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ABSTRACT

Although the connectivity offered by industrial internet of
things (IloT) enables enhanced operational capabilities, the ex-
posure of systems to significant cybersecurity risks poses critical
challenges. Recently, machine learning (ML) algorithms such as
feature-based support vector machines and logistic regression,
together with end-to-end deep neural networks, have been imple-
mented to detect intrusions, including command injection, denial
of service, reconnaissance, and backdoor attacks, by capturing
anomalous patterns. However, ML algorithms not only fall short
in agile identification of intrusion with few samples, but also
fail in adapting to new data or environments. This paper intro-
duces hyperdimensional computing (HDC) as a new cognitive
computing paradigm that mimics brain functionality to detect
intrusions in lloT systems. HDC encodes real-time data into
a high-dimensional representation, allowing for ultra-efficient
learning and analysis with limited samples and a few passes. Ad-
ditionally, we incorporate the concept of regenerating brain cells
into hyperdimensional computing to further improve learning ca-
pability and reduce the required memory. Experimental results
on the WUSTL-110T-2021 dataset show that HDC detects intru-
sion with the accuracy of 92.6%, which is superior to multi-layer
perceptron (40.2%), support vector machine (72.9%), logistic re-
gression (84.2%), and Gaussian process classification (89.1%)
while requires only 300 data and 5 iterations for training.

Keywords: Industrial internet of things, Cyberattack detec-
tion, Cognitive computing

1. INTRODUCTION

The recent convergence of low-cost sensing, communica-
tion, and computation technologies has presented an unprece-
dented opportunity for the widespread adoption of the industrial
internet of things (IloT). To provide a comprehensive view of
operations, a large number of field devices (e.g., actuators and
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sensors), machines, robots, gateways, and data acquisition sys-
tems are connected to Ilol network. The connectivity is fa-
cilitated through wireless communication protocols, including
through wireless communication protocols constrained applica-
tion protocol (CoAP), distributed network protocol version 3
(DNP3), message queuing telemetry transport (MQTT) protocol,
and Modbus [1, 2]. The seamless connectivity and data sharing in
IIoT not only transform inventory and supply chain optimization
but also enable predictive maintenance, fault diagnosis, machine
monitoring, and operator safety, to name a few [3].

However, the extensive communication among devices in
IIoT and the vulnerabilities present in information networks and
cloud databases introduce significant cybersecurity risks, which
affect various components such as remote terminal units, human-
computer interfaces, communication infrastructure, application
servers, and even actuators and sensors. In particular, cyber in-
trusions leveraging vulnerabilities in communication protocols
result in different types of attacks, such as denial of service,
command injection, reconnaissance, and backdoor [4-6]. By
inserting malicious code into vulnerable systems, command in-
jection attacks execute unauthorized rulings to compromise the
availability, confidentiality, and integrity of IIoT. For example,
structured query language (SQL) as an injection attack seeks to
compromise or control the database servers. The attack allows
an intruder to manipulate control commands in the system, dis-
rupting normal operations [7]. Denial of service (DoS) attacks
overload a system with traffic to disrupt operations or cause sys-
tem failures, which result in equipment damage and production
delays [8]. Reconnaissance attacks determine weaknesses and
potential attack vectors to launch targeted attacks. Here, attack-
ers leverage sniffers to eavesdrop on ongoing network traffic,
allowing gathering information about network components and
current status in silent [9]. Backdoor attacks permit continuous
access to systems to disrupt operations, steal data, or carry out
further attacks [10].
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To mitigate intrusion risks, various security measures are ex-
ecuted, including encryption approaches, strict access controls,
network segmentation models, as well as intrusion detections and
prevention mechanisms [11, 12]. Data encryption plays a crucial
role in safeguarding sensitive information within IIoT systems.
By encoding data into a format that is readable only by authorized
users, encryption helps protect valuable data such as device cre-
dentials, sensor data, and configuration files from unauthorized
access. Several common approaches in this category include the
triple data encryption algorithm, elliptic curve digital signature
algorithm, and asymmetric cryptography [13]. In addition to en-
cryption, many industries are adopting zero-trust security models
and implementing secure coding practices to further enhance the
security of IIoT systems. Zero-trust models operate under the as-
sumption that all devices and users are untrustworthy until proven
otherwise. These models require continuous authentication and
authorization processes to control access to resources, reducing
the attack surface of IloT systems and minimizing the risk of
unauthorized access [14, 15].

However, the utilization of cryptographic solutions in IIoT
systems introduces certain drawbacks. First, the solutions in-
crease the processing and bandwidth requirements of the sys-
tem, as additional computation and data overhead are necessary
for data encryption and decryption. Consequently, this leads
to slower system performance and increased resource consump-
tion, potentially impacting the overall efficiency of IIoT opera-
tions [16, 17]. Second, implementing and managing data en-
cryption at scale is challenging. Encryption keys not only need
to be securely generated and managed but also require an effec-
tive mechanism for distributing keys to authorized users. This
adds complexity to the system and necessitates robust key man-
agement practices to ensure the secure sharing and revocation
of keys. Third, the compromise or loss of encryption keys re-
sults in the permanent detriment of encrypted data, as there is
no method to recover the data without the original key [18, 19].
Finally, some legacy field devices and equipment in industrial
systems are not designed to withstand current threat vectors or
receive cryptographic solutions. The comprehensive review of
encryption challenges in IIoT can be found in [20].

Cyberattack monitoring is another strategy in IloT security,
which involves continuously observing systems for signs of in-
trusions. Monitoring is performed through a range of techniques,
including intrusion detection and prevention systems, log anal-
ysis, and threat intelligence feeds. Huma et al. [21] introduced
a deep learning-based system that utilizes a novel random hy-
brid neural network (HDRaNN) to detect intrusion in IIoT. Latif
et al. [22] designed a deep learning model based on a random
neural network to detect various cyberattacks. The model was
validated using a DS20S dataset that contained 357,952 samples
with seven different types of attacks. Trane et al. [23] applied
random forest to detect cyberattacks. Abdullahi et al. [24] estab-
lished a thorough study on the capability of different ML models
for cyberattack detection in IoT and Industry 4.0 environments.
According to the authors, support vector machines (SVM) was
one of the most frequently employed techniques due to excep-
tional accuracy in detecting intrusions. Nevertheless, the authors
highlighted other high-performance methods, such as neural net-

works (NN) and recurrent neural networks (RNN). However, the
challenges related to monitoring IIoT systems are as follows:

1. Dynamic attack vectors: Ongoing emergence of novel at-
tack vectors, such as communication channels and denial-of-
service attacks, pose significant challenges to ML models for
intrusion detection. Monitoring can be ineffective against
new or unknown types of cyberattacks, as the attack may not
match any known patterns or signatures [21, 25].

2. Data limitation: Many industries are hesitant to report
cyberattacks due to the potential damage to reputation or
leakage of confidential information. The lack of accessing
appropriate data makes evaluating the security risks and
threats difficult. Thus, designing algorithms that can learn
with very few samples is essential.

3. Human-like cognitive support: Although machine learn-
ing algorithms are strong in finding anomalies and irreg-
ularities, they are still far short of capabilities to replace
human intelligence to understand, analyze, and reason a cy-
berattack. To enable reliable and informative prediction,
cybersecurity applications need to support human-like cog-
nition to provide a higher learning quality and to reason for
each prediction or decision [26-28].

We introduce hyperdimensional computing (HDC) as a new
cognitive computing paradigm capable of detecting cyberattacks
in industrial internet of things systems with sparse data in a few
passes [26-34]. HDC leverages high-dimensional vectors to rep-
resent data and operations. It is based on the theory that the brain
stores and processes information using high-dimensional vectors
rather than the binary representations used in traditional com-
puting. HDC has several advantages over traditional computing
approaches for cyberattack detection in IIoT systems. First, HDC
identifies attacks in the hypervectors used to represent the data,
making it particularly effective in detecting new and unknown
types of cyberattacks that may not match any known patterns or
signatures. Second, HDC is an online model that continuously
updates hypervectors based on new data at high speeds. This
enables industries to detect cyberattacks quickly and respond in
real time, reducing the impact of attacks on their operations.
Third, HDC, as an intuitive and human-interpretable framework,
exposes hidden features, enabling single-pass or few-passes learn-
ing with just a few samples. These make HDC a powerful tool for
lightweight, online, and cognitive cyberattack detection in IIoT
systems that continually learns and adapts to new types of attacks,
improving accuracy and effectiveness over time.

The structure of this paper is as follows: The proposed
methodology is presented in Section 2. Section 3 describes the
experimental design. The outcomes of a case study are presented
in Section 4. Finally, Section 5 summarizes the shortcomings
of current learning methods for IIoT cyberattack detection and
outlines future research directions.

2. METHODOLOGY

As shown in Figure 1, the HDC framework is based on the
abstract representation of neuronal circuits in the human brain,
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FIGURE 1: FLOWCHART OF THE HYPERDIMENSIONAL COMPUTING FOR CYBERATTACK DETECTIONS IN IIOT.
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FIGURE 2: OVERVIEW OF HDC TRAINING AND REGENERATION IN
CYBERATTACK MONITORING.

and it involves three stages: encoding, online training, and itera-
tive learning. Initially, the HDC encodes the training data into the
high-dimensional space. Next, it generates hypervectors for each
class, which are used for single-pass training over the encoded
data. HDC then compares the similarity between class hyper-
vectors and encoded query data and retrains from assigning the
closest class to the query. This iterative learning process allows
HDC to continuously improve accuracy in intrusion detection.

2.1 HDC Encoding

The first step in hyperdimensional computing is to encode
the input data into hypervectors in a high-dimensional space. The
hypervectors contain all the information across all components,
with no component being more responsible for storing any piece
of information than another. HDC employs different encoding
methods depending on the data type. Let’s consider a function
that encodes a feature vector F = { f,}NF with f; € R into a
hypervector V Suppose V Vi = 1 : Nt are randomly generated
hypervectors (V; € [-1,+1]?). Each dimension of the encoded
data is generated by taking the dot product of the feature vector
with a randomly generated vector, resulting in

v; = cos(ﬁ . E,-) (1)

where I§i is a randomly generated vector from a Gaussian distri-
bution with a mean of 0 and a standard deviation of 1. The set
of random vectors {B; }iD: | can be generated offline and then used

for the entire cyberattack detection task (where §,~ € RNF). After
this encoding step, each element v; represents an element of the
hypervector V These hypervectors are nearly orthogonal, mean-
ing that 6(Vl, ) ~0Vi,j =1: Nr&i # j, where 6 denotes the
cosine sumlarlty. HDC uses the following set of primitives for
encoding cyberattack data:

Bundling (+): This is an element-wise addition of multi-
ple hypervectors. Bundling generates another hypervector with
the same dimensionality as inputs. In high-dimensional space,
bundling is similar to a memory operation, where the bundled
hypervector remembers the input operands’ information.

Binding (x): This operation associates the information of
multiple objects into a single hypervector. Binding is defined as
a bitwise XOR operation in binary, and multiplication operation
in the bipolar domain (V V V) The binded hypervector is
a new object in high-dimensional space that is orthogonal to all
input hypervectors.

2.2 HDC Regeneration

We introduce a new approach to HDC, which utilizes a dy-
namic encoder for adaptive learning. In HDC, not all dimensions
have the same impact on the learning task, with some dimensions
having little or no effect. The aim of HDC is to identify these
insignificant dimensions and remove them from the computation.
To improve accuracy, HDC regenerates these dimensions in the
encoding module, giving them a new opportunity to contribute
more significantly to the learning task.

Figure 2 provides an overview of the HDC learning frame-
work. Initially, HDC maps the data into high-dimensional space
using one of the existing encoding methods. The encoding is
dependent on the data type and performed using defined HDC
mathematics over a set of randomly generated base vectors (e.g.,
as random hypervectors in D = 10, 000 dimensions).
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The HDC model is trained over the training data and then
normalized to simplify the similarity metric for a dot product
operation in inference or retraining. Next, we compute the vari-
ance throughout all elements of class hypervectors with minimum
variance as they represent the dimensions that can be regenerated.
The HDC drops the dimensions from the framework and base hy-
pervectors in the encoder part. The framework regenerates the
base hypervectors on the indicated dimensions. To ensure con-
tinued learning, HDC employs two iterative learning methods
that involve repeating training, dimension reduction, and dimen-
sion regeneration. This process continues until HDC identifies a
model where the majority of dimensions contribute significantly
to the classification. Additionally, HDC makes use of compressed
and efficient representations, which can reduce the computational
overhead and memory requirements of the learning process.

Drop Dimension: During the training phase of hyperdimen-
sional computing, a single hypervector representing each class is
created. The inference task is performed by checking the similar-
ity between a query hypervector (encoded inference data) and all
class hypervectors. The query data is then assigned to the class
with the highest similarity. The objective of HDC is to train class
hypervectors, where their patterns represent information. A weak
classifier cannot identify distinct patterns for different classes, re-
sulting in multiple classes having similar patterns. This makes
the classification task challenging, as the query may have a high
similarity value to multiple classes.

Figure 3 illustrates how HDC calculates similarity between
aquery, V= {v; }ig |» and class hypervectors. During the learning
phase, HDC computes the cosine similarity as:

- -

G-V
Gl - IVl

1
{

0(C;, Vi) = 2

where the nominator is the inner product between the class hy-
pervector 5, and the query ‘7, The closer the ¢ is to 1, the more
similarity exists between two hypervectors. Our objective is to
identify dimensions that have little impact on the classification
task. Therefore, we compute the variance over each dimension
of the classes. Dimensions with low variance have similar values
across all classes, indicating that they store common informa-
tion. During the search, these dimensions add similar weights to
cosine over all classes. We refer to these dimensions as insignif-
icant since they do not contribute significantly to differentiating
the class patterns.

Dimension Regeneration: At the beginning of the training
phase, HDC creates an initial HDC model, which consists of a
hypervector representing each class. For each dimension of the

class hypervector, HDC computes the variance over the normal-
ized model. Next, HDC selects a percentage of dimensions with
the minimum variance as candidates for dropping. Instead of
leaving these dropped dimensions blank, HDC regenerates them.
The primary objective of regeneration is to create new dimen-
sions that can potentially have a greater impact on classification,
providing a higher variance. By continually dropping insignifi-
cant dimensions and regenerating them during the training phase,
HDC aims to identify the most influential dimensions for classi-
fication, which improves accuracy. Overall, this approach offers
a promising solution for hyperdimensional computing in various
applications such as text classification and image recognition.

2.3 HDC Retraining

HDC employs a continual learning approach, building on the
previously learned model instead of starting from scratch. During
the training phase, only the values of the dropped dimensions
are ignored, while other dimensions continue to learn based on
their existing values. For each input data, the similarity between
the hypervector {Vi}f\i ' and all class hypervectors C is checked.
The model is updated for all mispredicted cases. If the model
predicts input as cyberattack type j instead of j, the retraining
updates the model using the update rate 5. This process ensures
the model updates how far a training query is mispredicted. If
the similarity value of 6(Cj’,V;) is considerably higher than
1 (6}, V), it indicates that the prediction result is significantly
different from the actual result. In this case, the retraining step
makes significant changes to the model. However, if 6(5,-, \_/),-) =

o (C_)'J \Z) the retraining step only adds a small portion for the
update. This process is applied to the entire dataset or a batch of
data to generate a new model, which can be used for the inference
task or another iteration of retraining.

3. EXPERIMENTAL DESIGN

In terms of monitoring industrial processes and machines,
industrial control systems (ICSs) have been used for a long time
as part of critical infrastructures. They consist mainly of super-
visory control and data acquisition systems that have a graphical
interface through its human-machine interface (HMI). The IloT
system, shown in Figure 4, monitors the water level and turbidity
quantity of the water storage tank. A water treatment and dis-
tribution system like this is installed in industrial reservoirs to
treat and distribute water. Among the components of this testbed
are historical logs, HMIs, and Programmable Logic Controllers
(PLCs). This testbed has three sensors and four actuators. An
analog turbidity sensor and two water level sensors make up the
inputs. PLC commands are received by a three-light turbidity
alarm, a valve, and two water pumps. There are also control
buttons (on, off, and light indicators) for manual operation. The
purpose of this testbed is to maintain the water level between two
predefined levels. Additionally, it measures the degree of turbid-
ity in the water and illuminates either a red, yellow, or green light
of the turbidity alarm, depending on the level of cloudiness. A
popular IIoT protocol commonly used in ICSs is Modbus, which
was used in this testbed as the communication protocol. Ladder
language is implemented to program the logic of the PLC.
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TO CREATE EXPERIMENTAL DATA.

ICSs include supervisory control and data acquisition sys-
tems with human-machine interfaces, which are traditionally de-
ployed as standalone systems with minimal external connectivity.
However, with the integration of IIoT technology and the in-
creased use of internet communications, ICSs have become more
exposed to potential security threats. Feature extraction from traf-
fic is essential for developing a dataset for cyberattack detection.
In designing the intrusion detection system (IDS), they select the
features whose values differed between phases of attack and nor-
mal operation. Unless a selected feature varies during an attack,
no algorithm can detect an intrusion or anomalous condition using
that feature. Through the use of the Argus tool [35], the potential
features are analyzed, and 41 of them that are selected based on
prevalent network flows and possible change during the attack
phase. Source port, mean flow, total percent loss, and destination
port are examples of the features in this dataset. Total percent
loss is the percentage of packets dropped or re-transmitted, and
destination port is the destination port number. The source port
is the port number of the source, and the mean flow is the average
duration of active flows [25].

The WUSTL-IIoT-2021 dataset provides a valuable resource
for conducting cybersecurity studies on IIoT networks. It in-
cludes real-world industrial systems with real-time cyberattacks,
consisting of normal traffic and four types of attack traffic: Com-
mand Injection, DoS, Reconnaissance, and Backdoor [25]. To
remove potentially identifying features, we excluded StartTime,
LastTime, SrcAddr, DstAddr, sIpld, and dIpld. The remaining
dataset contains 41 features, which are linearly mapped to a range
of zero to one. Given the focus on edge computing, the classifier
is trained on a small subset of the data.

As the dataset is unbalanced with the majority of samples
being normal traffic, we balanced the sample data into equal
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FIGURE 5: THE PERFORMANCE METRICS OF HDC CORRESPOND
TO THE DIFFERENT NUMBERS OF ITERATIONS.

groups for each class. The Backdoor attack has the smallest
sample size of 212, which sets the minimum sample size across all
classes. We performed a classification task with varying training
data sizes, selecting 20, 40, 60, 80, and 100 samples randomly
from each class as training data. For evaluation, we randomly
selected the same number of samples from each class as test data.
This approach ensures equal train and test data sizes, although
selecting the data is a challenging task.

To evaluate classifier performance on the test data, we used
four evaluation metrics: accuracy, precision, recall, and F-score.
We repeated the process of selecting train and test data 100 times
and calculated the four evaluation metrics for each iteration. Fi-
nally, we reported the average and standard deviation (STD) of
the evaluation metrics over the 100 repetitions.

4. EXPERIMENTAL RESULTS
4.1 Hyperdimensional Computing Results

The HDC can be trained in just a few iterations, but it’s
important to evaluate its performance over multiple iterations.
For our experiment, we used 100 samples as training data and
100 samples as test data for each class. We set the hypervector
dimension to 2000 and the learning rate to 0.037, as per the
basic HDC model. Throughout the experimental section, these
parameters remained fixed.

Figure 5 shows the evaluation of the HDC over multiple it-
erations. The accuracy, precision, recall, and F-score for the
first iteration (one-pass learning) were 89.1%, 90.5%, 89.1%,
and 88.7%, respectively. This demonstrates that the HDC is fast,
achieving around 90% performance with just one pass of the
data and no retraining. With increased iterations, the average
of the evaluation metrics increased while the standard deviation
(STD) decreased. For instance, with five iterations, the accu-
racy, precision, recall, and F-score were 92.6%, 93.4%, 92.6%,
and 92.4%, respectively. With ten iterations, the performance
further increased to 93.9%, 94.6%, 93.9%, and 93.8%, respec-
tively. This represents a 4% improvement, demonstrating the
HDC'’s ability to improve performance quickly. After 20 itera-
tions, the accuracy, precision, recall, and F-score reached 94.8%,
95.3%, 94.8%, and 94.8%, respectively. However, the improve-
ment from ten to twenty iterations was only 1%, suggesting that
the HDC reaches a steady state after ten iterations. Based on
the STDs for ten iterations, the metrics values were consistently
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above 90%. Therefore, the HDC can be trained effectively with
just ten iterations to achieve reliable performance.

Figure 6 illustrates the effect of dropping hypervectors di-
mensions on HDC performance over train data size using six
heatmaps. In a heatmap, the y-axis, and the x-axis show the train
data size and drop rate percentage. There is a range of train data
sizes from 100 to 500 and a drop rate ranging from zero to thirty
percent. The heatmaps show the accuracy and the average accu-
racy of each heatmap written. Figure 6 a), b), and c) show the
effects of the drop dimensions with low variance when the HDC
trained for one-pass learning, 5 and 10 iterations, respectively. If
we do not drop dimensions, the average accuracy over the train
data size is 86.5%, 91.2%, and 92.8%, respectively, for one, 5,
and 10 iterations. The heatmap averages are 87.1%, 91.3%, and
92.7%, respectively, for one, 5, and 10 iterations which denote
that the accuracy is almost unaffected by dropping low variance
dimensions after 5 and 10 iterations. However, the accuracy is in-
creased by dropping the low variance in one-pass learning since,
in this case, we only map the data to high dimensional space,
and if we regenerate the low variance dimensions, discrimination
of the classes will be done better. For example, if we drop low
variance dimensions up to 30% for 5 and 10 iterations and the
train data set of 300, the accuracy changes by less than 0.3%.
Nevertheless, in this instance, the accuracy of one-pass learn-
ing is increased by increasing the drop rate, and the accuracy
goes from 88.2% to 89.8%. When dimensions are not dropped,
the accuracy for 100, 200, 300, 400, and 500 train data sizes is
87.4%, 90.9%, 92.6%, 92.8%, and 92.6% for 5 iterations, as well
as 91.2%, 92%, 93.2%, 93.7%, and 93.9% for 10 iterations. If
the 20% of low variance dimensions are dropped, the accuracy
is 87.4%, 91%, 92.8%, 92.9%, and 92.5% for five iterations, as
well as 91.3%, 91.9%, 93.1%, 93.5%, and 93.9% for ten itera-
tions. The accuracy has changed by equal and less than 0.2%
over 5 iterations and 0.2% over 10 iterations, respectively, over
train data sizes that show that dropping low variance dimensions

does not affect HDC performance. With one-pass learning, the
accuracy, for 100, 200, 300, 400, and 500 train data sizes, re-
spectively, is 81.3%, 85.1%, 88.2%, 89.1%, and 89.1%, while
after dropping 20% of low variance dimensions, the accuracy
increases to 82.3%, 86.2%, 89.3%, 89.5%, and 89.8%. These
results demonstrate that HDC performance can be improved by
dropping low variance dimensions in one-pass learning. As a
result, it can be concluded that the low variance dimensions have
little impact on accuracy and are insignificant.

Figures 6 d), e), and f) show the effects of the drop dimen-
sions with high variance when the HDC is trained for 1, 5, and
10 iterations. The heatmap average for dropping high variance
dimensions is 78.2%, 83.2%, and 84.2% for 1, 5, and 10 itera-
tions which means dropping high variance dimensions decreases
the accuracy 8.3%, 8%, and 8.6%, respectively. In the study
of a fixed train data size, increasing the drop rate decreases the
accuracy of 1, 5, and 10 iterations for train data size 300. With
one-pass learning, the accuracy is 88.2%, 85.2%, 80.9%, 78.4%,
76.7%, 74.8%, and 72.1% for 0%, 5%, 10%, 15%, 20%, 25%,
and 30% drop rate. This case has an accuracy of 92.6%, 90.1%,
88.6%, 85.7%, 83.3%, 78.4%, and 75.4% for 5 iterations, as well
as 93.2%, 91.4%, 88.9%, 85.8%, 82.2%, 79.2%, and 75.4% for
10 iterations. According to the results, increasing the drop rate of
high variance dimensions reduces the accuracy for a fixed train
data size and 1, 5, and 10 iterations. If the 20% of high variance
dimensions are dropped for train data sizes of 100, 200, 300,
400, and 500, the accuracy is 70.7%, 73.5%, 76.7%, 80%, and
77.5% for one-pass learning, and 76.1%, 79.9%, 83.3%, 83.2%,
and 79.6% for five iterations, as well as 79.4%, 80.3%, 82.2%,
83%, and 80.8% for ten iterations. The effectiveness of HDC in
identifying insignificant dimensions and removing them from the
computation, as well as regenerating them to improve accuracy,
makes it a promising framework for hyperdimensional computing
in IIoT systems.
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TABLE 1: THE COMPARISON RESULTS OF HDC WITH SVM, MLP, LR, AND GPC ACCORDING TO ACCURACY, PRECISION, RECALL, AND F-
SCORE OVER 1, 5, 10 ITERATIONS, AND TRAINING DATA SIZE OF 100 TO 500.

Accuracy (%) Precision (%) Recall (%) F-score (%)
Train Data Size 1 5 10 1 5 10 1 5 10 1 5 10

100 81.3+83 874+69 91.2x34 848+81 89.6+6.7 92.6+2.6 81.3+83 874+69 91.2x34 805+94 87.0+7.7 91.0+35

200 85.1+£85 909+54 92.0+44 87.1+£89 91.9+6.0 93.1+45 85.1+85 909+54 92.0+44 84.6+9.7 90764 91.9+5.1

HDC 300 882+57 926+26 932x27 80.7+69 93.7+18 94.1+x33 88.2+57 926+26 93227 87.8+69 926+25 93.1+32
400 89.1+£58 92.8+3.2 93.7+3.0 90.8+£5.9 93.8+3.1 94.4+3.0 89.1+58 928+32 93.7+3.0 889+65 928+3.6 93.7+33

500 89.1+64 926+44 939x29 90.5+6.6 934+49 946+23 89.1+6.4 926+44 93929 88.7+75 924+5.1 938+32

100 473+147 826+80 86.2+3.8 | 522+182 829+10.7 88.6+2.7 | 47.3+147 826+80 862+3.8 | 448+167 81.1+9.8 859+40

200 47.1+147 765+8.0 857+7.2 | 535+165 758+99 86.6+80 | 47.1+147 765+8.0 857+7.2 | 450166 742+94 84.7+8.6

SVM 300 453+12.1 729+79 827x75 51.7+146 739+97 825+88 | 453+12.1 729+79 827+75 | 429+138 71.1+95 81.0+89
400 47.1+£12.1  71.5+85 827x7.6 | 53.6+15.1 732+100 825+9.0 | 47.1+12.1 71.5+85 82.7+7.6 | 444+13.7 69.8+10.1 80.9+9.2

500 4354127 69.8+94 809+73 | 494+157 712+104 81.0+83 | 435+12.7 69.8+94 809+73 | 406+144 683+108 79.0+89
100 21.3+87 29.6+102 42.1+124 | 13.0+109 21.2+142 388=+189 | 21.3+8.7 29.6+10.2 42.1=x124 122+77 207+11.2 348+14.7
200 219+83 304+104 44.1+138 122+9.5 233+155 40.7+180 | 21.9+83 304=+104 44.1+13.8 128+7.1 205+11.6 36.8+16.2
MLP 300 242+96 402+109 635+119 | 151+11.0 368+174 66.6+150 | 242+96 402+109 635+11.9 152+92 31.7+12.6 60.2+14.2
400 226+92 445+122 649+104 | 148+11.5 456+18.0 69.6+124 | 22.6+92 445+122 649+104 13.6+8.6 37.8+14.6 62.1+12.8

500 250+9.0 528+128 721+79 16.7+123 549+167 765+99 250+9.0 528+128 721+x79 158+88 479+147 709+95

100 571+128 819+37 851+3.5 578+16.7 86.0+27 87.8+29 | 571+128 819+37 85135 538+152 81.7+39 84.8+3.7

200 61.9+10.2 843+28 87.7+28 | 63.2+129 874=+2.1 89.5+22 | 61.9+102 84328 87.7+2.8 | 599=+x12.1 84.1+28 87.6+29

LR 300 63.5+99 842+20 88.6x2.1 65.6+12.7 873+15 90.0+1.7 63.5+99 842+20 88.6x2.1 620+120 839+21 884+22
400 669+94 84.8+19 893x18 | 69.5+105 87.8+14 90.5x1.6 669+94 848+19 893x18 | 66.0+11.1 84.6+2.0 89.2x19

500 67.6+79 845+17 893+14 | 692+101 875+12 904+13 67.6+79 845+17 893x14 669+9.6 843+18 892x14

100 655+55 845+38 845x38 80.7+41 87.5+28 87.5x28 655+55 845+38 845x38 662+6.0 84.1+4.0 84.1x4.0

200 654+35 879+24 879+24 80.4 +3.1 89.7+£19 89.7+1.9 654+35 879+24 879+24 66.4+38 87.8+2.6 87.8+2.6

GPC 300 61.1+2.7 891+20 89.2x20 81.3+2.8 905+15 90.5+1.5 61.1+27 891+20 89.2+20 624+33 89.0+21 89.0+2.1
400 563+24 90.1+1.7 90.1x1.7 83.6+15 913+x14 913=x14 563+24 90.1+1.7 90.1x1.7 569+33 90.0+1.8 90.0+1.8

500 524+19 90.7+15 90715 84.1+£12 91.6+12 91.6+12 524+19 90.7+15 90.7+15 519+28 90.6+1.6 90.6x1.6

4.2 Comparison Results

Table 1 illustrates the comparison between HDC and other
classifiers in edge computing in cybersecurity attack detec-
tion. The support vector machine (SVM), multi-layer perceptron
(MLP), logistic regression(LLR), and Gaussian process classifica-
tion (GPC) are implemented with the Scikit-Learn library. The
classifiers are configured with the default parameters provided by
the library. The average and STD of accuracy, precision, recall,
and F-score for classifiers are shown for different train data sizes.
The result is shown for 1, 5, and 10 iterations.

For the train data sizes of 100, 200, 300, 400, and 500, HDC
accuracy is 81.3%, 85.1%, 88.2%, 89.1%, and 89.1% in one-
pass learning, 87.4%, 90.9%, 92.6%, 92.8%, and 92.6% in 5
iterations, as well as 91.2%, 92%, 93.2%, 93.7%, and 93.9% in
10 iterations. For each train data size and number of iterations, we
compare the best performance of the other classifiers with HDC.
For different train data sizes in one-pass learning, the closest to
HDC accuracy are 65.5%, 65.4%, 63.5%, 66.9%, and 67.6%,
which are 15.8%, 19.7%, 24.7%, 22.2%, and 21.5% below HDC
accuracy. According to this result, HDC performs better in one-
pass learning than other classifiers, with a difference of more
than 15%. In 5 iterations, the closest accuracy to HDC is 84.5%,
87.9%, 89.1%, 90.1%, and 90.7%, which is 2.9%, 3%, 3.5%,
2.7%, and 1.9% below HDC. In 10 iterations, a close match
to HDC accuracy appears to be 86.2%, 87.9%, 89.2%, 90.1%,
and 90.7%, which is 5%, 4.1%, 4%, 3.6%, and 3.2% below
HDC. The results show that HDC is better at classifying even
after 5 and 10 iterations compared to other classifiers. When
comparing HDC accuracy with other classifiers, the differences
between them decreased from one to five iterations but increased
again from five to ten iterations. HDC performance is better
than other classifiers such as accuracy, with just the precision
values being higher than accuracy values when we compare its
precision, recall, and F-score to those of other classifiers. GPC
and LR have a closer performance to HDC and the performance

of HDC and MLP differs significantly. For the HDC, the STDs
are decreased and the averages are increased by increasing the
number of iterations. Moreover, the averages are improved by
increasing the train data size from 100 to 300. However, raising
the train data size over 300 only affects averages slightly which
means the HDC can be trained by a few samples and doesn’t need
many samples for the training stage.

Figure 7 demonstrates the results for the steady state situa-
tion, which means the classifiers are trained up to the maximum
number of iterations and the metrics’ average and STD in the
last iteration are shown. HDC is trained over 250 iterations and
other classifiers that are implemented using the Scikit-Learn li-
brary, are trained over a maximum number of iterations that are
set by this library. HDC and other classifiers are evaluated over
different train data sizes. Therefore, HDC compares with the
classifiers which are trained using default parameters that are
provided by the Scikit-Learn library. For different train data sizes
in the steady state, the HDC accuracy is 93%, 94.8%, 95.6%,
95.7%, and 95.9%, and the STDs are 2.8%, 1.9%, 1.4%, 1.3%,
and 1%, respectively. As the number of iterations increases in the
HDC model, the standard deviations of the evaluation metrics de-
crease, and the averages increase. This indicates that the model is
becoming more consistent and accurate in its performance as it is
trained over more iterations. In addition, increasing the size of the
training data from 100 to 300 rises the averages of the evaluation
metrics, indicating that the HDC model can benefit from larger
amounts of training data up to a certain point. However, after a
training data size of 300, increasing the data size further only has
a minor impact on the averages of the evaluation metrics. This
suggests that the HDC model is able to achieve high accuracy and
consistency with relatively small amounts of training data.

For each train data size, we compare the best performance
of the other classifiers with HDC. For different train data sizes in
the steady state, the closest to HDC accuracy are 88.7%, 90.4%,
92.8%, 92.8%, and 93.7% which are 4.3%, 4.4%, 2.8%, 2.9%,
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FIGURE 7: THE PERFORMANCE OF HDC FRAMEWORK IN COMPARISON TO MLP, SVM, LR, AND GPC FOR TRAIN DATA SIZES RANGING
FROM 100 TO 500 ACCORDING TO THE FOLLOWING EVALUATION METRICS A) ACCURACY, B) PRECISION, C) RECALL, AND D) F-SCORE.

and 2.2% below HDC accuracy. Therefore, HDC does a superior
performance than other classifiers when only a few train data
are fed to the classifiers. HDC outperforms other classifiers
such as accuracy when we compare precision, recall, and F-score
with other classifiers, although precision values are higher than
accuracy values. Therefore, when only a few train data sizes are
provided to the classifiers, HDC outperforms SVM, MLP, LR,
and GPC in cybersecurity. In the steady state, MLP is closest
to HDC. The performance of GPC and LR is similar to HDC
for a small number of iterations; however, in steady state, their
performance isn’t even close to MLP and SVM, which means
they can be trained in a few iterations and with a small amount of
train data but cannot compete with HDC.

5. CONCLUSIONS

The Industrial Internet of Things (II0T) is an emerging tech-
nology that has the potential to revolutionize the way industries
operate. However, as with any new technology, there are concerns
about its security, especially in the face of cyberattacks. This re-
search introduces HDC, a hyperdimensional cognitive learning
framework for robust, efficient, and transparent security monitor-
ing. We first represent security-related data into a holographic
high-dimensional space to abstract the knowledge. Then, we
develop a cognitive learning algorithm capable of security mon-
itoring in a lightweight manner with limited training data. The
HDC is integrated with the regeneration capability of hypervec-
tors elements to realize ultra-fast learning of intrusions, making it
suitable for detecting new cyberattacks. The experimental results
based on the WUSTL-IIOT-2021 dataset show that HDC effec-
tively detects and handles attacks, including backdoor attacks,
command injection, denial of service, and reconnaissance. The
combination of IIoT and HDC is a promising approach for achiev-
ing secure and efficient data processing in industrial settings.
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