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Abstract—Reinforcement learning presents a promising ap-
proach to bolster cybersecurity through the development of
intelligent agents capable of learning from their environment
and adapting to new threats. In the field of cybersecurity,
reinforcement learning has various applications, including intru-
sion detection, malware classification, and vulnerability analysis.
However, current reinforcement learning algorithms such as Deep
Q-Learning rely on deep neural networks, which entail high
computational costs and unsuitability for deployment on edge
devices. To overcome this challenge, we proposed two solutions
for efficient reinforcement learning on edge devices.

The first solution is a Hyperdimensional Reinforcement Learn-
ing algorithm inspired by the brain’s properties that facilitate
robust and real-time learning using a lightweight brain-inspired
model to learn an optimal policy in an unknown environment.
Next, we propose a heterogeneous CPU-FPGA platform that
maximizes the computing capabilities of FPGAs by applying
hardware optimizations for hyperdimensional computing’s criti-
cal operations. Our platform achieves faster and higher energy
efficiency than state-of-the-art reinforcement learning accelera-
tors while maintaining the same or better quality of learning.
Additionally, we enhance the RL model’s learning capabilities,
such as learning throughput, energy efficiency, and robustness.
Our proposed solutions offer efficient and scalable alternatives
for reinforcement learning on edge devices, making it possible
to support online and real-time learning with minimal memory
capacity.

Index Terms—cybersecurity, reinforcement learning, hyperdi-
mensional computing, brain-inspired learning, q-learning

I. INTRODUCTION

Reinforcement learning (RL) is widely used in different

domains, including cybersecurity, to tackle complex and dy-

namic decision-making problems that traditional rule-based

and signature-based methods are not suitable for. RL algo-

rithms can be trained to identify and respond to attacks, opti-

mize security policies, and even generate new attack scenarios.

Although the use of RL in cybersecurity is still in its early

stages, it has shown promising results and has become an

active area of research.

Compared to traditional machine learning techniques, RL

does not require large amounts of labeled data for training.

Instead, it involves defining an environment that simulates the

task the model needs to learn, where the agent has no prior

knowledge of the environment. In RL, there are two primary

approaches to achieving this: policy-based learning and value-

based learning. Q-Learning is an algorithm that computes

a value for each state in the environment to measure the

expectation of attaining future rewards, but in large state and

action spaces, a deep neural network is required to compute

these values, which can be computationally expensive during

backpropagation.

Hyper-Dimensional Computing (HDC) has recently

emerged as a highly efficient and robust machine learning

model. HDC encodes objects with high-dimensional data

representations called hypervectors, which store thousands of

elements and incorporate memory functions and vector

operations, making it computationally tractable and

mathematically rigorous. HDC can learn from a few

shots of training data and is analogous to human-like learning

and reasoning capabilities.

Our recent work uses this HDC model as an alternative

to Deep Q-Learning for reinforcement learning tasks [1], [2].

This HDC-based RL model is able to achieve comparable

learning outcomes to a Deep Q-Learning Model with the

advantage of being computationally more efficient while also

producing significantly higher learning quality, i.e., faster

learning and convergence. This advantage is particularly im-

portant in edge computing since HDC algorithms require

far less computational power due to the simple arithmetic

of these algorithms compared to the complexity of Neural

Networks [3]–[9]. Despite the success, HDC-based RL still

lacks parallelism and requires a large number of resources

on traditional cores [1]. Previous works already show that

HDC-related operations, such as hypervector multiplication,

have a long execution time on the CPU [10]–[15]. Domain-

specific accelerators targeting HDC model have shown large

sucess by previous works [12], [13], [16]–[19]. Furthermore,

many domain-specific accelerators [20]–[24] have achieved

great acceleration results of RL algorithms.

We developed an architecture and algorithm co-optimization

to maximize an RL agent’s learning throughput by realizing

the best use of FPGA’s resource utilization. We evaluate the

effectiveness of our approach on classic OpenAI Gym [25]

tasks. Our results show that the CPU-FPGA platform provides

on average 20× speedup compared to current state-of-the-

art hyperdimensional Q-Learning methods [1] that run on

Intel Xeon 6226 CPU. On the Xilinx Alveo U280 accelerator

card platform, drawing less than 20 watts, our accelerator

shows 14× speedup over state-of-the-art reinforcement learn-

ing FPGA acceleration work using only a 73.1K look-up table

for the single-agent accelerator, making it suitable for deploy-

ment on an edge device. Our platform shows flexibility on

different FPGA platforms with different resources condition.
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Fig. 1. Q-Learning Overview

II. HDC-BASED Q-LEARNING

As shown in Figure 1, the primary goal of Reinforcement

Learning (RL) is training an agent’s capabilities to find the

reward-maximizing behavior when interacting with its en-

vironment [26]. Based on whether an agent uses a policy

to select its action for each time step t, we can divide

the RL algorithm into policy-based RL, such as Proximal

Policy Optimization (PPO), and off-policy RL, such as Q-

Learning [27]. This work focuses on off-policy Q-Learning

due to its fast convergence speed. Figure 1 presents a general

Q-Learning procedure. At each time step t, an agent receives

its state(st) from the environment and performs an action(at)

to the environment. The agent maintains a Q function to select

the action based on its current state(st). After conducting

at to the environment, the agent will receive a reward(rt)

as feedback and transfer into a new state(st+1). The agent

will repeat these interactions with the environment and try to

maximize the cumulative reward Rt =
∑T

i=t µ
i−t∗rt, where T

is the episode’s total time, or trajectory length, and µ ∈ (0, 1]
is the time step discount factor.

The Q function is one of the most critical components

of every Q-Learning algorithm. All other optimization tech-

niques, including experience replay and the use of a target

network, rely on this Q function. Traditionally, the Q function

is represented as a table called the Q-table [27]. Such Q-

table-based Q-Learning algorithms are referred to as Tabular

Q-Learning. Tabular Q-Learning is simple but has difficulty

scaling because when a task’s complexity increases, the size

of the Q-table will also increase, amassing a burden to memory

access.

Today, most researchers use Neural Networks (NN) to

implement the Q function to handle more complicated tasks

[28]. These neural network-based Q-Learning algorithms are

called Deep Q Learning (DQN). Although DQNs can handle

complex tasks, the computing resources necessary to train

these models is immense, making deploying DQN models on

edge devices extremely difficult. The loss gradient calculation

and backpropagation also limit the DQN model’s performance

improvement. To overcome these issues, our most recent

work [1] uses hyperdimensional computing(HDC) to replace

neural networks in the Q-Learning algorithm. It shows that

HDC-based Q-Learning (HDQL) can achieve faster learning

speed than DQN. Also, [1] shows that HDQL can achieve high

’

Fig. 2. HDQL acceleration overview on CPU-FPGA Platform.

learning rewards with limited memory access.

III. ACCELERATION PLATFORM

A. Framework Overview

Figure 2 shows our designed platform’s top architecture.

The agent interacts with the environment on a CPU, and

a replay buffer is maintained on the same host CPU. To

accelerate high-dimensional vectors (called hypervectors) op-

erations during training and inference, the host CPU will

offload corresponding state, action, and reward data to the

FPGA kernel via PCIe communications as shown in Figure 2

•a . After the hypervector computation, the kernel FPGA will

return to training or inferring results to the host CPU.

The hypervector computation on the FPGA includes three

layers: the encoding layer (Encoding), the regression layer

(Regression), and the model updating layer (Updating). The

FPGA kernel reads the input data, such as the state, action

mask, and reward, via the AXI interface from DRAM or

HBM (•b ). The quantization precision that we chose here is

a fixed point-32 bit. The original state vector (s⃗t) is encoded

into an HDC vector inside the encoding layer. The kernel

function that we selected for this layer’s encoding is an

exponential function(f(x) = ejx), which means each element

of the encoded hypervector is a complex number. Here, we

call this hypervector a complex hypervector. To simplify the

on-chip computation, we will divide this complex hypervector

into the real (R⃗e) and imaginary (I⃗m) parts based on Euler’s

formula. The encoded HDC vectors will then be loaded into

the regression layer (•c ). Two regression models: Q and Q’,

are maintained inside this layer to conduct double estimation.

After the regression layer, the generated function values: VQ

and VQ′ will be loaded into the updating layer (•d ). Two

operations occur inside this layer. The first is the selection

of the optimal action index and relaying it back to the host

CPU(•f ). The second is to generate the model update value

and store it in the on-chip cache (•e ).

B. Encoding Layer Architecture

The state vector(s⃗) is passed from the off-chip DRAM

or on-chip HBM into the encoding layer. As is shown in

Figure 3a •1 , each element of s⃗ will multiply with its

corresponding position hypervector. Suppose the dimension

of the state vector and position hypervector are N and D:
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these N position hypervectors will be stored on-chip as a

position hypervector matrix (P). P’s dimension will be N×D.

In the process, •1 , each row vector of matrix P will be

multiplied with its corresponding state vector’s element. In

process•2 , the reduction operation will be applied over matrix

P’ row direction to generate hypervector E⃗. After the reduction

operation, the generated E⃗ will be encoded using a kernel

function. The kernel function that we select in this paper is the

exponential function. A new hypervector E⃗
′

will be generated

after applying this kernel function to every element of E⃗.

Next, we elaborate on the implementation of our exponential

encoder IP on FPGA. Inside each exp encoder IP, there are

Sine and one Cosine encoder IP. Many efficient methods

exist for the FPGA hardware design to implement triangle

functions, such as Taylor Expansion or using the Vitis HLS

math function. We use the triangle codebook method to save

on-chip resource utilization and reduce computing latency. We

use BRAM to store the pre-computed Sine and Cosine values.

We refer to this BRAM with the stored Sine and Cosine

values as a codebook. The original fixed-point number will be

treated as an address to access those on-chip BRAMs during

the Sine/Cosine computing process. The benefits of using

this codebook include reducing resource utilization, especially

LUT and DSP, and saving calculation time.

C. Regression Layer Architecture

Inside the regression layer, the encoded state hypervectors

R⃗e and I⃗m will have double regression performed on them.

Here, double regression indicates that there are two action

models inside this layer. We define them as Q and Q’.

The dimensions of the Q and Q’ hypervector matrices are

A × D. Here, A is the task’s action space, and D is the

hypervector’s dimensionality. Each row hypervector of the

Q and Q′ matrices represent the corresponding action’s Q

function. Like double deep Q-Learning, model Q’ is a delayed

model which will be periodically updated using parameters in

model Q. The benefit of maintaining two action models is to

avoid maximization bias by disentangling the updates from

biased estimates. Specifically, model Q is used for learning

purposes, and Q’ is used for inference purposes. In contrast to

traditional DQN, which separates the learning and inference

processes, the two processes occur simultaneously in our

platform kernel, as shown in Figure 3 processes •a and •b .

The purpose of doing this is to reduce data transmission

time and realize online learning. At the starting point of each

episode, the model Q will flush Q’, as is shown in process

•e . The on-chip hypervector to hypervector multiplication is

accelerated using a systolic array. However, before introducing

the microarchitecture of systolic IP, we want to illustrate model

Q’s update process. The model update matrix is stored inside

an update cache to reduce the FPGA accelerator’s critical

path. The host CPU will load the action index vector M⃗

into the kernel FPGA for each time step. The dimension

of the vector M⃗ is A, and each element’s value is either

True or False, representing whether its corresponding action

hypervector needs to be updated. The action index vector M⃗

will also be loaded into the systolic array together with the

model Q, as is shown in process •c and •A .

In Figure 3, we also present the systolic array microarchitec-

ture. One of the interesting hardware design tricks here is that

we resize the original hypervector from a single size D vector

into D
M

size M vectors. As is shown in Figure 3, there are a

total of 2∗D
M

systolic array IP in the regression layer. Inside

each systolic array, the size M vector will be multiplied with

a size A × M matrix. This process will happen for both real

and imaginary parts, as is shown for process•B and•C . The

multiplication result from the real part will then be subtracted

by the imaginary part. After all 2∗D
M

groups of systolic array

operations, two reduction IPs(
∑

) are used to reduce those 2∗D
M

multiplication results into two vectors: V⃗Q and V⃗Q′ . Here, V⃗Q

is the regression result for the learning process and V⃗Q′ is the

regression result for the inference process. Both of these two

vectors’ dimensions is A.

D. Updating Layer Architecture

In Figure 4.a, the action index vector (M⃗ ) specified by the

host CPU is loaded into the select IP to choose the appropriate

element from V⃗Q and V⃗Q′ . For the inference stage, all elements

of M⃗ will be False and select IP will choose the largest

elements’ index of V⃗Q′ . This index is actually the action

index(at) at time step t, which will then be passed back to the

CPU and stored in the replay buffer. For the training stage,

only one element of M⃗ will be set to True. The prediction

value qpred and true value qtrue will be selected from V⃗Q and

V⃗Q′ respectively based on the element’s value of M⃗ .

In Figure 4.b, the updated value is calculated. In Figure 4.c

and Figure 4.d, Vupdate will first multiply the real and imagi-

nary parts of the encoded state vector(R⃗e and I⃗m), and then

flush the update cache based on the action index vector M⃗ .

Specifically, in Figure 4.d, the update action hypervector is

stored inside the update cache. In the future clock cycle, when

a specific action hypervector will be used in the regression

layer, the corresponding update hypervector will be used to

update the Q hypervector matrix. By cutting the backpropaga-

tion update process into two stages, as is shown by the Vitis

HLS synthesis result, the critical path of the kernel accelerator

is shortened.

IV. EVALUATION

We develop a full library using two modules: (1) an

optimized software implementation using Python library-

supported encoding and learning phase of our reinforcement

learning, and (2) hardware implementation of RL on CPU,

GPU, and FPGA platforms. We used Intel Xeon 6226 at 2.9

GHz as the host CPU. We use Xilinx Alveo U280 for the

kernel acceleration. We also used the Xilinx Vitis framework to

conduct the communication between CPU and FPGA via PCIe.

We choose the benchmark from OpenAI Gym [25], including

CartPole [29] and LunarLander [30].
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Fig. 4. Updating layer architecture design. (a)Q and Q’ value selection.
(b)Update value Calculation. (c)Multiply the updated value with the encoded
state hypervector. (d) Store update hypervector into Update cache

TABLE I
RESOURCE UTILIZATION AND PERFORMANCE ON ALVEO

U280

Environment LUT BRAM URAM FF DSP f (MHz) L (cycle)

CartPole 73.1K (6%) 276 (6%) 79 (8%) 38K(1%) 17 171 417
LunarLander 117.4K (8%) 546 (12%) 143 (14%) 42.5K (1%) 17 171 421
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task. (a) Impact of different optimization techniques on our platform resource
utilization and speedup. (b) Different platform runtime comparison. Here we
assume both SARLA [23] and OS-ELM [31]’s rewards accumulation are the
same as ours.

A. FPGA Resource Utilization

Table I reports the accelerator’s resource utilization of

HDQL running on the Xilinx Alveo U280 platform. The

synthesis and implementation tool we use is Xilinx Vitis HLS

and Vivado 2021.2. Here, the hypervector dimension is 2048
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Fig. 6. The platform agents’ rewards over episodes.

(2K), and each tuple’s precision is a fixed-point 32-bit. The

dimension of the hypervector will significantly influence the

model’s accuracy, which means that to achieve high rewards

for learning tasks, the dimension of the hypervector cannot be

shallow. We will show in the next section that a 2K fixed-

point 32-bit hypervector provides enough learning rewards for

both tasks. Since the two tasks, CartPole and LunarLander,

have different action space and state dimensions, as shown in

Table I, the resource utilization for those two tasks is different.

Table I provides detailed resource utilization for our de-

signed accelerator with a varying number of agents. Our

HDC-based Q-Learning accelerator shows very high flexibility

in targeting different FPGA platforms. For example, for the

accelerator with a single agent, the lookup table(LUT) usage

is only 73.1K, which indicates that our accelerator can be

deployed on much smaller edge computing devices such as

the Xilinx Zedboard or Zynq ZCU104 board. As a result of

choosing the precision for quantizing the data to be a fixed-

point 32-bit instead of a floating-point, the DSP usage in-depth

decreased. Decreasing on-chip DSP usage plays an essential

role in energy efficiency improvement. In Figure 5.a, we also

present the three optimization’s influence over the accelerator’s

resource utilization and speedup. Reducing the accelerator’s

critical path and designing a lightweight kernel encoder allows

our framework to achieve high-performance learning through-

put while requiring affordable resource utilization.

B. Performance: Model Accuracy and Hardware Acceleration

Figure 6 reports our HDC-based Q-Learning reward change

over training episodes targeting CartPole and LunarLander

tasks. Again, the dimensionality of the hypervector is 2K, and

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:56:16 UTC from IEEE Xplore.  Restrictions apply. 



each hypervector’s tuple precision is fixed-point 32-bit. The re-

play buffer batch size M we selected for CartPole is eight, and

for LunarLander, 16. We also test DQN [28] for the same task

and report its learning results for comparison. Both single and

multiple agents HDC-based Q-Learning achieve much higher

rewards than DQN during the same episodes. In Figure 5.a,

we also present the three optimization’s influence over the

accelerator’s resource utilization and speedup. Reducing the

accelerator’s critical path and designing a lightweight kernel

encoder allows for the platform to achieve high-performance

learning throughput speed while requiring affordable resource

utilization. We also compare our design with other platforms’

acceleration results in Figure 5.b. We notice that the GPU ac-

celeration of HDQL is not apparent. We believe this is caused

by wasting a lot of time passing the Q model hypervector

between CPU and GPU.

V. CONCLUSION

This paper presents a novel platform capable of real-time

hyperdimensional reinforcement learning. Our heterogeneous

CPU-FPGA platform maximizes FPGA’s computing capabil-

ities by applying several hardware optimizations to hyper-

dimensional computing, including hardware-friendly encoder

IP, hypervector chunk fragmentation, and the delayed model

update. We evaluate the effectiveness of our approach to

OpenAI Gym tasks.
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