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ABSTRACT

Although the connectivity offered by industrial internet of

things (IIoT) enables enhanced operational capabilities, the ex-

posure of systems to significant cybersecurity risks poses critical

challenges. Recently, machine learning (ML) algorithms such as

feature-based support vector machines and logistic regression,

together with end-to-end deep neural networks, have been imple-

mented to detect intrusions, including command injection, denial

of service, reconnaissance, and backdoor attacks, by capturing

anomalous patterns. However, ML algorithms not only fall short

in agile identification of intrusion with few samples, but also

fail in adapting to new data or environments. This paper intro-

duces hyperdimensional computing (HDC) as a new cognitive

computing paradigm that mimics brain functionality to detect

intrusions in IIoT systems. HDC encodes real-time data into

a high-dimensional representation, allowing for ultra-efficient

learning and analysis with limited samples and a few passes. Ad-

ditionally, we incorporate the concept of regenerating brain cells

into hyperdimensional computing to further improve learning ca-

pability and reduce the required memory. Experimental results

on the WUSTL-IIOT-2021 dataset show that HDC detects intru-

sion with the accuracy of 92.6%, which is superior to multi-layer

perceptron (40.2%), support vector machine (72.9%), logistic re-

gression (84.2%), and Gaussian process classification (89.1%)

while requires only 300 data and 5 iterations for training.

Keywords: Industrial internet of things, Cyberattack detec-

tion, Cognitive computing

1. INTRODUCTION

The recent convergence of low-cost sensing, communica-

tion, and computation technologies has presented an unprece-

dented opportunity for the widespread adoption of the industrial

internet of things (IIoT). To provide a comprehensive view of

operations, a large number of field devices (e.g., actuators and
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sensors), machines, robots, gateways, and data acquisition sys-

tems are connected to IIoT network. The connectivity is fa-

cilitated through wireless communication protocols, including

through wireless communication protocols constrained applica-

tion protocol (CoAP), distributed network protocol version 3

(DNP3), message queuing telemetry transport (MQTT) protocol,

and Modbus [1, 2]. The seamless connectivity and data sharing in

IIoT not only transform inventory and supply chain optimization

but also enable predictive maintenance, fault diagnosis, machine

monitoring, and operator safety, to name a few [3].

However, the extensive communication among devices in

IIoT and the vulnerabilities present in information networks and

cloud databases introduce significant cybersecurity risks, which

affect various components such as remote terminal units, human-

computer interfaces, communication infrastructure, application

servers, and even actuators and sensors. In particular, cyber in-

trusions leveraging vulnerabilities in communication protocols

result in different types of attacks, such as denial of service,

command injection, reconnaissance, and backdoor [4–6]. By

inserting malicious code into vulnerable systems, command in-

jection attacks execute unauthorized rulings to compromise the

availability, confidentiality, and integrity of IIoT. For example,

structured query language (SQL) as an injection attack seeks to

compromise or control the database servers. The attack allows

an intruder to manipulate control commands in the system, dis-

rupting normal operations [7]. Denial of service (DoS) attacks

overload a system with traffic to disrupt operations or cause sys-

tem failures, which result in equipment damage and production

delays [8]. Reconnaissance attacks determine weaknesses and

potential attack vectors to launch targeted attacks. Here, attack-

ers leverage sniffers to eavesdrop on ongoing network traffic,

allowing gathering information about network components and

current status in silent [9]. Backdoor attacks permit continuous

access to systems to disrupt operations, steal data, or carry out

further attacks [10].
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To mitigate intrusion risks, various security measures are ex-

ecuted, including encryption approaches, strict access controls,

network segmentation models, as well as intrusion detections and

prevention mechanisms [11, 12]. Data encryption plays a crucial

role in safeguarding sensitive information within IIoT systems.

By encoding data into a format that is readable only by authorized

users, encryption helps protect valuable data such as device cre-

dentials, sensor data, and configuration files from unauthorized

access. Several common approaches in this category include the

triple data encryption algorithm, elliptic curve digital signature

algorithm, and asymmetric cryptography [13]. In addition to en-

cryption, many industries are adopting zero-trust security models

and implementing secure coding practices to further enhance the

security of IIoT systems. Zero-trust models operate under the as-

sumption that all devices and users are untrustworthy until proven

otherwise. These models require continuous authentication and

authorization processes to control access to resources, reducing

the attack surface of IIoT systems and minimizing the risk of

unauthorized access [14, 15].

However, the utilization of cryptographic solutions in IIoT

systems introduces certain drawbacks. First, the solutions in-

crease the processing and bandwidth requirements of the sys-

tem, as additional computation and data overhead are necessary

for data encryption and decryption. Consequently, this leads

to slower system performance and increased resource consump-

tion, potentially impacting the overall efficiency of IIoT opera-

tions [16, 17]. Second, implementing and managing data en-

cryption at scale is challenging. Encryption keys not only need

to be securely generated and managed but also require an effec-

tive mechanism for distributing keys to authorized users. This

adds complexity to the system and necessitates robust key man-

agement practices to ensure the secure sharing and revocation

of keys. Third, the compromise or loss of encryption keys re-

sults in the permanent detriment of encrypted data, as there is

no method to recover the data without the original key [18, 19].

Finally, some legacy field devices and equipment in industrial

systems are not designed to withstand current threat vectors or

receive cryptographic solutions. The comprehensive review of

encryption challenges in IIoT can be found in [20].

Cyberattack monitoring is another strategy in IIoT security,

which involves continuously observing systems for signs of in-

trusions. Monitoring is performed through a range of techniques,

including intrusion detection and prevention systems, log anal-

ysis, and threat intelligence feeds. Huma et al. [21] introduced

a deep learning-based system that utilizes a novel random hy-

brid neural network (HDRaNN) to detect intrusion in IIoT. Latif

et al. [22] designed a deep learning model based on a random

neural network to detect various cyberattacks. The model was

validated using a DS2OS dataset that contained 357,952 samples

with seven different types of attacks. Trane et al. [23] applied

random forest to detect cyberattacks. Abdullahi et al. [24] estab-

lished a thorough study on the capability of different ML models

for cyberattack detection in IoT and Industry 4.0 environments.

According to the authors, support vector machines (SVM) was

one of the most frequently employed techniques due to excep-

tional accuracy in detecting intrusions. Nevertheless, the authors

highlighted other high-performance methods, such as neural net-

works (NN) and recurrent neural networks (RNN). However, the

challenges related to monitoring IIoT systems are as follows:

1. Dynamic attack vectors: Ongoing emergence of novel at-

tack vectors, such as communication channels and denial-of-

service attacks, pose significant challenges to ML models for

intrusion detection. Monitoring can be ineffective against

new or unknown types of cyberattacks, as the attack may not

match any known patterns or signatures [21, 25].

2. Data limitation: Many industries are hesitant to report

cyberattacks due to the potential damage to reputation or

leakage of confidential information. The lack of accessing

appropriate data makes evaluating the security risks and

threats difficult. Thus, designing algorithms that can learn

with very few samples is essential.

3. Human-like cognitive support: Although machine learn-

ing algorithms are strong in finding anomalies and irreg-

ularities, they are still far short of capabilities to replace

human intelligence to understand, analyze, and reason a cy-

berattack. To enable reliable and informative prediction,

cybersecurity applications need to support human-like cog-

nition to provide a higher learning quality and to reason for

each prediction or decision [26–28].

We introduce hyperdimensional computing (HDC) as a new

cognitive computing paradigm capable of detecting cyberattacks

in industrial internet of things systems with sparse data in a few

passes [26–34]. HDC leverages high-dimensional vectors to rep-

resent data and operations. It is based on the theory that the brain

stores and processes information using high-dimensional vectors

rather than the binary representations used in traditional com-

puting. HDC has several advantages over traditional computing

approaches for cyberattack detection in IIoT systems. First, HDC

identifies attacks in the hypervectors used to represent the data,

making it particularly effective in detecting new and unknown

types of cyberattacks that may not match any known patterns or

signatures. Second, HDC is an online model that continuously

updates hypervectors based on new data at high speeds. This

enables industries to detect cyberattacks quickly and respond in

real time, reducing the impact of attacks on their operations.

Third, HDC, as an intuitive and human-interpretable framework,

exposes hidden features, enabling single-pass or few-passes learn-

ing with just a few samples. These make HDC a powerful tool for

lightweight, online, and cognitive cyberattack detection in IIoT

systems that continually learns and adapts to new types of attacks,

improving accuracy and effectiveness over time.

The structure of this paper is as follows: The proposed

methodology is presented in Section 2. Section 3 describes the

experimental design. The outcomes of a case study are presented

in Section 4. Finally, Section 5 summarizes the shortcomings

of current learning methods for IIoT cyberattack detection and

outlines future research directions.

2. METHODOLOGY

As shown in Figure 1, the HDC framework is based on the

abstract representation of neuronal circuits in the human brain,



FIGURE 1: FLOWCHART OF THE HYPERDIMENSIONAL COMPUTING FOR CYBERATTACK DETECTIONS IN IIOT.

FIGURE 2: OVERVIEW OF HDC TRAINING AND REGENERATION IN

CYBERATTACK MONITORING.

and it involves three stages: encoding, online training, and itera-

tive learning. Initially, the HDC encodes the training data into the

high-dimensional space. Next, it generates hypervectors for each

class, which are used for single-pass training over the encoded

data. HDC then compares the similarity between class hyper-

vectors and encoded query data and retrains from assigning the

closest class to the query. This iterative learning process allows

HDC to continuously improve accuracy in intrusion detection.

2.1 HDC Encoding

The first step in hyperdimensional computing is to encode

the input data into hypervectors in a high-dimensional space. The

hypervectors contain all the information across all components,

with no component being more responsible for storing any piece

of information than another. HDC employs different encoding

methods depending on the data type. Let’s consider a function

that encodes a feature vector Ă⃗ = { Ĝğ}
ĊĂ

ğ=1
with Ĝğ ∈ R into a

hypervector Ē⃗ğ . Suppose Ē⃗ğ ∀ğ = 1 : ĊĐ are randomly generated

hypervectors (Ē⃗ğ ∈ [−1, +1]Ā). Each dimension of the encoded

data is generated by taking the dot product of the feature vector

with a randomly generated vector, resulting in

ÿğ = cos(Ă⃗ · þ⃗ğ) (1)

where þ⃗ğ is a randomly generated vector from a Gaussian distri-

bution with a mean of 0 and a standard deviation of 1. The set

of random vectors {þ⃗ğ}
Ā
ğ=1

can be generated offline and then used

for the entire cyberattack detection task (where þ⃗ğ ∈ R
ĊĂ ). After

this encoding step, each element ÿğ represents an element of the

hypervector Ē⃗ . These hypervectors are nearly orthogonal, mean-

ing that ą(Ē⃗ğ , Ē⃗Ġ ) ≈ 0∀ğ, Ġ = 1 : ĊĐ &ğ ≠ Ġ , where ą denotes the

cosine similarity. HDC uses the following set of primitives for

encoding cyberattack data:

Bundling (+): This is an element-wise addition of multi-

ple hypervectors. Bundling generates another hypervector with

the same dimensionality as inputs. In high-dimensional space,

bundling is similar to a memory operation, where the bundled

hypervector remembers the input operands’ information.

Binding (∗): This operation associates the information of

multiple objects into a single hypervector. Binding is defined as

a bitwise XOR operation in binary, and multiplication operation

in the bipolar domain (Ē⃗ = Ē⃗ğ ∗ Ē⃗Ġ ). The binded hypervector is

a new object in high-dimensional space that is orthogonal to all

input hypervectors.

2.2 HDC Regeneration

We introduce a new approach to HDC, which utilizes a dy-

namic encoder for adaptive learning. In HDC, not all dimensions

have the same impact on the learning task, with some dimensions

having little or no effect. The aim of HDC is to identify these

insignificant dimensions and remove them from the computation.

To improve accuracy, HDC regenerates these dimensions in the

encoding module, giving them a new opportunity to contribute

more significantly to the learning task.

Figure 2 provides an overview of the HDC learning frame-

work. Initially, HDC maps the data into high-dimensional space

using one of the existing encoding methods. The encoding is

dependent on the data type and performed using defined HDC

mathematics over a set of randomly generated base vectors (e.g.,

as random hypervectors in Ā = 10, 000 dimensions).



FIGURE 3: OVERVIEW OF HDC INFERENCE IN CYBERATTACK

MONITORING.

The HDC model is trained over the training data and then

normalized to simplify the similarity metric for a dot product

operation in inference or retraining. Next, we compute the vari-

ance throughout all elements of class hypervectors with minimum

variance as they represent the dimensions that can be regenerated.

The HDC drops the dimensions from the framework and base hy-

pervectors in the encoder part. The framework regenerates the

base hypervectors on the indicated dimensions. To ensure con-

tinued learning, HDC employs two iterative learning methods

that involve repeating training, dimension reduction, and dimen-

sion regeneration. This process continues until HDC identifies a

model where the majority of dimensions contribute significantly

to the classification. Additionally, HDC makes use of compressed

and efficient representations, which can reduce the computational

overhead and memory requirements of the learning process.

Drop Dimension: During the training phase of hyperdimen-

sional computing, a single hypervector representing each class is

created. The inference task is performed by checking the similar-

ity between a query hypervector (encoded inference data) and all

class hypervectors. The query data is then assigned to the class

with the highest similarity. The objective of HDC is to train class

hypervectors, where their patterns represent information. A weak

classifier cannot identify distinct patterns for different classes, re-

sulting in multiple classes having similar patterns. This makes

the classification task challenging, as the query may have a high

similarity value to multiple classes.

Figure 3 illustrates how HDC calculates similarity between

a query, Ē⃗ = {ÿğ}
Ā
ğ=1

, and class hypervectors. During the learning

phase, HDC computes the cosine similarity as:

ą(ÿ⃗Ġ , Ē⃗ğ) =
ÿ⃗Ġ · Ē⃗ğ

∥ÿ⃗Ġ ∥ · ∥Ē⃗ğ ∥
(2)

where the nominator is the inner product between the class hy-

pervector ÿ⃗Ġ and the query Ē⃗ğ . The closer the ą is to 1, the more

similarity exists between two hypervectors. Our objective is to

identify dimensions that have little impact on the classification

task. Therefore, we compute the variance over each dimension

of the classes. Dimensions with low variance have similar values

across all classes, indicating that they store common informa-

tion. During the search, these dimensions add similar weights to

cosine over all classes. We refer to these dimensions as insignif-

icant since they do not contribute significantly to differentiating

the class patterns.

Dimension Regeneration: At the beginning of the training

phase, HDC creates an initial HDC model, which consists of a

hypervector representing each class. For each dimension of the

class hypervector, HDC computes the variance over the normal-

ized model. Next, HDC selects a percentage of dimensions with

the minimum variance as candidates for dropping. Instead of

leaving these dropped dimensions blank, HDC regenerates them.

The primary objective of regeneration is to create new dimen-

sions that can potentially have a greater impact on classification,

providing a higher variance. By continually dropping insignifi-

cant dimensions and regenerating them during the training phase,

HDC aims to identify the most influential dimensions for classi-

fication, which improves accuracy. Overall, this approach offers

a promising solution for hyperdimensional computing in various

applications such as text classification and image recognition.

2.3 HDC Retraining

HDC employs a continual learning approach, building on the

previously learned model instead of starting from scratch. During

the training phase, only the values of the dropped dimensions

are ignored, while other dimensions continue to learn based on

their existing values. For each input data, the similarity between

the hypervector {Ē⃗ğ}
ĊĐ

ğ=1
and all class hypervectors ÿ⃗ is checked.

The model is updated for all mispredicted cases. If the model

predicts input as cyberattack type Ġ
′

instead of Ġ , the retraining

updates the model using the update rate ă. This process ensures

the model updates how far a training query is mispredicted. If

the similarity value of ą(ÿ⃗ Ġ
′
, Ē⃗ğ) is considerably higher than

ą(ÿ⃗Ġ , Ē⃗ğ), it indicates that the prediction result is significantly

different from the actual result. In this case, the retraining step

makes significant changes to the model. However, if ą(ÿ⃗Ġ , Ē⃗ğ) ≃

ą(ÿ⃗
′

Ġ
, Ē⃗ğ), the retraining step only adds a small portion for the

update. This process is applied to the entire dataset or a batch of

data to generate a new model, which can be used for the inference

task or another iteration of retraining.

3. EXPERIMENTAL DESIGN

In terms of monitoring industrial processes and machines,

industrial control systems (ICSs) have been used for a long time

as part of critical infrastructures. They consist mainly of super-

visory control and data acquisition systems that have a graphical

interface through its human-machine interface (HMI). The IIoT

system, shown in Figure 4, monitors the water level and turbidity

quantity of the water storage tank. A water treatment and dis-

tribution system like this is installed in industrial reservoirs to

treat and distribute water. Among the components of this testbed

are historical logs, HMIs, and Programmable Logic Controllers

(PLCs). This testbed has three sensors and four actuators. An

analog turbidity sensor and two water level sensors make up the

inputs. PLC commands are received by a three-light turbidity

alarm, a valve, and two water pumps. There are also control

buttons (on, off, and light indicators) for manual operation. The

purpose of this testbed is to maintain the water level between two

predefined levels. Additionally, it measures the degree of turbid-

ity in the water and illuminates either a red, yellow, or green light

of the turbidity alarm, depending on the level of cloudiness. A

popular IIoT protocol commonly used in ICSs is Modbus, which

was used in this testbed as the communication protocol. Ladder

language is implemented to program the logic of the PLC.



FIGURE 4: OVERVIEW OF THE IIOT STRUCTURE THAT IS UTILIZED

TO CREATE EXPERIMENTAL DATA.

ICSs include supervisory control and data acquisition sys-

tems with human-machine interfaces, which are traditionally de-

ployed as standalone systems with minimal external connectivity.

However, with the integration of IIoT technology and the in-

creased use of internet communications, ICSs have become more

exposed to potential security threats. Feature extraction from traf-

fic is essential for developing a dataset for cyberattack detection.

In designing the intrusion detection system (IDS), they select the

features whose values differed between phases of attack and nor-

mal operation. Unless a selected feature varies during an attack,

no algorithm can detect an intrusion or anomalous condition using

that feature. Through the use of the Argus tool [35], the potential

features are analyzed, and 41 of them that are selected based on

prevalent network flows and possible change during the attack

phase. Source port, mean flow, total percent loss, and destination

port are examples of the features in this dataset. Total percent

loss is the percentage of packets dropped or re-transmitted, and

destination port is the destination port number. The source port

is the port number of the source, and the mean flow is the average

duration of active flows [25].

The WUSTL-IIoT-2021 dataset provides a valuable resource

for conducting cybersecurity studies on IIoT networks. It in-

cludes real-world industrial systems with real-time cyberattacks,

consisting of normal traffic and four types of attack traffic: Com-

mand Injection, DoS, Reconnaissance, and Backdoor [25]. To

remove potentially identifying features, we excluded StartTime,

LastTime, SrcAddr, DstAddr, sIpId, and dIpId. The remaining

dataset contains 41 features, which are linearly mapped to a range

of zero to one. Given the focus on edge computing, the classifier

is trained on a small subset of the data.

As the dataset is unbalanced with the majority of samples

being normal traffic, we balanced the sample data into equal

FIGURE 5: THE PERFORMANCE METRICS OF HDC CORRESPOND

TO THE DIFFERENT NUMBERS OF ITERATIONS.

groups for each class. The Backdoor attack has the smallest

sample size of 212, which sets the minimum sample size across all

classes. We performed a classification task with varying training

data sizes, selecting 20, 40, 60, 80, and 100 samples randomly

from each class as training data. For evaluation, we randomly

selected the same number of samples from each class as test data.

This approach ensures equal train and test data sizes, although

selecting the data is a challenging task.

To evaluate classifier performance on the test data, we used

four evaluation metrics: accuracy, precision, recall, and F-score.

We repeated the process of selecting train and test data 100 times

and calculated the four evaluation metrics for each iteration. Fi-

nally, we reported the average and standard deviation (STD) of

the evaluation metrics over the 100 repetitions.

4. EXPERIMENTAL RESULTS

4.1 Hyperdimensional Computing Results

The HDC can be trained in just a few iterations, but it’s

important to evaluate its performance over multiple iterations.

For our experiment, we used 100 samples as training data and

100 samples as test data for each class. We set the hypervector

dimension to 2000 and the learning rate to 0.037, as per the

basic HDC model. Throughout the experimental section, these

parameters remained fixed.

Figure 5 shows the evaluation of the HDC over multiple it-

erations. The accuracy, precision, recall, and F-score for the

first iteration (one-pass learning) were 89.1%, 90.5%, 89.1%,

and 88.7%, respectively. This demonstrates that the HDC is fast,

achieving around 90% performance with just one pass of the

data and no retraining. With increased iterations, the average

of the evaluation metrics increased while the standard deviation

(STD) decreased. For instance, with five iterations, the accu-

racy, precision, recall, and F-score were 92.6%, 93.4%, 92.6%,

and 92.4%, respectively. With ten iterations, the performance

further increased to 93.9%, 94.6%, 93.9%, and 93.8%, respec-

tively. This represents a 4% improvement, demonstrating the

HDC’s ability to improve performance quickly. After 20 itera-

tions, the accuracy, precision, recall, and F-score reached 94.8%,

95.3%, 94.8%, and 94.8%, respectively. However, the improve-

ment from ten to twenty iterations was only 1%, suggesting that

the HDC reaches a steady state after ten iterations. Based on

the STDs for ten iterations, the metrics values were consistently



FIGURE 6: THE ACCURACY OF HDC OVER DROP RATE AND TRAIN DATA SIZE FOR A) 1 ITERATION AND B) 5 ITERATIONS AND C) 10 ITER-

ATIONS WHEN DIMENSIONS WITH THE LOW VARIANCE OF CLASS HYPERVECTORS ARE SELECTED FOR DROPPING. THE FIGURES D)-F)

REPRESENTS THE ACCURACY OVER, 1, 5, AND 10 ITERATIONS, RESPECTIVELY, WHEN HIGH-VARIANCE ELEMENTS OF CLASS HYPERVEC-

TORS ARE CHOSEN FOR DROPPING.

above 90%. Therefore, the HDC can be trained effectively with

just ten iterations to achieve reliable performance.

Figure 6 illustrates the effect of dropping hypervectors di-

mensions on HDC performance over train data size using six

heatmaps. In a heatmap, the y-axis, and the x-axis show the train

data size and drop rate percentage. There is a range of train data

sizes from 100 to 500 and a drop rate ranging from zero to thirty

percent. The heatmaps show the accuracy and the average accu-

racy of each heatmap written. Figure 6 a), b), and c) show the

effects of the drop dimensions with low variance when the HDC

trained for one-pass learning, 5 and 10 iterations, respectively. If

we do not drop dimensions, the average accuracy over the train

data size is 86.5%, 91.2%, and 92.8%, respectively, for one, 5,

and 10 iterations. The heatmap averages are 87.1%, 91.3%, and

92.7%, respectively, for one, 5, and 10 iterations which denote

that the accuracy is almost unaffected by dropping low variance

dimensions after 5 and 10 iterations. However, the accuracy is in-

creased by dropping the low variance in one-pass learning since,

in this case, we only map the data to high dimensional space,

and if we regenerate the low variance dimensions, discrimination

of the classes will be done better. For example, if we drop low

variance dimensions up to 30% for 5 and 10 iterations and the

train data set of 300, the accuracy changes by less than 0.3%.

Nevertheless, in this instance, the accuracy of one-pass learn-

ing is increased by increasing the drop rate, and the accuracy

goes from 88.2% to 89.8%. When dimensions are not dropped,

the accuracy for 100, 200, 300, 400, and 500 train data sizes is

87.4%, 90.9%, 92.6%, 92.8%, and 92.6% for 5 iterations, as well

as 91.2%, 92%, 93.2%, 93.7%, and 93.9% for 10 iterations. If

the 20% of low variance dimensions are dropped, the accuracy

is 87.4%, 91%, 92.8%, 92.9%, and 92.5% for five iterations, as

well as 91.3%, 91.9%, 93.1%, 93.5%, and 93.9% for ten itera-

tions. The accuracy has changed by equal and less than 0.2%

over 5 iterations and 0.2% over 10 iterations, respectively, over

train data sizes that show that dropping low variance dimensions

does not affect HDC performance. With one-pass learning, the

accuracy, for 100, 200, 300, 400, and 500 train data sizes, re-

spectively, is 81.3%, 85.1%, 88.2%, 89.1%, and 89.1%, while

after dropping 20% of low variance dimensions, the accuracy

increases to 82.3%, 86.2%, 89.3%, 89.5%, and 89.8%. These

results demonstrate that HDC performance can be improved by

dropping low variance dimensions in one-pass learning. As a

result, it can be concluded that the low variance dimensions have

little impact on accuracy and are insignificant.

Figures 6 d), e), and f) show the effects of the drop dimen-

sions with high variance when the HDC is trained for 1, 5, and

10 iterations. The heatmap average for dropping high variance

dimensions is 78.2%, 83.2%, and 84.2% for 1, 5, and 10 itera-

tions which means dropping high variance dimensions decreases

the accuracy 8.3%, 8%, and 8.6%, respectively. In the study

of a fixed train data size, increasing the drop rate decreases the

accuracy of 1, 5, and 10 iterations for train data size 300. With

one-pass learning, the accuracy is 88.2%, 85.2%, 80.9%, 78.4%,

76.7%, 74.8%, and 72.1% for 0%, 5%, 10%, 15%, 20%, 25%,

and 30% drop rate. This case has an accuracy of 92.6%, 90.1%,

88.6%, 85.7%, 83.3%, 78.4%, and 75.4% for 5 iterations, as well

as 93.2%, 91.4%, 88.9%, 85.8%, 82.2%, 79.2%, and 75.4% for

10 iterations. According to the results, increasing the drop rate of

high variance dimensions reduces the accuracy for a fixed train

data size and 1, 5, and 10 iterations. If the 20% of high variance

dimensions are dropped for train data sizes of 100, 200, 300,

400, and 500, the accuracy is 70.7%, 73.5%, 76.7%, 80%, and

77.5% for one-pass learning, and 76.1%, 79.9%, 83.3%, 83.2%,

and 79.6% for five iterations, as well as 79.4%, 80.3%, 82.2%,

83%, and 80.8% for ten iterations. The effectiveness of HDC in

identifying insignificant dimensions and removing them from the

computation, as well as regenerating them to improve accuracy,

makes it a promising framework for hyperdimensional computing

in IIoT systems.



TABLE 1: THE COMPARISON RESULTS OF HDC WITH SVM, MLP, LR, AND GPC ACCORDING TO ACCURACY, PRECISION, RECALL, AND F-

SCORE OVER 1, 5, 10 ITERATIONS, AND TRAINING DATA SIZE OF 100 TO 500.

Accuracy (%) Precision (%) Recall (%) F-score (%)

Train Data Size 1 5 10 1 5 10 1 5 10 1 5 10

HDC

100 81.3 ± 8.3 87.4 ± 6.9 91.2 ± 3.4 84.8 ± 8.1 89.6 ± 6.7 92.6 ± 2.6 81.3 ± 8.3 87.4 ± 6.9 91.2 ± 3.4 80.5 ± 9.4 87.0 ± 7.7 91.0 ± 3.5

200 85.1 ± 8.5 90.9 ± 5.4 92.0 ± 4.4 87.1 ± 8.9 91.9 ± 6.0 93.1 ± 4.5 85.1 ± 8.5 90.9 ± 5.4 92.0 ± 4.4 84.6 ± 9.7 90.7 ± 6.4 91.9 ± 5.1

300 88.2 ± 5.7 92.6 ± 2.6 93.2 ± 2.7 89.7 ± 6.9 93.7 ± 1.8 94.1 ± 3.3 88.2 ± 5.7 92.6 ± 2.6 93.2 ± 2.7 87.8 ± 6.9 92.6 ± 2.5 93.1 ± 3.2

400 89.1 ± 5.8 92.8 ± 3.2 93.7 ± 3.0 90.8 ± 5.9 93.8 ± 3.1 94.4 ± 3.0 89.1 ± 5.8 92.8 ± 3.2 93.7 ± 3.0 88.9 ± 6.5 92.8 ± 3.6 93.7 ± 3.3

500 89.1 ± 6.4 92.6 ± 4.4 93.9 ± 2.9 90.5 ± 6.6 93.4 ± 4.9 94.6 ± 2.3 89.1 ± 6.4 92.6 ± 4.4 93.9 ± 2.9 88.7 ± 7.5 92.4 ± 5.1 93.8 ± 3.2

SVM

100 47.3 ± 14.7 82.6 ± 8.0 86.2 ± 3.8 52.2 ± 18.2 82.9 ± 10.7 88.6 ± 2.7 47.3 ± 14.7 82.6 ± 8.0 86.2 ± 3.8 44.8 ± 16.7 81.1 ± 9.8 85.9 ± 4.0

200 47.1 ± 14.7 76.5 ± 8.0 85.7 ± 7.2 53.5 ± 16.5 75.8 ± 9.9 86.6 ± 8.0 47.1 ± 14.7 76.5 ± 8.0 85.7 ± 7.2 45.0 ± 16.6 74.2 ± 9.4 84.7 ± 8.6

300 45.3 ± 12.1 72.9 ± 7.9 82.7 ± 7.5 51.7 ± 14.6 73.9 ± 9.7 82.5 ± 8.8 45.3 ± 12.1 72.9 ± 7.9 82.7 ± 7.5 42.9 ± 13.8 71.1 ± 9.5 81.0 ± 8.9

400 47.1 ± 12.1 71.5 ± 8.5 82.7 ± 7.6 53.6 ± 15.1 73.2 ± 10.0 82.5 ± 9.0 47.1 ± 12.1 71.5 ± 8.5 82.7 ± 7.6 44.4 ± 13.7 69.8 ± 10.1 80.9 ± 9.2

500 43.5 ± 12.7 69.8 ± 9.4 80.9 ± 7.3 49.4 ± 15.7 71.2 ± 10.4 81.0 ± 8.3 43.5 ± 12.7 69.8 ± 9.4 80.9 ± 7.3 40.6 ± 14.4 68.3 ± 10.8 79.0 ± 8.9

MLP

100 21.3 ± 8.7 29.6 ± 10.2 42.1 ± 12.4 13.0 ± 10.9 21.2 ± 14.2 38.8 ± 18.9 21.3 ± 8.7 29.6 ± 10.2 42.1 ± 12.4 12.2 ± 7.7 20.7 ± 11.2 34.8 ± 14.7

200 21.9 ± 8.3 30.4 ± 10.4 44.1 ± 13.8 12.2 ± 9.5 23.3 ± 15.5 40.7 ± 18.0 21.9 ± 8.3 30.4 ± 10.4 44.1 ± 13.8 12.8 ± 7.1 20.5 ± 11.6 36.8 ± 16.2

300 24.2 ± 9.6 40.2 ± 10.9 63.5 ± 11.9 15.1 ± 11.0 36.8 ± 17.4 66.6 ± 15.0 24.2 ± 9.6 40.2 ± 10.9 63.5 ± 11.9 15.2 ± 9.2 31.7 ± 12.6 60.2 ± 14.2

400 22.6 ± 9.2 44.5 ± 12.2 64.9 ± 10.4 14.8 ± 11.5 45.6 ± 18.0 69.6 ± 12.4 22.6 ± 9.2 44.5 ± 12.2 64.9 ± 10.4 13.6 ± 8.6 37.8 ± 14.6 62.1 ± 12.8

500 25.0 ± 9.0 52.8 ± 12.8 72.1 ± 7.9 16.7 ± 12.3 54.9 ± 16.7 76.5 ± 9.9 25.0 ± 9.0 52.8 ± 12.8 72.1 ± 7.9 15.8 ± 8.8 47.9 ± 14.7 70.9 ± 9.5

LR

100 57.1 ± 12.8 81.9 ± 3.7 85.1 ± 3.5 57.8 ± 16.7 86.0 ± 2.7 87.8 ± 2.9 57.1 ± 12.8 81.9 ± 3.7 85.1 ± 3.5 53.8 ± 15.2 81.7 ± 3.9 84.8 ± 3.7

200 61.9 ± 10.2 84.3 ± 2.8 87.7 ± 2.8 63.2 ± 12.9 87.4 ± 2.1 89.5 ± 2.2 61.9 ± 10.2 84.3 ± 2.8 87.7 ± 2.8 59.9 ± 12.1 84.1 ± 2.8 87.6 ± 2.9

300 63.5 ± 9.9 84.2 ± 2.0 88.6 ± 2.1 65.6 ± 12.7 87.3 ± 1.5 90.0 ± 1.7 63.5 ± 9.9 84.2 ± 2.0 88.6 ± 2.1 62.0 ± 12.0 83.9 ± 2.1 88.4 ± 2.2

400 66.9 ± 9.4 84.8 ± 1.9 89.3 ± 1.8 69.5 ± 10.5 87.8 ± 1.4 90.5 ± 1.6 66.9 ± 9.4 84.8 ± 1.9 89.3 ± 1.8 66.0 ± 11.1 84.6 ± 2.0 89.2 ± 1.9

500 67.6 ± 7.9 84.5 ± 1.7 89.3 ± 1.4 69.2 ± 10.1 87.5 ± 1.2 90.4 ± 1.3 67.6 ± 7.9 84.5 ± 1.7 89.3 ± 1.4 66.9 ± 9.6 84.3 ± 1.8 89.2 ± 1.4

GPC

100 65.5 ± 5.5 84.5 ± 3.8 84.5 ± 3.8 80.7 ± 4.1 87.5 ± 2.8 87.5 ± 2.8 65.5 ± 5.5 84.5 ± 3.8 84.5 ± 3.8 66.2 ± 6.0 84.1 ± 4.0 84.1 ± 4.0

200 65.4 ± 3.5 87.9 ± 2.4 87.9 ± 2.4 80.4 ± 3.1 89.7 ± 1.9 89.7 ± 1.9 65.4 ± 3.5 87.9 ± 2.4 87.9 ± 2.4 66.4 ± 3.8 87.8 ± 2.6 87.8 ± 2.6

300 61.1 ± 2.7 89.1 ± 2.0 89.2 ± 2.0 81.3 ± 2.8 90.5 ± 1.5 90.5 ± 1.5 61.1 ± 2.7 89.1 ± 2.0 89.2 ± 2.0 62.4 ± 3.3 89.0 ± 2.1 89.0 ± 2.1

400 56.3 ± 2.4 90.1 ± 1.7 90.1 ± 1.7 83.6 ± 1.5 91.3 ± 1.4 91.3 ± 1.4 56.3 ± 2.4 90.1 ± 1.7 90.1 ± 1.7 56.9 ± 3.3 90.0 ± 1.8 90.0 ± 1.8

500 52.4 ± 1.9 90.7 ± 1.5 90.7 ± 1.5 84.1 ± 1.2 91.6 ± 1.2 91.6 ± 1.2 52.4 ± 1.9 90.7 ± 1.5 90.7 ± 1.5 51.9 ± 2.8 90.6 ± 1.6 90.6 ± 1.6

4.2 Comparison Results

Table 1 illustrates the comparison between HDC and other

classifiers in edge computing in cybersecurity attack detec-

tion. The support vector machine (SVM), multi-layer perceptron

(MLP), logistic regression(LR), and Gaussian process classifica-

tion (GPC) are implemented with the Scikit-Learn library. The

classifiers are configured with the default parameters provided by

the library. The average and STD of accuracy, precision, recall,

and F-score for classifiers are shown for different train data sizes.

The result is shown for 1, 5, and 10 iterations.

For the train data sizes of 100, 200, 300, 400, and 500, HDC

accuracy is 81.3%, 85.1%, 88.2%, 89.1%, and 89.1% in one-

pass learning, 87.4%, 90.9%, 92.6%, 92.8%, and 92.6% in 5

iterations, as well as 91.2%, 92%, 93.2%, 93.7%, and 93.9% in

10 iterations. For each train data size and number of iterations, we

compare the best performance of the other classifiers with HDC.

For different train data sizes in one-pass learning, the closest to

HDC accuracy are 65.5%, 65.4%, 63.5%, 66.9%, and 67.6%,

which are 15.8%, 19.7%, 24.7%, 22.2%, and 21.5% below HDC

accuracy. According to this result, HDC performs better in one-

pass learning than other classifiers, with a difference of more

than 15%. In 5 iterations, the closest accuracy to HDC is 84.5%,

87.9%, 89.1%, 90.1%, and 90.7%, which is 2.9%, 3%, 3.5%,

2.7%, and 1.9% below HDC. In 10 iterations, a close match

to HDC accuracy appears to be 86.2%, 87.9%, 89.2%, 90.1%,

and 90.7%, which is 5%, 4.1%, 4%, 3.6%, and 3.2% below

HDC. The results show that HDC is better at classifying even

after 5 and 10 iterations compared to other classifiers. When

comparing HDC accuracy with other classifiers, the differences

between them decreased from one to five iterations but increased

again from five to ten iterations. HDC performance is better

than other classifiers such as accuracy, with just the precision

values being higher than accuracy values when we compare its

precision, recall, and F-score to those of other classifiers. GPC

and LR have a closer performance to HDC and the performance

of HDC and MLP differs significantly. For the HDC, the STDs

are decreased and the averages are increased by increasing the

number of iterations. Moreover, the averages are improved by

increasing the train data size from 100 to 300. However, raising

the train data size over 300 only affects averages slightly which

means the HDC can be trained by a few samples and doesn’t need

many samples for the training stage.

Figure 7 demonstrates the results for the steady state situa-

tion, which means the classifiers are trained up to the maximum

number of iterations and the metrics’ average and STD in the

last iteration are shown. HDC is trained over 250 iterations and

other classifiers that are implemented using the Scikit-Learn li-

brary, are trained over a maximum number of iterations that are

set by this library. HDC and other classifiers are evaluated over

different train data sizes. Therefore, HDC compares with the

classifiers which are trained using default parameters that are

provided by the Scikit-Learn library. For different train data sizes

in the steady state, the HDC accuracy is 93%, 94.8%, 95.6%,

95.7%, and 95.9%, and the STDs are 2.8%, 1.9%, 1.4%, 1.3%,

and 1%, respectively. As the number of iterations increases in the

HDC model, the standard deviations of the evaluation metrics de-

crease, and the averages increase. This indicates that the model is

becoming more consistent and accurate in its performance as it is

trained over more iterations. In addition, increasing the size of the

training data from 100 to 300 rises the averages of the evaluation

metrics, indicating that the HDC model can benefit from larger

amounts of training data up to a certain point. However, after a

training data size of 300, increasing the data size further only has

a minor impact on the averages of the evaluation metrics. This

suggests that the HDC model is able to achieve high accuracy and

consistency with relatively small amounts of training data.

For each train data size, we compare the best performance

of the other classifiers with HDC. For different train data sizes in

the steady state, the closest to HDC accuracy are 88.7%, 90.4%,

92.8%, 92.8%, and 93.7% which are 4.3%, 4.4%, 2.8%, 2.9%,



FIGURE 7: THE PERFORMANCE OF HDC FRAMEWORK IN COMPARISON TO MLP, SVM, LR, AND GPC FOR TRAIN DATA SIZES RANGING

FROM 100 TO 500 ACCORDING TO THE FOLLOWING EVALUATION METRICS A) ACCURACY, B) PRECISION, C) RECALL, AND D) F-SCORE.

and 2.2% below HDC accuracy. Therefore, HDC does a superior

performance than other classifiers when only a few train data

are fed to the classifiers. HDC outperforms other classifiers

such as accuracy when we compare precision, recall, and F-score

with other classifiers, although precision values are higher than

accuracy values. Therefore, when only a few train data sizes are

provided to the classifiers, HDC outperforms SVM, MLP, LR,

and GPC in cybersecurity. In the steady state, MLP is closest

to HDC. The performance of GPC and LR is similar to HDC

for a small number of iterations; however, in steady state, their

performance isn’t even close to MLP and SVM, which means

they can be trained in a few iterations and with a small amount of

train data but cannot compete with HDC.

5. CONCLUSIONS

The Industrial Internet of Things (IIoT) is an emerging tech-

nology that has the potential to revolutionize the way industries

operate. However, as with any new technology, there are concerns

about its security, especially in the face of cyberattacks. This re-

search introduces HDC, a hyperdimensional cognitive learning

framework for robust, efficient, and transparent security monitor-

ing. We first represent security-related data into a holographic

high-dimensional space to abstract the knowledge. Then, we

develop a cognitive learning algorithm capable of security mon-

itoring in a lightweight manner with limited training data. The

HDC is integrated with the regeneration capability of hypervec-

tors elements to realize ultra-fast learning of intrusions, making it

suitable for detecting new cyberattacks. The experimental results

based on the WUSTL-IIOT-2021 dataset show that HDC effec-

tively detects and handles attacks, including backdoor attacks,

command injection, denial of service, and reconnaissance. The

combination of IIoT and HDC is a promising approach for achiev-

ing secure and efficient data processing in industrial settings.
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