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Abstract—In this paper, we propose EdgeHD, a hierarchy-
aware learning solution that performs online training and
inference in a highly distributed, cost-effective way. We use
brain-inspired hyperdimensional (HD) computing as the key
enabler. HD computing performs the computation tasks on a
high-dimensional space to emulate functionalities of the human
memory, such as inter-data relationship reasoning and information
aggregation. EdgeHD exploits HD computing to effectively learn
the classification models on individual devices and combine
the models through the hierarchical IoT nodes without high
communication costs. We also propose a hardware design that
accelerates EdgeHD on low-power FPGA platforms. We evaluated
EdgeHD for a wide range of real-world classification applications.
The evaluation shows that EdgeHD provides highly efficient
computation with reduced communication. For example, EdgeHD
achieves on average 3.4× and 11.7× (1.9× and 7.8×) speedup
and energy efficiency improvement during the training (inference)
as compared to the centralized learning approach. It reduces the
communication costs by 85% for the training and 78% for the
inference.

I. INTRODUCTION

Machine learning methods have been widely utilized to

provide high quality for many cognitive tasks. Running

sophisticated learning tasks requires high computational costs

to process a large amount of learning data. A common solution

is to use the cloud and data centers as the main central

computing units. However, with the emergence of the Internet of

Things (IoT), the centralized approach faces several scalability

challenges towards high-performance computing [1], [2], [3],

[4], [5], [6]. In IoT systems, a large number of embedded

devices are deployed to collect data from the environment and

produce information. The partial data need to be aggregated

to perform the target learning task in the IoT networks such

as a home- or even city-scale. It consequently leads to a high

communication cost with high latency to transfer all data points

to a centralized cloud.

Recent research work studied how to scale the learning

tasks in a distributed fashion where the data are collected from

different devices. A mainstream of the research is often referred

to federated learning [7], [8], [9], [2]. For example, the study

in [10] trains a central Deep Neural Networks (DNN) model

over multiple devices where the data of each device have the

same feature set.

However, effective learning in the IoT hierarchy is still an

open question. We recognize the following technical challenges

to scale the learning tasks for the IoT hierarchy. (i) In reality,

each IoT device has different types of sensors that generate

heterogeneous features. As an example, a smart home has

many different edge nodes, e.g., a smart fridge, TV, stove, and

personal devices. The contextual information of the smart home

should be assimilated based on the collection of the sensor

data. Distributing the learning tasks to the devices having

heterogeneous data is not trivial for the federated learning

solutions and existing algorithms, e.g., DNN and SVM (support

vector machine). (ii) The edge devices often do not have

sufficient resources for online processing of the sophisticated

learning algorithms[11], [12]. The massive amount of data

generated every day provides the opportunity to train a new

model or at least update the pre-trained models. However,

the existing learning algorithms are often over-complex to

run on resource-constrained IoT devices. The state-of-the-

art DNN acceleration solutions [13], [14] only process the

inference tasks while assuming that the golden model can be

trained in a centralized fashion. (iii) To train and infer in a

centralized fashion, the communication may dominate the total

computing costs as the size of data generated in the swarm of

the IoT devices increases. Even if the learning tasks could be

distributed to the edge devices by deploying a costly hardware

accelerator, a large amount of data requires to be transferred

between different nodes, e.g., inputs and outputs of neurons for

DNN models, during the model training procedure. In addition,

reliable communications are not granted, and IoT networks are

often deployed assuming harsh network conditions [15].

In this work, we seek to enable distributed learning using the

data that heterogeneous sensors for each IoT device generate

on the fly. We accelerate the learning tasks by utilizing the

IoT devices as federated computing units, i.e., the learning

tasks are processed on the local embedded devices located in

the hierarchy. Many IoT devices are capable of processing a

part of computational tasks with limited resources, e.g., smart

gateways [16], [17]. To provide an effective and lightweight

learning solution for the IoT hierarchy, we use brain-inspired

hyperdimensional (HD) computing as the machine learning

solution [18], [19]. HD computing is an alternative computing

approach for cognitive tasks. HD computing mimics crucial

properties of the human memory using high-dimensional

vectors, called hypervectors. For example, the brain efficiently
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aggregates and understands the relationship between data. In

HD computing, adding hypervectors imitates data aggregation,

and we can quantify the inter-data relationship based on the

hypervector similarity. In recent years, HD computing has been

employed in a range of applications as a lightweight machine

learning for activity recognition [20], biomedical signal process-

ing [21], [?], genomics [22], reinfocement leanring [23], [24],

[25], and reasoning [26]. A key HD computing advantage is its

robust and efficient training capability in one or few shots where

object categories are learned from a few examples and in a few

iterations instead of many samples and iterations [19]. HDC has

achieved comparable to higher accuracy compared to support

vector machines (SVMs) [27], [28], gradient boosting [29],

and convolutional neural networks (CNNs) [30] with much

lower execution energy. Recently, several companies started

exploiting the HD computing capability to enable intelligence

in IoT devices [31], [32].

HD computing has many attractive properties that address the

aforementioned challenges, making it desirable for distributed

learning in the hierarchy. HD computing can be performed with

linear combinations of hypervectors which non-linearly map

the raw data to an HD space. Thus, we can easily aggregate

the trained models and the sensor data produced by different

sensor nodes in the hierarchy. In addition, the learning proce-

dure is performed using well-defined hypervector operations

without overcomplex learning steps such as backpropagation in

neural networks. The hypervector operations can be efficiently

performed on inexpensive, low-power platforms, e.g., FPGA,

since most computations are (dimension-)independent. The

less-powerful IoT devices can thus perform cognitive tasks effi-

ciently with minimal deployment costs. Besides, a hypervector

can combine multiple information in a space-effective way,

hence we can significantly reduce the communication costs

when running the computations over a collection of multiple

devices. The trained model is extremely robust in the possible

presence of hardware/network failures which is common in

IoT systems.

In this paper, we propose a novel hierarchy-aware brain-

inspired learning, called EdgeHD, which enables online train-

ing and inference on edge devices with significantly high

computation efficiency. Our key contributions are:

• EdgeHD effectively distributes the learning tasks into

edge devices that produce heterogeneous data in a

hierarchy in an IoT system. EdgeHD is capable of updating

the learning model online through the hierarchy to provide

better prediction results based on users’ feedbacks. During

the inference, it automatically decides where to run the tasks

to guarantee the desired prediction quality.

• Our approach exploits the mathematical properties that

govern the high-dimensional space to compress and

transfer data through the hierarchy. This approach reduces

the computation as well as data communication cost by

eliminating the necessity of moving all data between nodes.

• We show an efficient hardware implementation based on

low-power FPGA. Our design supports online training and

inference in a fully pipelined structure. In the hierarchical

setting, the FPGA design located in each node performs the

learning tasks with a minimal power consumption of 0.28W

on average, while the state-of-the-art DNN accelerators, e.g.,

Google Tensor Processing Unit (TPU) consume at least

290W [33].

• EdgeHD significantly improves the classification accuracy

of the existing HD computing algorithms. In contrast

to the existing methods, which linearly map each input

feature into the hyperspace, the proposed solution explicitly

considers non-linear interactions between the inputs. We

exploit Radial Basis Function (RBF) kernel [34], [35] to

design a highly accurate classifier. Our evaluation shows

that the proposed approach achieves comparable accuracy as

sophisticated learning algorithms such as SVM and DNN,

while providing significantly higher efficiency than prior HD

computing-based classifiers.

We evaluate EdgeHD on practical IoT workloads consisting

of multiple sensing nodes with different network hierarchies.

Our evaluation shows that the proposed hierarchical training

provides comparable accuracy to the state-of-the-art method

while achieving 3.4× and 11.7× (1.9× and 7.8×) speedup and

energy efficiency as compared to a state-of-the-art centralized

learning approach during the training (inference). One of the

primary sources of the improvements is the significant reduction

in the communication costs, e.g., 85% for the training and 78%

for the inference.

II. MOTIVATIONAL SCENARIO

We consider a smart home as an example of an IoT system,

where different appliances generate data to perform the desired

learning task, e.g., activity recognition for household members

or power usage management on a city scale (Figure 1a). The

data from each device is aggregated on the gateways at the

house level. Finally, the data of all gateways are aggregated in

a server, i.e., a central node. By analyzing the data, we can

develop a learning model which can be used at different levels,

such as appliances, houses, or even a city.

Figure 1b shows a centralized approach which is typically

used in systems nowadays. This approach aggregates all the

generated data to a server located at the city level. Then,

the cloud creates a unified model which can be used in all

other nodes. This approach has several disadvantages. First,

transferring a large amount of data to the cloud would be

slow and unstable due to the nature of the wireless networks

commonly used by smart devices in home-scale systems. In

addition, it does not guarantee online training for a real-time

response to inference tasks with updated models.

In this paper, we propose a hierarchy-aware learning ap-

proach that enables distributed learning where each edge device

performs its learning task (Figure 1c). Instead of transferring all

data points to the cloud, each edge device trains its own model

using the portion of data available at that particular node. Next,

instead of the raw data, the models are aggregated through

the hierarchy, such that a node at the house level gathers

information from all connected end-node devices. Finally, all

the house models are aggregated at the city level to create
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Fig. 1. (a) Smart home as an example of IoT system, (b) centralized training and (c) hierarchy-aware learning.

a model based on all features generated by the end node

devices. It should be noted that, in practice, recent appliances

have already been produced with computing capability on the

edge, e.g., using ARM-based processors of smart fridges and

televisions.

The major technical challenge is how to aggregate the models

learned on each device in a distributed manner. For example,

the learned models of embedded devices such as a fridge, TV,

and stove need to be aggregated on the smart gateway located

on the house level and beyond. In existing learning algorithms,

e.g., DNN and SVM, this aggregation is not trivial.

Why Hyperdimensional Computing? In this work, we

tackle this problem by exploiting brain-inspired HD comput-

ing. The brain’s circuits have many neurons and synapses,

suggesting that large circuits are fundamental to mimicking

brain functionalities. HD computing imitates human memory

using ultra-wide words, i.e., hypervectors, which have tens

of dimensions [18]. Once the original data are encoded to

hypervectors, various brain functionalities can be modeled

with hypervector operations.

The proposed EdgeHD exploits the following properties of

HD computing to enable hierarchical learning. (i) The key

operation of hierarchical learning is data aggregation. HD

computing represents the effective information aggregation of

the human memory model using simple linear combinations of

hypervectors such as addition and multiplication. This allows

us to propagate the learning models/data through the hierarchy

without complex computations. (ii) As human memory does,

HD computing can also perform continuous learning by

adding more information into the hypervector model, which

is expected in online learning. (iii) We exploit the fact that a

hypervector can store multiple pieces of information to reduce

communication overheads. The bio-inspired hypervectors store

information with i.i.d random components. That is, every

component has the same responsibility to represent a datum,

making HD extremely robust against most failure mechanisms

and noises, which is common in IoT systems. (iv) Despite the

high dimensionality, HD computing can be implemented in

a resource-effective manner since the hypervectors often are

represented with low-precision components, e.g., binaries, and

highly parallelizable as most operations in the hyperspace are

dimension-independent.

III. HD COMPUTING CLASSIFICATION

Figure 2a shows the overview of the proposed classification

method using HD computing. For the sake of simplicity, we

illustrate the algorithm without explicitly regarding the device

hierarchy; we will revisit this algorithm in Section IV to enable

distributed learning. In the initial training step, HD computing

performs the learning task after mapping all training data into

the high-dimensional space. The mapping procedure is often

referred to as encoding. Ideally, the encoded data should satisfy

the common-sense principle: data points that are different from

each other in the original space should also be different in the

high-dimensional space.

To find the universal property for each class in the training

dataset, we linearly combine hypervectors belonging to each

class, i.e., adding the hypervectors to create a single hypervector

for each class. Once combining all hypervectors, we treat per-

class accumulated hypervectors, called class hypervectors, as

the learned model. Next, a similarity search procedure performs

the inference task. For a given query hypervector encoded for

a tested data point, it selects the class with the most similar

hypervector.

A. Non-Linear Encoding

There are multiple encoding methods proposed in litera-

ture [36], [37], [38]. Although these methods have shown

excellent quality of learning, these techniques are applications

specific. We introduce a universal hyperdimensional encoding

process that prepares encoded data for both learning and

cognition. Suppose that the input of the encoder is a 2D

image F with size n × n. The pixel at location (X,Y ) is

defined as FX,Y . For image dimensions x and y, we randomly

generate two base hypervectors Bx and By with dimensionality

D � n. They are defined as follows: Bx = ei
�θx/wx and

�By = ei
�θy/wy , where θ ∈ {N (0, 1)}D and w is the length

scale. To represent a certain location on an axis, we attach the

index to the power of the exponential such as BX1

x and BY1

y .

Here, we take Bx as an example to define the similarity metric

on the x-axis of the image: δ(BX1

x ,BX2

x )
D→∞

≈ k(X1−X2

wx

)
where k(·) is the standard Gaussian kernel; X1 and X2 are

two locations on the x-axis. The same similarity metric is also

defined on the y-axis. In more than 1D, the kernel becomes

kgen(F1 − F2) = k(||F1 − F2||)
Using base hypervectors, we generate an index hypervector

or ID hypervector for each pixel (X,Y ) using element-wise

multiplication: BX
x ∗BY

y . The Gaussian kernel ensures that the

identification (ID) hypervectors are correlated between nearby

pixels, and thus helps maintain spatial information during the

encoding. To represent each pixel in hyperspace, we multiply

the value of pixel FX,Y with its ID hypervector BX
x ∗ BY

y .
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With components defined above, we encode the image f to

its corresponding hypervector VF using the element-wise sum

of multiple pixel hypervectors, also known as the bundling

operation in HDC:

VF =
∑

X,Y

PX,Y B
X
x ∗BY

y

For a large but finite dimensional mapping Z, the shift-

invariant kernel K as the one defined above can be approxi-

mated using inner-products [39]:

K(F1 − F2) ≈ HD(F1)
THD(F2) (1)

where D is the dimensionality of the mapping. There are several

practical measures to design the mapping H that corresponds

to known kernels. In this paper, we focus on one of them that

approximates the RBF kernel, and it is defined as follows:

HD(F) =

√

2

D
cos(B · F+ b) (2)

B is a vector of dimension D with its elements randomly

sampled from standard Gaussian distribution N (0, 1) and
�b functions as a bias vector with elements sampled from

the uniform distribution U(0, 2π). Once they are randomly

generated, we keep them fixed during the later learning and

inference.

Figure 2b shows our encoding procedure. Let us con-

sider an encoding function that maps a feature vector F =
{f1, f2, . . . , fn}, with n features (fi ∈ N ) to a hypervector

H = {h1, h2, . . . , hD} with D dimensions (hi ∈ {−1, 1}).

We generate each dimension of the encoded data by calculating

a dot product of the feature vector with a randomly generated

vector as hi = cos( �Bi · �F + b) × sin( �Bi · �F ), where Bi is

the randomly generated vector with a Gaussian distribution

(mean μ = 0 and standard deviation σ = 1) with the same

dimensionality of the feature vector and b is a random value

sampled uniformly from [0, 2π].
The random vectors {B1,B2, · · · ,BD} can be generated

once offline and then can be used for the rest of the classifi-

cation task. After this step, each element hi of a hypervector

Hn has a non-binary value. In HD computing, binary (bipolar)

hypervectors are often used for computation efficiency. We

thus obtain the final encoded hypervector by binarizing it with

a sign function.

B. Classification Learning and Inference

Training: In the training step, we combine all the encoded

hypervectors of each class using the element-wise addition.

For example, in an activity recognition application, the training

procedure adds all hypervectors which have the “walking” and

“sitting” tags into two different hypervectors. Where Hi
j =

〈hD, · · · , h1〉 is encoded for the jth sample in ith class, each

class hypervector is trained as follows:

Ci =
∑

j

Hi
j = 〈ciD, · · · , ci

1
〉

The element-wise addition results in generating non-binarized

class hypervectors, i.e., cid ∈ N . Note that since our encoding

method projects the original data non-linearly to the high

hD
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Fig. 2. Overview of HD computing for classification.

dimensional space, the linearly combined model can perform

well even on non-linearly separable data.

Once the initial training is done, we train the class hy-

pervector model again to improve the classification accuracy.

In this retraining step, we calculate the similarity between

each encoded hypervector and trained model to check whether

the data sample is correctly classified or not. If the encoded

hypervector, H, is correctly classified by the current model,

we will make no changes to the model. Otherwise, we update

the model by respectively adding and subtracting it from the

correct and incorrect classes as follows:

C
correct

= Ccorrect + H and C
wrong

= Cwrong − H

The retrained model provides a better fit to the training data

and gets higher accuracy. We repeat the same procedure for

multiple iterations. In our observation, repeating 20 iterations

yields sufficient convergence for all the tested datasets.

Inference (testing): The main computation of the inference

is the encoding and associative search. We perform the

same encoding procedure to convert a test data point into

a hypervector, called query hypervector, Q ∈ {0, 1}D. Then, it

computes the similarity of the query hypervector with all k class

hypervectors, {C1,C2, · · · ,Ck}. We measure the similarity

between a query and a ith class hypervector using: δ〈Q, Ci〉,
where δ denotes the similarity metric. After computing all

similarities, each query is assigned to a class with the highest

similarity.

The proposed HD-based classification algorithm is ap-

propriate for hierarchical and distributed learning since the

training and inference computations can be decomposed with

simple linear combinations of hypervector operations where

the hypervectors are already encoded in a non-linear manner.

There are two remaining technical questions: i) how to combine

multiple hypervectors provided by multiple children nodes

through the hierarchy and ii) how to reduce the cost of

communications to transfer hypervectors between the nodes.

514

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:57:23 UTC from IEEE Xplore.  Restrictions apply. 



Training

Model

Inference

Online Learning

Hierarchical Encoding

Training

Model

Inference

Online Learning

U
p

d
a

te

U
p

d
a

te

Encoding

M
o
d
e
l/

C
o

m
p

re
ss

ed
 d

a
ta

Level 3
(Central 
Node)

Partial 

Data 1

Partial 

Data 2

Partial 

Data 3

Partial 

Data 4

Data Generation

Node 2

Node 3

Node 4

Node 4

Node 5

Node 6

Node 1

Node 4 Node 5

Feedback

Partial 

Data 4

Level 1
(End Nodes)

Level 2 
(Gateway Nodes)

(a)

(b)
Quality?

Feedback

Quality?

Fig. 3. Overview of Hierarchical Hyperdimensional Computing Framework
(EdgeHD)

In the next section, we describe how the HD classification

algorithm can be effectively applied to the IoT hierarchy by

addressing these issues.

IV. HIERARCHICAL LEARNING

Figure 3a shows an overview of EdgeHD, which performs

the HD computing on each device in a distributed manner,

where multiple computing nodes are connected in a hierarchical

network. The end node devices which are located in the first

level of hierarchy, run the original encoding and training

procedure with collected data points, creating a partial model

based on the available data on that node. The partial models are

sent to the gateway nodes in the upper layers to learn different

models using the data provided by children nodes. The learning

task is propagated to the central node at the highest level in a

hierarchical fashion.

Figure 3b shows the classification tasks performed on

each node. While the end node runs the encoding procedure

described in Section III-A, the gateway and central nodes

carry out a hierarchical encoding procedure to aggregate

the partial models or hypervectors (Section IV-A.) Since the

hypervector created by the hierarchical encoding procedure

includes the information collected on the children nodes,

EdgeHD can train more comprehensive models on higher-level

nodes (Section IV-B.) During the inference step, users can use

any models stored through the hierarchy (Section IV-C.) For

example, if the user wants to have a real-time response, the

model of the end node would be preferable; if a higher quality

of prediction is more desired, they can use the model of the

central node at the expense of the communication costs to

consider the collected data of other nodes.

In the hierarchical learning mode, EdgeHD also supports

online training, which utilizes users’ feedback to update the

models trained offline (Section IV-D.) During the runtime, it

is usually hard to expect labeled data, i.e., correct classes for

the observed samples. Considering the circumstances, we show

how to update models when users are willing to provide only

negative feedback, i.e., when users are unsatisfied with the

classification results.

A. Hierarchical Encoding

The encoding procedure described in Section III-A maps

the feature values in the original space to the hyperspace.

In contrast, the hierarchical encoding procedure aggregates

multiple hypervectors to create a single hypervector. Since

the node at the lower level has a less number of features, it

typically needs a smaller dimension to keep the information

accessible on the node. Thus, we set different hypervector

dimensionalities for each node. Let us assume that a large

enough dimension, e.g., D=10,000, can include the information

of all data points of n features separately collected in the

hierarchy. Where the node at the top of the hierarchy has the

highest dimensionality, i.e., D, EdgeHD assigns the dimensions

of the devices according to their available feature sizes. For

instance, if a device is connected to the end nodes in the

hierarchy and the end nodes in total collect ni features, the

device gets a dimensionality of di = D × ni/n.

With the determined dimensionality for each node, EdgeHD

performs the encoding procedure for any hypervectors in a

hierarchical manner. Figure 4 shows the proposed hierarchical

encoding with an example of three nodes. Each end node in

the first level (Node 1 and Node 2) uses the original encoding

scheme (Section III-A) and produces a hypervector which

usually has a relatively small dimensionality (d1 and d2).

Then, a gateway node (Node 3) first creates a hypervector

by concatenating the multiple hypervectors provided by the

children nodes. Although this simple concatenation yields the

hypervector of the desired dimensionality, d1 + d2, it does not

consider possible interactions between different features of the

children nodes.

To address this issue, we exploit projection matrix elements

randomly selected from {−1, 0, 1}. EdgeHD performs a vector-

to-matrix multiplication for the concatenated hypervector

and the projection matrix. The results of the multiplications

are binarized again with the sign() function. It maps the

concatenated hypervector into another space while randomly

combining the elements of dimensions of the input hypervectors,

and thus the projected hypervector considers the interactions

of the input hypervectors concatenated before. The projected

hypervector has holographic distribution [18], meaning that

all feature values have the same impact on generating each

dimension of the hypervector. The holographic distribution

enables high robustness of HD computing even when using

either uncertain networks or unreliable hardware commonly

seen in IoT systems, which may lead to loss of some dimension

values. In Section VI-F, we discuss the detailed evaluation of

holographic encoding.

B. Model Training in Hierarchy

The first step of the training is to learn the initial class

hypervectors on each device. As discussed in Section III-B,

the initial model is generated by the addition of all the

encoded hypervectors. Each device only needs to transfer

its HD model, i.e., k class hypervectors, to its parent node

rather than sending all the encoded hypervectors for the data

points. The gateway and central nodes can train their model by
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performing the hierarchical encoding procedure for the received

class hypervectors. This approach enables the initial training to

perform in a distributed way on all nodes while significantly

reducing communication costs.

To achieve higher classification accuracy, we also perform

the retraining step on each device. A naive implementation is

to propagate the encoded hypervector for each sample through

the hierarchy. However, communication costs would be high

in this case. We address this issue by sending the hypervectors

with multiple batches. Let us assume that Hi is a set of

hypervectors for the ith class encoded from the training dataset

on an end node. For a given batch size, B, i.e., the number

of hypervectors combined in a batch, EdgeHD splits Hi into

multiple subsets that have the size of B, and performs the

element-wide addition for each subset, creating βi = �|Hi|/B	
batch hypervectors. In this case, each node only sends

∑K
i βi

hypervectors where K is the number of classes. The gateway

and central nodes run the hierarchical encoding procedure to

combine the batch hypervectors provided by the children, and

the retraining procedure described in Section III-B can be

applied for each batch.

There is a tradeoff between batch size and accuracy. For

example, suppose it does not use the batch method, i.e., B = 1,

since the nodes in the higher levels can check the similarity

for each sample. In that case, we may achieve higher accuracy

at the expense of the communication cost.

C. Hierarchical Inference

The inference is performed by checking the similarity of

a query hypervector with all k class hypervectors to assign a

class with the highest similarity as explained in Section III-B.

In EdgeHD, the inference can be carried out on any model

located in different nodes. For example, we may perform

a local inference using the model stored in each end node.

When high prediction quality is required, we may send the

encoded hypervector up to the central node. EdgeHD exploits

the following two techniques to reduce the communication

costs to send the query hypervectors.

Automated Decision on Inference Node: EdgeHD decides

where to perform the inference task by estimating the confi-

dence level for each prediction. The confidence level depends

on the similarity distances to the class hypervectors. For

example, if the similarity between a query hypervector and

the matched class hypervector is relatively higher than others,

we can consider it a trustworthy prediction. We compute the

relative similarity using the softmax function, whose inputs are

the normalized cosine similarity values to the class query

Similarity check
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hypervectors for all k classes. A larger value indicates a

higher difference between the cosine similarity values, meaning

that the prediction result is highly confident. Thus, EdgeHD

compares the confidence level of the matched class with a

user-configurable threshold value. If the prediction results are

not sufficiently confident, the device sends the hypervectors to

the higher nodes so that the higher-level device can perform

the inference by considering the data provided by other nodes.

Hypervector Compression: The second technique is to

compress multiple hypervectors into a single hypervector. Our

compression method exploits the mathematical orthogonality

of random vectors in high-dimensional space. Let us assume

m hypervectors {H1,H2 . . . ,Hm} to be compressed. The

batching procedure utilizes m random bipolar hypervectors,

called position hypervectors, {P1,P2, . . . ,Pm} with the same

dimensionality (Pi ∈ {−1, 1}D). Since the position hypervec-

tors are generated randomly, they will have a nearly orthogonal

distribution [40]:

δ〈Pi, Pj〉 
 0 (0 < i, j ≤ m, i �= j)

With the randomly generated hypervectors, the compression

procedure is done as follows:

H = P1 ∗H1 +P2 ∗H2 + · · ·+Pm ∗Hm (3)
The combined H hypervector can store the information of

all Hi hypervectors as well as the order of combinations. To

extract the ith hypervector, we can multiply the compressed

hypervector with the corresponding position hypervector:

Hi ≈ (H)·P′
i = Hi ∗ (Pi ·Pi)

︸ ︷︷ ︸

Signal

+
∑

j,∀j �=i

Hj ∗ (Pi ·Pj)

︸ ︷︷ ︸

Noise

.
(4)

In this equation, since Pi ·Pi is the hypervector whose elements

are all zeros, the signal term is equal to Hi. Besides, due to

the near orthogonality between different position hypervectors,

the noise term is very close to zero. Compressing more

hypervectors increases the amount of noise.

D. Online Model Updating

During runtime, users might not satisfy with the classification

quality that the models in any particular nodes provide. We
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propose the idea of online training, which updates the models

in the hierarchical setting. Figure 5 shows the workflow of the

online learning procedure. The model updates happen based

on the user’s feedback for the inference results. Since labeling

every observation would not be feasible in reality, we assume

that users would be willing to provide feedback when they are

not satisfied.

Since the negative feedback means that the prediction is

made by an incorrect class hypervector, EdgeHD subtracts the

query hypervector from the class hypervector currently selected.

We may perform it for every negative feedback; however,

this approach has two main drawbacks: first, it may degrade

the inference efficiency since updating the model delays the

processing of the next inference task. Second, it results in high

communication costs to propagate the hypervectors through

the hierarchy.

EdgeHD updates the models less frequently by accumulating

the hypervectors for the negative feedback. Figure 5a shows

the online learning procedure for each node. Each device

maintains K hypervectors whose elements are initially assigned

to zero, called residual hypervectors. Each residual hypervector

corresponds to one of the classes. Once negative feedback is

given, we add the query hypervector to a residual hypervector

corresponding to the class with an incorrect match. Each edge

device continuously performs the inference while accumulating

to the residual model.

Figure 5b shows how EdgeHD updates the models through

the hierarchy. In the initial state, each device has its own

residual hypervectors (•1 ). Each device first updates its own

model by subtracting the residual hypervectors from the current

model (•2 ). Then, the residual hypervectors are propagated

to the parent nodes (•3 ), so that the gateway and central

nodes run the hierarchical encoding to combine the different

residual hypervectors and update the model. The online update

procedure can be initiated at anytime, depending on the users’

requirements. For example, in a smart home, users may want

to update the model every night.

V. HARDWARE ACCELERATION

EdgeHD can be accelerated in different platforms. Since

there is no dependency between dimensions during the hyper-

vector operations, FPGA is suitable hardware to parallelize the

HD computations in a power-efficient way. Figure 6 shows the

overview of our FPGA design. In the followings, we explain

the details of the implementation.

A. Encoding

EdgeHD encodes each data point by computing the inner

product of a feature vector with different weight vectors. Since

the Gaussian distribution creates many near-zero values, we can

easily create sparse random vectors to reduce the number of

multiplications. The weight vectors can be stored with a vector

with (1−s)×n consecutive non-zero values, and an index value

that represents the index of the first non-zero element where s is

the sparsity factor and n is the number of features. This index

can be stored as log
2
n bits. All weight vectors are stored

in Block RAM (BRAM), which is on-chip FPGA memory
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Fig. 6. EdgeHD FPGA implementation.

(Figure 6•A ). During the encoding, our approach prefetches

the weight vectors from the BRAM blocks and stores them in

the locally distributed memory that can be accessed faster than

BRAM. During the encoding, FPGA reads the first m features

of original data points (m ≤ n). Next, it accesses the weight

vector and then multiplies (1−s)×n continuous dimensions of

the feature vector with the corresponding weight vector. These

multiplications are processed using Digital Signal Processor

(DSP) blocks, and they are parallelized for different weight

vectors. The results of the inner products are accumulated

using a tree-based adder structure (Figure 6•B ). Finally, the

cosine function is calculated using the lookup table (LUT)

logic. Finally, the encoded hypervector can be binarized by

considering the sign of the encoded data as a binary output.

B. Training & Inference

EdgeHD has three types of learning procedures that update

the class hypervector, i.e., the model: i) initial training, ii)

retraining, and iii) online learning. Since they perform a very

similar computation, we design a unified FPGA implementation.

Instead of directly changing the class hypervector stored in

BRAM, our hardware design accumulates all required changes

for the class hypervectors within the residual hypervectors,

which store a vector corresponding to each class (Figure 6•C ).

For example, in the initial training and online learning,

only the element-wise addition is performed, whereas the

subtraction is required additionally for the retraining step

(Figure 6•D ) depending on the results of the associative search.

Finally, EdgeHD updates the original model with the residual

hypervectors once (Figure 6•E ).

The associative search, i.e., computing the similarity metric,

is a common operation used in both the retraining and inference

(Figure 6•F .) To reduce the cost of cosine similarity, we devise

two optimization techniques. First, we simplify the cosine

similarity to the dot product by pre-normalizing the class

hypervectors once after each training step. We also ignore

the normalization of each query hypervector, as this vector

is a common term for all classes. Second, we eliminate the
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TABLE I
DATASETS (n: FEATURE SIZE, K : NUMBER OF CLASSES)

n K

# End
Nodes

Train
Size

Test
Size Description

MNIST 784 10 NA 60,000 10,000 Handwritten Recognition[41], [42]
ISOLET 617 26 NA 6,238 1,559 Voice Recognition [43]
UCIHAR 561 12 NA 6,213 1,554 Activity Recognition(Mobile)[44]
EXTRA 225 4 NA 146,869 16,343 Smartphone Context Recognition[45]
FACE 608 2 NA 522,441 2,494 Face Recognition[46]

PECAN 312 3 312 22,290 5,574 Urban Electricity Prediction [47]
PAMAP2 75 5 3 611,142 101,582 Activity Recognition(IMU) [48]

APRI 36 2 3 67,017 1,241 Performance Identification[49]
PDP 60 2 5 17,385 7,334 Power Demand Prediction [50]

multiplication involves between the query and class hypervector

since EdgeHD works with binary query vectors. We prefetch

each class hypervector to the negation block and flip the sign

bit of each element depending on the query bits. The results of

the negation block are then transferred to a tree-based adder for

accumulation. Finally, a comparator located at the right-hand

side of the associative search finds the class with the highest

similarity (Figure 6•D ).

VI. EVALUATION

A. Experimental Setup

We implement an in-hour simulation framework based on

NS-3 [51] to evaluate how EdgeHD performs on a large-

scale IoT hierarchy. The simulation framework evaluates

EdgeHD in a hardware-in-the-loop fashion. We use NS-3 to

simulate communications on hierarchical network topologies

with diverse network mediums. During the simulation loop, the

simulator invokes the EdgeHD learning procedures (wrapped

with ApplicationContainer of NS-3) on actual platforms

which represent different nodes in the IoT hierarchy. We

implement EdgeHD on Raspberry Pi (RPi) 3B+ as a model of

the end nodes and gateway nodes. For FPGA, we design the

EdgeHD functionality using Verilog and synthesize it using

Xilinx Vivado Design Suite [52]. The synthesis code has been

implemented on the Kintex-7 FPGA KC705 Evaluation Kit. For

the central node, we developed a CUDA-based implementation

of the proposed technique on a server system, which uses Intel

Core i7-8700K CPU and NVIDIA GPU GTX 1080 Ti. The

simulator collects the execution time and measures the power

consumption for each connected platform while running the

learning procedures. The power consumption is collected by

Hioki 3337 power meter.

Table I summarizes the evaluated datasets. The tested

benchmarks consist of canonical classification datasets such

as voice recognition, smartphone context recognition, and a

large dataset for face recognition which includes hundreds

of thousands of images. For hierarchy-aware, we use four

datasets. (i) PECAN presents a dense urban area where a

neighborhood may have hundreds of housing units [47]. It has

52 houses observed, where a set of appliances instrumented

with sensors records average energy consumption. The goal

is to predict the level of power consumption in urban area.

(ii) PAMAP2 (Physical activity monitoring) is a dataset for

human activity recognition which is widely used to understand

user contexts [48]. The data are collected by four sensors

(three accelerometers and one heartbeat sensor), producing

75 features in total. (iii) APRI (Application performance
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Fig. 7. Classification accuracy comparison.

identification) is collected on a small server cluster that consists

of three machines [49]. The server cluster runs Apache Spark

applications while collecting performance monitoring counter

(PMC) events on each server. The goal is to identify two

workload groups depending on their computation intensity. (iv)

PDP (Power demand prediction) is collected on another high-

performance computing cluster consisting of six servers [50].

The goal is to identify either the high or low power state of a

server using PMC measurements of the other five servers in

the cluster.

We evaluated two hierarchical network topologies: (i) a

star structure (STAR) that all end-node devices are directly

connected to the central node without having gateway nodes,

and (ii) a three-level tree structure (TREE) with the gateway

nodes which have two end nodes as the children and the central

node as the parent. For example, since the APRI has five end

nodes, we use two gateways to aggregate the models/data.

The central node connects two gateways, and one end node

remains. EdgeHD has configurable parameters that users can

set according to their efficiency requirements. We use the

following parameters if not noted. (i) dimension size (D):

4,000, (ii) the batch size in the model updates (B): 75, (iii)

the compression rate during the inference (m): 25, and (iv)

the confidence threshold is 0.75. We also show an in-depth

exploration of the parameters in the experimental results.

B. Classification Accuracy Comparison

HD computing vs. state-of-the-art: Figure 7 compares the

classification accuracy with the state-of-the-art classification

algorithms, including Deep Neural Network (DNN), Support

Vector Machine (SVM), and AdaBoost. We also compare

the accuracy of EdgeHD with a state-of-the-art HD-based

classifier published in [36], which uses a linear encoding

method as the baseline. The results are reported when all

algorithms are performed in a central node that considers all

features given in the dataset. The DNN models are trained with

Tensorflow [53], and we exploited Scikit-learn library [54] for

the other algorithms. We exploit the common practice of grid

search to identify the best hyper-parameters for each model.

The accuracy of EdgeHD is reported for D = 4000 dimensions

and 80% sparsity. Our evaluation shows that EdgeHD provides

comparable classification accuracy to the sophisticated non-

HD algorithms. As compared to the baseline HD computing,

EdgeHD can achieve on average 4.7% higher classification

accuracy since our new encoding method non-linearly maps

the data to the high dimensional space, whereas the baseline

HD performs the encoding in a linear way.
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TABLE II
CLASSIFICATION ACCURACY IN HIERARCHY LEVELS.

Centralized
Hierarchy-aware

End Nodes Gateway Central Node

PECAN 98.3% 59.5% 81.3% 98.3%
PAMAP2 97.3% 83.9% 91.2% 96.7%

APRI 92.6% 87.1% 89.3% 92.5%
PDP 94.6% 86.2% 89.5% 93.8%

Centralized vs. Hierarchical Learning: HD computing

can be performed in a centralized or hierarchical way. In a

centralized approach, all edge devices send all their data points

to a cloud; then the cloud takes care of the encoding, training,

and inference tasks. In contrast, in the proposed hierarchical

EdgeHD, encoding, training, and inference are performed on

all computing nodes in a distributed fashion.

Table II compares the accuracy of different applications for

centralized and hierarchical learning cases. For hierarchical

learning, we used the tree network topology that has three

levels in the hierarchy. This classification accuracy increases

as we go deeper through the hierarchy. For example, EdgeHD

in the third level gets on average 94.4% accuracy, which has

only a 0.4% difference from the average accuracy that the

centralized model can get. Note that, in EdgeHD, the inference

task can be performed in any node. Going deeper into the

hierarchy increases the learning quality as the edge devices

get more data to train their model. However, it comes at the

expense of increasing computation and communication costs.

As a result, the model located in the end node provides the

lowest classification accuracy, i.e., on average, 85.7%, but it

can be performed without any communication costs.

C. Hierarchical Online Learning

As discussed in IV-D, EdgeHD can update the models

online based on negative feedback given by users. In each

node, EdgeHD accumulates the hypervectors for the negative

feedback in the residual hypervectors and propagates them

periodically. We train the first offline model with 50% samples

of the dataset and use the rest for online learning. We assume

that each user gives negative feedback for the data points which

are incorrectly classified.

PECAN: Figure 8 visualizes how EdgeHD processes PECAN

consisting of 312 nodes connected through four hierarchical

levels to a central node. Each node in the house level is

connected to up to 12 appliances. On the next level, the street-

level nodes collect information from 6-7 houses. Finally, the

information on street-level nodes is collected in a central house-

level node. We assumed the classification task can be performed

on any nodes in the second to fourth levels (all levels except

appliances). We propagate the models every midnight based

on the timestamps given in the dataset.

As shown in Figure 8a, the initial model trained offline

has relatively low classification accuracy, in particular, on the

lower nodes. The central node has the highest accuracy since

its model is trained by accessing all edge nodes’ data. Online

learning increases classification accuracy over all nodes. The

increment is more significant on the lower-level nodes. Our

evaluation shows that after 100% online learning, EdgeHD
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provides 59.5%, 81.3%, and 98.3% accuracy on the house-

level, street-level, and city-level nodes, respectively. Similarly,

the online training increases confidence level as shown in

Figure 8b. Thus, as online learning progresses, EdgeHD can

perform the inference more locally in lower-level nodes, saving

communication costs. Figure 8c shows the frequency of each

device selected to perform the inference tasks. Right after

the offline training, many classifications are assigned to the

central node since the lower-level devices have low confidence.

For example, the central node performs 28.9% of the tasks.

Through the online training, the classification happens in a

highly distributed fashion, e.g., only 0.3% of prediction needs

to happen on the central node after 100% online training.

Other datasets: Figure 9a shows the classification accuracy

on the central node for PAMAP2. Our evaluation shows that,

when using 4 steps, the online training with 50% and 100% of

datasets improves the accuracy by 4.3% and 9.8% as compared

to the initial model trained offline. The results also show that

the more frequent propagation, the higher the final accuracy that

EdgeHD can achieve. This comes with extra communication

costs. However, it needs to send the residual hypervectors

only once for each propagation, significantly reducing the

communication costs. Figure 9b presents the classification

accuracy over different steps for the four datasets when using

ten steps. We observe that the online training successfully

increases the accuracy on average by 5.5%.

D. Efficiency Comparison

We compare the computation efficiency of the DNN and

HD computing algorithms. In this evaluation, we assume that

the devices have access to the ideal network having 1Gbps

bandwidth. We evaluate the STAR and TREE topology for each
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(a) (b)

Fig. 9. EdgeHD accuracy in different training steps.

of the following configurations: (1) DNN-GPU performs the

DNN learning on the GPU in the centralized way. The DNN

models are trained with the best hyperparameter set obtained

using the grid search. Note that there is no trivial efficient

way to run the DNN algorithm in the hierarchy since each

neuron of a DNN model communicates to all connected neurons

during the backpropagation (training) and feed forwarding

(inference.) (2) HD-GPU performs the proposed algorithm

using the GPGPU implementation. Since the IoT devices may

not typically have the general-purpose GPUs due to the costs,

we assume that this approach can be deployed in the centralized

way. (3) HD-FPGA performs the proposed algorithm in the

centralized way using the proposed FPGA design. (4) EdgeHD

is the proposed hierarchical learning method, where each node

runs the learning procedure on the FPGA design and transfers

the data using the host Raspberry Pi systems.

DNN vs HD in the centralized case: Figure 10 compares

the efficiency of the training and inference procedure for

the different configurations. All results are normalized to

the execution time and energy consumption of DNN-GPU

on the TREE topology. The results show that regardless

of the algorithm, the centralized learning needs to pay the

same amount of communication cost as the same number of

data points need to be transferred to the central server. The

communication cost depends on the network structure of the

hierarchy, i.e., the TREE or STAR topology. In the tree-based

configuration, the edge devices need to send their information

to a server by sending their data through gateway devices. This

data transfer requires extra time and energy for communication

as compared to the STAR topology.

The results also show that DNN is a computationally

expensive algorithm, thus requiring a significant amount of

time and energy to train a model. In contrast, an HD-based

classifier performs the training task at a much lower cost, even

in the centralized case, while showing comparable classification

accuracy. For example, HD-GPU achieves 4.3× (2.8×) and

10.5× (4.1×) reduction in the execution time and energy on

average as compared to DNN-GPU in training (inference).

HD-FPGA is slower than HD-GPU since the FPGA has lower

computation resources as compared to the NVIDIA GPU.

However, it achieves a higher energy saving of 3.0× than

HD-GPU since it consumes lower power.

Hierarchical vs. Centralized: Although the HD-based

learning method achieves higher efficiency than the DNN,

even in the centralized case, this approach still has two main

drawbacks. First, all the learning computation happens in a

single node, potentially creating a scalability issue. Second,

communication takes a large portion since all data needs

to be sent through the network topology of the hierarchy.

The proposed hierarchical learning approach addresses both

computation and communication issues. For example, regarding

the computation costs, EdgeHD training achieves 3.4× speedup

and 3.9× higher energy efficiency as compared toHD-FPGA. It

is because the lower-level nodes need to compute hypervectors

of fewer dimensions, as discussed in Section IV-A. For example,

the FPGA in the centralized setting consumes 9.8W on average,

whereas the FPGA deployed in each node only needs 0.28W

for the hierarchical case. The results show thatEdgeHD

also significantly saves the execution time spent for the

communication, e.g., on average 85% for the training and 78%

for the inference. EdgeHD reduces the communication costs

by sending a small number of the class/batch hypervectors

in training and compressing multiple hypervectors in the

inference. In total, EdgeHD achieves 3.4× (1.9×) speedup and

11.7× (7.8×) energy efficiency improvement in the training

(inference) as compared to HD-GPU. As compared toDNN-
GPU, EdgeHD provides 14.7× (5.3×) speedup and 124.5×
(43.6×) higher energy efficiency during training (inference).

E. Impact of Network Bandwidth

Figure 11 shows how the network bandwidths affect the

efficiency of hierarchical learning. We report the speedup results

when performing the inference tasks on the end node (Level-1),

the gateway (Level-2), and the central node (Level-3), where

HD-FPGA is used as the baseline. We have evaluated the

EdgeHD performance efficiency on five network mediums: a

wired network of 1Gbps, a wired network of 500Mbps, WiFi

802.11ac, WiFi 802.11n, and Bluetooth 4.0. The results show

that when the network bandwidth is more limited,EdgeHD

achieves higher speedup. For example, using 802.11ac with

46.5Mbps, EdgeHD can achieve on average 3.1× speedup as

compared to centralized HD. This speedup increases to 9.2×
when we use even lower bandwidth networks such as Bluetooth

4. In practical IoT systems, the network bandwidth can

usually be limited. The recent Raspberry Pi 3 Model B+ uses

WiFi 802.11ac and Bluetooth 4.0, which practically provide

23.5Mbps and 1MBps bandwidth, respectively. Therefore,

EdgeHD is a suitable solution for IoT systems with limited

bandwidth.

The evaluation also shows that performing the inference

with the model at a lower level is faster than executing it

on the last level node (Level-3). For example, the Level-2

inference operates 2.4× and 1.8× faster than the level-3 using

the 802.11n and 1Gpbs bandwidth case, respectively. Thus, if

the quality loss is acceptable, e.g., 3.2% accuracy difference

between Level-2 and Level-3 for the APRI dataset, we may

use the model at the lower level for higher efficiency.

F. Robustness to Failure

Figure 12 compares the classification accuracy, which is

assumed to randomly lose a portion of bits in the encoded

hypervector, and DNN, which loses feature values during
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Fig. 10. Execution time and Energy of DNN and HD computing algorithm for centralized/hierarchical learning.

Fig. 11. Impact of network bandwidth on the performance speedup of
hierarchical learning.

the data communication in the hierarchy. For EdgeHD, we

have reported results for (i) the hierarchical encoding method

explained in Section IV-A and (ii) a non-holographic encoding

method that only concatenates the hypervectors without using

the random projection method. The result shows that EdgeHD

has much higher robustness to the possible data loss, especially

with the holographic hierarchical encoding method. This

robustness comes from the holographic mapping that distributes

the feature information through all dimensions of the encoded

data. For example, for the 80% loss case, the accuracy of the

DNN model drops by up to 54.3%, while the maximum quality

loss using the holographic (non-holographic) method is only

8.3% (17.5%).

G. Impact of Hierarchy Depths

We study the impact of the hierarchy depth on classification

accuracy. Figure 13 shows the performance and classification

accuracy of EdgeHD when the depth of the hierarchy increases

from 3 to 7 levels for PECAN. The results show the per-

formance speedup of EdgeHD compared to the centralized

learning using the same configuration as hierarchical learning.

Using configuration with more levels increases the cost of

centralized and hierarchical learning, as both approaches need

to transfer a more significant amount of data between the nodes.

However, this data movement is much lower in EdgeHD since

(i) the nodes only transfer limited data and (ii) the size of

encoded data is reduced with more hierarchy levels. In addition,

the increase in data transfer depends on the network bandwidth.

As Figure 13a shows, EdgeHD using WiFi 802.11n (1Gbps)

network can achieve 3.3× (1.2×) higher speedup than the

centralized learning when the depth increases from 3 to 7 levels.

In the hierarchical learning case, the greater improvement in the

Fig. 12. Impact of the network and hardware failure on the classification
accuracy of different applications.

3 Levels

4 Levels

5 Levels

6 Levels

7 Levels

98.3%

98.3%

98.2%

98.1%

97.9%

Centralized 98.3%

H
ie

ra
rc

h
a
l

Configuration Accuracy

Fig. 13. Speedup and accuracy using configurations with different levels of
hierarchy.

lower bandwidth stems from a larger amount of communication

cost, which dominates the total computation cost. Figure 13b

shows that EdgeHD can get similar accuracy over different

levels. To provide the same dimensionality, EdgeHD with more

levels needs to encode the data with lower dimensions at the

end node, resulting in slightly lower accuracy. EdgeHD can

compensate for this quality loss using a larger dimensionality

in deep configurations.

VII. CONCLUSION

In this work, we propose EdgeHD, a hierarchy-aware

learning algorithm that enables online learning through the

hierarchy. EdgeHD enables both the training and inference

to perform partially on embedded devices and significantly

reduces the amount of data communication between the devices

while accelerating the computation in a distributed manner.

Our results also show that hierarchy-aware learning provides

significantly higher efficiency when IoT systems have access

to a low bandwidth network.

VIII. ACKNOWLEDGMENT

This work was supported in part by DARPA, National

Science Foundation #2127780 and #2312517, Semiconductor

521

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:57:23 UTC from IEEE Xplore.  Restrictions apply. 



Research Corporation (SRC), Office of Naval Research, grants

#N00014-21-1-2225 and #N00014-22-1-2067, the Air Force

Office of Scientific Research under award #FA9550-22-1-0253,

Army Ground Vehicle Systems Center, and generous gifts

from Xilinx and Cisco. This work was also supported by the

National Research Foundation of Korea (NRF) grant funded

by the Korea government(MSIT) (No.2018R1A5A1060031),

Basic Science Research Program through the National Research

Foundation of Korea(NRF) funded by the Ministry of Science.

This work was supported by Institute of Information &

communications Technology Planning & Evaluation (IITP)

grant funded by the Korea government(MSIT) (No.2022-0-

00991, 1T-1C DRAM Array Based High-Bandwidth, Ultra-

High Efficiency Processing-in-Memory Accelerator).

REFERENCES

[1] G. Lopez et al., “Edge-centric computing: Vision and challenges,” ACM
SIGCOMM Computer Communication Review, vol. 45, no. 5, pp. 37–42,
2015.

[2] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” ACM SIGPLAN Notices, vol. 52, no. 4, pp. 615–629,
2017.

[3] M. Satyanarayanan, “The emergence of edge computing,” Computer, vol. 50,
no. 1, pp. 30–39, 2017.

[4] B. P. Rimal et al., “Mobile-edge computing vs. centralized cloud computing
in fiber-wireless access networks,” in INFOCOM WKSHPS, IEEE, 2016.

[5] N. Abbas et al., “Mobile edge computing: A survey,” IEEE IoT Journal,
2018.

[6] Y. Gan et al., “An open-source benchmark suite for microservices and their
hardware-software implications for cloud & edge systems,” in ASPLOS,
ACM, 2019.

[7] V. Smith et al., “Federated multi-task learning,” in NIPS, 2017.
[8] E. Bagdasaryan et al., “How to backdoor federated learning,” arXiv preprint

arXiv:1807.00459, 2018.
[9] X. Wang et al., “In-edge ai: Intelligentizing mobile edge computing, caching

and communication by federated learning,” arXiv preprint arXiv:1809.07857,
2018.
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