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Abstract—Reinforcement learning presents a promising ap-
proach to bolster cybersecurity through the development of
intelligent agents capable of learning from their environment
and adapting to new threats. In the field of cybersecurity,
reinforcement learning has various applications, including intru-
sion detection, malware classification, and vulnerability analysis.
However, current reinforcement learning algorithms such as Deep
Q-Learning rely on deep neural networks, which entail high
computational costs and unsuitability for deployment on edge
devices. To overcome this challenge, we proposed two solutions
for efficient reinforcement learning on edge devices.

The first solution is a Hyperdimensional Reinforcement Learn-
ing algorithm inspired by the brain’s properties that facilitate
robust and real-time learning using a lightweight brain-inspired
model to learn an optimal policy in an unknown environment.
Next, we propose a heterogeneous CPU-FPGA platform that
maximizes the computing capabilities of FPGAs by applying
hardware optimizations for hyperdimensional computing’s criti-
cal operations. Our platform achieves faster and higher energy
efficiency than state-of-the-art reinforcement learning accelera-
tors while maintaining the same or better quality of learning.
Additionally, we enhance the RL model’s learning capabilities,
such as learning throughput, energy efficiency, and robustness.
Our proposed solutions offer efficient and scalable alternatives
for reinforcement learning on edge devices, making it possible
to support online and real-time learning with minimal memory
capacity.

Index Terms—cybersecurity, reinforcement learning, hyperdi-
mensional computing, brain-inspired learning, q-learning

I. INTRODUCTION

Reinforcement learning (RL) is widely used in different
domains, including cybersecurity, to tackle complex and dy-
namic decision-making problems that traditional rule-based
and signature-based methods are not suitable for. RL algo-
rithms can be trained to identify and respond to attacks, opti-
mize security policies, and even generate new attack scenarios.
Although the use of RL in cybersecurity is still in its early
stages, it has shown promising results and has become an
active area of research.

Compared to traditional machine learning techniques, RL
does not require large amounts of labeled data for training.
Instead, it involves defining an environment that simulates the
task the model needs to learn, where the agent has no prior
knowledge of the environment. In RL, there are two primary
approaches to achieving this: policy-based learning and value-
based learning. Q-Learning is an algorithm that computes
a value for each state in the environment to measure the
expectation of attaining future rewards, but in large state and
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action spaces, a deep neural network is required to compute
these values, which can be computationally expensive during
backpropagation.

Hyper-Dimensional Computing (HDC) has recently
emerged as a highly efficient and robust machine learning
model. HDC encodes objects with high-dimensional data
representations called hypervectors, which store thousands of
elements and incorporate memory functions and vector
operations, making it computationally tractable and
mathematically rigorous. HDC can learn from a few
shots of training data and is analogous to human-like learning
and reasoning capabilities.

Our recent work uses this HDC model as an alternative
to Deep Q-Learning for reinforcement learning tasks [1], [2].
This HDC-based RL model is able to achieve comparable
learning outcomes to a Deep Q-Learning Model with the
advantage of being computationally more efficient while also
producing significantly higher learning quality, i.e., faster
learning and convergence. This advantage is particularly im-
portant in edge computing since HDC algorithms require
far less computational power due to the simple arithmetic
of these algorithms compared to the complexity of Neural
Networks [3]-[9]. Despite the success, HDC-based RL still
lacks parallelism and requires a large number of resources
on traditional cores [1]. Previous works already show that
HDC-related operations, such as hypervector multiplication,
have a long execution time on the CPU [10]-[15]. Domain-
specific accelerators targeting HDC model have shown large
sucess by previous works [12], [13], [16]-[19]. Furthermore,
many domain-specific accelerators [20]-[24] have achieved
great acceleration results of RL algorithms.

We developed an architecture and algorithm co-optimization
to maximize an RL agent’s learning throughput by realizing
the best use of FPGA’s resource utilization. We evaluate the
effectiveness of our approach on classic OpenAl Gym [25]
tasks. Our results show that the CPU-FPGA platform provides
on average 20x speedup compared to current state-of-the-
art hyperdimensional Q-Learning methods [1] that run on
Intel Xeon 6226 CPU. On the Xilinx Alveo U280 accelerator
card platform, drawing less than 20 watts, our accelerator
shows 14x speedup over state-of-the-art reinforcement learn-
ing FPGA acceleration work using only a 73.1K look-up table
for the single-agent accelerator, making it suitable for deploy-
ment on an edge device. Our platform shows flexibility on
different FPGA platforms with different resources condition.
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Fig. 1. Q-Learning Overview

II. HDC-BASED Q-LEARNING

As shown in Figure 1, the primary goal of Reinforcement
Learning (RL) is training an agent’s capabilities to find the
reward-maximizing behavior when interacting with its en-
vironment [26]. Based on whether an agent uses a policy
to select its action for each time step ¢, we can divide
the RL algorithm into policy-based RL, such as Proximal
Policy Optimization (PPO), and off-policy RL, such as Q-
Learning [27]. This work focuses on off-policy Q-Learning
due to its fast convergence speed. Figure 1 presents a general
Q-Learning procedure. At each time step ¢, an agent receives
its state(s;) from the environment and performs an action(a;)
to the environment. The agent maintains a Q function to select
the action based on its current state(s;). After conducting
a; to the environment, the agent will receive a reward(r;)
as feedback and transfer into a new state(s;+1). The agent
will repeat these interactions with the environment and try to
maximize the cumulative reward R; = ZiT:t v~ txry, where T
is the episode’s total time, or trajectory length, and ~ € (0, 1]
is the time step discount factor.

The Q function is one of the most critical components
of every Q-Learning algorithm. All other optimization tech-
niques, including experience replay and the use of a target
network, rely on this Q function. Traditionally, the Q function
is represented as a table called the Q-table [27]. Such Q-
table-based Q-Learning algorithms are referred to as Tabular
Q-Learning. Tabular Q-Learning is simple but has difficulty
scaling because when a task’s complexity increases, the size
of the Q-table will also increase, amassing a burden to memory
access.

Today, most researchers use Neural Networks (NN) to
implement the Q function to handle more complicated tasks
[28]. These neural network-based Q-Learning algorithms are
called Deep Q Learning (DQN). Although DQNs can handle
complex tasks, the computing resources necessary to train
these models is immense, making deploying DQN models on
edge devices extremely difficult. The loss gradient calculation
and backpropagation also limit the DQN model’s performance
improvement. To overcome these issues, our most recent
work [1] uses hyperdimensional computing(HDC) to replace
neural networks in the Q-Learning algorithm. It shows that
HDC-based Q-Learning (HDQL) can achieve faster learning
speed than DQN. Also, [1] shows that HDQL can achieve high
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Fig. 2. HDQL acceleration overview on CPU-FPGA Platform.

learning rewards with limited memory access.

III. ACCELERATION PLATFORM
A. Framework Overview

Figure 2 shows our designed platform’s top architecture.
The agent interacts with the environment on a CPU, and
a replay buffer is maintained on the same host CPU. To
accelerate high-dimensional vectors (called hypervectors) op-
erations during training and inference, the host CPU will
offload corresponding state, action, and reward data to the
FPGA kernel via PCle communications as shown in Figure 2
@ . After the hypervector computation, the kernel FPGA will
return to training or inferring results to the host CPU.

The hypervector computation on the FPGA includes three
layers: the encoding layer (Encoding), the regression layer
(Regression), and the model updating layer (Updating). The
FPGA kernel reads the input data, such as the state, action
mask, and reward, via the AXI interface from DRAM or
HBM (@). The quantization precision that we chose here is
a fixed point-32 bit. The original state vector (s;) is encoded
into an HDC vector inside the encoding layer. The kernel
function that we selected for this layer’s encoding is an
exponential function(f(z) = €/%), which means each element
of the encoded hypervector is a complex number. Here, we
call this hypervector a complex hypervector. To simplify the
on-chip computation, we will divide this complex hypervector
into the real (ﬁe) and imaginary (/I 51) parts based on Euler’s
formula. The encoded HDC vectors will then be loaded into
the regression layer (@). Two regression models: Q and Q’,
are maintained inside this layer to conduct double estimation.
After the regression layer, the generated function values: Vg
and Vg will be loaded into the updating layer (@). Two
operations occur inside this layer. The first is the selection
of the optimal action index and relaying it back to the host
CPU(@). The second is to generate the model update value
and store it in the on-chip cache (@).

B. Encoding Layer Architecture

The state vector(s) is passed from the off-chip DRAM
or on-chip HBM into the encoding layer. As is shown in
Figure 3a @, each element of § will multiply with its
corresponding position hypervector. Suppose the dimension
of the state vector and position hypervector are N and D:
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these N position hypervectors will be stored on-chip as a
position hypervector matrix (P). P’s dimension will be N x D.
In the process, @, each row vector of matrix P will be
multiplied with its corresponding state vector’s element. In
process @), the reduction operation will be applied over matrix
P’ row direction to generate hypervector E. After the reduction
operation, the generated E will be encoded using a kernel
function. The kernel function that we select in this paper is the
exponential function. A new hypervector £’ will be generated
after applying this kernel function to every element of E.

Next, we elaborate on the implementation of our exponential
encoder IP on FPGA. Inside each exp encoder IP, there are
Sine and one Cosine encoder IP. Many efficient methods
exist for the FPGA hardware design to implement triangle
functions, such as Taylor Expansion or using the Vitis HLS
math function. We use the triangle codebook method to save
on-chip resource utilization and reduce computing latency. We
use BRAM to store the pre-computed Sine and Cosine values.
We refer to this BRAM with the stored Sine and Cosine
values as a codebook. The original fixed-point number will be
treated as an address to access those on-chip BRAMs during
the Sine/Cosine computing process. The benefits of using
this codebook include reducing resource utilization, especially
LUT and DSP, and saving calculation time.

C. Regression Layer Architecture

Inside the regression layer, the encoded state hypervectors
Re and I'm will have double regression performed on them.
Here, double regression indicates that there are two action
models inside this layer. We define them as Q and Q’.
The dimensions of the Q and Q’ hypervector matrices are
A x D. Here, A is the task’s action space, and D is the
hypervector’s dimensionality. Each row hypervector of the
Q and Q' matrices represent the corresponding action’s Q
function. Like double deep Q-Learning, model Q’ is a delayed
model which will be periodically updated using parameters in
model Q. The benefit of maintaining two action models is to
avoid maximization bias by disentangling the updates from
biased estimates. Specifically, model Q is used for learning
purposes, and Q’ is used for inference purposes. In contrast to
traditional DQN, which separates the learning and inference
processes, the two processes occur simultaneously in our
platform kernel, as shown in Figure 3 processes @ and @.
The purpose of doing this is to reduce data transmission
time and realize online learning. At the starting point of each
episode, the model Q will flush Q’, as is shown in process
@®. The on-chip hypervector to hypervector multiplication is
accelerated using a systolic array. However, before introducing
the microarchitecture of systolic IP, we want to illustrate model
Q’s update process. The model update matrix is stored inside
an update cache to reduce the FPGA accelerator’s critical
path. The host CPU will load the action index vector M
into the kernel FPGA for each time step. The dimension
of the vector M is A, and each element’s value is either
True or False, representing whether its corresponding action
hypervector needs to be updated. The action index vector M

will also be loaded into the systolic array together with the
model Q, as is shown in process @ and @.

In Figure 3, we also present the systolic array microarchitec-
ture. One of the interesting hardware design tricks here is that
we resize the original hypervector from a single size D vector
into 2 a7 size M vectors. As is shown in Figure 3, there are a
total of 2*, systolic array IP in the regression layer. Inside
each systohc array, the size M vector will be multiplied with
a size A x M matrix. This process will happen for both real
and imaginary parts, as is shown for process @ and @. The
multiplication result from the real part will then be subtracted
by the imaginary part. After all 2*D groups of systolic array
operations, two reduction IPs(}") are used to reduce those 2;413
multiplication results into two vectors: VQ and VQ/ Here, VQ
is the regression result for the learning process and VQ/ is the
regression result for the inference process. Both of these two
vectors’ dimensions is A.

D. Updating Layer Architecture

In Figure 4.a, the action index vector (M) specified by the
host CPU is loaded into the select IP to choose the appropriate
element from VZ; and VZQI. For the inference stage, all elements
of M will be False and select IP will choose the largest
elements’ index of sz. This index is actually the action
index(a;) at time step t, which will then be passed back to the
CPU and stored in the replay buffer. For the training stage,
only one element of M will be set to True. The prediction
value gpreq and true value gy, Will be selected from VQ and
VQ/ respectively based on the element’s value of M.

In Figure 4.b, the updated value is calculated. In Figure 4.c
and Figure 4.d, V,pdate Will first multiply the real and imagi-
nary parts of the encoded state vector(Re and I m), and then
flush the update cache based on the action index vector M.
Specifically, in Figure 4.d, the update action hypervector is
stored inside the update cache. In the future clock cycle, when
a specific action hypervector will be used in the regression
layer, the corresponding update hypervector will be used to
update the Q hypervector matrix. By cutting the backpropaga-
tion update process into two stages, as is shown by the Vitis
HLS synthesis result, the critical path of the kernel accelerator
is shortened.

IV. EVALUATION

We develop a full library using two modules: (1) an
optimized software implementation using Python library-
supported encoding and learning phase of our reinforcement
learning, and (2) hardware implementation of RL on CPU,
GPU, and FPGA platforms. We used Intel Xeon 6226 at 2.9
GHz as the host CPU. We use Xilinx Alveo U280 for the
kernel acceleration. We also used the Xilinx Vitis framework to
conduct the communication between CPU and FPGA via PCle.
We choose the benchmark from OpenAl Gym [25], including
CartPole [29] and LunarLander [30].
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TABLE 1
RESOURCE UTILIZATION AND PERFORMANCE ON ALVEO
U280
Environment ‘ LUT BRAM URAM FF DSP ‘ f (MHz) L (cycle)
CartPole 73.1K (6%) 276 (6%) 79 (8%) 38K (1%) 17 171 417
LunarLander | 117.4K (8%) 546 (12%) 143 (14%) 42.5K (1%) 17 171 421
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Fig. 5. Performance of our designed framework for OpenAl Gym CartPole
task. (a) Impact of different optimization techniques on our platform resource
utilization and speedup. (b) Different platform runtime comparison. Here we
assume both SARLA [23] and OS-ELM [31]’s rewards accumulation are the
same as ours.

A. FPGA Resource Utilization

Table I reports the accelerator’s resource utilization of
HDQL running on the Xilinx Alveo U280 platform. The
synthesis and implementation tool we use is Xilinx Vitis HLS
and Vivado 2021.2. Here, the hypervector dimension is 2048
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Fig. 6. The platform agents’ rewards over episodes.

(2K), and each tuple’s precision is a fixed-point 32-bit. The
dimension of the hypervector will significantly influence the
model’s accuracy, which means that to achieve high rewards
for learning tasks, the dimension of the hypervector cannot be
shallow. We will show in the next section that a 2K fixed-
point 32-bit hypervector provides enough learning rewards for
both tasks. Since the two tasks, CartPole and LunarLander,
have different action space and state dimensions, as shown in
Table I, the resource utilization for those two tasks is different.

Table I provides detailed resource utilization for our de-
signed accelerator with a varying number of agents. Our
HDC-based Q-Learning accelerator shows very high flexibility
in targeting different FPGA platforms. For example, for the
accelerator with a single agent, the lookup table(LUT) usage
is only 73.1K, which indicates that our accelerator can be
deployed on much smaller edge computing devices such as
the Xilinx Zedboard or Zynq ZCU104 board. As a result of
choosing the precision for quantizing the data to be a fixed-
point 32-bit instead of a floating-point, the DSP usage in-depth
decreased. Decreasing on-chip DSP usage plays an essential
role in energy efficiency improvement. In Figure 5.a, we also
present the three optimization’s influence over the accelerator’s
resource utilization and speedup. Reducing the accelerator’s
critical path and designing a lightweight kernel encoder allows
our framework to achieve high-performance learning through-
put while requiring affordable resource utilization.

B. Performance: Model Accuracy and Hardware Acceleration

Figure 6 reports our HDC-based Q-Learning reward change
over training episodes targeting CartPole and LunarLander
tasks. Again, the dimensionality of the hypervector is 2K, and
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each hypervector’s tuple precision is fixed-point 32-bit. The re-
play buffer batch size M we selected for CartPole is eight, and
for LunarLander, 16. We also test DQN [28] for the same task
and report its learning results for comparison. Both single and
multiple agents HDC-based Q-Learning achieve much higher
rewards than DQN during the same episodes. In Figure 5.a,
we also present the three optimization’s influence over the
accelerator’s resource utilization and speedup. Reducing the
accelerator’s critical path and designing a lightweight kernel
encoder allows for the platform to achieve high-performance
learning throughput speed while requiring affordable resource
utilization. We also compare our design with other platforms’
acceleration results in Figure 5.b. We notice that the GPU ac-
celeration of HDQL is not apparent. We believe this is caused
by wasting a lot of time passing the Q model hypervector
between CPU and GPU.

V. CONCLUSION

This paper presents a novel platform capable of real-time
hyperdimensional reinforcement learning. Our heterogeneous
CPU-FPGA platform maximizes FPGA’s computing capabil-
ities by applying several hardware optimizations to hyper-
dimensional computing, including hardware-friendly encoder
IP, hypervector chunk fragmentation, and the delayed model
update. We evaluate the effectiveness of our approach to
OpenAl Gym tasks.
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