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Abstract—In this paper, we introduce a novel approach to
multi-agent coordination under partial state and observation,
called Multi-Agent Recurrent Deterministic Policy Gradient with
Differentiable Inter-Agent Communication (MARDPG-IAC). In
such environments, it is difficult for agents to obtain information
about the actions and observations of other agents, which can
significantly impact their learning performance. To address this
challenge, we propose a recurrent structure that accumulates par-
tial observations to infer the hidden information and a communi-
cation mechanism that enables agents to exchange information to
enhance their learning effectiveness. We employ an asynchronous
update scheme to combine the MARDPG algorithm with the
differentiable inter-agent communication algorithm, without re-
quiring a replay buffer. Through a case study of building energy
control in a power distribution network, we demonstrate that our
proposed approach outperforms conventional Multi-Agent Deep
Deterministic Policy Gradient (MADDPG) that relies on partial
state only.

Index Terms—Multi Agent Reinforcement Learning, Policy
Gradient, Partially Observable, Actor-Critic

I. INTRODUCTION

In recent years, the integration of Multi-Agent Reinforce-
ment Learning (MARL) has found application in diverse do-
mains. From autonomous traffic management, swarm robotics
to collaborative multi-robot systems, energy distribution, and
the analysis of economic and social problems, these tech-
nologies face uncertainties and complexities that necessitate
adaptive and intelligent decision-making. At the core of many
MARL algorithms lies the policy gradient framework, a ap-
proach for optimizing the policy of an agent in enhancing
the adaptability and learning capabilities of agents within
multi-agent systems. Multi-Agent Deep Deterministic Policy
Gradient (MADDPG) [1], multi-agent extension of DDPG,
introduces a decentralized execution policy with centralized
training, enabling agents to learn joint strategies in complex,
interconnected environments. In the context of MADDPG, it
is noteworthy that in practice, each individual agent typically
contends with access to only partially observable states in en-
vironments characterized by partial observability. This asym-
metry in information availability can result in a performance
decline for MADDPG when compared to scenarios where
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agents have access to complete state information. Addressing
partial observability in Partially observable Markov decision
process (POMDP) has been a longstanding challenge. Previous
works [2], [3] have explored recursive structures within RL
frameworks to enable agents to reason about hidden states.
Furthermore, extensions [4] of recursive structures to Multi-
Agent systems have been introduced. An alternative strategy
to alleviate the constraints imposed by partial observability
in MARL is the incorporation of communication mechanisms
among agents [5], [6]. This approach serves as a pivotal means
to address information asymmetry and enhance collaboration,
offering a promising avenue for mitigating the challenges
associated with partial observability in complex, dynamic
environments.

In this work, to tackle the challenge of partial observability,
we propose a combining structure of Multi Agent Recurrent
Deterministic Policy Gradient (MARDPG) and differential-
ble inter-agent communication, termed as MARDPG-IAC, to
improve the performance of the existing one-stage or multi-
stage MADDPG [7]. The training process for the proposed
architecture unfolds in two distinct phases. During the first
phase, the recursive policy function for each agent undergoes
training utilizing the MARDPG algorithm. Transitioning to the
communication network training stage, where other networks
remain fixed, the communication network is trained on-policy.
To seamlessly integrate two diverse training types, an asyn-
chronous update scheme has been introduced. Through nume-
rial results from the case study involving a power network,
we demonstrate the superior performance of MARDPG-IAC
compared to both the one-stage and multi-stage versions.

The remainder of the paper is organized as follows: Section
IT provides the background of MARL under POMDP. Section
III presents the architecture and algorithm of the proposed
MARDPG-IAC. Section IV introduces a case study of power
distribution network. In Section V, we present simulation
studies of MARDPG-IAC and compare with other existing
algorithms. Section VI includes conclusions and future work.

II. BACKGROUND

We consider multi-agent reinforcement learning (MARL)
with a decentralized markov decision process (MDP) and
partially observable states, denoted as (M,S,O0, A, P, R).
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Here, M is a set of m agents, S = x;S® is the set of
joint state space, @ = x,;0) is the set of joint observation
space, A = x; A is the joint action space, R is the reward
function. Each agent i executes action a(¥ € A%, The joint
action a = (), ---  a(™)) causes state transition from s € S
to s’ € S with probability P(s'|s;a) = P(s,a;s’). Each agent
i only has access to its local state s(*) and local observation
o), and has its own policy p(¥) : S() x (9,(:) X Ag) — A® in
which subscript h denotes history of agent i’s observations and
actions. The joint policy is denoted as p = (u(M), -+ (™),
The agents receive a shared joint reward of 7,11 = R(st, at)
at each time £+ 1. The goal is to maximize the expected return,
J =E(> ;2 g7're41), where ~ is the discount factor.

Although existing RL algorithms, such as MADDPG, can
be employed to tackle MDP with partial states, the efficacy
of these algorithms can be substantially reduced compared
to that with full states. Consequently, we propose a new
approach in this work to address this performance degradation
by utilizing the history of local observations, actions, and
inter-agent communication. Specifically, at each time step ¢,
we assume that each agent has access to local observations
ogl) € Q) which are determined by the joint action a;_; and
joint state s;_; from the previous time step. We incorporate
a recurrent structure to accumulate this side information in
our RL algorithm design, enabling agents to leverage this
information to generate improved policies. It is important to
note that our proposed MARL formulation differs from that
of the standard decentralized partially observable MDP (Dec-
POMDP). The latter assumes that each agent makes decisions
based solely on local observations, whereas in our setting,
local observations are employed as additional information
alongside local states to facilitate the generation of better
policies. Furthermore, the states in our MDP formulation
cannot be construed as observations in the Dec-POMDP, as
they are not necessarily a consequence of the agents’ actions.

III. THE PROPOSED MARDPG-IAC

We will begin with a description of the Modified MARDPG,
followed by IAC.

Modified MARDPG: Recurrent Deterministic Policy Gra-
dient (RDPG) [3] offers several advantages for tackling the
challenges of partial observability in multi-agent environ-
ments. RDPG leverages a recurrent neural network to maintain
a memory of past observations, which can be used to infer
hidden state information and the actions of other agents. In
this paper, we adopt modified MARDPG with recursive actor
and non-recursive critic structure with centralized training
and decentralized execution (CTDE) to mitigate performance
degradation resulting from partial observability. In CTDE, the
each critic can access full state information and all actions
conducted by agents so the critic don’t need to use recurrent
structure to accumulate information about other agents but
the actor of each agent can obtain only partail state and
observation and need to take advantage of recursive structure
to accumulate partial information to infer actions and partial

observations by other agents. This recursive asymmetry be-
tween actor and critic structure provides accurate Temporal
Difference (TD) target with less backpropagation computa-
tional burden while actors can infer information effectively.
Another difference from the conventional RDPG structure is
that partial state for each agent doesn’t change in the recursive
iteration, which means it doesn’t require inference based on
recursive structure. Similar to the conventional MARDPG, the
modified MARDPG incorporates an actor-critic structure to
facilitate policy gradient and the above described features are
delineated in Figure 1. In the figure, m§” represents the mes-
sage generated by the Communication Network (CommNet)
of agent i in TAC. Additionally, ah\”, and ch”, denote the
hidden states of the actor network and CommNet for agent 1,
respectively.
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(a) actor structure for agent 1 (b) centralized critic structure

Fig. 1: Modified Recurrent Actor Critic Structure

The policy gradient with respect to agent ¢’s policy parame-
terization is

8I(0®) 0 i i1 BQEP(S(I)H“ ,s(E)
900 — Br® Y Ha(®)
t=0
A ... o) oul?
Oa(®) (i)
o a® =y o0

where we have written the expectation over observation-action
trajectory 7() = (sg),ogi),af),og), - ,agpi)_l,ogf)) and ,uéi)
is a deterministic policy with parameter 6 for agent i and
fo) is the true action-value function of agent ¢ associated
with the current policy. Figure 2 presents a schematic diagram
illustrating the process of centralized critic update. The target
critic generates the TD target by incorporating the current re-
ward from the environment, and The critic network parameters
are thereafter adjusted to minimize the TD error.
Inter-Agent Communication (IAC): We adopt modified
Differentiable Inter-Agent Learning (DIAL) [6] structure for
reinforced communication learning between agents. DIAL
doesn’t use experience replay to avoid non-stationarity mis-
leading caused by multiple agents’ concurrent learning and
backpropagation starts once the episode reaches its terminal
state or the maximum length of sequence. To apply this
limitation to our model, the update for actor and the update for
communication network happen asynchronously as described
in Figure 3. CommNet and actor network are separated, which
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Fig. 3: Asynchronous Network Update and CommNet Structure

means CommNet is not affected by the actor network’s off
policy update based on experience replay and while actor-critic
update phase, CommNet is freezed to give stability in update.
In CommNet update phase, run a episode until it reaches its
terminal state or the maximum length of sequence. At the
end of the trajectory, the gradient calculation for the message
net begins from the time 7" in a backward direction. The loss
function for the message network is defined by the downstream
bootstrap TD error of other agents. Once CommNet has been
updated, the action network update phase starts alternately.
The interconnection among actor network, CommNet, and
environment is described in Figure 4. A detailed description
of the MARDPG-IAC is shown in Algorithm 1.

IV. A CASE STUDY OF DECENTRALIZED BUILDING
ENERGY CONTROL IN POWER DISTRIBUTION NETWORK

To assess the efficacy of the proposed MARDPG-IAC in
practical scenarios, we conduct a case study addressing a
building energy control problem within a power distribution
network, aimed at ensuring reliable and cost-effective grid
operation. For simplicity, we assume a scenario where each
node in the distribution network connects to a single build-
ing complex, allowing control over real and reactive power
consumption and generation. The distribution network utilized

)
ah;)

0}
Actor 1 ‘
70

1
ch®) m

ey

[ON
a/

s(l)(of” m® a“))

201 %1

CommNet1

CommNet2

chf) ’\ /‘
Actor 2
e

2)
ah ) o

Fig. 4: MARDPG-IAC Actor and CommNet Exectution

JuswiuoJinug

ER = B R o |

S(2)(Ot<2) m® au)) .
a®

in this study is a simplified single-phase IEEE-13 Node Test
Feeder, illustrated in Figure 5.

The 13 nodes are indexed as i = 0,...,12, where Node
0 serves as the feeder head maintaining a constant voltage
magnitude. Ensuring the reliability of grid operation necessi-
tates maintaining voltage magnitudes within a specific range
at all nodes. Let V' € R!? represent the vector containing
the voltage magnitudes of the 12 nodes (excluding the feeder
head). At any given time, we have V = f(P,Q), where
the mapping f(-) is determined by the power distribution
network’s topology and configuration. Additionally, P =
P,+P.c R?and Q = Q, + Q, € R'2 denote the
net real and reactive power consumption vectors at the 12
buildings, with positive values indicating consumption and
negative values indicating generation. In the MARDPG-IAC
framework, P and @, represent the baseline net real and
reactive power consumption vectors, treated as the system’s
state. Meanwhile, P. and Q. represent the controllable net
real and reactive power consumption, considered as the sys-
tem’s action. It is noteworthy that the actions in this context
are continuous-valued. The voltage magnitude V; at the ith
node is regarded as the local observation. Additionally, at any
time, the negative total power loss of the distribution network
—L(P,Q) serves as the global reward, while the negative
generation/consumption cost —c; (P, ;, Q.,;) of each building
1 is considered the local reward. The primary objective is to
minimize the total power loss along with all local genera-
tion/consumption costs, formulated as an optimal power flow
problem

12

min L(P,Q)+ Y _ ci(Pei, Qi)

e i=1

S't'ECSPCSFC; QCSchac’ KSVSv,
(1)

where P, P., Q , and Q, are vectors containing local

—C
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Fig. 5: Case study: Building energy control in a power distribution
network.

physical limits of all buildings’ energy units, and V and V'
are vectors denoting the nodal voltage bounds.

V. NUMERICAL RESULTS

In Figure 6, The performance of the proposed MARDPG-
IAC is compared with three other RL algorithms, namely
Modified MARDPG without IAC, Two-Stage MADDPG (TS-
MADDPG) [7], and conventional MADDPG [8], using a
power distribution network described in Section 3. The power
distribution network consists of 12 nodes, except the feeder
head 0, which are divided into two groups of six nodes each
for the scenario 1 and four groups of three nodes each for the
scenario 2.

Each group of nodes is treated as an agent, and each agent
has access to only the local states, partial observations and
its own previous actions within their group. The performance
comparison of the four RL algorithms for both scenarios are
presented in Figure 6, where the left sub-figure shows the
histogram of the evaluation results for scenario 1, and the
right sub-figure shows the results for scenario 2. The x—axis
represents the reward percentage error rate (PER), which is
defined as the difference between the optimal reward obtained
by a conventional centralized optimization algorithm and the
reward obtained by applying the generated actions using each
of the four RL algorithms, divided by the optimal reward. The
expectation is calculated over a total of 6 - 10* independently
generated states, where the states represent the nodal baseline
power consumption/generation and are independent of each
other over time. We assume that the components of each state
vector follow a Gaussian distribution with zero mean and a
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Fig. 6: Histograms of reward percentage error rate (PER) using
MARDPG-IAC, Modified RDPG, TSMADDPG, and MADDPG.
Left: 2 Group Scenario. Right: 4 Group Scenario

variance of 10°. It should be noted that the conventional algo-
rithm assumes full knowledge of the states and the distribution
network and needs to be re-run for each new state to compute
the optimal reward. On the other hand, the four RL algorithms
do not assume any prior knowledge of the power network
topology and configuration.

Based on the results presented in Figure 6, it is evident that
MARDPG-IAC and Modified MARDPG exhibit similar per-
formance, which is notably superior to that of TS-MADDPG
and MADDPG, as evidenced by their respective histograms.
The primary difference between MARDPG-IAC and Modified
MARDPG is the presence of IAC. This finding suggests that,
for a higher percentage of states, MARDPG-IAC and Modified
MARDPG can generate near-optimal actions that result in
rewards that are closer to the optimal values, as indicated by
a smaller reward percentage error rate (PER). In contrast, the
histograms for TS-MADDPG and MADDPG exhibit heavier
tails, indicating a higher probability of these algorithms failing
to generate near-optimal actions compared to MARDPG-IAC
and Modified MARDPG. Furthermore, the results indicate
that the performance difference between MARDPG-IAC and
Modified MARDPG is more pronounced in the four-agent
scenario compared to the two-agent scenario. Specifically,
the histogram of MARDPG-IAC in the four-agent scenario
has a noticeably higher peak located closer to the left side
of the graph. The reason for the performance improvement
with TAC in the four-agent scenario is that, unlike the two-
agent scenario, each agent in the four-agent scenario has more
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hidden information to infer, and the use of a recurrent neural
network alone is not sufficient to capture all the relevant
information.

In summary, the results demonstrate that the incorporation
of MARDPG-IAC leads to improved performance compared
to MARDPG without IAC, TS-MADDPG and MADDPG,
especially in scenarios with a larger number of agents, where
there is more hidden information to infer.

VI. CONCLUSIONS AND FUTURE WORK

This work introduces a novel MARDPG-IAC algorithm that
enhances collaboration among agents and improves learning
performance in MARL with partial states by utilizing history
of local observations and actions as side information and inter-
agent communication. The case study of power distribution
network demonstrates the efficacy of MARDPG-IAC, which
outperforms prior studies that only employed partial states
for training optimal control policies. As a follow-up to this
research, we aim to explore the impact of DDPG based
Inter-Agent Communication Algorithms, such as the Atten-
tional Communication Model (ATOC) [9], on performance
without asynchronous update. Additionally, we note that the
grouping topology in the power distribution network affects
performance, and we expect that incorporating attention [10]
to consider grouping topology can alleviate this performance
dependency.
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Algorithm 1: MARDPG-IAC

Modified Multi-Agent RDPG update:
Initialize all agents’ cirtic network Qw) and actor p,
with parameters w and 6

(@

Initialize target network QS @

W+ wand @ <0
Initialize replay buffer R
for episodes =1 to M do
initialize empty history hg
for t=1 to T do
for each agent i,

and p,’ with weight

™ at =1
receive partial observation ogl)

receive partlal state s,

(@)

append partial state, previous action a;’; and

partial observation to history hg 2

select action aEi) = uéi) + € where € is
exploration noise

receive reward 7

end

Store the trajectory sequence in R

Sample a minibatch of N trajectory episodes from
R

Compute target values for each sample episode

without using recurrent network
(i) ( ) 4
L L
P (1))

VQ ((1) . ngL)vﬂél) (hgl))7...

Compute critic update
Aw(®) =
g i 1 L)y (i
ﬁZnZt (yg ) _qu) (Sg )a 755 ),ag ))>

00 (s

)S(lL) ,aii))

Ow(®)
Compute actor update

A =
QW (517, 5(”

(1) (1)
o N h yoee
LYY 2 047)

Update actor and critic parameters using Adam
Update the target networks

end

Inter Agent Communication update:

Load the last K trajectory episodes in the replay
buffer R

for episode=1 to K do

for each episode do
Train Inter-Agent Communication Network by

Modified DIAL algorithm
end

end
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