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Abstract—In this paper, we propose EdgeHD, a hierarchy-
aware learning solution that performs online training and
inference in a highly distributed, cost-effective way. We use
brain-inspired hyperdimensional (HD) computing as the key
enabler. HD computing performs the computation tasks on a
high-dimensional space to emulate functionalities of the human
memory, such as inter-data relationship reasoning and information
aggregation. EdgeHD exploits HD computing to effectively learn
the classification models on individual devices and combine
the models through the hierarchical IoT nodes without high
communication costs. We also propose a hardware design that
accelerates EdgeHD on low-power FPGA platforms. We evaluated
EdgeHD for a wide range of real-world classification applications.
The evaluation shows that EdgeHD provides highly efficient
computation with reduced communication. For example, EdgeHD
achieves on average 3.4x and 11.7x (1.9x and 7.8x) speedup
and energy efficiency improvement during the training (inference)
as compared to the centralized learning approach. It reduces the
communication costs by 85% for the training and 78% for the
inference.

I. INTRODUCTION

Machine learning methods have been widely utilized to
provide high quality for many cognitive tasks. Running
sophisticated learning tasks requires high computational costs
to process a large amount of learning data. A common solution
is to use the cloud and data centers as the main central
computing units. However, with the emergence of the Internet of
Things (IoT), the centralized approach faces several scalability
challenges towards high-performance computing [1], [2], [3],
[4], [5], [6]. In IoT systems, a large number of embedded
devices are deployed to collect data from the environment and
produce information. The partial data need to be aggregated
to perform the target learning task in the IoT networks such
as a home- or even city-scale. It consequently leads to a high
communication cost with high latency to transfer all data points
to a centralized cloud.

Recent research work studied how to scale the learning
tasks in a distributed fashion where the data are collected from
different devices. A mainstream of the research is often referred
to federated learning [7], [8], [9], [2]. For example, the study
in [10] trains a central Deep Neural Networks (DNN) model
over multiple devices where the data of each device have the
same feature set.

However, effective learning in the IoT hierarchy is still an
open question. We recognize the following technical challenges

to scale the learning tasks for the IoT hierarchy. (i) In reality,
each 10T device has different types of sensors that generate
heterogeneous features. As an example, a smart home has
many different edge nodes, e.g., a smart fridge, TV, stove, and
personal devices. The contextual information of the smart home
should be assimilated based on the collection of the sensor
data. Distributing the learning tasks to the devices having
heterogeneous data is not trivial for the federated learning
solutions and existing algorithms, e.g., DNN and SVM (support
vector machine). (ii) The edge devices often do not have
sufficient resources for online processing of the sophisticated
learning algorithms[11], [12]. The massive amount of data
generated every day provides the opportunity to train a new
model or at least update the pre-trained models. However,
the existing learning algorithms are often over-complex to
run on resource-constrained IoT devices. The state-of-the-
art DNN acceleration solutions [13], [14] only process the
inference tasks while assuming that the golden model can be
trained in a centralized fashion. (iii) To train and infer in a
centralized fashion, the communication may dominate the total
computing costs as the size of data generated in the swarm of
the IoT devices increases. Even if the learning tasks could be
distributed to the edge devices by deploying a costly hardware
accelerator, a large amount of data requires to be transferred
between different nodes, e.g., inputs and outputs of neurons for
DNN models, during the model training procedure. In addition,
reliable communications are not granted, and IoT networks are
often deployed assuming harsh network conditions [15].

In this work, we seek to enable distributed learning using the
data that heterogeneous sensors for each IoT device generate
on the fly. We accelerate the learning tasks by utilizing the
IoT devices as federated computing units, i.e., the learning
tasks are processed on the local embedded devices located in
the hierarchy. Many IoT devices are capable of processing a
part of computational tasks with limited resources, e.g., smart
gateways [16], [17]. To provide an effective and lightweight
learning solution for the IoT hierarchy, we use brain-inspired
hyperdimensional (HD) computing as the machine learning
solution [18], [19]. HD computing is an alternative computing
approach for cognitive tasks. HD computing mimics crucial
properties of the human memory using high-dimensional
vectors, called hypervectors. For example, the brain efficiently
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aggregates and understands the relationship between data. In
HD computing, adding hypervectors imitates data aggregation,
and we can quantify the inter-data relationship based on the
hypervector similarity. In recent years, HD computing has been
employed in a range of applications as a lightweight machine
learning for activity recognition [20], biomedical signal process-
ing [21], [?], genomics [22], reinfocement leanring [23], [24],
[25], and reasoning [26]. A key HD computing advantage is its
robust and efficient training capability in one or few shots where
object categories are learned from a few examples and in a few
iterations instead of many samples and iterations [19]. HDC has
achieved comparable to higher accuracy compared to support
vector machines (SVMs) [27], [28], gradient boosting [29],
and convolutional neural networks (CNNs) [30] with much
lower execution energy. Recently, several companies started
exploiting the HD computing capability to enable intelligence
in IoT devices [31], [32].

HD computing has many attractive properties that address the
aforementioned challenges, making it desirable for distributed
learning in the hierarchy. HD computing can be performed with
linear combinations of hypervectors which non-linearly map
the raw data to an HD space. Thus, we can easily aggregate
the trained models and the sensor data produced by different
sensor nodes in the hierarchy. In addition, the learning proce-
dure is performed using well-defined hypervector operations
without overcomplex learning steps such as backpropagation in
neural networks. The hypervector operations can be efficiently
performed on inexpensive, low-power platforms, e.g., FPGA,
since most computations are (dimension-)independent. The
less-powerful IoT devices can thus perform cognitive tasks effi-
ciently with minimal deployment costs. Besides, a hypervector
can combine multiple information in a space-effective way,
hence we can significantly reduce the communication costs
when running the computations over a collection of multiple
devices. The trained model is extremely robust in the possible
presence of hardware/network failures which is common in
[oT systems.

In this paper, we propose a novel hierarchy-aware brain-
inspired learning, called EdgeHD, which enables online train-
ing and inference on edge devices with significantly high
computation efficiency. Our key contributions are:

EdgeHD effectively distributes the learning tasks into
edge devices that produce heterogeneous data in a
hierarchy in an IoT system. EdgeHD is capable of updating
the learning model online through the hierarchy to provide
better prediction results based on users’ feedbacks. During
the inference, it automatically decides where to run the tasks
to guarantee the desired prediction quality.

Our approach exploits the mathematical properties that
govern the high-dimensional space to compress and
transfer data through the hierarchy. This approach reduces
the computation as well as data communication cost by
eliminating the necessity of moving all data between nodes.
We show an efficient hardware implementation based on
low-power FPGA. Our design supports online training and
inference in a fully pipelined structure. In the hierarchical
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setting, the FPGA design located in each node performs the
learning tasks with a minimal power consumption of 0.28W
on average, while the state-of-the-art DNN accelerators, e.g.,
Google Tensor Processing Unit (TPU) consume at least
290W [33].

EdgeHD significantly improves the classification accuracy
of the existing HD computing algorithms. In contrast
to the existing methods, which linearly map each input
feature into the hyperspace, the proposed solution explicitly
considers non-linear interactions between the inputs. We
exploit Radial Basis Function (RBF) kernel [34], [35] to
design a highly accurate classifier. Our evaluation shows
that the proposed approach achieves comparable accuracy as
sophisticated learning algorithms such as SVM and DNN,
while providing significantly higher efficiency than prior HD
computing-based classifiers.

We evaluate EdgeHD on practical IoT workloads consisting
of multiple sensing nodes with different network hierarchies.
Our evaluation shows that the proposed hierarchical training
provides comparable accuracy to the state-of-the-art method
while achieving 3.4x and 11.7x (1.9x and 7.8 ) speedup and
energy efficiency as compared to a state-of-the-art centralized
learning approach during the training (inference). One of the
primary sources of the improvements is the significant reduction
in the communication costs, e.g., 85% for the training and 78%
for the inference.

II. MOTIVATIONAL SCENARIO

We consider a smart home as an example of an [oT system,
where different appliances generate data to perform the desired
learning task, e.g., activity recognition for household members
or power usage management on a city scale (Figure 1a). The
data from each device is aggregated on the gateways at the
house level. Finally, the data of all gateways are aggregated in
a server, i.e., a central node. By analyzing the data, we can
develop a learning model which can be used at different levels,
such as appliances, houses, or even a city.

Figure 1b shows a centralized approach which is typically
used in systems nowadays. This approach aggregates all the
generated data to a server located at the city level. Then,
the cloud creates a unified model which can be used in all
other nodes. This approach has several disadvantages. First,
transferring a large amount of data to the cloud would be
slow and unstable due to the nature of the wireless networks
commonly used by smart devices in home-scale systems. In
addition, it does not guarantee online training for a real-time
response to inference tasks with updated models.

In this paper, we propose a hierarchy-aware learning ap-
proach that enables distributed learning where each edge device
performs its learning task (Figure 1c). Instead of transferring all
data points to the cloud, each edge device trains its own model
using the portion of data available at that particular node. Next,
instead of the raw data, the models are aggregated through
the hierarchy, such that a node at the house level gathers
information from all connected end-node devices. Finally, all
the house models are aggregated at the city level to create
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Fig. 1. (a) Smart home as an example of IoT system, (b) centralized training and (c) hierarchy-aware learning.

a model based on all features generated by the end node
devices. It should be noted that, in practice, recent appliances
have already been produced with computing capability on the
edge, e.g., using ARM-based processors of smart fridges and
televisions.

The major technical challenge is how to aggregate the models

learned on each device in a distributed manner. For example,
the learned models of embedded devices such as a fridge, TV,
and stove need to be aggregated on the smart gateway located
on the house level and beyond. In existing learning algorithms,
e.g., DNN and SVM, this aggregation is not trivial.
Why Hyperdimensional Computing? In this work, we
tackle this problem by exploiting brain-inspired HD comput-
ing. The brain’s circuits have many neurons and synapses,
suggesting that large circuits are fundamental to mimicking
brain functionalities. HD computing imitates human memory
using ultra-wide words, i.e., hypervectors, which have tens
of dimensions [18]. Once the original data are encoded to
hypervectors, various brain functionalities can be modeled
with hypervector operations.

The proposed EdgeHD exploits the following properties of
HD computing to enable hierarchical learning. (i) The key
operation of hierarchical learning is data aggregation. HD
computing represents the effective information aggregation of
the human memory model using simple linear combinations of
hypervectors such as addition and multiplication. This allows
us to propagate the learning models/data through the hierarchy
without complex computations. (ii) As human memory does,
HD computing can also perform continuous learning by
adding more information into the hypervector model, which
is expected in online learning. (iii) We exploit the fact that a
hypervector can store multiple pieces of information to reduce
communication overheads. The bio-inspired hypervectors store
information with i.i.d random components. That is, every
component has the same responsibility to represent a datum,
making HD extremely robust against most failure mechanisms
and noises, which is common in IoT systems. (iv) Despite the
high dimensionality, HD computing can be implemented in
a resource-effective manner since the hypervectors often are
represented with low-precision components, e.g., binaries, and
highly parallelizable as most operations in the hyperspace are
dimension-independent.

1II. HD COMPUTING CLASSIFICATION

Figure 2a shows the overview of the proposed classification
method using HD computing. For the sake of simplicity, we
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illustrate the algorithm without explicitly regarding the device
hierarchy; we will revisit this algorithm in Section IV to enable
distributed learning. In the initial training step, HD computing
performs the learning task after mapping all training data into
the high-dimensional space. The mapping procedure is often
referred to as encoding. Ideally, the encoded data should satisfy
the common-sense principle: data points that are different from
each other in the original space should also be different in the
high-dimensional space.

To find the universal property for each class in the training
dataset, we linearly combine hypervectors belonging to each
class, i.e., adding the hypervectors to create a single hypervector
for each class. Once combining all hypervectors, we treat per-
class accumulated hypervectors, called class hypervectors, as
the learned model. Next, a similarity search procedure performs
the inference task. For a given query hypervector encoded for
a tested data point, it selects the class with the most similar
hypervector.

A. Non-Linear Encoding

There are multiple encoding methods proposed in litera-
ture [36], [37], [38]. Although these methods have shown
excellent quality of learning, these techniques are applications
specific. We introduce a universal hyperdimensional encoding
process that prepares encoded data for both learning and
cognition. Suppose that the input of the encoder is a 2D
image F with size n x n. The pixel at location (X,Y) is
defined as Fx y. For image dimensions = and y, we randomly
generate two base hypervectors B, and B, with dimensionality
D > n. They are defined as follows: B, = eif=/w= and
B, = €%/, where § € {N(0,1)}” and w is the length
scale. To represent a certain location on an axis, we attach the
index to the power of the exponential such as B)* and B}".
Here, we take B, as an example to define the similarity metric

on the x-axis of the image: §(BX!, BX2) b k(%)
where k() is the standard Gaussian kernel; X; and Xglare
two locations on the x-axis. The same similarity metric is also
defined on the y-axis. In more than 1D, the kernel becomes
kgen(F1 — Fa) = k(|[F1 — Fa])

Using base hypervectors, we generate an index hypervector
or ID hypervector for each pixel (X,Y’) using element-wise
multiplication: B;Y # B". The Gaussian kernel ensures that the
identification (ID) hypervectors are correlated between nearby
pixels, and thus helps maintain spatial information during the
encoding. To represent each pixel in hyperspace, we multiply
the value of pixel F'xy with its ID hypervector BX x sz.
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With components defined above, we encode the image f to
its corresponding hypervector V i using the element-wise sum
of multiple pixel hypervectors, also known as the bundling
operation in HDC:

VF — ZPX,YBi( * B;/
Xy

For a large but finite dimensional mapping Z, the shift-
invariant kernel K as the one defined above can be approxi-
mated using inner-products [39]:

K(F; — Fs) ~ Hp(F1)"Hp(F2) (1
where D is the dimensionality of the mapping. There are several
practical measures to design the mapping H that corresponds
to known kernels. In this paper, we focus on one of them that
approximates the RBF kernel, and it is defined as follows:

Hp(F) = \/%COS(B -F +b) 2)
B is a vector of dimension D with its elements randomly
sampled from standard Gaussian distribution A/(0,1) and
b functions as a bias vector with elements sampled from
the uniform distribution 2/(0, 27). Once they are randomly
generated, we keep them fixed during the later learning and
inference.

Figure 2b shows our encoding procedure. Let us con-
sider an encoding function that maps a feature vector F =
{f1, f2y--+, fn}, with n features (f; € N) to a hypervector
H = {h1, ho,..., hp} with D dimensions (h; € {—1,1}).
We generate each dimension of the encoded data by calculating
a dot product of the feature vector with a randomly generated
vector as h; = cos(éi F+ b) x szn(ﬁz . ﬁ), where B; is
the randomly generated vector with a Gaussian distribution
(mean p = 0 and standard deviation o = 1) with the same
dimensionality of the feature vector and b is a random value
sampled uniformly from [0, 27].

The random vectors {B1,Bs,--- ,Bp} can be generated
once offline and then can be used for the rest of the classifi-
cation task. After this step, each element h; of a hypervector
H" has a non-binary value. In HD computing, binary (bipolar)
hypervectors are often used for computation efficiency. We
thus obtain the final encoded hypervector by binarizing it with
a sign function.

B. Classification Learning and Inference

Training: In the training step, we combine all the encoded
hypervectors of each class using the element-wise addition.
For example, in an activity recognition application, the training
procedure adds all hypervectors which have the “walking” and
“sitting” tags into two different hypervectors. Where H;
(hp,--- ,h1) is encoded for the j** sample in i*" class, each
class hypervector is trained as follows:

CZ:ZH; =(ch, - ,c})
The element-wise addition results in generating non-binarized

class hypervectors, i.e., cfi € N. Note that since our encoding
method projects the original data non-linearly to the high
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Fig. 2. Overview of HD computing for classification.

dimensional space, the linearly combined model can perform
well even on non-linearly separable data.

Once the initial training is done, we train the class hy-
pervector model again to improve the classification accuracy.
In this retraining step, we calculate the similarity between
each encoded hypervector and trained model to check whether
the data sample is correctly classified or not. If the encoded
hypervector, H, is correctly classified by the current model,
we will make no changes to the model. Otherwise, we update
the model by respectively adding and subtracting it from the
correct and incorrect classes as follows:
6(}07"7’6(,1 _ CCOTT’GCt + H é’wTOTLg _ H
The retrained model provides a better fit to the training data
and gets higher accuracy. We repeat the same procedure for
multiple iterations. In our observation, repeating 20 iterations
yields sufficient convergence for all the tested datasets.
Inference (testing): The main computation of the inference
is the encoding and associative search. We perform the
same encoding procedure to convert a test data point into
a hypervector, called query hypervector, Q € {0,1}”. Then, it
computes the similarity of the query hypervector with all & class
hypervectors, {Cy, Ca,- - ,Cy}. We measure the similarity
between a query and a i*" class hypervector using: 6(Q, C;),

and = curons

i
where § denotes the similarity metric. After computing all
similarities, each query is assigned to a class with the highest
similarity.

The proposed HD-based classification algorithm is ap-
propriate for hierarchical and distributed learning since the
training and inference computations can be decomposed with
simple linear combinations of hypervector operations where
the hypervectors are already encoded in a non-linear manner.
There are two remaining technical questions: i) how to combine
multiple hypervectors provided by multiple children nodes
through the hierarchy and ii) how to reduce the cost of
communications to transfer hypervectors between the nodes.
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In the next section, we describe how the HD classification
algorithm can be effectively applied to the IoT hierarchy by
addressing these issues.

IV. HIERARCHICAL LEARNING

Figure 3a shows an overview of EdgeHD, which performs
the HD computing on each device in a distributed manner,
where multiple computing nodes are connected in a hierarchical
network. The end node devices which are located in the first
level of hierarchy, run the original encoding and training
procedure with collected data points, creating a partial model
based on the available data on that node. The partial models are
sent to the gateway nodes in the upper layers to learn different
models using the data provided by children nodes. The learning
task is propagated to the central node at the highest level in a
hierarchical fashion.

Figure 3b shows the classification tasks performed on
each node. While the end node runs the encoding procedure
described in Section III-A, the gateway and central nodes
carry out a hierarchical encoding procedure to aggregate
the partial models or hypervectors (Section IV-A.) Since the
hypervector created by the hierarchical encoding procedure
includes the information collected on the children nodes,
EdgeHD can train more comprehensive models on higher-level
nodes (Section IV-B.) During the inference step, users can use
any models stored through the hierarchy (Section IV-C.) For
example, if the user wants to have a real-time response, the
model of the end node would be preferable; if a higher quality
of prediction is more desired, they can use the model of the
central node at the expense of the communication costs to
consider the collected data of other nodes.

In the hierarchical learning mode, EdgeHD also supports
online training, which utilizes users’ feedback to update the
models trained offline (Section IV-D.) During the runtime, it
is usually hard to expect labeled data, i.e., correct classes for
the observed samples. Considering the circumstances, we show
how to update models when users are willing to provide only
negative feedback, i.e., when users are unsatisfied with the
classification results.
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A. Hierarchical Encoding

The encoding procedure described in Section III-A maps
the feature values in the original space to the hyperspace.
In contrast, the hierarchical encoding procedure aggregates
multiple hypervectors to create a single hypervector. Since
the node at the lower level has a less number of features, it
typically needs a smaller dimension to keep the information
accessible on the node. Thus, we set different hypervector
dimensionalities for each node. Let us assume that a large
enough dimension, e.g., D=10,000, can include the information
of all data points of n features separately collected in the
hierarchy. Where the node at the top of the hierarchy has the
highest dimensionality, i.e., D, EdgeHD assigns the dimensions
of the devices according to their available feature sizes. For
instance, if a device is connected to the end nodes in the
hierarchy and the end nodes in total collect n; features, the
device gets a dimensionality of d; = D X n;/n.

With the determined dimensionality for each node, EdgeHD
performs the encoding procedure for any hypervectors in a
hierarchical manner. Figure 4 shows the proposed hierarchical
encoding with an example of three nodes. Each end node in
the first level (Node 1 and Node 2) uses the original encoding
scheme (Section III-A) and produces a hypervector which
usually has a relatively small dimensionality (d; and ds).
Then, a gateway node (Node 3) first creates a hypervector
by concatenating the multiple hypervectors provided by the
children nodes. Although this simple concatenation yields the
hypervector of the desired dimensionality, dy + ds, it does not
consider possible interactions between different features of the
children nodes.

To address this issue, we exploit projection matrix elements
randomly selected from {—1,0, 1}. EdgeHD performs a vector-
to-matrix multiplication for the concatenated hypervector
and the projection matrix. The results of the multiplications
are binarized again with the sign() function. It maps the
concatenated hypervector into another space while randomly
combining the elements of dimensions of the input hypervectors,
and thus the projected hypervector considers the interactions
of the input hypervectors concatenated before. The projected
hypervector has holographic distribution [18], meaning that
all feature values have the same impact on generating each
dimension of the hypervector. The holographic distribution
enables high robustness of HD computing even when using
either uncertain networks or unreliable hardware commonly
seen in [oT systems, which may lead to loss of some dimension
values. In Section VI-F, we discuss the detailed evaluation of
holographic encoding.

B. Model Training in Hierarchy

The first step of the training is to learn the initial class
hypervectors on each device. As discussed in Section III-B,
the initial model is generated by the addition of all the
encoded hypervectors. Each device only needs to transfer
its HD model, i.e., k class hypervectors, to its parent node
rather than sending all the encoded hypervectors for the data
points. The gateway and central nodes can train their model by
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Fig. 4. Model/data aggregation on hierarchical nodes: (a) concatenation, (b)
random projection of concatenated model/value for holographic distribution.

performing the hierarchical encoding procedure for the received
class hypervectors. This approach enables the initial training to
perform in a distributed way on all nodes while significantly
reducing communication costs.

To achieve higher classification accuracy, we also perform
the retraining step on each device. A naive implementation is
to propagate the encoded hypervector for each sample through
the hierarchy. However, communication costs would be high
in this case. We address this issue by sending the hypervectors
with multiple batches. Let us assume that H® is a set of
hypervectors for the i class encoded from the training dataset
on an end node. For a given batch size, B, i.e., the number
of hypervectors combined in a batch, EdgeHD splits H’ into
multiple subsets that have the size of B, and performs the
element-wide addition for each subset, creating 3* = [|H? 4
batch hypervectors. In this case, each node only sends ),
hypervectors where K is the number of classes. The gateway
and central nodes run the hierarchical encoding procedure to
combine the batch hypervectors provided by the children, and
the retraining procedure described in Section III-B can be
applied for each batch.

There is a tradeoff between batch size and accuracy. For
example, suppose it does not use the batch method, i.e., B = 1,
since the nodes in the higher levels can check the similarity
for each sample. In that case, we may achieve higher accuracy
at the expense of the communication cost.

C. Hierarchical Inference

The inference is performed by checking the similarity of
a query hypervector with all & class hypervectors to assign a
class with the highest similarity as explained in Section III-B.
In EdgeHD, the inference can be carried out on any model
located in different nodes. For example, we may perform
a local inference using the model stored in each end node.
When high prediction quality is required, we may send the
encoded hypervector up to the central node. EdgeHD exploits
the following two techniques to reduce the communication
costs to send the query hypervectors.
Automated Decision on Inference Node: EdgeHD decides
where to perform the inference task by estimating the confi-
dence level for each prediction. The confidence level depends
on the similarity distances to the class hypervectors. For
example, if the similarity between a query hypervector and
the matched class hypervector is relatively higher than others,
we can consider it a trustworthy prediction. We compute the
relative similarity using the softmax function, whose inputs are
the normalized cosine similarity values to the class query
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Fig. 5. EdgeHD framework supporting online learning based on the user’s
feedback during the inference.

hypervectors for all k£ classes. A larger value indicates a
higher difference between the cosine similarity values, meaning
that the prediction result is highly confident. Thus, EdgeHD
compares the confidence level of the matched class with a
user-configurable threshold value. If the prediction results are
not sufficiently confident, the device sends the hypervectors to
the higher nodes so that the higher-level device can perform
the inference by considering the data provided by other nodes.
Hypervector Compression: The second technique is to
compress multiple hypervectors into a single hypervector. Our
compression method exploits the mathematical orthogonality
of random vectors in high-dimensional space. Let us assume
m hypervectors {H;,Hs..., H,,} to be compressed. The
batching procedure utilizes m random bipolar hypervectors,
called position hypervectors, {P1,Ps, ..., P,,} with the same
dimensionality (P; € {—1,1}?). Since the position hypervec-
tors are generated randomly, they will have a nearly orthogonal
distribution [40]:
With the randomly generated hypervectors, the compression
procedure is done as follows:

The combined H hypervector can store the information of
all H; hypervectors as well as the order of combinations. To
extract the i*" hypervector, we can multiply the compressed
hypervector with the corresponding position hypervector:

H; ~ (H)-P/; = H; * + Y Hyx
7, Vi#i

i Pilw

Signal

Noise

In this equation, since P;-P; is the hypervector whose elements
are all zeros, the signal term is equal to H;. Besides, due to
the near orthogonality between different position hypervectors,
the noise term is very close to zero. Compressing more
hypervectors increases the amount of noise.

D. Online Model Updating

During runtime, users might not satisfy with the classification
quality that the models in any particular nodes provide. We
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propose the idea of online training, which updates the models
in the hierarchical setting. Figure 5 shows the workflow of the
online learning procedure. The model updates happen based
on the user’s feedback for the inference results. Since labeling
every observation would not be feasible in reality, we assume
that users would be willing to provide feedback when they are
not satisfied.

Since the negative feedback means that the prediction is
made by an incorrect class hypervector, EdgeHD subtracts the
query hypervector from the class hypervector currently selected.
We may perform it for every negative feedback; however,
this approach has two main drawbacks: first, it may degrade
the inference efficiency since updating the model delays the
processing of the next inference task. Second, it results in high
communication costs to propagate the hypervectors through
the hierarchy.

EdgeHD updates the models less frequently by accumulating
the hypervectors for the negative feedback. Figure 5a shows
the online learning procedure for each node. Each device
maintains K hypervectors whose elements are initially assigned
to zero, called residual hypervectors. Each residual hypervector
corresponds to one of the classes. Once negative feedback is
given, we add the query hypervector to a residual hypervector
corresponding to the class with an incorrect match. Each edge
device continuously performs the inference while accumulating
to the residual model.

Figure 5b shows how EdgeHD updates the models through
the hierarchy. In the initial state, each device has its own
residual hypervectors (@). Each device first updates its own
model by subtracting the residual hypervectors from the current
model (@). Then, the residual hypervectors are propagated
to the parent nodes (@), so that the gateway and central
nodes run the hierarchical encoding to combine the different
residual hypervectors and update the model. The online update
procedure can be initiated at anytime, depending on the users’
requirements. For example, in a smart home, users may want
to update the model every night.

V. HARDWARE ACCELERATION

EdgeHD can be accelerated in different platforms. Since
there is no dependency between dimensions during the hyper-
vector operations, FPGA is suitable hardware to parallelize the
HD computations in a power-efficient way. Figure 6 shows the
overview of our FPGA design. In the followings, we explain
the details of the implementation.
A. Encoding

EdgeHD encodes each data point by computing the inner
product of a feature vector with different weight vectors. Since
the Gaussian distribution creates many near-zero values, we can
easily create sparse random vectors to reduce the number of
multiplications. The weight vectors can be stored with a vector
with (1—s) xn consecutive non-zero values, and an index value
that represents the index of the first non-zero element where s is
the sparsity factor and n is the number of features. This index
can be stored as logy n bits. All weight vectors are stored
in Block RAM (BRAM), which is on-chip FPGA memory
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(Figure 6@). During the encoding, our approach prefetches
the weight vectors from the BRAM blocks and stores them in
the locally distributed memory that can be accessed faster than
BRAM. During the encoding, FPGA reads the first m features
of original data points (m < n). Next, it accesses the weight
vector and then multiplies (1 —s) x n continuous dimensions of
the feature vector with the corresponding weight vector. These
multiplications are processed using Digital Signal Processor
(DSP) blocks, and they are parallelized for different weight
vectors. The results of the inner products are accumulated
using a tree-based adder structure (Figure 6@). Finally, the
cosine function is calculated using the lookup table (LUT)
logic. Finally, the encoded hypervector can be binarized by
considering the sign of the encoded data as a binary output.

B. Training & Inference

EdgeHD has three types of learning procedures that update
the class hypervector, i.e., the model: i) initial training, ii)
retraining, and iii) online learning. Since they perform a very
similar computation, we design a unified FPGA implementation.
Instead of directly changing the class hypervector stored in
BRAM, our hardware design accumulates all required changes
for the class hypervectors within the residual hypervectors,
which store a vector corresponding to each class (Figure 6@).
For example, in the initial training and online learning,
only the element-wise addition is performed, whereas the
subtraction is required additionally for the retraining step
(Figure 6@®) depending on the results of the associative search.
Finally, EdgeHD updates the original model with the residual
hypervectors once (Figure 6@).

The associative search, i.e., computing the similarity metric,
is a common operation used in both the retraining and inference
(Figure 6@.) To reduce the cost of cosine similarity, we devise
two optimization techniques. First, we simplify the cosine
similarity to the dot product by pre-normalizing the class
hypervectors once after each training step. We also ignore
the normalization of each query hypervector, as this vector
is a common term for all classes. Second, we eliminate the
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TABLE 1
DATASETS (n: FEATURE SIZE, K: NUMBER OF CLASSES)

# End Train Test
n K Nodes Size Size Description

MNIST 784 10 NA 60,000 10,000 Handwritten Recognition[41], [42]
ISOLET | 617 26 NA 6,238 1,559 Voice Recognition [43]
UCIHAR | 561 12 NA 6,213 1,554 Activity Recognition(Mobile)[44]
EXTRA 225 4 NA 146,869 16,343 Smartphone Context Recognition[45]

FACE 608 2 NA 522,441 2,494 Face Recognition[46]
PECAN | 312 3 312 22,290 5,574 Urban Electricity Prediction [47]
PAMAP2 | 75 5 3 611,142 101,582 Activity Recognition(IMU) [48]

APRI 36 2 3 67,017 1,241 Performance Identification[49]

PDP 60 2 5 17,385 7,334 Power Demand Prediction [50]

multiplication involves between the query and class hypervector
since EdgeHD works with binary query vectors. We prefetch
each class hypervector to the negation block and flip the sign
bit of each element depending on the query bits. The results of
the negation block are then transferred to a tree-based adder for
accumulation. Finally, a comparator located at the right-hand
side of the associative search finds the class with the highest
similarity (Figure 6@).
VI. EVALUATION

A. Experimental Setup

We implement an in-hour simulation framework based on
NS-3 [51] to evaluate how EdgeHD performs on a large-
scale IoT hierarchy. The simulation framework evaluates
EdgeHD in a hardware-in-the-loop fashion. We use NS-3 to
simulate communications on hierarchical network topologies
with diverse network mediums. During the simulation loop, the
simulator invokes the EdgeHD learning procedures (wrapped
with ApplicationContainer of NS-3) on actual platforms
which represent different nodes in the IoT hierarchy. We
implement EdgeHD on Raspberry Pi (RPi) 3B+ as a model of
the end nodes and gateway nodes. For FPGA, we design the
EdgeHD functionality using Verilog and synthesize it using
Xilinx Vivado Design Suite [52]. The synthesis code has been
implemented on the Kintex-7 FPGA KC705 Evaluation Kit. For
the central node, we developed a CUDA-based implementation
of the proposed technique on a server system, which uses Intel
Core i7-8700K CPU and NVIDIA GPU GTX 1080 Ti. The
simulator collects the execution time and measures the power
consumption for each connected platform while running the
learning procedures. The power consumption is collected by
Hioki 3337 power meter.

Table I summarizes the evaluated datasets. The tested
benchmarks consist of canonical classification datasets such
as voice recognition, smartphone context recognition, and a
large dataset for face recognition which includes hundreds
of thousands of images. For hierarchy-aware, we use four
datasets. (i) PECAN presents a dense urban area where a
neighborhood may have hundreds of housing units [47]. It has
52 houses observed, where a set of appliances instrumented
with sensors records average energy consumption. The goal
is to predict the level of power consumption in urban area.
(ii)) PAMAP2 (Physical activity monitoring) is a dataset for
human activity recognition which is widely used to understand
user contexts [48]. The data are collected by four sensors
(three accelerometers and one heartbeat sensor), producing
75 features in total. (iii) APRI (Application performance
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identification) is collected on a small server cluster that consists
of three machines [49]. The server cluster runs Apache Spark
applications while collecting performance monitoring counter
(PMC) events on each server. The goal is to identify two
workload groups depending on their computation intensity. (iv)
PDP (Power demand prediction) is collected on another high-
performance computing cluster consisting of six servers [50].
The goal is to identify either the high or low power state of a
server using PMC measurements of the other five servers in
the cluster.

We evaluated two hierarchical network topologies: (i) a
star structure (STAR) that all end-node devices are directly
connected to the central node without having gateway nodes,
and (ii) a three-level tree structure (TREE) with the gateway
nodes which have two end nodes as the children and the central
node as the parent. For example, since the APRI has five end
nodes, we use two gateways to aggregate the models/data.
The central node connects two gateways, and one end node
remains. EdgeHD has configurable parameters that users can
set according to their efficiency requirements. We use the
following parameters if not noted. (i) dimension size (D):
4,000, (ii) the batch size in the model updates (B): 75, (iii)
the compression rate during the inference (m): 25, and (iv)
the confidence threshold is 0.75. We also show an in-depth
exploration of the parameters in the experimental results.

B. Classification Accuracy Comparison

HD computing vs. state-of-the-art: Figure 7 compares the
classification accuracy with the state-of-the-art classification
algorithms, including Deep Neural Network (DNN), Support
Vector Machine (SVM), and AdaBoost. We also compare
the accuracy of EdgeHD with a state-of-the-art HD-based
classifier published in [36], which uses a linear encoding
method as the baseline. The results are reported when all
algorithms are performed in a central node that considers all
features given in the dataset. The DNN models are trained with
Tensorflow [53], and we exploited Scikit-learn library [54] for
the other algorithms. We exploit the common practice of grid
search to identify the best hyper-parameters for each model.
The accuracy of EdgeHD is reported for D = 4000 dimensions
and 80% sparsity. Our evaluation shows that EdgeHD provides
comparable classification accuracy to the sophisticated non-
HD algorithms. As compared to the baseline HD computing,
EdgeHD can achieve on average 4.7% higher classification
accuracy since our new encoding method non-linearly maps
the data to the high dimensional space, whereas the baseline
HD performs the encoding in a linear way.
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TABLE II
CLASSIFICATION ACCURACY IN HIERARCHY LEVELS.

‘ Centralized ‘ Hierarchy-aware

End Nodes Gateway Central Node
PECAN 98.3% 59.5% 81.3% 98.3%
PAMAP?2 97.3% 83.9% 91.2% 96.7%
APRI 92.6% 87.1% 89.3% 92.5%
PDP 94.6% 86.2% 89.5% 93.8%

Centralized vs. Hierarchical Learning: HD computing
can be performed in a centralized or hierarchical way. In a
centralized approach, all edge devices send all their data points
to a cloud; then the cloud takes care of the encoding, training,
and inference tasks. In contrast, in the proposed hierarchical
EdgeHD, encoding, training, and inference are performed on
all computing nodes in a distributed fashion.

Table II compares the accuracy of different applications for
centralized and hierarchical learning cases. For hierarchical
learning, we used the tree network topology that has three
levels in the hierarchy. This classification accuracy increases
as we go deeper through the hierarchy. For example, EdgeHD
in the third level gets on average 94.4% accuracy, which has
only a 0.4% difference from the average accuracy that the
centralized model can get. Note that, in EdgeHD, the inference
task can be performed in any node. Going deeper into the
hierarchy increases the learning quality as the edge devices
get more data to train their model. However, it comes at the
expense of increasing computation and communication costs.
As a result, the model located in the end node provides the
lowest classification accuracy, i.e., on average, 85.7%, but it
can be performed without any communication costs.

C. Hierarchical Online Learning

As discussed in IV-D, EdgeHD can update the models

online based on negative feedback given by users. In each
node, EdgeHD accumulates the hypervectors for the negative
feedback in the residual hypervectors and propagates them
periodically. We train the first offline model with 50% samples
of the dataset and use the rest for online learning. We assume
that each user gives negative feedback for the data points which
are incorrectly classified.
PECAN: Figure 8 visualizes how EdgeHD processes PECAN
consisting of 312 nodes connected through four hierarchical
levels to a central node. Each node in the house level is
connected to up to 12 appliances. On the next level, the street-
level nodes collect information from 6-7 houses. Finally, the
information on street-level nodes is collected in a central house-
level node. We assumed the classification task can be performed
on any nodes in the second to fourth levels (all levels except
appliances). We propagate the models every midnight based
on the timestamps given in the dataset.

As shown in Figure 8a, the initial model trained offline
has relatively low classification accuracy, in particular, on the
lower nodes. The central node has the highest accuracy since
its model is trained by accessing all edge nodes’ data. Online
learning increases classification accuracy over all nodes. The
increment is more significant on the lower-level nodes. Our
evaluation shows that after 100% online learning, EdgeHD
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provides 59.5%, 81.3%, and 98.3% accuracy on the house-
level, street-level, and city-level nodes, respectively. Similarly,
the online training increases confidence level as shown in
Figure 8b. Thus, as online learning progresses, EdgeHD can
perform the inference more locally in lower-level nodes, saving
communication costs. Figure 8c shows the frequency of each
device selected to perform the inference tasks. Right after
the offline training, many classifications are assigned to the
central node since the lower-level devices have low confidence.
For example, the central node performs 28.9% of the tasks.
Through the online training, the classification happens in a
highly distributed fashion, e.g., only 0.3% of prediction needs
to happen on the central node after 100% online training.
Other datasets: Figure 9a shows the classification accuracy
on the central node for PAMAP2. Our evaluation shows that,
when using 4 steps, the online training with 50% and 100% of
datasets improves the accuracy by 4.3% and 9.8% as compared
to the initial model trained offline. The results also show that
the more frequent propagation, the higher the final accuracy that
EdgeHD can achieve. This comes with extra communication
costs. However, it needs to send the residual hypervectors
only once for each propagation, significantly reducing the
communication costs. Figure 9b presents the classification
accuracy over different steps for the four datasets when using
ten steps. We observe that the online training successfully
increases the accuracy on average by 5.5%.

D. Efficiency Comparison

We compare the computation efficiency of the DNN and
HD computing algorithms. In this evaluation, we assume that
the devices have access to the ideal network having 1Gbps
bandwidth. We evaluate the STAR and TREE topology for each
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of the following configurations: (1) DNN-GPU performs the
DNN learning on the GPU in the centralized way. The DNN
models are trained with the best hyperparameter set obtained
using the grid search. Note that there is no trivial efficient
way to run the DNN algorithm in the hierarchy since each
neuron of a DNN model communicates to all connected neurons
during the backpropagation (training) and feed forwarding
(inference.) (2) HD-GPU performs the proposed algorithm
using the GPGPU implementation. Since the IoT devices may
not typically have the general-purpose GPUs due to the costs,
we assume that this approach can be deployed in the centralized
way. (3) HD-FPGA performs the proposed algorithm in the
centralized way using the proposed FPGA design. (4) EdgeHD
is the proposed hierarchical learning method, where each node
runs the learning procedure on the FPGA design and transfers
the data using the host Raspberry Pi systems.

DNN vs HD in the centralized case: Figure 10 compares
the efficiency of the training and inference procedure for
the different configurations. All results are normalized to
the execution time and energy consumption of DNN-GPU
on the TREE topology. The results show that regardless
of the algorithm, the centralized learning needs to pay the
same amount of communication cost as the same number of
data points need to be transferred to the central server. The
communication cost depends on the network structure of the
hierarchy, i.e., the TREE or STAR topology. In the tree-based
configuration, the edge devices need to send their information
to a server by sending their data through gateway devices. This
data transfer requires extra time and energy for communication
as compared to the STAR topology.

The results also show that DNN is a computationally
expensive algorithm, thus requiring a significant amount of
time and energy to train a model. In contrast, an HD-based
classifier performs the training task at a much lower cost, even
in the centralized case, while showing comparable classification
accuracy. For example, HD-GPU achieves 4.3x (2.8%) and
10.5x (4.1x) reduction in the execution time and energy on
average as compared to DNN-GPU in training (inference).
HD-FPGA is slower than HD-GPU since the FPGA has lower
computation resources as compared to the NVIDIA GPU.
However, it achieves a higher energy saving of 3.0x than
HD-GPU since it consumes lower power.

Hierarchical vs. Centralized: Although the HD-based
learning method achieves higher efficiency than the DNN,
even in the centralized case, this approach still has two main
drawbacks. First, all the learning computation happens in a
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single node, potentially creating a scalability issue. Second,
communication takes a large portion since all data needs
to be sent through the network topology of the hierarchy.
The proposed hierarchical learning approach addresses both
computation and communication issues. For example, regarding
the computation costs, EdgeHD training achieves 33 speedup
and 3.9x higher energy efficiency as compared tbtiD-FPGA. It
is because the lower-level nodes need to compute hypervectors
of fewer dimensions, as discussed in Section IV-AFor example,
the FPGA in the centralized setting consumes 9.8W on average,
whereas the FPGA deployed in each node only needs 0.28W
for the hierarchical case. The results show thattdgeHD
also significantly saves the execution time spent for the
communication, e.g., on average 85% for the training and 78%
for the inference. EdgeHD reduces the communication costs
by sending a small number of the class/batch hypervectors
in training and compressing multiple hypervectors in the
inference. In total, EdgeHD achieves 3.4x (1) speedup and
11.7x (7.8x) energy efficiency improvement in the training
(inference) as compared to HD-GPU. As compared t®NN-
GPU, EdgeHD provides 14.7x (5.3%) speedup and 124.§
(43.6x) higher energy efficiency during training (inference).

E. Impact of Network Bandwidth

Figure 11 shows how the network bandwidths affect the
efficiency of hierarchical learning. We report the speedup results
when performing the inference tasks on the end node (Level-1),
the gateway (Level-2), and the central node (Level-3), where
HD-FPGA is used as the baseline. We have evaluated the
EdgeHD performance efficiency on five network mediums: a
wired network of 1Gbps, a wired network of 500Mbps, WiFi
802.11ac, WiFi 802.11n, and Bluetooth 4.0. The results show
that when the network bandwidth is more limitedEdgeHD
achieves higher speedup. For example, using 802.11ac with
46.5Mbps, EdgeHD can achieve on average 3 speedup as
compared to centralized HD. This speedup increases to 9.2
when we use even lower bandwidth networks such as Bluetooth
4. In practical IoT systems, the network bandwidth can
usually be limited. The recent Raspberry Pi 3 Model B+ uses
WiFi 802.11ac and Bluetooth 4.0, which practically provide
23.5Mbps and 1MBps bandwidth, respectively. Therefore,
EdgeHD is a suitable solution for IoT systems with limited
bandwidth.

The evaluation also shows that performing the inference
with the model at a lower level is faster than executing it
on the last level node (Level-3). For example, the Level-2
inference operates 2.4x and 1.8x faster than the level-3 using
the 802.11n and 1Gpbs bandwidth case, respectively. Thus, if
the quality loss is acceptable, e.g., 3.2% accuracy difference
between Level-2 and Level-3 for the APRI dataset, we may
use the model at the lower level for higher efficiency.

FE. Robustness to Failure

Figure 12 compares the classification accuracy, which is
assumed to randomly lose a portion of bits in the encoded
hypervector, and DNN, which loses feature values during
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hierarchical learning.

the data communication in the hierarchy. For EdgeHD, we
have reported results for (i) the hierarchical encoding method
explained in Section IV-A and (ii) a non-holographic encoding
method that only concatenates the hypervectors without using
the random projection method. The result shows that EdgeHD
has much higher robustness to the possible data loss, especially
with the holographic hierarchical encoding method. This
robustness comes from the holographic mapping that distributes
the feature information through all dimensions of the encoded
data. For example, for the 80% loss case, the accuracy of the
DNN model drops by up to 54.3%, while the maximum quality
loss using the holographic (non-holographic) method is only
8.3% (17.5%).

G. Impact of Hierarchy Depths

We study the impact of the hierarchy depth on classification
accuracy. Figure 13 shows the performance and classification
accuracy of EdgeHD when the depth of the hierarchy increases
from 3 to 7 levels for PECAN. The results show the per-
formance speedup of EdgeHD compared to the centralized
learning using the same configuration as hierarchical learning.
Using configuration with more levels increases the cost of
centralized and hierarchical learning, as both approaches need
to transfer a more significant amount of data between the nodes.
However, this data movement is much lower in EdgeHD since
(i) the nodes only transfer limited data and (ii) the size of
encoded data is reduced with more hierarchy levels. In addition,
the increase in data transfer depends on the network bandwidth.
As Figure 13a shows, EdgeHD using WiFi 802.11n (1Gbps)
network can achieve 3.3x (1.2x) higher speedup than the

centralized learning when the depth increases from 3 to 7 levels.

In the hierarchical learning case, the greater improvement in the
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lower bandwidth stems from a larger amount of communication
cost, which dominates the total computation cost. Figure 13b
shows that EdgeHD can get similar accuracy over different
levels. To provide the same dimensionality, EdgeHD with more
levels needs to encode the data with lower dimensions at the
end node, resulting in slightly lower accuracy. EdgeHD can
compensate for this quality loss using a larger dimensionality
in deep configurations.

VII. CONCLUSION

In this work, we propose EdgeHD, a hierarchy-aware
learning algorithm that enables online learning through the
hierarchy. EdgeHD enables both the training and inference
to perform partially on embedded devices and significantly
reduces the amount of data communication between the devices
while accelerating the computation in a distributed manner.
Our results also show that hierarchy-aware learning provides
significantly higher efficiency when IoT systems have access
to a low bandwidth network.
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