factorial NQC gdlt g-pair. Assume that

(1) L := KX + B + MX is nef/U and big/U ,
(2) W := Ngklt(X, B, M), and
(3) L|W is semi-ample over U .

Then L is semi-ample over U .

Proof. By the theory of Shokurov-type rational polytopes [19, Theorem 2.28] (see also 
[20, Proposition 3.16], [23, Lemma 5.3], [12, Theorem 1.4]) for generalized pairs, there 
exist real numbers a1, . . . , ak ∈ (0, 1] and Q-g-pairs {(X, Bi, Mi)}ki=1 satisfying the fol-
lowing:

•
∑k

i=1 ai = 1.
• B =

∑k
i=1 aiBi and M =

∑k
i=1 aiMi.

• (X, Bi, Mi) is a gdlt Q-g-pair for any i.
• Li = KX + Bi + Mi

X is nef/U and big/U .
• Li|W is semi-ample/U .
• Ngklt(X, Bi, Mi) = Ngklt(X, B, M) = W for each i.

Thus we may assume that (X, B, M) is a Q-g-pair. (To see this, note that (X, Bi, Mi)/
U, Li, and Wi satisfying the conditions of Lemma 3.5 and L =

∑k
i=1 aiLi. So L is semi-

ample over U when Li is semi-ample for each i.)
Let f : Y → X be a log resolution of (X, SuppB) such that M descends to Y , and 

let KY + BY + MY := f∗(KX + B + MX). Since L is nef/U and big/U , we may write 
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L ∼Q,U Hn + 1
nF for any positive integer n, such that Hn ≥ 0 is ample and F ≥ 0. Now 

for each n and any positive integer m, we may write

MY + 1
2f

∗Hn ∼Q,U An,m + 1
m
En,

where An,m are ample/U Q-divisors and En ≥ 0. For any m ≫ n ≫ 0, we have

Nklt(Y,BY + 1
m
En + 1

n
f∗F ) = Nklt(Y,BY ) = Ngklt(Y,BY ,M),

thus we may pick An,m ≥ 0 such that

Nlc(Y,∆Y := BY + An,m + 1
m
En + 1

n
f∗F ) = Ngklt(Y,BY ,M),

where Nlc(Y, ∆Y ) is defined as in [15, Section 7]. Let ∆ := f∗∆Y , then ∆ ≥ 0, 
Nlc(X, ∆) = Ngklt(X, B, M) = W , and 2L − (KX + ∆) ∼Q,U

1
2Hn is ample/U . The 

lemma follows from [15, Theorems 4.5.5, 6.5.1], [1, Theorem 5.3]. !

Remark 3.6. As in the proof of Lemma 3.5, we will frequently use Shokurov-type rational 
polytopes to reduce g-pair questions to Q-g-pair questions. To avoid redundancy, in the 
following, we will just cite [19, Theorem 2.28] and do not list out all the details of the 
decomposition (e.g. we will not list out items from “

∑k
i=1 ai = 1” to “Ngklt(X, Bi, Mi) =

Ngklt(X, B, M) = W for each i” as in the proof of Lemma 3.5).

The following result is an easy consequence of [19, Lemma 5.18] although it is not in 
literature, so we write it here. We do not need it in the rest of the paper.

Theorem 3.7. Let (X, B, M)/U be a glc g-pair and L a nef/U Cartier divisor on X such 
that L − (KX + B + MX) is ample/U . Assume that MX is R-Cartier. Then mL is 
base-point-free/U for any integer m ≫ 0.

Proof. Possibly replacing M with (1 − ϵ)M for some 0 < ϵ ≪ 1, we may assume that 
Ngklt(X, B, M) = Nklt(X, B). Let A := L −(KX +B+MX). By [19, Lemma 5.18], there 
exists a birational morphism h : W → X such that M descends to W and Supp(h∗MX−
MW ) = Exc(h). We let E := h∗MX − MW , then E ≥ 0 and E is h-exceptional.

Let KW +BW := h∗(KX+B). By our construction, Exc(h) = SuppE does not contain 
any lc place of (X, B). Thus we may pick E′ ≥ 0 on Y such that −E′ is ample/X and 
E′ does not contain any lc place of (X, B). Since Ngklt(X, B, M) = Nklt(X, B), we may 
find 0 < δ ≪ 1 such that 1

2h
∗A − δE′ is ample/U and (W, BW + δE′) is sub-lc. In 

particular, we may find an ample/U R-divisor

0 ≤ HW ∼R,U MW + 1
2h

∗A− δE′
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on W such that (W, BW +HW +δE′) is sub-lc. Let ∆ := B+h∗HW , then (X, ∆) is lc and 
∆ ∼R,U B +MX + 1

2A. In particular, L − (KX + ∆) ∼R,U
1
2A is ample/U . Theorem 3.7

follows from [1, Theorem 5.3], [15, Theorems 4.5.5, 6.5.1]. !

3.2. Canonical bundle formula

We will follow the notation as in [30]. See also [13,14,24] for related results.

Definition 3.8. A contraction is a projective morphism f : Y → X such that f∗OY = OX . 
In particular, f is surjective and has connected fibers.

Definition 3.9 (Glc-trivial fibration, cf. [30, Definition 2.10]). Let (X, B, M)/U be a 
g-sub-pair and f : X → Z a contraction/U . If

(1) (X, B, M) is sub-glc over the generic point of Z,
(2) rank f∗OX(⌈A∗(X, B, M)⌉) = 1, and
(3) KX + B + MX ∼R,Z 0,

then we say that f : (X, B, M) → Z is a glc-trivial fibration/U .

Definition 3.10. Let (X, B, M)/U be an NQC g-sub-pair and f : (X, B, M) → Z is a glc-
trivial fibration/U , and (Z, BZ , N) an NQC g-sub-pair on Z. We say that (Z, BZ , N) is 
an (NQC) g-sub-pair induced by the canonical bundle formula/U of f : (X, B, M) → Z

if KX + B + MX ∼R f∗(KZ + BZ + NZ) and a(D, Z, BZ , N) = 1 − tD(X, B, M; f) for 
any prime divisor D over Z, where tD(X, B, M; f) are glc thresholds defined as in [30, 
Definition 2.12].

By [30, Theorem 2.23], if B ≥ 0 over the generic fiber of f , then there always exists 
an NQC g-sub-pair induced by the canonical bundle formula/U of f : (X, B, M) → Z. 
Moreover, it is not hard to see that if (X, B, M) is a Q-g-sub-pair, then the induced 
g-sub-pair on Z can also be chosen as a Q-g-sub-pair. We will frequently use these facts 
in the rest of the paper.

3.3. Crepant log structures

Definition 3.11. A glc crepant log structure is of the form f : (X, B, M) → Z, where

(1) (X, B, M)/Z is a glc g-pair,
(2) KX + B + MX ∼R,Z 0, and
(3) f is a contraction. In particular, f∗OX = OZ .

In addition, if

(4) (X, B, M) is gdlt,
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then we say that f : (X, B, M) → Z is a gdlt crepant log structure. An NQC glc (resp. 
gdlt) crepant log structure is a glc (resp. gdlt) crepant log structure f : (X, B, M) → Z

such that M is NQC/Z.
We remark that glc crepant log structures are also known as generalized log Calabi-

Yau fibrations. We use the wording “glc crepant log structure” because we mainly use 
this structure for Kollár’s glueing theory (see Section 4) while [31, Definition 4.28] uses 
the wording “crepant log structure”.

For any irreducible subvariety W ⊂ Z, we say that W is a glc center of a glc crepant 
log structure f : (X, B, M) → Z, if there exists a glc center WX of (X, B, M) such that 
W = f(WX). For any (not necessarily closed) point z ∈ Z, we say that z is a glc center
of f : (X, B, M) → Z if z̄ is a glc center of f : (X, B, M) → Z.

Lemma 3.12. Let (X, B, M)/U be an NQC glc g-pair, f : (X, B, M) → Z a glc-trivial 
fibration/U , and (Z, BZ , N)/U an NQC g-pair induced by the canonical bundle formula 
of f : (X, B, M) → Z. Then for any irreducible subvariety W of Z, W is a glc center of 
f : (X, B, M) → Z if and only if W is a glc center of (Z, BZ , N).

Proof. The if part follows [30, Theorem 2.23] and the only if part follows from [40, 
Theorem 2.16(2)]. !

Definition 3.13. Let (X, B, M) and (X ′, B′, M′) be two g-pairs. We say that (X, B, M)
and (X ′, B′, M′) are crepant equivalent to each other if there exist birational morphisms 
p : W → X and q : W → X ′ such that M′ = M and p∗(KX + B + MX) = q∗(KX′ +
B′ + M′

X′).

3.4. P 1-links

We recall the definition and results on P 1-links as in [14]. This is a generalization of 
[31, Theorem 4.40] to the category of generalized pairs. We partially refine the definitions 
(e.g. we define P 1-links for R-g-pairs) to make our arguments more clear and general.

Definition 3.14 (Standard P 1-link, cf. [14, Definition 2.21]). A standard P 1-link is a 
glc g-pair (X, B, M)/Z with a projective morphism f : X → T over Z satisfying the 
following properties.

(1) KX + B + MX ∼R,T 0,
(2) there exists a birational morphism X ′ → X such that MX′ ∼R,T 0,
(3) ⌊B⌋ = D1 + D2, where D1, D2 are prime divisors and f |Di : Di → T are isomor-

phisms,
(4) (X, B, M)/Z is gplt, and
(5) every reduced fiber of f is isomorphic to P 1.

We call D1 and D2 the horizontal sections of (X, B, M)/T .
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Definition 3.15 (P 1-link, cf. [14, Definition 2.23]). Let (X, B, M)/Z be a gdlt g-pair 
associated with a projective morphism f : X → Z, such that KX +B+MX ∼R,Z 0. Let 
Z1, Z2 be two glc centers of (X, B, M). We say that Z1 and Z2 are directly P 1-linked/Z
if there exists an irreducible subvariety W ⊂ X, such that either W is a glc center of 
(X, B, M) or W = X, and we have the following. Let (W, BW , MW )/Z be a gdlt g-pair 
induced by adjunction to the higher-codimensional glc center W , i.e.

KW + BW + MW
W := (KX + B + MX)|W ,

such that

(1) Zi ⊂ W for each i,
(2) f(W ) = f(Z1) = f(Z2), and
(3) there exists a g-pair (W ′, BW ′ , MW ) crepant equivalent to (W, BW , MW ) and a 

projective morphism h : W ′ → T over Z, such that (W ′, BW ′ , MW )/T is a P 1-link 
and Z1|W ′ , Z2|W ′ are the horizontal sections of (W ′, BW ′ , MW )/T .

We say that Z1 and Z2 are P 1-linked/Z if either Z1 = Z2, or there exists an integer 
n ≥ 2 and glc centers Z ′

1, . . . , Z
′
n of (X, B, M), such that Z ′

1 = Z1, Z ′
n = Z2, and Z ′

i and 
Z ′
i+1 are directly P 1-linked/Z for any 1 ≤ i ≤ n − 1.

Theorem 3.16 (Cf. [4, Theorem 3.5], [14, Theorem 1.4]). Let (X, B, M)/U be an NQC 
gdlt g-pair associated with a projective morphism f : X → U , such that KX + B +
MX ∼R,U 0. Let s ∈ U be a (not necessarily closed) point such that f−1(s) is connected 
(as a k(s)-scheme). Let

S := {V | V is a glc center of (X,B,M), s ∈ f(V )}

and Z, W ∈ S be two elements such that Z is minimal in S with respect to the inclusion. 
Then there exists ZW ∈ S such that ZW ⊂ W , and Z and ZW are P 1-linked/U . In 
particular, any minimal elements in S with respect to inclusion are P 1-linked/U to each 
other.

Proof. It following from [19, Theorem 2.28] and [14, Theorem 1.4]. !

Lemma 3.17. Let f : (X, B, M) → Z be an NQC glc crepant log structure and z ∈ Z a 
(not necessarily closed) point. Let

Sz := {V | V is a glc center of f : (X,B,M) → Z, z ∈ V }.

Then:

(1) There exists a unique element W ∈ Sz that is minimal with respect to inclusion.
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(2) W is unibranch at z, i.e. the completion Ŵz is irreducible.
(3) Any intersection of glc centers of f : (X, B, M) → Z is also a union of glc centers.

Proof. The proof is exactly the same as in [31, Proof of Corollary 4.41] except that we 
replace [31, Theorem 4.40] with Theorem 3.16. For the reader’s convenience, we give a 
full proof here.

Possibly replacing (X, B, M) with a gdlt model, we may assume that (X, B, M) is 
gdlt. For any element W ∈ Sz that is minimal, there exists a glc center ZW of (X, B, M)
that is minimal among all glc centers whose image on Z is equal to W with respect 
to inclusion. By Theorem 3.16, all such ZW are P 1-linked/Z to each other, hence their 
images on Z are the same. This proves (1). (2) follows from (1) by considering every 
étale neighborhood of z.

For any glc centers W1, W2 on Z, let z ∈ W1 ∩W2 be any point, and W the unique 
element minimal element of Sz. Then W ⊂ W1 ∩W2, and we get (3). !

The following lemma should be well-known, but we cannot find any reference.

Lemma 3.18. Let (X, B, M)/Z be an NQC gdlt g-pair, S a component of ⌊B⌋, and 
(S, BS , MS)/Z the gdlt g-pair induced by the adjunction

KS + BS + MS
S := (KX + B + MX)|S .

Then:

(1) Any glc center of (S, BS, MS) is a glc center of (X, B, M).
(2) Any glc center of (X, B, M) that is contained in S is a glc center of (S, BS, MS).

Proof. By [28, Theorem 6.1], there exists a log resolution f : X̃ → X of (X, SuppB)
and an open subset X0 ⊂ X, such that M descends to X̃, X0 contains the generic point 
of any glc center of (X, B, M), and f is an isomorphism over X0. Let KX̃ + B̃ +MX̃ :=
f∗(KX+B+MX) and let S̃ be the strict transform of S on X̃, then f |S̃ is a log resolution 
of (S, SuppBS) such that MS descends to S̃, i.e.

f |∗
S̃
(KS + BS + MS

S) = KS̃ + BS̃ + MS
S̃

:= (KX̃ + B̃ + MX̃)|S̃ .

Thus any glc center of (S, BS, MS) is a glc center of (S̃, BS̃ , MS), hence a glc center of 
(X̃, B̃, M), and hence a glc center of (X, B, M), which shows (1). On the other hand, 
any glc center of (X, B, M) that is contained in S is a glc center of (X̃, B̃, M) that is 
contained in S̃, hence a glc center of (S̃, BS̃ , MS), and hence a glc center of (S, BS, MS), 
which shows (2). !

Lemma 3.19. Let f : (X, B, M) → Z be an NQC gdlt crepant log structure and Y ⊂ X a 
glc center. Let
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f |Y : Y fY−−→ ZY
π−→ Z

be the Stein factorization of f |Y , and (Y, BY , MY )/Z the NQC gdlt g-pair induced by 
adjunction to the higher-codimensional glc center Y , i.e.

KY + BY + MY
Y := (KX + B + MX)|Y .

Then:

(1) fY : (Y, BY , MY ) → ZY is a gdlt crepant log structure.
(2) For any glc center WY ⊂ ZY of fY : (Y, BY , MY ) → ZY , π(WY ) is a glc center of 

f : (X, B, M) → Z.
(3) For any glc center W ⊂ Z of f : (X, B, M) → Z, every irreducible component of 

π−1(W ) is a glc center of fY : (Y, BY , MY ) → ZY .

Proof. The proof is exactly the same as in [31, Corollary 4.42] except that we use The-
orem 3.16 in replace of [31, Theorem 4.40]. We also have a proof of (3) in [30, Proof of 
4.1]. For the reader’s convenience, we give a full proof here.

(1) We only need to show that (Y, BY , MY ) is gdlt, which follows from [20, 
Lemma 2.6].

(2) There exists a glc center VY of (Y, BY , MY ) such that fY (VY ) = WY . By 
Lemma 3.18, VY is also a glc center of (X, B, M). Thus π(WY ) = f(VY ) is a glc center 
of f : (X, B, M) → Z.

(3) Let z be the generic point of W . Since the question is étale local, possibly replacing 
Z by an étale neighborhood of z and replacing Y with its irreducible components, we 
may assume that f−1(z) ∩ Y is connected, and we only need to show that there exists a 
glc center VY of fY : (Y, BY , MY ) → ZY such that fY (VY ) is an irreducible component 
of π−1(W ).

Let VX be a minimal glc center of (X, B, M) which dominates W , i.e. VX is minimal 
in

{V | V is a glc center of (X,B,M), V dominates W}

with respect to inclusion. Then f(VX) = W . By Theorem 3.16, there exists a glc center 
VY ⊂ Y of (X, B, M) that is P 1-linked/Z to VX . By Lemma 3.18, VY is also a glc 
center of (Y, BY , MY ). Thus fY (VY ) ⊂ ZY is a glc center of fY : (Y, BY , MY ) → ZY . 
Moreover, since VY is P 1-linked/Z to VX , f(VY ) = f(VX) = W . Thus fY (VY ) is an 
irreducible component of π−1(W ) and we are done. !

Remark 3.20. In the setting of Lemma 3.19, fY actually induces an NQC glc structure 
(ZY , BZY , MZY ) on ZY by the canonical bundle formula, and also induces an NQC 
glc structure (T, BT , MT ) on the normalization T of f(Y ) by [24, Theorem 1.2]. Let 
(Z, BZ , MZ) be an NQC glc g-pair induced by the canonical bundle formula/Z of f :
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(X, B, M) → Z, then we can also perform sub-adjunction by [24, Theorem 5.1] to T , 
and the induced structure will coincide with (T, BT , MT ) up to an R-linear equivalence 
of the moduli part (see [30, Section 4]).

4. Kollár-type gluing theory for generalized pairs

In this section we will review Kollár’s powerful gluing theory of finite quotients. We 
refer for [31, Section 5 and Section 9] for more details. We will develop the gluing theory 
we need for glc crepant log structures in this section.

In this section, we will generally choose the notation (X, ∆, M) instead of (X, B, M)
for g-pairs, as B is used in the boundary of stratifications.

4.1. Definitions

Definition 4.1 ([31, Definition 9.15]). Let X be a scheme. A stratification of X is a 
decomposition of X into a finite disjoint union of reduced locally closed subschemes. We 
will consider stratifications where the strata are of pure dimensions and are indexed by 
their dimensions. We write X = ∪iSiX where SiX ⊂ X is the i-th dimensional stratum. 
Such a stratified scheme is denoted by (X, S∗). We also assume that ∪i≤jSiX is closed 
for every j. The boundary of (X, S∗) is the closed subscheme

B(X,S∗) := ∪i<dimXSiX = X\SdimXX,

and is denoted by B(X) if the stratification S∗ is clear.
Let (X, S∗) and (Y, S∗) be stratified schemes. We say that f : X → Y is a stratified 

morphism if f(SiX) ⊂ SiY for every i. Since SiX are disjoint with each other, f : X → Y

is a stratified morphism if and only if SiX = f−1(SiY ).
Let (Y, S∗) be a stratified scheme and f : X → Y a quasi-finite morphism such that 

f−1(SiY ) has pure dimension i for every i. Then SiX := f−1(SiY ) defines a stratification 
of X. We denote it by (X, f−1S∗), and we say that f : X → (Y, S∗) is stratifiable.

Definition 4.2 ([31, Definition 9.16]). Let (X, S∗) be stratified variety. A relation 
(σ1, σ2) : R ⇒ (X, S∗) is stratified if each σi is stratifiable and σ−1

1 S∗ = σ−1
2 S∗. Equiv-

alently, there exists a stratification (R, σ−1Si), such that r ∈ σ−1SiR if and only if 
σ1(r) ∈ SiX and if and only if σ2(r) ∈ SiX.

Definition 4.3 ([31, Definition 9.18]). Let (X, S∗) be a stratified scheme such that X is 
an excellent scheme. The normality conditions (N), (SN), (HN), and (HSN) are defined 
in the following ways.

(N) We say that (X, S∗) has normal strata, or that it satisfies (N), if each SiX is 
normal.
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(SN) We say that (X, S∗) has semi-normal boundary, or that it satisfies (SN), if X
and B(X, S∗) are both semi-normal.

(HN) We say that (X, S∗) has hereditarily normal strata, or that it satisfies (HN), if
(a) the normalization π : (Xn, π−1S∗) → (X, S∗) is stratifiable,
(b) (Xn, Sn

∗ ) satisfies (N), and
(c) B(Xn, π−1S∗) satisfies (HN).

(HSN) We say that (X, S∗) has hereditarily semi-normal boundary, or that it satisfies 
(HSN), if
(a) the normalization π : (Xn, π−1S∗) → (X, S∗) is stratifiable,
(b) (X, S∗) satisfies (SN), and
(c) B(Xn, π−1S∗) satisfies (HSN).

Next we give a special stratification that is induced by the glc crepant log structure.

Definition 4.4 (Glc stratification). Let f : (X, ∆, M) → Z be a glc crepant log struc-
ture. Let S∗

i (Z, X, ∆, M) ⊂ Z be the union of all ≤ i-dimensional glc centers of 
f : (X, ∆, M) → Z, and

Si(Z,X,∆,M) := S∗
i (Z,X,∆,M) \ S∗

i−1(Z,X,∆,M).

If the glc crepant log structure f : (X, ∆, M) → Z is clear from the context, we will use 
Si(Z) for abbreviation. It is clear that each Si(Z) is a locally closed subspace of Z of 
pure dimension i, and Z is the disjoint union of all Si(Z).

The stratification of Z induced by Si(Z) is called the generalized log canonical strati-
fication (glc stratification for short) of Z induced by f : (X, ∆, M) → Z. Since this is the 
only stratification we are going to use in the rest of this paper, we usually will not empha-
size the glc crepant structure f : (X, ∆, M) → Z, and we will denote the corresponding 
stratified scheme by (Z, S∗). The boundary of (Z, S∗) is the closed subspace

B(Z, S∗) := Z\SdimZ(Z) = ∪i<dimZSi(Z).

Definition 4.5. We say that a semi-normal stratified space (Y, S∗) is of generalized log 
canonical (glc) origin if Si(Y ) is unibranch for any i, and there are glc crepant log 
structures fj : (Xj , ∆j , Mj) → Zj with glc stratifications (Zj , S

j
∗) and a finite surjective 

stratified morphism π : ⨿j(Zj , S
j
∗) → (Y, S∗). Moreover, if fj : (Xj , ∆j , Mj) → Zj are 

NQC glc repant log structures, then we say that (Y, S∗) is of NQC glc origin.

4.2. Basic properties

The following theorem and its proof are very similar to [31, Proposition 4.32].
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Theorem 4.6. Let f : (X, ∆, M) → Z be an NQC glc crepant log structure. Let W ⊂ Z

be the union of all glc centers of f : (X, ∆, M) → Z except Z, and B(W ) ⊂ W the union 
of all non-maximal (with respect to inclusion) glc centers that are contained in W . Then

(1) W is semi-normal, and
(2) W\B(W ) is normal.

Proof. By [19, Theorem 2.28], we may assume that (X, ∆, M) is a Q-g-pair. Let 
(Z, ∆Z , N)/U be a glc Q-g-pair induced by the canonical bundle formula/U of f :
(X, ∆, M) → Z. By Lemma 3.12, the glc centers of (Z, ∆Z , N) are exactly the glc centers 
of f : (X, ∆, M) → Z. Possibly replacing (X, ∆, M) with a gdlt model of (Z, ∆Z , N), we 
may assume that f is birational and (X, ∆, M) is Q-factorial gdlt. We have W = f(⌊∆⌋). 
Let ∆′ := {∆}. We consider the exact sequence

0 → OX(−⌊∆⌋) → OX → O⌊∆⌋

and its push-forward

OZ = f∗OX → f∗O⌊∆⌋
δ−→ R1f∗OX(−⌊∆⌋).

By Lemma 3.4, we can find a Q-divisor ∆′′ ≥ 0 such that

−⌊∆⌋ ∼Q,Z KX + ∆′ + MX ∼Q,Z KX + ∆′′

and (X, ∆′′) is klt. By [31, Corollary 10.40], Rif∗OX(−⌊∆⌋) is torsion free for every i. 
On the other hand, f∗O⌊∆⌋ is supported on W , hence it is a torsion sheaf. Thus the 
connecting map δ is zero, hence OZ " f∗O⌊∆⌋ is surjective. Since this map factors 
through OW , we conclude that OW " f∗O⌊∆⌋ is also surjective, hence an isomorphism.

Note that ⌊∆⌋ has only nodes at codimension 1 points and it is S2 by [31, Corol-
lary 2.88]. By [31, Lemma 10.14], ⌊∆⌋ is semi-normal. By [31, Lemma 10.15], W is 
semi-normal. This is (1).

To prove (2), let V ⊂ ⌊∆⌋ be an irreducible component of its non-normal locus. Then 
V is an lc center of (X, ∆), hence a glc center of (X, ∆, M). Thus f(V ) ⊂ Z is a glc 
center. Hence either f(V ) is an irreducible component of W , or f(V ) ⊂ B(W ). Thus 
[31, Complement 10.15.1] implies that W\B(W ) is normal. !

Theorem 4.6 has the following interesting corollary. We do not need it in the rest of 
the paper.

Corollary 4.7. Let (X, ∆, M) be an NQC glc g-pair. Then Ngklt(X, ∆, M) is semi-
normal.

Proof. It follows from Theorem 4.6 when f is the identity morphism. !
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Lemma 4.8 (Cf. [31, Lemma 5.26]). Let f : (X, ∆, M) → Z be an NQC glc crepant log 
structure and (Z, S∗) the induced glc stratification. Then

(1) Si(Z) is unibranch for every i, and
(2) B(Z, S∗) is semi-normal.

Proof. (1) follows from Lemma 3.17(2) and (2) follows from Theorem 4.6. !

Lemma 4.9 (Cf. [31, Proposition 4.42]). Let f : (X, ∆, M) → Z be an NQC gdlt crepant 
log structure, (Z, S∗) its induced glc stratification, and Y ⊂ X a glc center of (X, ∆, M). 
Let (Y, ∆, MY )/Z be the NQC gdlt g-pair induced by adjunction to higher-codimensional 
glc center Y , i.e.

KY + ∆Y + MY
Y := (KX + ∆ + MX)|Y .

We consider the Stein factorization of f |Y

(Y,∆Y ,MY ) fY−→ W
π−→ Z.

Then:

(1) fY : (Y, ∆Y , MY ) → W is an NQC gdlt crepant log structure which induces a glc 
stratification (W, S∗).

(2) Si(W ) = π−1(Si(Z)) for every i.

Proof. It follows from Lemma 3.19. !

Theorem 4.10. Let f : (X, ∆, M) → Z be an NQC glc crepant log structure and (Z, S∗)
the induced glc stratification. Then (Z, S∗) satisfies (HN) and (HSN).

Proof. By Lemma 4.8 and [31, Definitions 9.18, 9.19], (Z, S∗) satisfies (HU) and (HSN). 
By [31, Theorem 9.21], (Z, S∗) satisfies (HN). !

Lemma 4.11 (Cf. [31, 5.29]). Every NQC glc stratification is of NQC glc origin. More 
precisely, let f : (X, ∆, M) → W be an NQC glc crepant log structure and Y ⊂ W any 
union of glc centers. Then (Y, S∗) is of NQC glc origin, where Si(Y ) = Y ∩ Si(W ) for 
each i.

Proof. By Theorem 4.10 and [31, Theorem 9.26] we know that Y is semi-normal and 
Si(Y ) is unibranch for each i. Then we can apply Lemma 4.9 to each glc center of 
f : (X, ∆, M) contained in Y to conclude that (Y S∗) is of NQC glc origin. !
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4.3. Constructions of glc stratifications

Construction 4.12 (Gluing theory of glc crepant structures). Let (X, ∆, M)/U be an NQC 
gdlt g-pair, W ⊂ ⌊∆⌋ a reduced divisor, π : Wn → W the normalization of W , D the 
double locus of Wn, Dn the normalization of D, τ : Dn → Dn the induced involution, 
and (τ1, τ2) : Dn ⇒ Wn a finite stratified equivalence relation whose normalization 
map is given by the quotient morphism π : Wn → W = Wn/R, where R is the finite 
equivalence relation generated by Dn.

Let LW := (KX + ∆ + MX)|W ,

L := (KX + ∆ + MX)|Wn = KWn + ∆Wn + MWn

Wn

where (Wn, ∆Wn , MWn)/U is the NQC gdlt g-pair by adjunction to Wn, and suppose 
that L is semi-ample/U . Let gn : Wn → Y n and hn : Dn → Tn be the morphisms/U
induced by L and L|Dn respectively so that we have the commutative diagram

Dn

hn

τ1

τ2
Wn

gn

Tn
σ1

σ2
Y n

where (σ1, σ2) : Tn ⇒ Y n are induced by (τ1, τ2) : Dn ⇒ Wn. We let (Dn, ∆Dn , MDn)/U
be the gdlt g-pair induced by the adjunction

KDn + ∆Dn + MDn

Dn = (KWn + ∆Wn + MWn

Wn
)|Dn .

It is clear that gn : (Wn, ∆Wn , MWn) → Y n and hn : (Dn, ∆Dn , MDn) → Tn are gdlt 
crepant log structures. We let (Y n, S∗(Y n)) and (Tn, S∗(Tn)) be their induced stratified 
schemes respectively.

Construction 4.13. Notations and conditions as in Construction 4.12. Assume that 
(X, B, M) is a Q-g-pair. Let m be a sufficiently divisible positive integer such that 
mLW is Cartier, |mL/U | defines gn, and there exists a very ample/U divisor H on Y n

such that (gn)∗H = M .
Let pW : Wn

M → Wn, pY : Y n
H → Y n be the total spaces of the line bundles M and 

H respectively. Let ∆Wn
M

:= p−1
W (∆Wn), and gnM : (Wn

M , ∆Wn
M
, p∗WMWn) → Y n

H the gdlt 
crepant log structure with induced stratification (Y n

H , S∗(Y n
H) := p−1

Y S∗(Y n)).
Let pD : Dn

M → Dn and pT : Tn
H → Tn be the total spaces of the line bundles 

M |Dn and H|Tn . Let ∆Dn
M

:= p−1
D (∆Dn), and hn

M : (Dn
M , ∆Dn

M
, p∗DMDn) → Tn

H the gdlt 
crepant log structure with induced stratification (Tn

H , S∗(Tn
H) := p−1

T S∗(Tn)).
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Then we have a finite pre-relation (σ1H , σ2H) : Tn
H ⇒ Y n

H induced by the finite relation 
(τ1M , τ2M ) : Dn

M ⇒ Wn
M , where τ1M , τ2M : Dn

M → Wn
M are liftings of τ1, τ2 respectively.

Lemma 4.14 (Cf. [21, Lemma 3.11]). Notations and conditions as in Construction 4.12. 
Then

(1) (σ1, σ2) : Tn ⇒ Y n gives a stratified equivalence relation, and
(2) (Y n, S∗(Y n)) and (Tn, S∗(Tn)) satisfy (HN) and (HSN).

If we have the additional notations and conditions as in Construction 4.13, then

(3) (σ1H , σ2H) : Tn
H ⇒ Y n

H gives a stratified equivalence relation, and
(4) (Y n

H , S∗(Y n
H)) and (Tn

H , S∗(Tn
H)) satisfy (HN) and (HSN).

Proof. (2)(4) follow from Theorem 4.10. We prove (1)(3). For any glc center V of 
(Dn, ∆Dn , MDn) (resp. of (Dn

M , ∆Dn
M
, p∗DMDn)), τ(V ) (resp. τM (V )) is also a glc center 

on Dn (resp. Dn
M ). Thus the glc stratification induced by hn : (Dn, ∆Dn , MDn) → Tn

(resp. hn
M : (Dn

M , ∆Dn
M
, p∗DMDn) → Tn

H) is the same as the glc stratification induced by 
hn ◦ τ : (Dn, ∆Dn , MDn) → Tn (resp. hn

M ◦ τM : (Dn
M , ∆Dn

M
, p∗DMDn) → Tn

H). Hence 
we only need to check that σ−1S∗(Y n) (resp. σ−1

H S∗(Y n
H)) coincides with S∗(Tn) (resp. 

S∗(Tn
H)), where σ (resp. σH) is the canonical morphism Tn → Y n (resp. Tn

H → Y n
H). But 

this follows directly from Lemma 4.9. !

4.4. Remarks and an example

Notations and conditions as in Construction 4.13. If M = 0, then (W, ∆W ) is sdlt. 
By [22, Section 4], both Tn ⇒ Y n and Tn

H ⇒ Y n
H generate finite equivalence relations. 

By [31, Theorem 9.21], the geometric quotients Y = Y n/Tn and YH = Y n
H/Tn

H exist. 
Possibly by replacing m with a multiple, YH is a line bundle over Y , whose pullback to W
is exactly mLW . In general, the pro-finite equivalence relation generated by Tn ⇒ Y n

and Tn
H ⇒ Y n

H can be described as some almost group actions ([31, Definition 9.32]) 
which is actually given by some crepant birational subgroup on the glc centers. Thanks 
to the finiteness of B-representation for lc pairs [17,21], these groups are finite, hence 
the relations are also finite.

However, when M ̸= 0 and (W, ∆W , MW ) is only g-sdlt (cf. [29]), one should not 
expect that finiteness still holds without extra conditions or structures. We have already 
shown the failure of the finiteness of B-representations (cf. Example 2.3). The following 
example will show that

(1) the relation generated by Tn ⇒ Y n may not be finite and the geometric quotient 
Y n/Tn may not exist, and
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(2) the relation generated by Tn
H ⇒ Y n

H may not be finite, even when the geometric 
quotient Y n/Tn exists.

Example 4.15. (1) Let λ ∈ C∗ and consider P 1 × A1, which can be regarded as the 
total space of a trivial line bundle over P 1. We define φλ : {0} × A1 ≃ {∞} × A1 by 
(0, t) 7→ (∞, λt) and glue {0} ×A1 and {∞} ×A1 together using φλ to get a demi-normal 
variety M with projection p : M → C, where C is a nodal cubic. Then M is a total 
space of a line bundle (also denoted by M) on C. Moreover, M ∈ Pic0(C) ≃ Gm = C∗

and can be canonically regarded as λ ∈ C∗. Then:

• W := C is sdlt and KC ∼ 0. We let MW := M .
• π : P 1 → C is the normalization and Dn ⇒ P 1 is the involution of two points {0, ∞}.
• gn : Wn → Y n is just P 1 → Spec C, and Tn ⇒ Y n is trivial and finite. Therefore, 

the geometric quotient Y n/Tn exists and is equal to Spec C.

But from the line bundle aspect, we have the following:

• πM : Wn
M → M is P 1 ×A1 → M .

• Dn ⇒ P 1 ×A1 is induced by φλ : {0} ×A1 ≃ {∞} ×A1.
• H is trivial and gn : Wn

M → Y n
H is the projection P 1 ×A1 → A1.

• Tn ⇒ A1 is given by φλ, φ−1
λ , and id. Therefore, the relation generated by Tn ⇒ A1

can be viewed as the cyclic group ⟨λ⟩ ⊂ C∗, which is finite if and only if λ is a root 
of unity.

(2) We can also compactify the above total spaces of line bundles to get projective 
examples when Y n/Tn does not exist.

Let W := PC(OC ⊕ M) be a P 1-bundle over C, and let C ′ ⊂ W be the section at 
infinity, which belongs to |OW (1)|. Then Wn = P 1 × P 1, and gn : Wn → Y n is the 
second projection p2 : P 1 × P 1 → P 1.

Notice that KW is Cartier since W is a locally complete intersection. Let N := 3C ′, 
then

π∗(KW + N) = KWn + {0}× P 1 + {∞}× P 1 + π∗N = p∗2({∞})

is semi-ample. N is nef since π∗N is nef, so we see that (W, 0, N) is g-sdlt. However, the 
relation generated by Tn ⇒ P 1 is given by

{[x, y] ∼ [x′, y′]|[x′, y′] = [x,λly] for some l}

and is finite if and only if λ is a root of unity.
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5. From gluing theory to abundance

The goal of this section is to prove the following theorem:

Theorem 5.1 (Cf. [21, Theorem 4.1]). Let (X, B, M)/U be a Q-factorial NQC gdlt g-pair, 
U0 a non-empty subset of U , and X0 := X ×U U0. Assume that

(1) any glc center of (X, B, M) intersects X0,
(2) KX + B + MX is nef/U , and
(3) (KX + B + MX)|X0 is semi-ample/U0.

Then KX + B + MX is semi-ample/U . In particular, (X, B, M)/U is a good minimal 
model of itself.

Before we prove Theorem 5.1, we need to prove Theorem 1.5.

Proof of Theorem 1.5. Since termination and semi-ampleness/U are both local on U , we 
can assume that U is affine.

Let m be a sufficiently divisible positive integer such that m(KX + B + MX) is 
Cartier and m(KX +B+MX)|X0 is base-point-free/U0, which defines a contraction/U0

h0 : X0 → V 0. Since R(X/U, KX +B+MX) is a finitely generated OU -algebra, possibly 
replacing m with a multiple, there exist a log resolution g : W → X of (X, SuppB), 
a Weil divisor E ≥ 0 on W , and a base-point-free/U divisor F on W , such that M
descends to W ,

Fix(g∗(lm(KX + B + MX))/U) = lE, andMov(g∗(lm(KX + B + MX))/U) = lF

for any positive integer l. Let h : W → V be the contraction/U defined by |lF |. Since 
m(KX + B + MX)|X0 is base point free/U0 and defines h0, V ×U U0 = V 0, and E is 
vertical over V .

Let BW := g−1
∗ B +Exc(g)red. Then (W, BW , M) is a log smooth model of (X, B, M). 

We have

m(KW + BW + MW ) = g∗m(KX + B + MX) + E′

where E′ ≥ 0 is exceptional over X. Thus

Fix(lm(KW + BW + MW )/U) = lE + lE′, and Mov(lm(KW + BW + MW )/U) = lF.

Let B0 := B ×U U0, B0
W := BW ×U U0, and M := M ×U U0. We run a 

(KW +BW +MW )-MMP/V with scaling of an ample divisor. Since KX0 +B0 +M0
X0 is 

semi-ample/U0 and KX0 +B0 +M0
X0 ∼Q,V 0 0, (X0, B0, M0)/U0 is a weak glc model of 

(W 0, B0
W , M0)/U0 and (X0, B0, M0)/V 0 is a weak glc model of (W 0, B0

W , M0)/V 0. By 
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[19, Lemma 3.15], (W 0, B0
W , M0)/V 0 has a log minimal model. By [19, Theorem 2.24], 

the (KW + BW + MW )-MMP/V terminates over V 0. Let φ : W ##$ Y ′ be the induced 
birational map/V .

Let BY ′ , EY ′ , E′
Y ′ , and FY ′ be the strict transforms of BW , E, E′, and F on Y ′ re-

spectively. Since

m(KW + BW + MW ) ∼ E + E′ + F ∼ E + E′

over V 0, EY ′ + E′
Y ′ ∼Q 0 over V 0. In particular, EY ′ + E′

Y ′ is vertical over V .
Since φ : W ##$ Y ′ is a partial (KW + BW + MW )-MMP,

Fix((lEY ′ + lE′
Y ′ + lFY ′)/U) = Fix(g∗(lm(KY ′ + BY ′ + MY ′))/U) = l(EY ′ + E′

Y ′).

By [2, Lemma 3.2], EY ′ + E′
Y ′ is very exceptional (cf. [2, Definition 3.1]) over V . By 

[20, Proposition 3.8], we may run a (KY ′ + BY ′ + MY ′)-MMP/V with scaling of an 
ample divisor which terminates with a log minimal model (Y, BY , M)/V , such that

m(KY + BY + MY ) ∼Q,V EY + E′
Y = 0,

where EY and E′
Y are the strict transforms of EY ′ and E′

Y ′ on Y respectively. In par-
ticular, m(KY + BY + MY ) ∼Q,U FY . Thus KY + BY + MY is semi-ample/U , hence 
(Y, BY , MY )/U is a good log minimal model of (W, BW , M)/U . By [19, Lemma 3.10], 
(Y, BY , MY )/U is a good log minimal model of (X, B, M)/U . The moreover part of the 
theorem follows from [19, Theorem 2.24, Lemma 3.9]. !

Proof of Theorem 5.1. Since semi-ampleness/U is local on U , we can assume that U is 
affine. By [19, Theorem 2.28], we may assume that (X, B, M)/U is a Q-g-pair. We let 
B0 := B ×U U0 and M0 := M ×U U0.

We may apply induction on dimensions. When dimX = 1 the theorem is obvious. 
Thus we may assume that dimX = d for some integer d ≥ 2, and assume that the 
theorem holds in dimension ≤ d −1. In particular, we may assume that (KX+B+MX)|S
is semi-ample/U for any glc center S of (X, B, M).
Step 1. In this step, we construct an auxiliary g-pair (V, BV , N)/U .

Let m > 0 be a sufficiently divisible integer such that m(KX +B+MX) is Cartier and 
|m(KX +B +MX)|X0 | is base-point-free/U0, which defines a contraction h0 : X0 → V 0

over U0. Let h : X ##$ V be an Iitaka fibration/U of m(KX +B+MX), then h|X0 = h0

is a morphism. We let g : Y → X be a log resolution of (X, SuppB) such that M
descends to Y and the induced birational map Y ##$ V is a morphism. We can write

KY + BY + MY = g∗(KX + B + MX) + E,

where BY ≥ 0, E ≥ 0, and BY ∧ E = 0. Then E is exceptional over X, (X, B, M)/U
is a weak glc model of (Y, BY , M)/U , and the image of any glc center of (Y, BY , M)
intersects U0.
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By [40, Theorem 4.2] and [19, Theorem 2.28], we have the following commutative 
diagram

Y ′

h′

f
Y

g
X

h

V ′ ϕ
V

satisfying the following conditions:

• h′ is a contraction, f is birational, and ϕ : V ′ → V is a resolution of V .
• (Y ′, BY ′ , M) is a Q-factorial gdlt Q-g-pair.
• KY ′ + BY ′ + MY ′ ∼Q,V ′ 0.
• Any weak glc model of (Y, BY , M)/U is a weak glc model of (Y ′, BY ′ , M)/U . In 

particular, (X, B, M)/U is a weak glc model of (Y ′, BY ′ , M)/U .
• Any weak glc model of (Y 0, B0

Y , M0)/U is a weak glc model of (Y ′ 0, B0
Y ′ , M0)/U , 

where Y 0 := Y ×U U0, Y ′ 0 := Y ′ ×U U0, B0
Y := BY ×U U0, B0

Y ′ := BY ′ ×U U0, 
and M0 := M ×U U0. In particular, (X0, B0, M0)/U0 is a weak glc model of 
(Y ′ 0, B0

Y ′ , M0)/U .
• Any glc center of (Y ′, BY ′ , M) intersects Y ′ 0.

By [40, Theorem 2.16], there exists a glc Q-g-pair (V ′, BV ′ , N)/U induced by the canon-
ical bundle formula/U of h′ : (Y ′, BY ′ , M) → V ′, such that the image of any glc center 
of (V ′, BV ′ , N) in U intersects U0. Since h is an Iitaka fibration/U of KX + B + MX , 
KV ′ + BV ′ + NV ′ is big/U .

Step 2. In this step, we reduce to the case when KX + B + MX is big/U .
We let B0 := B×UU0. Since (X0, B0, M0)/U0 is a weak glc model of (Y ′ 0, B0

Y ′ , M0)/
U0, there exist two birational morphisms p : X ′′ → Y ′ and q : X ′′ → X, such that

p∗(KY ′ + BY ′ + MY ′)|Y ′ 0 = q∗(KX + B + MX)|X0 + E0

where E0 ≥ 0 is exceptional over X [19, Lemma 3.8].
By construction, KX0 + B0 + M0

X0 ∼Q,V 0 0. Since KY ′ + BY ′ + MY ′ ∼Q,V ′ 0, 
KY ′ 0 +B0

Y ′ +M0
Y ′ 0 ∼Q,V ′ 0 0. Since V ′ → V is birational, V ′ ∼= V over the generic point 

of V . Thus over the generic point of V ,

KY ′ + BY ′ + MY ′ ∼Q 0 ∼Q KX + B + MX ,

and (X, B, M) is a good minimal model of (Y ′, BY ′ , M). Thus (X, B, M) and 
(Y ′, BY ′ , M) are crepant over the generic point of V .

Since the Q-equivalence class of the moduli part of the canonical bundle formula 
only depends on the generic fiber of the fibration and canonical bundle formulas are 
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compatible with base change, there exists a glc g-pair (V 0, B0
V , N0)/U0 induced by the 

canonical bundle formula of h0 : X0 → V 0, such that N0 = N ×UU0. Let V ′ 0 := V ′×UU0

and B0
V ′ := BV ′ ×U U0. Then

(h′|Y ′ 0)∗((KV ′ 0 + B0
V ′ + N0

V ′ 0) − (ϕ|V ′ 0)∗(KV 0 + B0
V + N0

V 0))
=(KY ′ 0 + B0

Y ′ + M0
Y ′ 0) − p∗q

∗(KX + B + MX)|X0 = E0 ≥ 0

is exceptional over X0. Therefore,

0 ≤ (KV ′ 0 + B0
V ′ + N0

V ′ 0) − (ϕ|V ′ 0)∗(KV 0 + B0
V + N0

V 0)

is exceptional over V 0. Since KV 0 +B0
V +N0

V 0 is ample/U0, (V 0, B0
V , N0)/U0 is a weak 

glc model of (V ′ 0, B0
V ′ , N0)/U0. By [19, Lemmas 3.9, 3.15], (V ′ 0, B0

V ′ , N0)/U0 has a 
good minimal model.

Let (Ṽ , BṼ , N) be a gdlt model of (V ′, BV ′ , N), Ṽ 0 := Ṽ ×UU0, and B0
Ṽ

:= BṼ ×UU0. 
By [19, Theorem 3.14], (Ṽ 0, B0

Ṽ
, N0)/U0 has a good minimal model. By [40, Lemma 2.7]

and [19, Lemmas 3.9], we may run a partial (KṼ + BṼ + NṼ )-MMP/U (Ṽ , BṼ , N) ##$
(V̂ , BV̂ , N), such that (KṼ + BṼ + NṼ )|V̂ 0 is semi-ample/U0, where V̂ 0 := V̂ ×U U0. 
Now we run a (KV̂ + BV̂ + NV̂ )-MMP/U with scaling of an ample divisor

(V̂ , BV̂ ,N) = (V0, BV0 ,N) ##$ (V1, BV1 ,N) ##$ · · · ##$ (Vi, BVi ,N) ##$ . . . .

Then the induced birational map V̂ ##$ Vi is an isomorphism over U0. Since the image of 
any glc center of (V̂ , BV̂ , N) on U intersects U0, the image of any glc center of (Vi, BVi , N)
on U intersects U0. By induction hypothesis, (Vi, BVi , N) is log abundant/U for each i. 
By [40, Theorem 7.6] (cf. [28, Theorem 3.15] when X, U are projective varieties), this 
MMP terminates with a log minimal model (V̄ , BV̄ , N)/U of (V ′, BV ′ , N)/U . Moreover, 
the image of any glc center of (V̄ , BV̄ , N)/U intersects U0. By construction,

R(X/U,KX + B + MX) = R(Y ′/U,KY ′ + BY ′ + MY ′) (Weak glc model)
= R(V ′/U,KV ′ + BV ′ + NV ′) (Pullback)
= R(V̄ /U,KV̄ + BV̄ + NV̄ ) (Gdlt model+MMP).

If dim V̄ < dimX, then by induction hypothesis, KV̄ + BV̄ + NV̄ is semi-ample/U , 
hence R(V̄ /U, KV̄ + BV̄ + NV̄ ) is finitely generated, so R(X/U, KX + B + MX) is 
finitely generated, and the theorem follows from Theorem 1.5. Thus we may assume that 
dim V̄ = dimX, hence KX + B + MX is big/U .

Step 3. We use gluing theory in Section 4 to prove the theorem.
We let W := ⌊B⌋ = Ngklt(X, B, M), W 0 := W ×U U0, LW := (KX + B + MX)|W , 

LW 0 := LW |W 0 , and L := LW |Wn , where Wn is the normalization of W . By induction 
hypothesis, L is semi-ample/U .
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Recall that m > 0 is a sufficiently divisible integer such that m(KX + B + MX) is 
Cartier and |m(KX + B + MX)|X0 | is base-point-free/U0. Possibly replacing m with a 
multiple, we may assume that

• mL defines a contraction/U gn : Wn → Y n such that there exists a very ample/U
divisor H on Y n such that (gn)∗H = M , and

• mLW 0 defines a contraction/U0 g0 : W 0 → Z0, and there exists a very ample/U0

divisor HZ0 on Z0 such that (g0)∗HZ0 = mLW 0 .

In particular, one can checks that all conditions of Constructions 4.12 and 4.13 hold. 
Therefore, in the following, we will adopt all notations as in Constructions 4.12 and 4.13
(except that “∆” will be replaced by “B”). By Lemma 4.14,

• (σ1, σ2) : Tn ⇒ Y n and (σ1H , σ2H) : Tn
H ⇒ Y n

H are stratified equivalence relations, 
and

• (Y n, S∗(Y n)), (Tn, S∗(Tn)), (Y n
H , S∗(Y n

H)), (Tn
H , S∗(Tn

H)) satisfy (HN) and (HSN).

We let pZ0 : Z0
HZ0

→ Z0 be the total spaces of the line bundle HZ0 .
We let Y n,0 = Y n×U U0, Tn,0 = Tn×U U0, Y n,0

H = Y n
H ×U U0, and Tn,0

H = Tn
H ×U U0. 

Then the geometric quotients Z0 = Y n,0/Tn,0 and Z0
HZ0 = Y n,0

H /Tn,0
H exist by [31, 

Lemma 9.8]. In particular, the equivalence relations generated by (σ1, σ2)|Tn,0 : Tn,0 ⇒
Y n,0 and (σ1H , σ2H)|Tn,0

H
: Tn,0

H ⇒ Y n,0
H are finite. By [31, Lemma 9.55], the equivalence 

relations generated by (σ1, σ2) : Tn ⇒ Y n and (σ1H , σ2H) : Tn
H ⇒ Y n

H are finite (cf. [21, 
Proposition 3.12]). By [31, Theorem 9.21], the geometric quotients Y n/Tn and Y n

H/Tn
H

exist.
We denote Z := Y n/Tn and ZHZ := Y n

H/Tn
H . Then we have induced morphisms 

pZ : ZHZ → Z, g : W → Z, and πZ : Y n → Z, such that

• pZ : ZHZ → Z is a total space of a line bundle HZ on Z,
• Z0 = Z ×U U0 and Z0

HZ0 = ZHZ ×U U0,
• g0 = g|W 0 and g∗HZ = mLW , and
• π∗

ZHZ = H.

Since H is ample/U , HZ is ample/U . Thus LW is semi-ample/U . By Lemma 3.5, KX +
B + MX is semi-ample/U , and we are done. !

The following theorem follows from Theorem 5.1.

Theorem 5.2. Let (X, B, M)/U be an NQC gdlt g-pair and A ≥ 0 an R-Cartier R-divisor 
on X. Assume that

(1) KX + B + MX is nef/U ,
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(2) (X, B + A, M) is glc, and
(3) KX + B + A + MX ∼R,U 0.

Then KX + B + MX is semi-ample/U .

Proof of Theorem 5.2. Possibly replacing (X, B, M) with a gdlt modification and re-
placing A with the pullback of A, we may assume that X is Q-factorial. Since −A is 
nef over Z, SuppA = f−1(f(A)). Since (X, B + A, M) is gdlt, SuppA does not contain 
any glc center of (X, B, M), hence f(A) does not contain the image of any glc center of 
(X, B, M) in U . Let U0 := U\f(A). Theorem 5.2 follows by applying Theorem 5.1 to 
(X, B, M)/U and U0 as (KX + B + MX)|X0 ∼R,U0 0, where X0 := X ×U U0. !

6. Du Bois property

In this section we prove the g-pair versions of results in [31, Chapter 6], which will be 
used to prove Theorem 1.6. We adopt the notations as in [31, Chapter 6] and will freely 
use them.

We first recall the following definition in [34] (cf. [31, Definition 6.10]).

Definition 6.1. A DB pair (X, Σ) consists of a reduced scheme X of finite type and a 
closed reduced subscheme Σ in X such that the natural morphism

IΣ⊂X → Ω0
X,Σ

is a quasi-isomorphism. We will also say (X, Σ) is DB in this case.

The definition of DB pairs is subtle but what really matters here is the following 
lemma:

Lemma 6.2 ([31, Proposition 6.15]). Let (X, Σ) be a DB pair. Then X has Du Bois 
singularities if and only if Σ has Du Bois singularities.

The following theorems are analogues of [31, Theorems 6.31, 6.33] for g-pairs and the 
proofs are similar. For the reader’s convenience, we provide full proofs here.

Theorem 6.3. Let f : (X, ∆, M) → Z be an NQC glc crepant log structure and W ⊂ X

the union of glc centers of f : (X, ∆, M) → Z except Z. Then (Z, W ) is a DB pair.

Proof. By [19, Theorem 2.28], we may assume that (X, ∆, M) is a Q-g-pair. Let 
(Z, ∆Z , N)/U be a glc Q-g-pair induced by the canonical bundle formula/U of f :
(X, ∆, M) → Z (the generalized canonical bundle formula). By Lemma 3.12, the glc 
centers of (Z, ∆Z , N) are exactly the glc centers of f : (X, ∆, M) → Z. Thus we can 
assume that f is the identity and (X, ∆, M) = (Z, ∆Z , N).
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Let g : Y → X be a log resolution such that M descends to Y and F := g−1(W )red
is an snc divisor. Let

KY + ∆Y + MY := g∗(KX + ∆ + MX)

and D := ∆=1
Y . Since MY is nef/X and big/X, there exists 0 ≤ ∆′

Y ∼Q,X MY such 
that (Y, ∆Y −D + ∆′

Y ) is sub-klt. Let ∆̄Y := (∆Y −D + ∆′
Y )≥0 and E := (∆Y −D +

∆′
Y )≤0, then ⌊∆̄Y ⌋ = 0 and E is exceptional over X. Possibly replacing Y with a higher 

resolution, we may assume that D + E + ∆̄Y is snc.
Since E −D ≥ −F , we have natural maps:

g∗OY (−F ) → Rg∗OY (−F ) → Rg∗OY (E −D).

Since E −D ∼Q,X KY + ∆̄Y , by [31, Theorem 10.41],

Rg∗OY (E −D) ≃qis

∑

i

Rig∗OY (E −D)[i].

Thus we get a morphism

g∗OY (−F ) → Rg∗OY (−F ) → Rg∗OY (E −D) → g∗OY (E −D).

Note that

g∗OY (E −D) = g∗OY (E −D) ∩ g∗OY (E) = g∗OY (E −D) ∩ g∗OY = g∗OY (−D).

Since D is reduced and g(D) = W , we have g∗OY (−D) = IW , the ideal sheaf of W
in Z = X. Moreover, g∗OY (−F ) = IW since F is also reduced. Therefore, we get an 
isomorphism IW = g∗OY (−F ) → g∗OY (E −D), which implies that

ρ : IW ≃ g∗IF → Rg∗IF

has a left inverse. Since Y is smooth and F is an snc divisor, we see that (Y, F ) is a DB 
pair, thus by [35, Theorem 3.3] (cf. [31, Theorem 6.27]), (Z, W ) is also a DB pair. !

Theorem 6.4. Let (X, S∗) be a stratified scheme of NQC glc origin (Definition 4.5). Then 
X is Du Bois.

Proof. We use induction on the dimension.
Let π : (Xn, Sn

∗ ) → (X, S∗) denote the normalization. Let B(X) ⊂ X and B(Xn) ⊂
Xn denote the corresponding boundaries. By [31, 9.15.1], we have a universal push-out 
diagram
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B(Xn) Xn

π

B(X) X

Notice that B(X) and B(Xn) are of glc origin by Lemma 4.11, hence Du Bois by induc-
tion.

Since π is finite, it follows that Rπ∗IB(Xn)⊂Xn = π∗IB(Xn)⊆Xn . Furthermore, 
π∗IB(Xn)⊆Xn = IB(X)⊆X by [31, Theorem 9.30]. By [35, Theorem 3.3] and Lemma 6.2, 
we only need to show that Xn is Du Bois. By assumption, for each irreducible component 
Xn

i ⊂ Xn there is an NQC glc crepant log structure fi : (Yi, ∆i, M) → Zi and a finite 
surjection Zi → Xn

i . By [33, Corollary 2.5], we only need to show that Zi is Du Bois 
for each i. Let B(Zi) ⊂ Zi be the boundary of the glc stratification of Zi. Then B(Zi)
is of NQC glc origin by Lemma 4.11, hence Du Bois by induction. By Theorem 6.3, 
(Zi, B(Zi)) is a DB pair, hence Zi is Du Bois and we are done. !

Remark 6.5. After finishing the first draft of the paper, the authors note the results 
[37, Theorems 1, 12] proving the Du Bois property of varieties V ⊂ X such that 
mld(V, X, ∆) ≤ lcg(dimX) for some lc pair (X, ∆), where lcg(dimX) is the 1-gap of 
lc thresholds. With the methods established in Sections 4 and 6, we may also prove the 
NQC g-pair versions of [37, Theorems 1,12] by using the same arguments as in [37]. In 
fact, as mentioned in [37, Proof of Theorems 1 and 12], a quasi-log structure [15] version 
of [37, Theorems 1, 12] is expected and is used implicitly in [37, Proof of Proposition 16], 
while any qlc pair is always an NQC glc g-pair (cf. [16, Remark 1.9]).

7. Proof of the main theorems

In this section we prove the main theorems, which are consequences of Theorems 5.1, 
5.2 and 6.4.

Proof of Theorem 1.3. By [19, Theorem 3.14], possibly replacing (X, B, M) with a gdlt 
model, we may assume that (X, B, M) is Q-factorial gdlt. We run a (KX + B +
MX)-MMP/U with scaling of an ample divisor

(X,B,M) := (X0, B0,M) ##$ (X1, B1,M) ##$ · · · ##$ (Xi, Bi,M) ##$ . . . .

By [40, Lemma 2.7], possibly replacing (X, B, M) with (Xn, Bn, M) for some n ≫ 0, 
we may assume that this MMP is an isomorphism over U0 and (X0, B0, M0)/U0

is a good minimal model of itself. Since every glc center of (X, B, M) intersects 
X0 and KXi + Bi + MXi is semi-ample over U0, (Xi, Bi, M) is log abundant/U
for any i. By [40, Theorem 7.6], the MMP terminates with a log minimal model 
(X̄, B̄, M)/U of (X, B, M)/U . By Theorem 5.1, (X̄, B̄, M)/U is a good minimal model 
of (X, B, M)/U . !
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Proof of Theorem 1.1. Since termination and semi-ampleness/Z are both local on Z, 
we may assume that Z is affine. By [40, Theorem 1.3] we get (1)(3). Possibly replacing 
(X, B, M) with (Y, BY , M) and replacing A accordingly, we may assume that KX +B+
MX is nef/Z, and we only need to show that KX + B + MX is semi-ample/Z.

Let g : W → X be a gdlt modification of (X, B + A, M), 0 < ϵ ≪ 1 a real number, 
AW := g∗A, and KW +BW +AW +MW := g∗(KX+B+A +MX), then (W, ∆W := BW +
(1 − ϵ)AW , M) is gdlt, (W, ∆W + ϵAW , M) is glc, and KW + ∆W + MW + ϵAW ∼R,Z 0. 
By Theorem 5.2,

ϵg∗(KX + B + MX) ∼R,Z −ϵg∗A = −ϵAW ∼R,Z KW + ∆W + MW

is semi-ample/Z, hence KX + B + MX is semi-ample/Z, and we are done. !

Proof of Theorem 1.2. Since −(KX + B + MX) is ample/Z, there exists an R-divisor 
0 ≤ A ∼R,Z −(KX + B + MX) such that (X, B + A, M) is glc. By Theorem 1.1, there 
exists a good minimal model (X ′, B′, M)/Z of (X, B, M)/Z. We let h : X ′ → X+ be 
the birational morphism/Z defined by KX′ + B′ + MX′ and let B+ := h∗B′.

We only need to show that the induce birational map f+ : X+ → Z is small. Let 
p : W → X and q : W → X ′ be a resolution of indeterminacy of X ##$ X ′. Then 
p∗(KX + B + MX) = q∗(KX′ + B′ + MX′) + F where F ≥ 0 is exceptional over 
X ′. Let D be a prime divisor on X ′ that is exceptional over X, and DW its strict 
transform on W . Then DW is covered by a family of p-vertical curves Σt such that 
Σt · p∗(KX + BX + MX) = 0. Since F · Σt ≥ 0, Σt · q∗(KX′ + B′ + MX′) ≤ 0. Let 
Σ′

t = q∗Σt, then Σ′
t · (KX′ +B′ + MX′) ≤ 0 so that Σ′

t are contracted by X ′ → X+ and 
hence D is also contracted. Thus X ##$ X+ does not extract any divisor, and f+ is a 
(KX + B + MX)-flip. !

Proof of Theorem 1.7. Let g : Y → X be a log resolution of (X, SuppB) such that 
M descends to Y and E is a divisor on Y . Let a := a(E, X, B, M) ∈ [0, 1) and D :=
Supp Exc(f). Let BY := g−1

∗ B + D, then (Y, BY − aE, M) is Q-factorial gdlt. Thus 
KY + BY − aE + MY ∼R,X F ≥ 0 for some R-divisor F such that E ̸⊂ SuppF . By 
[40, Lemma 2.3], we may run a (KY + BY − aE + MY )-MMP/X with scaling of an 
ample divisor which terminates with a good minimal model (W, BW , M)/X of (Y, BY −
aE, M)/X and the induced birational map Y ##$ W only contracts F . In particular, 
E is still a divisor on W , and we let EW be the strict transform of E on EW . Then 
multEW BW = 1 − a > 0.

We may run a (KW + BW − (1 − a)EW + MW )-MMP/X with scaling of an ample 
divisor. Since (W, BW , M)/X is gdlt and KW +BW +MW ∼R,X 0, by Theorem 1.1, this 
MMP terminates with a good minimal model (Z ′, BZ′ − (1 −a)EZ′ , M)/X of (W, BW −
(1 − a)EW , M)/X, where BZ′ and EZ′ are the strict transforms of BW and EW on Z ′

respectively. Thus −(1 − a)EZ′ ∼R,X KZ′ + BZ′ − (1 − a)EZ′ + MZ′ is semi-ample/X, 
hence defines a birational morphism Z ′ → Z over X. We let BZ and EZ be the strict 
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transforms of BZ′ and EZ′ on Z respectively, and let f : Z → X be the induced 
morphism.

If EZ = 0, then f is the identity map since −EZ is ample/X. Thus BZ = B, so 
a(E, Z, BZ , M) = a(E, X, B, M) = a. We have

a = a(E,Z,BZ ,M) = a(E,Z ′, BZ′ − (1 − a)EZ′ ,M)
≥ a(E,W,BW − (1 − a)EW ,M) > a(E,W,BW ,M) = a,

which is not impossible.
Therefore, EZ is a prime divisor on Z and −EZ is ample over X, hence SuppEZ

contains all the exceptional locus on Z and f is an isomorphism away from f(EZ). In 
particular, f only extracts E. !

Proof of Theorem 1.8. By [19, Theorem 2.28], we can assume (X, B, M) is a Q-g-pair. 
Let g : Y → X be a Q-factorial gdlt modification of (X, B, M) and KY + BY + MY :=
g∗(KX + B + MX). Since SuppD does not contain any glc center of (X, B, M), then 
Cartier locus of OX(−D) contains every generic point of the glc centers of (X, B, M). We 
may replace D with −A such that A ≥ 0 and SuppA contains no glc center of (X, B, M). 
Let 0 ≤ C ∼ −A be a divisor such that C contains no glc centers of (X, B, M), then 
A +C is Cartier and also contains no glc centers of (X, B, M). We may find an integral 
divisor AY ≤ g∗(A + C) such that AY ≥ 0 and g(AY ) = A.

Let 0 < ϵ ≪ 1 be a rational number and ∆Y := BY + ϵg∗(A + C) − ϵAY . Then 
(Y, ∆Y +ϵAY , M) is Q-factorial gdlt and KY +∆Y +ϵAY +MY ∼Q,X 0. By Theorem 1.1, 
we may run a (KY +∆Y +MY )-MMP/X which terminates with a good minimal model 
(Z, ∆Z , M)/X of (Y, ∆Y , M)/X with induced birational morphism h : Z → X. Let AZ

be the strict transform of AY on Z, then −AZ ∼Q,X KZ + ∆Z + MZ is semi-ample/X, 
hence R(Z/X, −AZ) = R(X, −A) is a finite generated OX -algebra. !

Proof of Theorem 1.6. Let W be any union of the glc centers, then by Lemma 4.11
the induced stratified space (W, S∗) is of NQC glc origin. Theorem 1.6 follows from 
Theorem 6.4. !
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