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Abstract— The pivotal issue of reliability is one of the major
concerns for circuit designers. The driving force is transistor
aging, dependent on operating voltage and workload. At the
design time, it is difficult to estimate close-to-the-edge guardbands
that keep aging effects during the lifetime at bay. This is because
the foundry does not share its calibrated physics-based models,
comprised of highly confidential technology and material param-
eters. However, the unmonitored yet necessary overestimation of
degradation amounts to a performance decline, which could be
preventable. Furthermore, these physics-based models are com-
putationally complex. The costs of modeling millions of individual
transistors at design time can be exorbitant. We propose the use
of a machine learning model trained to replicate the physics-
based model, such that no confidential parameters are disclosed.
This effectual workaround is fully accessible to circuit designers
for the purposes of design optimization. We demonstrate the
model’s ability to generalize by training on data from one circuit
and applying it successfully to a benchmark circuit. The mean
relative error is as low as 1.7 %, with a speedup of up to 20x.
Circuit designers, for the first time ever, will have ease of access
to a high-precision aging model, which is paramount for efficient
designs. In contrast to existing work, our approach takes the full
switching activity into account to model recovery effects. This
work is a promising step in the direction of bridging the gap
between the foundry and circuit designers.
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I. INTRODUCTION

ELIABILITY is a major concern in today’s circuits.

As CMOS scaling reaches the atomic level, the impact
of degradation effects on the reliability becomes stronger [1].
Aging is the most dominating effect and changes the transis-
tor’s properties like the threshold voltage Vy,. Consequently,
it can cause permanent failures in a circuit. Even before
such failures, aging indirectly impacts the circuit’s timing
and hinders performance improvements. The negative bias
temperature instability (NBTI) aging mechanism is responsible
for the highest degradation [2]. During regular transistor
operation, Si-H bonds at the Si-SiO; interface might be broken
and annealed. Additionally, charges are captured and emitted
in the oxide vacancies at the interface layer. Over time, these
defects accumulate and manifest themselves as a shift in Vi,
referred to as AVy,. The induced increase in the propagation
delay of the logic gates can cause timing violations.

To prevent such timing violations and ensure the circuit per-
forms as specified during its entire projected lifetime, timing
guardbands are added during the design phase. Such additional
slack compensates for the reduced switching speed of aged
transistors. The design challenge is to balance such guardbands
between too pessimistic, reducing the circuit’s performance,
and too optimistic, increasing the risk of premature failures.
To find an optimal guardband (i.e., small, yet sufficient), the
aging-induced AVy, has to be accurately estimated. Aging
models are required to abstract the underlying physical behav-
iors, take technology parameters, stress patterns, and voltages
into account, and predict the evolution of AVy, over time. Only
with such models can designers make informed and proper
decisions on the guardband of every transistor.

Physics-based aging models capture the dynamics of the
fundamental physical behavior and chemical reactions inside
the transistors. Complex differential equations take the mate-
rial and technology dependent parameters into account. This
makes the model capable of capturing recovery effects, where
Vi is indeed reduced as shown in Fig. 1. During low-stress
phases, the defects are partially healed and Vy, recovers [3].
The supply voltage Vpp is dynamic, creating such phases,
changes over time, and is typically defined through the
workload of the circuit. To capture these voltage dynamics,
an aging model has to process such a voltage waveform.
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Fig. 1.  Worst-case models are typically employed in the industry. For

transistor aging, they assume constant stress and thus the highest possible
degradation (red). Physics-based models are far more accurate because they
take the input waveform and recovery effects into account.

Worst-case aging models are not capable of this. They are
created by fitting measurements of constant voltage stress
on a transistor. Hence, they cannot model the physics of
voltage dynamics and recovery effects. To process a voltage
waveform, the highest voltage is applied for the whole duration
of the voltage waveform. Consequently, they overestimate the
impact of aging significantly. Today’s high-end devices are
operating at the technological limits and cannot afford the
unnecessary performance penalties mandated by such pes-
simistic predictions, an ideal aging model has to be as precise
as possible. While physics-based models achieve such high
accuracy, they require parameters specific to the manufacturing
process to compute the degradation. Such parameters are a
valuable secret of the foundry because they reveal details
about their technology through material-dependent parameters.
The foundry instead provides a process design kit (PDK)
covering various corner cases including the worst case (i.e.,
the slow-slow corner). In summary, designers have limited
options to optimize their circuit, which reduces performance
and increases costs. An “ideal” aging model should therefore
not expose any confidential information about the underlying
technology. At the same time, it should still provide accurate
estimations, including recovery.

The foundry only guarantees the slow-slow corner leading to
very pessimistic guardbands and hence efficiency losses. With
the risk of failure on the designers’ side, this pessimism might
be reduced. Alternatively, the degradation can be measured
during post-silicon validation. However, such test chips are
costly and increase time to market. Additionally, the design is
almost complete at this stage further increasing costs, which
often cannot be afforded by small to medium-sized companies.
With an aging model, the impact of the circuit’s workloads
and voltages on Vy, can be predicted early in the design
phase. For application-specific circuits like a video decoder,
the workloads are known from the specifications and can be
simulated even before the design phase starts. Starting with the
much faster typical-typical corner, an appropriate guardband is
added. An ideal aging model is thus available to the designers
during design time and allows them to predict the degradation
for each individual transistor. During runtime, the remaining
guardband can be treated as a resource like remaining battery
power. Resource management schemes require a long-term
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aging model to optimize over the whole lifetime. Physics-
based models are not an option, because of their confidential
parameters and their high computational complexity. An ideal
aging model has a low computational cost to be employed
for millions of transistors during design time. At runtime,
it provides predictions as a low-overhead background task in
the operating system.

A. Our Main Contributions

Designers require an accurate and fast transistor aging
model to optimize the performance of their circuit designs
depending on the potential workload. Further, simulating mil-
lions and billions of transistors is time consuming necessitating
a fast aging model. Physics-based models are slow and confi-
dential, i.e., not accessible to designers. Therefore, we propose
to employ machine learning (ML) to model transistor aging.
As shown in Fig. 2, the foundry employs its confidential
physics-based models to train an ML-based model. Such a
model is fast and does not reveal the technology and material
parameters. Hence, it can be provided to the circuit designers.
They employ the model in conjunction with their workloads to
generate their workload-specific, aging-aware PDK. With this
PDK, guardbands can be reduced increasing performance.

In this paper, we investigate for the first time how
physics-based models can be abstracted through ML methods.
In contrast to existing work, our approach takes the full
switching activity into account to model recovery effects. ML
algorithms like deep neural network (DNN) or long short-term
memory (LSTM) have a high computational complexity but
can achieve in high accuracy in many applications. As a less
computational-intense algorithm, lightweight brain-inspired
ML methods have attracted the interest of the community
in recent years. Brain-inspired hyperdimensional computing
(HDC) does not utilize networks of neurons but is built
around large randomly-generated hypervectors [4]. The accu-
rate yet complex equations of physics-based models have to be
replaced by a trained ML model. To this end, we investigate
two challenges. First, the capability to constructed a AVy, trace
from a voltage activity waveform. Such traces and waveforms
are typically in the range of nanoseconds to minutes and model
short-term aging [5]. Second, predict only the last degradation
AVy, value for a single transistor based on a given short
voltage activity waveform. This prediction is essential for an
extrapolation to ten years until the end of lifetime (EoL) of
the device. We investigate the accuracy of the ML models not
only on their prediction of this AVy, value. We also employ
the predicted AVy further to extrapolate the circuit delay
after ten years and compare the impact on the delay. The
performance of the models is evaluated by training on the
transistors of standard cells and an 8-bit adder. The test set
are the transistors of a 32-bit MAC unit with which we also
evaluate the prediction of the delay after 10 years.

II. RELATED WORK AND BACKGROUND

Transistor aging has been studied for many years and the
impact is well understood. This sections aims at summarizing
this research briefly.
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Fig. 2. Typically, circuit designers do not have access to accurate physics-based aging models to estimate efficient (i.e., small, yet sufficient) guardbands. A
machine learning-based aging model are free sensitive material and process parameters of the foundry and can thus be shared with designers. Now, circuit

designer can create workload-specific aging data for efficient guardbands.

A. Transistor Aging Models

Since manufacturing technology has moved past 45 nm, new
materials had to be used [6]. Hafnium Oxide (HfO,) is used as
a high-« dielectric and replaced the traditional silicon dioxide.
A drawback of HfO, is its higher number of pre-existing
defects in the material itself, making it more susceptible to
degradation and thus less reliable. Hence, transistor aging has
become a major consideration in modern circuits.

In this work, we focus on NBTI as the primary aging
mechanism [2]. Note that our method can be applied analo-
gously to other aging mechanisms like hot carrier degradation
(HCD). NBTI aging occurs when the pMOS transistor is
turned on. During the on-time, two effects come into play.
First, positively charged holes are trapped inside the HfO,
dielectric. This increases the Vi, of the transistor. If the stress
is reduced, i.e., the voltage lowered or the transistor completely
turned off, then the holes can be removed and the initial Vi,
can be recovered over time. Due to the second effect, new
traps are generated in the interface material. If the transistor
is turned on, these traps are positively charged increasing the
Vih. Similar to the first effect, some of these traps may be
deactivated once the stress is reduced or removed partially
restoring Vy,. In both cases AVy, is dictated by the applied
voltage.

Most models (especially analytical models) consider recov-
ery only at 0 V. However, measurements have proven that
even a reduction in the voltage starts the recovery [3]. The
phenomenon is demonstrated in Fig. 1, in which a physics-
based NBTI model is employed to calculate the transient
trap occupancy, among others [2]. Hence, it is indispensable
to consider the dynamics of different voltage levels when
modeling aging [7]. In this work, the physics-based NBTI
aging model “BAT” is employed, which has been calibrated
with measurements from various technologies [2].

ML-based methods to model and predict the impact of
aging have been investigated at different levels of the stack.
At the system level, reinforcement learning-based methods
have been used to schedule threads on a multi-core CPU

to reduce aging [8]. At the circuit level, the increase in
path delay due to an increased AVy, has been modeled with
multivariate adaptive regression splines and compared against
support vector machine (SVM) and recurrent neural network
(RNN) [9]. Their model takes changing operation conditions,
like different voltages, into account. At the gate level, the
generation of reliability-aware cell libraries through ML has
been demonstrated [10]. This allows a circuit designer to
quickly generate cell libraries specifically for their workloads
and optimize their design accordingly.

The authors in [11] propose a method to predict
aging-induced delays for 28nm FDSOI technology. Their
approach considers different voltage and frequency settings as
well as workloads, although abstracted as percental switch-
ing activities. They train an ML model for two standard
cells and use a conversion scheme to extend the predic-
tion of other standard cells. In contrast to this work, their
model only considers an abstracted switching activity work-
load and thus cannot include recovery effects. Further, the
focus on standard cells limits its applicability in custom
circuits.

In [12], at device level, a single transistor is subjected
to constant voltage stress and the Vi, curve is fitted with
a regression model. Such voltage dynamics are taken into
account in [13]. They performed TCAD simulations of a single
transistor until time ¢ and afterwards continue with an ML
model. Since TCAD simulations are still required initially,
their approach cannot relieve the confidentiality concerns
of the foundry. The physics-based aging model in TCAD
includes sensitive technology parameter and reveals details
about the manufacturing process, an essential trade secret of
any foundry. In contrast to [12], we include voltage dynamics
and recovery effects. In contrast to [13], our models do
not rely on physics-based models during inference. Hence,
the input to our model is not a single fixed voltage or a
statistical assumption of on/off times, but a trace represent-
ing workloads and operating conditions for an individual
transistor.
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models © to generate the ground truth for the training of the machine learning
Finally, the degradation is applied again at circuit level for efficient guardband

B. Machine-Learning Methods

As for our predictive models, we used different strategies
and analyzed what were the trade-offs between each one
of them. The multilayer perceptron (MLP) model is one
of the simplest neural network models and this practicality
has caused its increase on popularity. On the other hand,
ML focused on the maximization (support) of separating the
margin between classes (vector), also called SVM learning,
is a powerful classification tool that has been used widely on
many applications and achieved great results.

RNNSs are frequently used in application involving sequen-
tial data, which fits the temporal nature of aging. However,
RNNs frequently fail to learn the important information from
the input data involving learning long-term dependencies.
By introducing gate functions into the cell structure, the LSTM
is able to handle the problem of long-term dependencies
well [14]. Since its introduction, almost all the results based
on RNNs have been achieved by LSTMs. The many appli-
cations include machine translation, time series prediction,
natural language processing, and Computer Vision among
others [15]. Because of the influence of previous voltages
on aging, LSTM’s ability to successfully train on data with
long-term temporal dependencies makes it natural choice for
this application [16].

C. Brain-Inspired Hyperdimensional Computing

Brain-inspired HDC is a lightweight alternative to tradi-
tional ML approaches. It is a rapidly emerging concept that has
been successfully applied to voice recognition [17], and hand
gesture identification [18], seizures detected [19], image clas-
sification [20], pattern recognition for wafer defect maps [21],
circuit reliability estimation [22], [23], and others. Imple-
mentations range from low-power embedded devices [24]
to high-power GPUs [25]. HDC is based on the concept
of hypervectors, vectors with thousands of dimensions. The
hypervectors can consist of simple bits, integers, real numbers,
or other symbols.

Hypervectors representing real-world values (e.g., 0.7 V) are
generated once and stored in the item memory. If the same

models. Then, their prediction is extrapolated to the end of lifetime (EoL) @.
estimation ©.

value has to be mapped into hyperdimensional space again,
the previously generated item hypervector is retrieved from
the item memory. Due to the high dimension, it is very likely
that two randomly-generated hypervectors are orthogonal to
each other. For binary hypervectors, this similarity metric
is computed with the Hamming distance, for integer-based
hypervectors using the cosine similarity.

Multiple item hypervectors are combined into a class
hypervector through the basic operations of bundling and
binding [4]. This process is also called encoding. A voltage
waveform is encoded into a single hypervector which then
represents said waveform. If a similar waveform is encoded,
then its resulting hypervector has a high similarity to the
first hypervector. Each operation is executed on the individual
independent components of the hypervector making them
trivial to parallelize.

Traditional ML methods such as DNN require huge amounts
of data and lots of processing power for training [17]. HDC
promises to reduce these requirements. Learning from few
samples has been demonstrated for the example of seizure
detection [26]. The distributed design of hypervectors makes
HDC very robust against failures in the underlying memory
and thus well suited for less reliable low-power emerging
memories [27]. The design makes it also robust against noise
in the data, e.g., from low-quality aging monitors embedded
in the circuit. Additionally, HDC operations are trivial to
parallelize to make use of multiple processing units. All
these properties suggest that an ideal aging model can be
implemented with HDC.

III. METHODOLOGY AND EXPERIMENTAL SETUP

To evaluate the impact of transistor aging on a circuit,
the analysis starts at application level. The activities of the
application generates the stimuli for the inputs of the circuit
(a NAND gate in this example) as shown in Fig. 3 @. Those
stimuli are then propagated to the individual transistors in
®. In larger circuits, not every transistor is connected to an
input and thus its stimulus depends on the logic inside the
circuit. Therefore, the circuit has to be simulated to extract

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:58:25 UTC from IEEE Xplore. Restrictions apply.



GENSSLER et al.: MODELING AND PREDICTING TRANSISTOR AGING UNDER WORKLOAD DEPENDENCY

a) T=125C

AV, [MV]

0 L L L L 0
0 2000 4000 6000 8000

80

c) T=125°C

AV, [mV]

15 20 25 30 35
time (s)

2 3 45 6 7 8 9 0 5 10
time (s)

0 1

©2019 IEEE
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the voltage waveforms. In @, the waveforms are provided as
an input to the aging models which generate the corresponding
degradation trace. Based on this short-term trace, the EoL
degradation is extrapolated, typically to ten years @. The
resulting EoL. AVy, for each transistor is applied to the circuit
® and causes an increase of the propagation delay or latency.
Only if this aging-induced shift is considered during design
can the system continue functioning properly over its whole
lifetime.

This work builds on top of the CARAT framework [29] to
simulate circuits with SPICE, extract the voltage waveforms,
run the aging models, and simulate again to determine the
additional propagation delay. A circuit designer can have
access to such a framework except for the aging models,
which contain sensitive parameters that the foundry does not
share. Consequently, the whole flow does not benefit the
designer because they do not know how much guardband
each transistor requires. To explore the problem space, the
state-of-the-art physics-based BTI Analysis Tool (BAT) frame-
work [2] is employed. It estimates the impact of NBTI on
different transistor technologies and manufacturing processes.
BAT has been validated against measurements from several
technologies including FinFET, FD-SOI, and nanosheets. The
validation results are shown in Fig. 4 and demonstrate that the
physics-based model captures recovery effects [28].

BAT models the generation of interface and bulk oxide traps
as well as hole trapping and other aging effects, including
recovery. The model has been calibrated with experimental
measurements to obtain the otherwise confidential parameters.
Such an effort is infeasible for most designers and not possible
for technologies in the early prototype stage. A foundry can
employ their confidential models and apply the proposed
methodology analogously for new technology nodes.

Process variation in the transistors is not investigated in this
work because it is orthogonal to aging and can be included
independently. Using the AVy, value predicted by this work,
the transistors are either annotated at the circuit level in
simulators like SPICE or after cell library characterization with
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static timing analysis, which additionally considers process
variation. If the design is based on standard cells, previous
work has proposed an ML-based flow for extremely fast cell
library characterization. Such a flow allows the designer to
include the individual transistor aging information into an ded-
icated standard cell library for their design and workload [30].

In this work, an LSTM-based neural network, a 3-layer
MLP, traditional SVM, and the emerging brain-inspired HDC
are investigated. The input to all models is the waveform of
switching activity and the ML models predict the correspond-
ing AVy, trace, with the exception of the 3-layer MLP only
employed to predict the last AVy, value. However, only the
LSTM model supports the direct generation of a AVy, trace.
The SVM and HDC require an iterative history-based approach
in which a part of the waveform and previous AVy, values are
employed to predict the next AVy value. The next section
introduces the employed ML models, Section III-B details the
dataset generation, and Section III-C describes the general data
representation and pre-processing in more detail. The history-
based approach is described in Section IV.

A. Description of the ML Models

SVM is based on statistical learning frameworks. Training
samples are assigned to one of two groups. To support more
classes (i.e., more fine-grained AVy, values), the problem
is mapped to multiple binary classifications. The employed
Scikit-learn library provides an SVM written in C. An SVM
can be extended to a nonlinear classifier using the kernel trick.
We perform a grid search to find the best model parame-
ters and utilize the SVM implementation of the Scikit-learn
library [31]. The core parts have been implemented in C.
To predict only the last AVy, value and not the full trace, the
SVM is employed as a regressor (SVR). The methodology for
training remains the same.

The recently-proposed OnlineHD is selected as an HDC
implementation [25]. It uses the MAP hypervector archi-
tecture [32], in which real numbers are the hypervector
components. The distance between two hypervectors is com-
puted with the cosine similarity. OnlineHD supports retraining
to increase the prediction accuracy. During retraining, the
model is queried with the training dataset and if the prediction
is incorrect, the class hypervector is slightly altered to be more
similar to the query hypervector. In this work, the number of
retraining iterations (epochs) is set to 50 and the learn rate
to 0.01. Similar to SVM, major parts of OnlineHD have been
implemented in C through PyTorch.

An LSTM model is implemented as an alternative method
to the history-based approach with SVM and HDC. LSTM
models have been show to work well in sequence to
sequence learning applications such as translation tasks [33].
In some tasks, they have shown to perform better than gated-
RNNs [34]. In this work, an an LSTM encoder-decoder model
is trained to predict the full trace based on the input waveform.
The encoder contains two layers of stacked LSTMs, each
with 256 units, which learn to map the input waveforms to
an internal fixed-size vector representations of size 256. The
decoder is a one layer LSTM with 256 units and trained to
map the fixed internal vector to the degradation trace. Similar
to [33], the performance of the LSTM model is improved
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by reversing the input waveforms. The LSTM model’s per-
formance improved as the number of layers and units in
each layer increased, as did the model’s complexity. It was
observed that model tends to overfit when the number units is
increased above 256. The LSTM model’s performance tends
to deteriorate when the number of segments in the input
waveform is greater than 32.

The 3-layer MLP is also implemented with PyTorch. Its first
and second layer are fully connected each with 128 neurons.
The third layer has 32 neurons fully connected to the single
output neuron, which outputs the final AVy, value for a
waveform. Rectified linear unit (ReLU) is selected as the
activation function for all layers. The 3-layer MLP is trained
for 1000 epochs.

To allow for a fair comparison of the computational
demands of the ML methods and against the physics-
based BAT, all experiments are executed on an AMD
Ryzen 9 3950X.

B. Training and Test Dataset Generation

A total of three datasets are generated, from (a) standard
cells, (b) an 8-bit adder circuit, and (c) a 32-bit MAC unit.
The workloads are generated randomly by applying stimuli
to the input terminals of the circuits. As depicted in Fig. 3,
these stimuli are propagated to the internal transistors. Through
SPICE simulations, the analog waveform for each transistor
can be extracted, one for each transistor. The physics-based
aging model is employed to generate the AVy, trace as the
label for a waveform. In the evaluation, these datasets are
employed in different combinations for training and test of the
ML models. Note that an ML model does not memorize all the
training samples to reproduce them but learns the underlying
patterns in the data. In other words, the ML model is trained
to mimic the behavior of the physics-based aging model.

The first dataset is generated from 62 standard cells (e.g.,
XOR, full adder). The cells employed in this work have at
most five input terminals and no internal state. With the design
of digital circuits in mind, those input terminals are either
at OV or at Vpp. Depending on the type of the cell, each
standard cell contains between 4 and 27 pMOS transistors.
In total, all standard cells contain 414 pMOS transistors. Thus,
414 waveform-trace pairs, the samples, can be generated.

While the design of the standard cells is well known, the
designer’s circuits is their intellectual property that cannot
be shared with third parties like the foundry. Therefore,
we mimic the application scenario for a circuit designer and
generate datasets from transistors in larger circuits. In this
work, two circuits are explored. First, an adder for two
8-bit numbers with 111 transistors. Second, a 32-bit MAC
unit, that multiplies an 8-bit weight with an 8-bit input and
accumulates the result with a 32-bit partial sum. The circuit
contains 1395 pMOS transistors. The inputs of each circuit are
stimulated with random data for an unbiased evaluation. A cir-
cuit designer would simulate their typical workload patterns.
Similar to the standard cells, the inputs propagate through
the circuit and waveforms for each transistor are extracted.
In other words, the designer extracts waveforms representing
their workload. For evaluation purposes, the physics-based
aging model is employed again to compute the traces as a
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ground truth. The number of consecutive addition or MAC
operations can be set to generate waveforms of various lengths.
The longer the trace, the more it challenges the ML model
since more features (input voltages) have to be considered.
Although this work focuses on circuits with well-known
workloads, e.g., a 32-bit MAC unit, it can be deployed for
more versatile circuits, such as a CPU, as well. A CPU com-
prises many simpler functional units, e.g., an ALU or a floating
point unit. For such units, representative workloads can be
generated at the design stage and the impact of aging on the
individual transistors estimated. The utilization of these units
and thus their overall aging is not captured by this unit-wise
approach but relies on the circuit designer’s knowledge about
the potential use of the overall system. At this point, the
system-wide workload can have a significant impact.

C. Data Representation and Preprocessing

Circuit designers have access to foundry-provided PDKs to
create and tune their systems. Typically, the foundry publishes
an additional set of PDKs with aging data under worst-case
conditions, which lead to an overestimated guardband. Actual
workloads are far from such worst-case conditions. Therefore,
aging models take the workload into account to predict the
expected degradation at EoL for a single transistor. The input
to the aging model is a waveform (Vi,...,V;) which is a
sequence of [/ segments where each segment V; with i €
{1,...,1} represents the gate voltage applied to the transistor.
The supply voltage can be any of the voltage corners provided
by the foundry V; € Vi yrpers- The time component is included
in the waveform through the segment index, with each segment
lasting the same amount of time.

Physics-based models can take the whole waveform and
compute the expected AVy, for each point in time. To make
such a model accessible to the designer, it has to be replaced
with a similarly behaving ML-based model to not disclose
the confidential technology parameters. Physics-based models
retain the state of the transistor (e.g., the number of defects
in the material) during the prediction, which is the basis for
their powerful predictive capabilities. In contrast, lightweight
ML-based methods do not have such an internal state and have
to predict AVy, iteratively.

The waveform is provided to the aging model producing
a AVy, trace (AVi 1, ..., AVyg), ie, a AVy value for
each segment. The effect of the input voltage is reflected in
the output trace V; — AV, ;. However, simply using this
mapping as a model does not reflect the voltage dynamics
and cannot capture recovery effects. The AV, ; of segment
V; depends also on the previous segment’s V;_1, as show in
Fig. 5. To capture this with the light-weight SVM and HDC
models, a history-based approach is proposed and described
in Section IV.

For all ML models, the data of the waveforms and AV
traces is pre-processed to make it easier to learn. The pre-
processing includes a normalization of the input voltage and
the AVy, values from the minimal and maximum values found
in the training dataset to a range between zero and one.
Furthermore, the waveform has to be sampled because the
CARAT framework only extracts the time and new voltage for
each transition. For example, a transistor constantly turning
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current voltage 0.7V 05V 05V
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0.0mV 3.1mV 10.2mV
previous AVy, 0.0mV 0.0mV 3.1mV
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new AVy, 3.1mV 10.2mV 143mV  output

Fig. 5. Some history is added to the current input voltage to better capture
the voltage dynamics. In this example i = 3, i.e., the input voltage and AV, ;
from ti_1, tj.p, and t;_3 are included.

trace

Voltage waveform N
trace = (AVy 1, ..., AV 1)

waveform = (Vy, ..., V))

Physics-based
NBTI model

Repeat for every segment V;

AV,}L,'

Visoos Vi | AVipicts ooy AV as label
Y v
Create context training sample; —_—
. » Training
(Fig.5)
I
v

ML-based Model

Fig. 6. Voltage waveforms derived from circuit-level stimuli are supplied
to the physics-based transistor aging model to create training data for the
machine learning-based models. Once they are trained, they take voltage
waveforms and predict the degradation trace.

on and off produces a waveform with more samples than a
transistor that is only turned on once. Since the employed ML
models have a fixed input size, they require the waveforms to
have a fixed number of samples. Hence, the waveforms are
resampled to always have 32 samples, even if those samples
are all the same. For the HDC model, the analog waveform
voltages are additionally quantized into 50 levels.

IV. SCENARIO 1: PREDICTING A FULL TRACE

The objective is to predict a AVy, for each segment of the
waveform. In contrast to an LSTM, an SVM or HDC cannot
directly convert a sequence to another. Hence, the waveforms
have to be processed to make them learnable by the latter
models. The training procedure for one waveform is sketched
in Fig. 6. Since the current state of the transistor is not
available for training, the voltage dynamics have to be captured
with a history of & previous waveform segments. However,
such a snippet of the waveform sequence is not bound to
a specific point in time or, more importantly, to the current
internal state of the transistor. Setting 2 = [ (i.e., include all
segments) is not viable due to the prohibitively large parameter
space. Thus, a history of the & previous AVy, values is included
as well. The combination of voltage and AVy, provides a more
detailed context for training. Fig. 5 visualizes the information
contained in three training samples for 4~ = 3. The label for
each sample at time i is the AVy,; of the segment taken
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Fig. 7. Example of a waveform (gray), the baseline trace from the

physics-based model (green) and the predicted traces from various ML
models.

from the trace. The AV, ; is quantized to discrete labels for
classification.

The results show that the SVM and HDC models have a
bias in their predictions. Although their predictions follow
the traces in general, the nominal AVy, values often deviate.
A multiplier can reduced this offset. After the model training
is complete, it is used on the training set itself to predict
the traces. The disagreement between the ML-based and the
physics-based model is analyzed and the resulting average
deviation is used as a multiplier during inference.

A. Inference

During inference, the same data representation, described
above, is used for SVM and HDC. This representation includes
the h previous AVy. However, only the waveform is available
during inference. Hence, the AVy, values have to be predicted
online during inference. They are then adjusted with the
multiplier to be directly used to predict the next segment. For
the first segment i = 1, the initial AVy, and the “previous”
AVy, is set to OmV, as shown in Fig. 5. In effect, only the
input voltage V| determines AV, 1. The predicted AVy, 1 is
then used to create the context for segment i =2, AV, 1 and
AV, 2 for segment i = 3, and so forth. Due to this recursive
process, prediction errors multiply requiring high precision.

B. Evaluation

The performance of the ML-based models under a variety
of different aspects is evaluated. The datasets are generated
and split into training and testing set with a 70% split.
As a metric, the relative error per segment RE; = (ML; —
BAT;)/BAT; x 100% is used. ML; and BAT; are the pre-
dictions for segment i from the ML-based and physics-based
models, respectively. The difference is divided by BAT;, the
final AVy,. Overestimating the degradation results in a positive
RE, underestimating it in a negative. The results in Fig. 8
show balanced models with a tendency for overestimation.

C. Dimension of the HDC Model

The dimension of the hypervectors determines their capacity
to store information. The higher the dimension, the higher the
expected accuracy. This increase levels off at an application-
specific point, which is not known a priori. A higher dimension
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The SVM and HDC models rely on their own previous outputs for the next prediction. Hence, the error accumulates, which is represented by the

increase in the relative error. The LSTM directly translates the whole sequence and achieves a higher accuracy although outliers are as bad as in other models.
Training and test are preformed on the adder circuit.

R2 score

IRy 04 04 04 04 04 04
N8 -1.11 -1.17 -0.10 0.1 0.2 -0.08
jsipJolll -1.30 -0.93 -0.81 -0.08 -0.76 -1.30

TABLE I
EXECUTION TIMES FOR THE 8-BIT ADDER CIRCUIT

3 4 6 7 8 9
Values for Parameter: History

Fig. 9. Mean R2 scores for different histories 2 with an HDC dimension of
20k for the adder dataset.

also correlates with more costly operations and higher memory
requirements. Both costs are not the primary concern during
design time. Therefore, HDC-based models with high dimen-
sions above 10000 are feasible. In this work, dimensions from
1000 to 20000 vector elements are explored. Contrary to the
initial assumption, the highest dimension does not necessarily
result in the highest accuracy.

D. Impact of History h

The parameter & determines how many previous segments
are taken into account to predict the next segment. This
parameter describes how many previous voltages and AV
values should be considered in the prediction of the next
AVy, value. Recovery effects, as shown in Fig. 4, have a
crucial impact on the degradation and depend on the change
in the gate voltage of the transistor. Hence, considering such
previous values is indispensable to capture recovery effects,
which are omitted in previous related works. However, if too
much history is considered, the input to the ML models
becomes to complex to capture. Hence, a sweet spot between
not considering recovery effects (low history parameter) and
the complexity of the input (high history parameter) has to
be found. Fig. 9 visualizes this exploration. The presented R?
scores confirm the intuition.

At low history values of three to four, recovery effects
are not captured resulting in lower R? scores. The SVM
performs best with 7 = 8. For HDC, the combination with
the dimension has to be considered. More history requires a
higher capacity of the model to contain the information. While

Task Wall-clock time
Training set generation (total) 409.0s
HDC training (total) 342s - 15235
SVM training (total) 407.7s
Physics-based trace prediction  (mean) 602.2 ms
HDC trace prediction (mean) 28.7ms — 88.1ms
SVM trace prediction (mean) 624.1 ms
LSTM trace prediction (mean) 1006.7 ms

this capacity is available with the high dimensions, the results
suggest an oversaturation of the query hypervector with the
same voltage hypervector. A different encoding is expected to
mitigate this issue. The overall best performances for HDC are
achieved with % of seven. For the LSTM, the history parameter
does not have any impact because the LSTM is trained directly
on the full waveform.

The hyperparameters dimension and % can be selected based
on the model’s performance on the training data. Our analysis
of circuits, discussed in Section V, shows that different settings
are required depending on the workload characteristics. The
best model is selected by the foundry and send to the designer.

E. Reduction of Model Execution Time

In the HDC model, the complex differential equations of
the physics-based model are replaced with simple operations
on integer vectors. The performance advantages are reflected
by a reduced execution time shown in Tab. I. Predicting a
32-segment trace for the 8-bit adder takes 29 ms to 88 ms for
a dimension of 1000 and 20000, respectively. This is up to
30X faster compared to the physics-based model with 602 ms
or the SVM with 624 ms. The time for training varies with
h, but it is consistently lower for the HDC model compared
to the SVM. OnlineHD utilizes multiple CPU cores to reduce
the training time. The LSTM takes the most time, even longer
than the physics-based model, but achieves the best accuracy.

V. SCENARIO 2: END-OF-LIFETIME AGING

Recreating the degradation trace is useful in evaluating
short-term aging effects [5]. To predict the degradation at
the EoL of the device, and thus for circuit designers to add
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Fig. 10. Training and testing on the same circuit provides a baseline for the complexity of the problem to predict the final AVth value based on the trace.
The LSTM predicts the whole trace but only the last value is considered in the evaluation.

sufficient guardbands, the whole trace is not necessary. The
extrapolation model for NBTI considers the waveform as well
as the last AVy, value. Hence, an ML model is sufficient
for EoL AVy, estimation if it can predict this last value.
Consequently, the challenge transforms from a recursive trace
reconstruction to a simpler regression. With the focus on long-
term aging, the final impact of inaccurate predictions from
ML models can be evaluated at circuit level. The physics-
based BAT is replaced with an ML model to provide the
short-term aging value. This result is then processed further by
the CARAT framework to predict the aging-induced change of
the circuit’s delay.

A. Model Training and Evaluation

Many ML algorithms exist to solve regression problems.
The input is a waveform, where each segment acts as a feature
and the predicted output is the last AVy, value.

An SVM can also be used for regression and is then
referred to as an SVR. The implementation is based on
the Scikit-learn library [31] and a grid search is done for
hyperparameter tuning. The SVR has an Radial Basis Function
kernel, a gamma value of 0.001, and a C of 100. An MLP is
implemented with PyTorch [35]. It has a total of three layers
with 128 neurons in the hidden layer. The output layer is a
single neuron. In contrast to classification, this single neuron
returns a floating point value representing the last AVy,. An
HDC classifier can be used for regression by quantizing the
AVy, values and treating those as classes. For comparison, a
worst-case model is created. With NBTI, the pMOS transistor
ages if no gate voltage is applied. Hence, the worst case
assumes that the transistor is turned off and only turns on
at the end of the simulated time frame to maximize the aging
effect.

Each model is trained and evaluated on three circuits. The
dataset generation is described in detail in Section III-C. The
aging extrapolation models for NBTI depend on the last AVy,
value and the waveform. But instead of the physics-based
aging model, the ML models are employed. The predictions
are compared with the output of the physics-based model as
a baseline. As an accuracy metric, R? score is select, with a
value of ‘1’ as a perfect match.

B. Results at Circuit Level

To judge the complex of the problem, the models are trained
and tested on the adder circuit. Three sets of random inputs

TABLE 11
AGING-INDUCED DELAY FOR TRAIN ON ADDER AND TEST ON MAC

Delay (ps) Baseline LSTM  SVR HDC  Worst Case
min -2.08 -2.08 -040 -1.81 -2.12
mean 4.88 4.66 5.33 4.88 31.36
max 12.60 11.70 11.70  13.90 61.10

are generated for training, hyperparameter tuning, and testing.
The results are presented in Fig. 10 and show the correlation
between the baseline physics-based last AVy, values and the
ML-based ones for all transistors. The R? scores are given
above the plots and show that the best ML approach is the
LSTM model. An R? score of 0.37 was achieved with a
training for 500 epochs, two hidden layers with 25 units per
layer, and the L1 loss function. Although there is some spread
around the baseline, the model’s ability to predict the AVy, is
clear. A similar picture is given by the MLP, the predictions
are correlated with the baseline values. For HDC, the spread is
even larger but still follows the baseline. The model is trained
with a dimension of 4000 for 50 epochs.

While HDC has the highest spread, the mean aging-induced
shift in the propagation delay at circuit level is equal to
the baseline. Tab. II compares the different models and also
includes the worst-case model with constant aging stress. Both,
HDC and MLP, overestimate the impact overestimate aging,
which is preferable to the LSTM, which underestimates the
impact and thus could lead to insufficiently small guardbands.
However, even with doubling the ML-based predictions to save
guard against underestimation, the ML-models still outperform
the worst-case model by a factor of three.

Training and predicting for the same circuit would require
that the circuit designers share details with the foundry, which
would train the model. To minimize data sharing, the foundry
can train a model on their standard cells and provide those
models to designers. However, the results plotted in Fig. 11
show a significant degradation of the quality of the predictions.
The R? scores drop below zero and the models struggle to
generalize. Worse, the LSTM and the MLP predict low AVy,
values although the baseline values are close to the maximum
(prediction in lower right corner). While the spread of the
SVM has increased compared to a training with the adder, the
maximum prediction errors are smaller than with other ML
models. The HDC model has failed to generalize and is not
included in the results.
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Fig. 11. Standard cells are provided by the foundry and the base for many circuit designs. However, the training dataset generated from them is too small

for the ML methods to sufficiently learn and generalize. Hence, the inference results with the adder circuit are worse compared to Fig. 10.
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Fig. 12. The models are trained on the adder circuit and used to predict the degradation in the MAC circuit. The large dataset from the adder allows the

LSTM to train and provide adequate results. The outliers are analyzed in Section V-C.

Similar and better results are shown in Fig. 12 for training
on the adder and testing on the MAC circuit. First, the
LSTM has sufficient data to train and can predict most
samples with a low error. Nevertheless, outliers can cause
incorrect guardband estimations. Second, while the SVM’s R?
is the lowest, it underestimations the least preventing severely
incorrect guardband estimations. Overestimations are limited
to smaller AVy, values and in total the SVM model achieves
a mean relative error of 1.7 % compared to the LSTM’s 3 %.
Finally, the largest AVy, value in the MAC dataset is higher
than in the adder and this behavior is not captured by the ML
models, they are limited by their training. This is evident by
the horizontal line-like cluster in the top right of the plots.

C. Error Analysis

While many predictions of the LSTM are within a toler-
able error range, there are outliers that are either under- or
overestimated as shown in Fig. 12. The same samples are
plotted in Fig. 13 for an error analysis. First, overestimated
samples have a lower duty cycle and especially fewer voltage
transitions in the waveform. In other words, transistors that
are off most of the time and change their on/off state seldom.
Overestimations have a negative impact on the circuit’s timing
because guardband are designed unnecessary large. However,
they do not lead to failure of the device, in contrast to under-
estimations. The impact of aging is underestimated for some
transistors with a duty cycle above 0.6. Their waveforms have
an average amount of transitions. This combination of duty
cycle and number of transitions is not a defining feature for
underestimations by the LSTM model. Hence, it is impossible
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Fig. 13.  Analysis of the LSTM model for the MAC circuit. The largest
prediction errors are correlated with a low duty cycle and a low number of
voltage transitions.

to derive a simple rule-based solution to contain the potential
timing errors due to insufficient guardbands.

The SVR shows a similar pattern. Overestimations correlate
with a low duty cycle combined with a low number of tran-
sitions in the waveform. Underestimations are not as frequent
and as pronounced. While they occur mainly above a duty
cycle of 0.4, worst-case underestimations do not correlate with
the number of transitions in the waveform. Hence, similar
to the LSTM, a simple rule-based error reduction cannot
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Fig. 14. Training on an 8-bit adder and testing on a 32-bit MAC circuit at 30 °C. The results align with the 90 °C case in Fig. 12 demonstrating the versatility

of the proposed approach.

TABLE III

AGING-INDUCED DELAY FOR TRAIN ON STANDARD CELLS
AND TEST ON ADDER CIRCUIT

Delay (ps) Baseline LSTM SVR MLP  Worst Case
min -2.08 -433 =093 -1.14 -2.13
mean 4.76 6.76 5.06 5.19 31.52
max 10.90 18.80 1260 15.10 61.10

be derived. In summary, the models perform well for most
samples but outliers, especially underestimations, still pose a
challenge.

D. Impact of Temperature on the Accuracy

The full flow is repeated at 30 °C. The models are trained
on the waveforms of the 8-bit adder circuit and employed for
the 32-bit MAC circuit, both at 30 °C. The results presented
in Fig. 14 align with the results at 90°C (Fig. 12) and
demonstrate that the general approach is flexible and can be
applied analogously to different operating conditions, opening
a wide field of applications.

VI. DISCUSSION

The focus of this work is on NBTI, the dominant degrada-
tion effect in current transistor technology [2]. Nevertheless,
PBTI and HCD also play an important role. Their impact
on the transistor has to be considered as well to design the
circuit with small yet sufficient timing guard bands. Hence,
an investigation into replacing those models with ML-based
models is necessary. Preliminary results suggest that the
methods explored in this work are challenged by the different
types of stimuli driving those degradation effects. In NBTI, the
on/off time is the dominant factor whereas in HCD the number
of transitions has to be considered, among other stimuli.

Every modeling of a behavior, such as transistor aging,
includes some inaccuracies. Modeling another model intro-
duces another layer of inaccuracies, especially if ML methods
are employed abstracting the behavior even further. However,
the goal of this work is not the most accurate modeling
of transistor aging and outperforming physics-based models,
which are the most accurate. The goal of this work is to
reduce the fundamental barriers of confidentiality for the
circuit designers. Without our proposed ML models, they have

TABLE IV
AGING-INDUCED DELAY FOR TRAIN ON ADDER AND TEST ON MAC

Delay (ps) Baseline LSTM  SVR MLP  Worst Case
min -1.80 -290 -2.10 -3.80 —-70.70
mean 5.03 5.58 5.31 4.94 88.67
max 15.00 14.90 12.60  11.50 450.91

to fall back to worst-case estimations and overestimating the
impact of aging. Tab. IV shows the estimations from the
ML models and the worst case. Even after doubling the ML
models’ prediction to account for the additional inaccuracies
introduced by another layer of modeling, our work reduces
the Vi, guardbands by 8x for the mean and 30x for the
maximum. The speedup introduced by the HDC-based aging
model also enables an exploration of the impact of aging on
complex ML accelerators. The resulting timing errors would
present a new fault model with which the ML algorithms
would be confronted. Although some ML algorithms are
robust against incorrect computations [36], timing errors can
challenge them [37].

VII. CONCLUSION

Accurate physics-based aging models include confidential
technology and material parameters. Thus, such models are
not available to circuit designers to optimize their designs
under the actual impact of aging. This work explores the
applicability of ML-based methods to train on the physics-
based models, in particular traditional SVM, LSTM, and
brain-inspired HDC. While ML-based models can predict
the impact of aging for most transistors accurately, outliers
can be over- or underestimated. Nevertheless, the explored
ML-based methods predict the degradation about 3x more
precise than available worst-case models. For the first time,
circuit designers have access to an accurate aging model which
is indispensable for efficient designs. This work opens the door
to narrow the boundary between foundry and circuit designers.
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