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Abstract— The pivotal issue of reliability is one of the major
concerns for circuit designers. The driving force is transistor
aging, dependent on operating voltage and workload. At the
design time, it is difficult to estimate close-to-the-edge guardbands
that keep aging effects during the lifetime at bay. This is because
the foundry does not share its calibrated physics-based models,
comprised of highly confidential technology and material param-
eters. However, the unmonitored yet necessary overestimation of
degradation amounts to a performance decline, which could be
preventable. Furthermore, these physics-based models are com-
putationally complex. The costs of modeling millions of individual
transistors at design time can be exorbitant. We propose the use
of a machine learning model trained to replicate the physics-
based model, such that no confidential parameters are disclosed.
This effectual workaround is fully accessible to circuit designers
for the purposes of design optimization. We demonstrate the
model’s ability to generalize by training on data from one circuit
and applying it successfully to a benchmark circuit. The mean
relative error is as low as 1.7 %, with a speedup of up to 20×.
Circuit designers, for the first time ever, will have ease of access
to a high-precision aging model, which is paramount for efficient
designs. In contrast to existing work, our approach takes the full
switching activity into account to model recovery effects. This
work is a promising step in the direction of bridging the gap
between the foundry and circuit designers.
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I. INTRODUCTION

R
ELIABILITY is a major concern in today’s circuits.

As CMOS scaling reaches the atomic level, the impact

of degradation effects on the reliability becomes stronger [1].

Aging is the most dominating effect and changes the transis-

tor’s properties like the threshold voltage Vth. Consequently,

it can cause permanent failures in a circuit. Even before

such failures, aging indirectly impacts the circuit’s timing

and hinders performance improvements. The negative bias

temperature instability (NBTI) aging mechanism is responsible

for the highest degradation [2]. During regular transistor

operation, Si-H bonds at the Si-SiO2 interface might be broken

and annealed. Additionally, charges are captured and emitted

in the oxide vacancies at the interface layer. Over time, these

defects accumulate and manifest themselves as a shift in Vth,

referred to as 1Vth. The induced increase in the propagation

delay of the logic gates can cause timing violations.

To prevent such timing violations and ensure the circuit per-

forms as specified during its entire projected lifetime, timing

guardbands are added during the design phase. Such additional

slack compensates for the reduced switching speed of aged

transistors. The design challenge is to balance such guardbands

between too pessimistic, reducing the circuit’s performance,

and too optimistic, increasing the risk of premature failures.

To find an optimal guardband (i.e., small, yet sufficient), the

aging-induced 1Vth has to be accurately estimated. Aging

models are required to abstract the underlying physical behav-

iors, take technology parameters, stress patterns, and voltages

into account, and predict the evolution of 1Vth over time. Only

with such models can designers make informed and proper

decisions on the guardband of every transistor.

Physics-based aging models capture the dynamics of the

fundamental physical behavior and chemical reactions inside

the transistors. Complex differential equations take the mate-

rial and technology dependent parameters into account. This

makes the model capable of capturing recovery effects, where

Vth is indeed reduced as shown in Fig. 1. During low-stress

phases, the defects are partially healed and Vth recovers [3].

The supply voltage VDD is dynamic, creating such phases,

changes over time, and is typically defined through the

workload of the circuit. To capture these voltage dynamics,

an aging model has to process such a voltage waveform.
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Fig. 1. Worst-case models are typically employed in the industry. For
transistor aging, they assume constant stress and thus the highest possible
degradation (red). Physics-based models are far more accurate because they
take the input waveform and recovery effects into account.

Worst-case aging models are not capable of this. They are

created by fitting measurements of constant voltage stress

on a transistor. Hence, they cannot model the physics of

voltage dynamics and recovery effects. To process a voltage

waveform, the highest voltage is applied for the whole duration

of the voltage waveform. Consequently, they overestimate the

impact of aging significantly. Today’s high-end devices are

operating at the technological limits and cannot afford the

unnecessary performance penalties mandated by such pes-

simistic predictions, an ideal aging model has to be as precise

as possible. While physics-based models achieve such high

accuracy, they require parameters specific to the manufacturing

process to compute the degradation. Such parameters are a

valuable secret of the foundry because they reveal details

about their technology through material-dependent parameters.

The foundry instead provides a process design kit (PDK)

covering various corner cases including the worst case (i.e.,

the slow-slow corner). In summary, designers have limited

options to optimize their circuit, which reduces performance

and increases costs. An “ideal” aging model should therefore

not expose any confidential information about the underlying

technology. At the same time, it should still provide accurate

estimations, including recovery.

The foundry only guarantees the slow-slow corner leading to

very pessimistic guardbands and hence efficiency losses. With

the risk of failure on the designers’ side, this pessimism might

be reduced. Alternatively, the degradation can be measured

during post-silicon validation. However, such test chips are

costly and increase time to market. Additionally, the design is

almost complete at this stage further increasing costs, which

often cannot be afforded by small to medium-sized companies.

With an aging model, the impact of the circuit’s workloads

and voltages on Vth can be predicted early in the design

phase. For application-specific circuits like a video decoder,

the workloads are known from the specifications and can be

simulated even before the design phase starts. Starting with the

much faster typical-typical corner, an appropriate guardband is

added. An ideal aging model is thus available to the designers

during design time and allows them to predict the degradation

for each individual transistor. During runtime, the remaining

guardband can be treated as a resource like remaining battery

power. Resource management schemes require a long-term

aging model to optimize over the whole lifetime. Physics-

based models are not an option, because of their confidential

parameters and their high computational complexity. An ideal

aging model has a low computational cost to be employed

for millions of transistors during design time. At runtime,

it provides predictions as a low-overhead background task in

the operating system.

A. Our Main Contributions

Designers require an accurate and fast transistor aging

model to optimize the performance of their circuit designs

depending on the potential workload. Further, simulating mil-

lions and billions of transistors is time consuming necessitating

a fast aging model. Physics-based models are slow and confi-

dential, i.e., not accessible to designers. Therefore, we propose

to employ machine learning (ML) to model transistor aging.

As shown in Fig. 2, the foundry employs its confidential

physics-based models to train an ML-based model. Such a

model is fast and does not reveal the technology and material

parameters. Hence, it can be provided to the circuit designers.

They employ the model in conjunction with their workloads to

generate their workload-specific, aging-aware PDK. With this

PDK, guardbands can be reduced increasing performance.

In this paper, we investigate for the first time how

physics-based models can be abstracted through ML methods.

In contrast to existing work, our approach takes the full

switching activity into account to model recovery effects. ML

algorithms like deep neural network (DNN) or long short-term

memory (LSTM) have a high computational complexity but

can achieve in high accuracy in many applications. As a less

computational-intense algorithm, lightweight brain-inspired

ML methods have attracted the interest of the community

in recent years. Brain-inspired hyperdimensional computing

(HDC) does not utilize networks of neurons but is built

around large randomly-generated hypervectors [4]. The accu-

rate yet complex equations of physics-based models have to be

replaced by a trained ML model. To this end, we investigate

two challenges. First, the capability to constructed a 1Vth trace

from a voltage activity waveform. Such traces and waveforms

are typically in the range of nanoseconds to minutes and model

short-term aging [5]. Second, predict only the last degradation

1Vth value for a single transistor based on a given short

voltage activity waveform. This prediction is essential for an

extrapolation to ten years until the end of lifetime (EoL) of

the device. We investigate the accuracy of the ML models not

only on their prediction of this 1Vth value. We also employ

the predicted 1Vth further to extrapolate the circuit delay

after ten years and compare the impact on the delay. The

performance of the models is evaluated by training on the

transistors of standard cells and an 8-bit adder. The test set

are the transistors of a 32-bit MAC unit with which we also

evaluate the prediction of the delay after 10 years.

II. RELATED WORK AND BACKGROUND

Transistor aging has been studied for many years and the

impact is well understood. This sections aims at summarizing

this research briefly.
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Fig. 2. Typically, circuit designers do not have access to accurate physics-based aging models to estimate efficient (i.e., small, yet sufficient) guardbands. A
machine learning-based aging model are free sensitive material and process parameters of the foundry and can thus be shared with designers. Now, circuit
designer can create workload-specific aging data for efficient guardbands.

A. Transistor Aging Models

Since manufacturing technology has moved past 45 nm, new

materials had to be used [6]. Hafnium Oxide (HfO2) is used as

a high-» dielectric and replaced the traditional silicon dioxide.

A drawback of HfO2 is its higher number of pre-existing

defects in the material itself, making it more susceptible to

degradation and thus less reliable. Hence, transistor aging has

become a major consideration in modern circuits.

In this work, we focus on NBTI as the primary aging

mechanism [2]. Note that our method can be applied analo-

gously to other aging mechanisms like hot carrier degradation

(HCD). NBTI aging occurs when the pMOS transistor is

turned on. During the on-time, two effects come into play.

First, positively charged holes are trapped inside the HfO2

dielectric. This increases the Vth of the transistor. If the stress

is reduced, i.e., the voltage lowered or the transistor completely

turned off, then the holes can be removed and the initial Vth

can be recovered over time. Due to the second effect, new

traps are generated in the interface material. If the transistor

is turned on, these traps are positively charged increasing the

Vth. Similar to the first effect, some of these traps may be

deactivated once the stress is reduced or removed partially

restoring Vth. In both cases 1Vth is dictated by the applied

voltage.

Most models (especially analytical models) consider recov-

ery only at 0 V. However, measurements have proven that

even a reduction in the voltage starts the recovery [3]. The

phenomenon is demonstrated in Fig. 1, in which a physics-

based NBTI model is employed to calculate the transient

trap occupancy, among others [2]. Hence, it is indispensable

to consider the dynamics of different voltage levels when

modeling aging [7]. In this work, the physics-based NBTI

aging model “BAT” is employed, which has been calibrated

with measurements from various technologies [2].

ML-based methods to model and predict the impact of

aging have been investigated at different levels of the stack.

At the system level, reinforcement learning-based methods

have been used to schedule threads on a multi-core CPU

to reduce aging [8]. At the circuit level, the increase in

path delay due to an increased 1Vth has been modeled with

multivariate adaptive regression splines and compared against

support vector machine (SVM) and recurrent neural network

(RNN) [9]. Their model takes changing operation conditions,

like different voltages, into account. At the gate level, the

generation of reliability-aware cell libraries through ML has

been demonstrated [10]. This allows a circuit designer to

quickly generate cell libraries specifically for their workloads

and optimize their design accordingly.

The authors in [11] propose a method to predict

aging-induced delays for 28 nm FDSOI technology. Their

approach considers different voltage and frequency settings as

well as workloads, although abstracted as percental switch-

ing activities. They train an ML model for two standard

cells and use a conversion scheme to extend the predic-

tion of other standard cells. In contrast to this work, their

model only considers an abstracted switching activity work-

load and thus cannot include recovery effects. Further, the

focus on standard cells limits its applicability in custom

circuits.

In [12], at device level, a single transistor is subjected

to constant voltage stress and the Vth curve is fitted with

a regression model. Such voltage dynamics are taken into

account in [13]. They performed TCAD simulations of a single

transistor until time t and afterwards continue with an ML

model. Since TCAD simulations are still required initially,

their approach cannot relieve the confidentiality concerns

of the foundry. The physics-based aging model in TCAD

includes sensitive technology parameter and reveals details

about the manufacturing process, an essential trade secret of

any foundry. In contrast to [12], we include voltage dynamics

and recovery effects. In contrast to [13], our models do

not rely on physics-based models during inference. Hence,

the input to our model is not a single fixed voltage or a

statistical assumption of on/off times, but a trace represent-

ing workloads and operating conditions for an individual

transistor.
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Fig. 3. In the experimental setup, stimuli are applied at circuit level � and voltage waveforms for each transistor extracted �. Those are passed to the aging
models � to generate the ground truth for the training of the machine learning models. Then, their prediction is extrapolated to the end of lifetime (EoL) �.
Finally, the degradation is applied again at circuit level for efficient guardband estimation �.

B. Machine-Learning Methods

As for our predictive models, we used different strategies

and analyzed what were the trade-offs between each one

of them. The multilayer perceptron (MLP) model is one

of the simplest neural network models and this practicality

has caused its increase on popularity. On the other hand,

ML focused on the maximization (support) of separating the

margin between classes (vector), also called SVM learning,

is a powerful classification tool that has been used widely on

many applications and achieved great results.

RNNs are frequently used in application involving sequen-

tial data, which fits the temporal nature of aging. However,

RNNs frequently fail to learn the important information from

the input data involving learning long-term dependencies.

By introducing gate functions into the cell structure, the LSTM

is able to handle the problem of long-term dependencies

well [14]. Since its introduction, almost all the results based

on RNNs have been achieved by LSTMs. The many appli-

cations include machine translation, time series prediction,

natural language processing, and Computer Vision among

others [15]. Because of the influence of previous voltages

on aging, LSTM’s ability to successfully train on data with

long-term temporal dependencies makes it natural choice for

this application [16].

C. Brain-Inspired Hyperdimensional Computing

Brain-inspired HDC is a lightweight alternative to tradi-

tional ML approaches. It is a rapidly emerging concept that has

been successfully applied to voice recognition [17], and hand

gesture identification [18], seizures detected [19], image clas-

sification [20], pattern recognition for wafer defect maps [21],

circuit reliability estimation [22], [23], and others. Imple-

mentations range from low-power embedded devices [24]

to high-power GPUs [25]. HDC is based on the concept

of hypervectors, vectors with thousands of dimensions. The

hypervectors can consist of simple bits, integers, real numbers,

or other symbols.

Hypervectors representing real-world values (e.g., 0.7 V) are

generated once and stored in the item memory. If the same

value has to be mapped into hyperdimensional space again,

the previously generated item hypervector is retrieved from

the item memory. Due to the high dimension, it is very likely

that two randomly-generated hypervectors are orthogonal to

each other. For binary hypervectors, this similarity metric

is computed with the Hamming distance, for integer-based

hypervectors using the cosine similarity.

Multiple item hypervectors are combined into a class

hypervector through the basic operations of bundling and

binding [4]. This process is also called encoding. A voltage

waveform is encoded into a single hypervector which then

represents said waveform. If a similar waveform is encoded,

then its resulting hypervector has a high similarity to the

first hypervector. Each operation is executed on the individual

independent components of the hypervector making them

trivial to parallelize.

Traditional ML methods such as DNN require huge amounts

of data and lots of processing power for training [17]. HDC

promises to reduce these requirements. Learning from few

samples has been demonstrated for the example of seizure

detection [26]. The distributed design of hypervectors makes

HDC very robust against failures in the underlying memory

and thus well suited for less reliable low-power emerging

memories [27]. The design makes it also robust against noise

in the data, e.g., from low-quality aging monitors embedded

in the circuit. Additionally, HDC operations are trivial to

parallelize to make use of multiple processing units. All

these properties suggest that an ideal aging model can be

implemented with HDC.

III. METHODOLOGY AND EXPERIMENTAL SETUP

To evaluate the impact of transistor aging on a circuit,

the analysis starts at application level. The activities of the

application generates the stimuli for the inputs of the circuit

(a NAND gate in this example) as shown in Fig. 3 �. Those

stimuli are then propagated to the individual transistors in

�. In larger circuits, not every transistor is connected to an

input and thus its stimulus depends on the logic inside the

circuit. Therefore, the circuit has to be simulated to extract
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Fig. 4. Circles represent NBTI-induced 1Vth measurements and the
lines the physics-based aging model. (a) 1Vth from different gate voltages.
(b) High/low/high switching frequency experiment. (c) Low/high/low, and

(d) High frequency switching during a low-frequency switch. From [28].

the voltage waveforms. In �, the waveforms are provided as

an input to the aging models which generate the corresponding

degradation trace. Based on this short-term trace, the EoL

degradation is extrapolated, typically to ten years �. The

resulting EoL 1Vth for each transistor is applied to the circuit

� and causes an increase of the propagation delay or latency.

Only if this aging-induced shift is considered during design

can the system continue functioning properly over its whole

lifetime.

This work builds on top of the CARAT framework [29] to

simulate circuits with SPICE, extract the voltage waveforms,

run the aging models, and simulate again to determine the

additional propagation delay. A circuit designer can have

access to such a framework except for the aging models,

which contain sensitive parameters that the foundry does not

share. Consequently, the whole flow does not benefit the

designer because they do not know how much guardband

each transistor requires. To explore the problem space, the

state-of-the-art physics-based BTI Analysis Tool (BAT) frame-

work [2] is employed. It estimates the impact of NBTI on

different transistor technologies and manufacturing processes.

BAT has been validated against measurements from several

technologies including FinFET, FD-SOI, and nanosheets. The

validation results are shown in Fig. 4 and demonstrate that the

physics-based model captures recovery effects [28].

BAT models the generation of interface and bulk oxide traps

as well as hole trapping and other aging effects, including

recovery. The model has been calibrated with experimental

measurements to obtain the otherwise confidential parameters.

Such an effort is infeasible for most designers and not possible

for technologies in the early prototype stage. A foundry can

employ their confidential models and apply the proposed

methodology analogously for new technology nodes.

Process variation in the transistors is not investigated in this

work because it is orthogonal to aging and can be included

independently. Using the 1Vth value predicted by this work,

the transistors are either annotated at the circuit level in

simulators like SPICE or after cell library characterization with

static timing analysis, which additionally considers process

variation. If the design is based on standard cells, previous

work has proposed an ML-based flow for extremely fast cell

library characterization. Such a flow allows the designer to

include the individual transistor aging information into an ded-

icated standard cell library for their design and workload [30].

In this work, an LSTM-based neural network, a 3-layer

MLP, traditional SVM, and the emerging brain-inspired HDC

are investigated. The input to all models is the waveform of

switching activity and the ML models predict the correspond-

ing 1Vth trace, with the exception of the 3-layer MLP only

employed to predict the last 1Vth value. However, only the

LSTM model supports the direct generation of a 1Vth trace.

The SVM and HDC require an iterative history-based approach

in which a part of the waveform and previous 1Vth values are

employed to predict the next 1Vth value. The next section

introduces the employed ML models, Section III-B details the

dataset generation, and Section III-C describes the general data

representation and pre-processing in more detail. The history-

based approach is described in Section IV.

A. Description of the ML Models

SVM is based on statistical learning frameworks. Training

samples are assigned to one of two groups. To support more

classes (i.e., more fine-grained 1Vth values), the problem

is mapped to multiple binary classifications. The employed

Scikit-learn library provides an SVM written in C. An SVM

can be extended to a nonlinear classifier using the kernel trick.

We perform a grid search to find the best model parame-

ters and utilize the SVM implementation of the Scikit-learn

library [31]. The core parts have been implemented in C.

To predict only the last 1Vth value and not the full trace, the

SVM is employed as a regressor (SVR). The methodology for

training remains the same.

The recently-proposed OnlineHD is selected as an HDC

implementation [25]. It uses the MAP hypervector archi-

tecture [32], in which real numbers are the hypervector

components. The distance between two hypervectors is com-

puted with the cosine similarity. OnlineHD supports retraining

to increase the prediction accuracy. During retraining, the

model is queried with the training dataset and if the prediction

is incorrect, the class hypervector is slightly altered to be more

similar to the query hypervector. In this work, the number of

retraining iterations (epochs) is set to 50 and the learn rate

to 0.01. Similar to SVM, major parts of OnlineHD have been

implemented in C through PyTorch.

An LSTM model is implemented as an alternative method

to the history-based approach with SVM and HDC. LSTM

models have been show to work well in sequence to

sequence learning applications such as translation tasks [33].

In some tasks, they have shown to perform better than gated-

RNNs [34]. In this work, an an LSTM encoder-decoder model

is trained to predict the full trace based on the input waveform.

The encoder contains two layers of stacked LSTMs, each

with 256 units, which learn to map the input waveforms to

an internal fixed-size vector representations of size 256. The

decoder is a one layer LSTM with 256 units and trained to

map the fixed internal vector to the degradation trace. Similar

to [33], the performance of the LSTM model is improved
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by reversing the input waveforms. The LSTM model’s per-

formance improved as the number of layers and units in

each layer increased, as did the model’s complexity. It was

observed that model tends to overfit when the number units is

increased above 256. The LSTM model’s performance tends

to deteriorate when the number of segments in the input

waveform is greater than 32.

The 3-layer MLP is also implemented with PyTorch. Its first

and second layer are fully connected each with 128 neurons.

The third layer has 32 neurons fully connected to the single

output neuron, which outputs the final 1Vth value for a

waveform. Rectified linear unit (ReLU) is selected as the

activation function for all layers. The 3-layer MLP is trained

for 1000 epochs.

To allow for a fair comparison of the computational

demands of the ML methods and against the physics-

based BAT, all experiments are executed on an AMD

Ryzen 9 3950X.

B. Training and Test Dataset Generation

A total of three datasets are generated, from (a) standard

cells, (b) an 8-bit adder circuit, and (c) a 32-bit MAC unit.

The workloads are generated randomly by applying stimuli

to the input terminals of the circuits. As depicted in Fig. 3,

these stimuli are propagated to the internal transistors. Through

SPICE simulations, the analog waveform for each transistor

can be extracted, one for each transistor. The physics-based

aging model is employed to generate the 1Vth trace as the

label for a waveform. In the evaluation, these datasets are

employed in different combinations for training and test of the

ML models. Note that an ML model does not memorize all the

training samples to reproduce them but learns the underlying

patterns in the data. In other words, the ML model is trained

to mimic the behavior of the physics-based aging model.

The first dataset is generated from 62 standard cells (e.g.,

XOR, full adder). The cells employed in this work have at

most five input terminals and no internal state. With the design

of digital circuits in mind, those input terminals are either

at 0 V or at VDD. Depending on the type of the cell, each

standard cell contains between 4 and 27 pMOS transistors.

In total, all standard cells contain 414 pMOS transistors. Thus,

414 waveform-trace pairs, the samples, can be generated.

While the design of the standard cells is well known, the

designer’s circuits is their intellectual property that cannot

be shared with third parties like the foundry. Therefore,

we mimic the application scenario for a circuit designer and

generate datasets from transistors in larger circuits. In this

work, two circuits are explored. First, an adder for two

8-bit numbers with 111 transistors. Second, a 32-bit MAC

unit, that multiplies an 8-bit weight with an 8-bit input and

accumulates the result with a 32-bit partial sum. The circuit

contains 1395 pMOS transistors. The inputs of each circuit are

stimulated with random data for an unbiased evaluation. A cir-

cuit designer would simulate their typical workload patterns.

Similar to the standard cells, the inputs propagate through

the circuit and waveforms for each transistor are extracted.

In other words, the designer extracts waveforms representing

their workload. For evaluation purposes, the physics-based

aging model is employed again to compute the traces as a

ground truth. The number of consecutive addition or MAC

operations can be set to generate waveforms of various lengths.

The longer the trace, the more it challenges the ML model

since more features (input voltages) have to be considered.

Although this work focuses on circuits with well-known

workloads, e.g., a 32-bit MAC unit, it can be deployed for

more versatile circuits, such as a CPU, as well. A CPU com-

prises many simpler functional units, e.g., an ALU or a floating

point unit. For such units, representative workloads can be

generated at the design stage and the impact of aging on the

individual transistors estimated. The utilization of these units

and thus their overall aging is not captured by this unit-wise

approach but relies on the circuit designer’s knowledge about

the potential use of the overall system. At this point, the

system-wide workload can have a significant impact.

C. Data Representation and Preprocessing

Circuit designers have access to foundry-provided PDKs to

create and tune their systems. Typically, the foundry publishes

an additional set of PDKs with aging data under worst-case

conditions, which lead to an overestimated guardband. Actual

workloads are far from such worst-case conditions. Therefore,

aging models take the workload into account to predict the

expected degradation at EoL for a single transistor. The input

to the aging model is a waveform (V1, . . . , Vl) which is a

sequence of l segments where each segment Vi with i ∈

{1, . . . , l} represents the gate voltage applied to the transistor.

The supply voltage can be any of the voltage corners provided

by the foundry Vi ∈ Vcorners . The time component is included

in the waveform through the segment index, with each segment

lasting the same amount of time.

Physics-based models can take the whole waveform and

compute the expected 1Vth for each point in time. To make

such a model accessible to the designer, it has to be replaced

with a similarly behaving ML-based model to not disclose

the confidential technology parameters. Physics-based models

retain the state of the transistor (e.g., the number of defects

in the material) during the prediction, which is the basis for

their powerful predictive capabilities. In contrast, lightweight

ML-based methods do not have such an internal state and have

to predict 1Vth iteratively.

The waveform is provided to the aging model producing

a 1Vth trace (1Vth,1, . . . ,1Vth,l), i.e., a 1Vth value for

each segment. The effect of the input voltage is reflected in

the output trace Vi → 1Vth,i . However, simply using this

mapping as a model does not reflect the voltage dynamics

and cannot capture recovery effects. The 1Vth,i of segment

Vi depends also on the previous segment’s Vi−1, as show in

Fig. 5. To capture this with the light-weight SVM and HDC

models, a history-based approach is proposed and described

in Section IV.

For all ML models, the data of the waveforms and 1Vth

traces is pre-processed to make it easier to learn. The pre-

processing includes a normalization of the input voltage and

the 1Vth values from the minimal and maximum values found

in the training dataset to a range between zero and one.

Furthermore, the waveform has to be sampled because the

CARAT framework only extracts the time and new voltage for

each transition. For example, a transistor constantly turning
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:58:25 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 5. Some history is added to the current input voltage to better capture
the voltage dynamics. In this example h = 3, i.e., the input voltage and 1Vth,i
from ti-1, ti-2, and ti-3 are included.

Fig. 6. Voltage waveforms derived from circuit-level stimuli are supplied
to the physics-based transistor aging model to create training data for the
machine learning-based models. Once they are trained, they take voltage
waveforms and predict the degradation trace.

on and off produces a waveform with more samples than a

transistor that is only turned on once. Since the employed ML

models have a fixed input size, they require the waveforms to

have a fixed number of samples. Hence, the waveforms are

resampled to always have 32 samples, even if those samples

are all the same. For the HDC model, the analog waveform

voltages are additionally quantized into 50 levels.

IV. SCENARIO 1: PREDICTING A FULL TRACE

The objective is to predict a 1Vth for each segment of the

waveform. In contrast to an LSTM, an SVM or HDC cannot

directly convert a sequence to another. Hence, the waveforms

have to be processed to make them learnable by the latter

models. The training procedure for one waveform is sketched

in Fig. 6. Since the current state of the transistor is not

available for training, the voltage dynamics have to be captured

with a history of h previous waveform segments. However,

such a snippet of the waveform sequence is not bound to

a specific point in time or, more importantly, to the current

internal state of the transistor. Setting h = l (i.e., include all

segments) is not viable due to the prohibitively large parameter

space. Thus, a history of the h previous 1Vth values is included

as well. The combination of voltage and 1Vth provides a more

detailed context for training. Fig. 5 visualizes the information

contained in three training samples for h = 3. The label for

each sample at time i is the 1Vth,i of the segment taken

Fig. 7. Example of a waveform (gray), the baseline trace from the
physics-based model (green) and the predicted traces from various ML
models.

from the trace. The 1Vth,i is quantized to discrete labels for

classification.

The results show that the SVM and HDC models have a

bias in their predictions. Although their predictions follow

the traces in general, the nominal 1Vth values often deviate.

A multiplier can reduced this offset. After the model training

is complete, it is used on the training set itself to predict

the traces. The disagreement between the ML-based and the

physics-based model is analyzed and the resulting average

deviation is used as a multiplier during inference.

A. Inference

During inference, the same data representation, described

above, is used for SVM and HDC. This representation includes

the h previous 1Vth. However, only the waveform is available

during inference. Hence, the 1Vth values have to be predicted

online during inference. They are then adjusted with the

multiplier to be directly used to predict the next segment. For

the first segment i = 1, the initial 1Vth and the “previous”

1Vth is set to 0 mV, as shown in Fig. 5. In effect, only the

input voltage V1 determines 1Vth,1. The predicted 1Vth,1 is

then used to create the context for segment i = 2, 1Vth,1 and

1Vth,2 for segment i = 3, and so forth. Due to this recursive

process, prediction errors multiply requiring high precision.

B. Evaluation

The performance of the ML-based models under a variety

of different aspects is evaluated. The datasets are generated

and split into training and testing set with a 70 % split.

As a metric, the relative error per segment REi = (M L i −

B ATi )/B ATl ∗ 100 % is used. M L i and B ATi are the pre-

dictions for segment i from the ML-based and physics-based

models, respectively. The difference is divided by B ATl , the

final 1Vth. Overestimating the degradation results in a positive

RE , underestimating it in a negative. The results in Fig. 8

show balanced models with a tendency for overestimation.

C. Dimension of the HDC Model

The dimension of the hypervectors determines their capacity

to store information. The higher the dimension, the higher the

expected accuracy. This increase levels off at an application-

specific point, which is not known a priori. A higher dimension
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Fig. 8. The SVM and HDC models rely on their own previous outputs for the next prediction. Hence, the error accumulates, which is represented by the
increase in the relative error. The LSTM directly translates the whole sequence and achieves a higher accuracy although outliers are as bad as in other models.
Training and test are preformed on the adder circuit.

Fig. 9. Mean R2 scores for different histories h with an HDC dimension of
20k for the adder dataset.

also correlates with more costly operations and higher memory

requirements. Both costs are not the primary concern during

design time. Therefore, HDC-based models with high dimen-

sions above 10 000 are feasible. In this work, dimensions from

1000 to 20 000 vector elements are explored. Contrary to the

initial assumption, the highest dimension does not necessarily

result in the highest accuracy.

D. Impact of History h

The parameter h determines how many previous segments

are taken into account to predict the next segment. This

parameter describes how many previous voltages and 1Vth

values should be considered in the prediction of the next

1Vth value. Recovery effects, as shown in Fig. 4, have a

crucial impact on the degradation and depend on the change

in the gate voltage of the transistor. Hence, considering such

previous values is indispensable to capture recovery effects,

which are omitted in previous related works. However, if too

much history is considered, the input to the ML models

becomes to complex to capture. Hence, a sweet spot between

not considering recovery effects (low history parameter) and

the complexity of the input (high history parameter) has to

be found. Fig. 9 visualizes this exploration. The presented R2

scores confirm the intuition.

At low history values of three to four, recovery effects

are not captured resulting in lower R2 scores. The SVM

performs best with h = 8. For HDC, the combination with

the dimension has to be considered. More history requires a

higher capacity of the model to contain the information. While

TABLE I

EXECUTION TIMES FOR THE 8-BIT ADDER CIRCUIT

this capacity is available with the high dimensions, the results

suggest an oversaturation of the query hypervector with the

same voltage hypervector. A different encoding is expected to

mitigate this issue. The overall best performances for HDC are

achieved with h of seven. For the LSTM, the history parameter

does not have any impact because the LSTM is trained directly

on the full waveform.

The hyperparameters dimension and h can be selected based

on the model’s performance on the training data. Our analysis

of circuits, discussed in Section V, shows that different settings

are required depending on the workload characteristics. The

best model is selected by the foundry and send to the designer.

E. Reduction of Model Execution Time

In the HDC model, the complex differential equations of

the physics-based model are replaced with simple operations

on integer vectors. The performance advantages are reflected

by a reduced execution time shown in Tab. I. Predicting a

32-segment trace for the 8-bit adder takes 29 ms to 88 ms for

a dimension of 1000 and 20 000, respectively. This is up to

30X faster compared to the physics-based model with 602 ms

or the SVM with 624 ms. The time for training varies with

h, but it is consistently lower for the HDC model compared

to the SVM. OnlineHD utilizes multiple CPU cores to reduce

the training time. The LSTM takes the most time, even longer

than the physics-based model, but achieves the best accuracy.

V. SCENARIO 2: END-OF-LIFETIME AGING

Recreating the degradation trace is useful in evaluating

short-term aging effects [5]. To predict the degradation at

the EoL of the device, and thus for circuit designers to add
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Fig. 10. Training and testing on the same circuit provides a baseline for the complexity of the problem to predict the final 1Vth value based on the trace.
The LSTM predicts the whole trace but only the last value is considered in the evaluation.

sufficient guardbands, the whole trace is not necessary. The

extrapolation model for NBTI considers the waveform as well

as the last 1Vth value. Hence, an ML model is sufficient

for EoL 1Vth estimation if it can predict this last value.

Consequently, the challenge transforms from a recursive trace

reconstruction to a simpler regression. With the focus on long-

term aging, the final impact of inaccurate predictions from

ML models can be evaluated at circuit level. The physics-

based BAT is replaced with an ML model to provide the

short-term aging value. This result is then processed further by

the CARAT framework to predict the aging-induced change of

the circuit’s delay.

A. Model Training and Evaluation

Many ML algorithms exist to solve regression problems.

The input is a waveform, where each segment acts as a feature

and the predicted output is the last 1Vth value.

An SVM can also be used for regression and is then

referred to as an SVR. The implementation is based on

the Scikit-learn library [31] and a grid search is done for

hyperparameter tuning. The SVR has an Radial Basis Function

kernel, a gamma value of 0.001, and a C of 100. An MLP is

implemented with PyTorch [35]. It has a total of three layers

with 128 neurons in the hidden layer. The output layer is a

single neuron. In contrast to classification, this single neuron

returns a floating point value representing the last 1Vth. An

HDC classifier can be used for regression by quantizing the

1Vth values and treating those as classes. For comparison, a

worst-case model is created. With NBTI, the pMOS transistor

ages if no gate voltage is applied. Hence, the worst case

assumes that the transistor is turned off and only turns on

at the end of the simulated time frame to maximize the aging

effect.

Each model is trained and evaluated on three circuits. The

dataset generation is described in detail in Section III-C. The

aging extrapolation models for NBTI depend on the last 1Vth

value and the waveform. But instead of the physics-based

aging model, the ML models are employed. The predictions

are compared with the output of the physics-based model as

a baseline. As an accuracy metric, R2 score is select, with a

value of ‘1’ as a perfect match.

B. Results at Circuit Level

To judge the complex of the problem, the models are trained

and tested on the adder circuit. Three sets of random inputs

TABLE II

AGING-INDUCED DELAY FOR TRAIN ON ADDER AND TEST ON MAC

are generated for training, hyperparameter tuning, and testing.

The results are presented in Fig. 10 and show the correlation

between the baseline physics-based last 1Vth values and the

ML-based ones for all transistors. The R2 scores are given

above the plots and show that the best ML approach is the

LSTM model. An R2 score of 0.37 was achieved with a

training for 500 epochs, two hidden layers with 25 units per

layer, and the L1 loss function. Although there is some spread

around the baseline, the model’s ability to predict the 1Vth is

clear. A similar picture is given by the MLP, the predictions

are correlated with the baseline values. For HDC, the spread is

even larger but still follows the baseline. The model is trained

with a dimension of 4000 for 50 epochs.

While HDC has the highest spread, the mean aging-induced

shift in the propagation delay at circuit level is equal to

the baseline. Tab. II compares the different models and also

includes the worst-case model with constant aging stress. Both,

HDC and MLP, overestimate the impact overestimate aging,

which is preferable to the LSTM, which underestimates the

impact and thus could lead to insufficiently small guardbands.

However, even with doubling the ML-based predictions to save

guard against underestimation, the ML-models still outperform

the worst-case model by a factor of three.

Training and predicting for the same circuit would require

that the circuit designers share details with the foundry, which

would train the model. To minimize data sharing, the foundry

can train a model on their standard cells and provide those

models to designers. However, the results plotted in Fig. 11

show a significant degradation of the quality of the predictions.

The R2 scores drop below zero and the models struggle to

generalize. Worse, the LSTM and the MLP predict low 1Vth

values although the baseline values are close to the maximum

(prediction in lower right corner). While the spread of the

SVM has increased compared to a training with the adder, the

maximum prediction errors are smaller than with other ML

models. The HDC model has failed to generalize and is not

included in the results.
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Fig. 11. Standard cells are provided by the foundry and the base for many circuit designs. However, the training dataset generated from them is too small
for the ML methods to sufficiently learn and generalize. Hence, the inference results with the adder circuit are worse compared to Fig. 10.

Fig. 12. The models are trained on the adder circuit and used to predict the degradation in the MAC circuit. The large dataset from the adder allows the
LSTM to train and provide adequate results. The outliers are analyzed in Section V-C.

Similar and better results are shown in Fig. 12 for training

on the adder and testing on the MAC circuit. First, the

LSTM has sufficient data to train and can predict most

samples with a low error. Nevertheless, outliers can cause

incorrect guardband estimations. Second, while the SVM’s R2

is the lowest, it underestimations the least preventing severely

incorrect guardband estimations. Overestimations are limited

to smaller 1Vth values and in total the SVM model achieves

a mean relative error of 1.7 % compared to the LSTM’s 3 %.

Finally, the largest 1Vth value in the MAC dataset is higher

than in the adder and this behavior is not captured by the ML

models, they are limited by their training. This is evident by

the horizontal line-like cluster in the top right of the plots.

C. Error Analysis

While many predictions of the LSTM are within a toler-

able error range, there are outliers that are either under- or

overestimated as shown in Fig. 12. The same samples are

plotted in Fig. 13 for an error analysis. First, overestimated

samples have a lower duty cycle and especially fewer voltage

transitions in the waveform. In other words, transistors that

are off most of the time and change their on/off state seldom.

Overestimations have a negative impact on the circuit’s timing

because guardband are designed unnecessary large. However,

they do not lead to failure of the device, in contrast to under-

estimations. The impact of aging is underestimated for some

transistors with a duty cycle above 0.6. Their waveforms have

an average amount of transitions. This combination of duty

cycle and number of transitions is not a defining feature for

underestimations by the LSTM model. Hence, it is impossible

Fig. 13. Analysis of the LSTM model for the MAC circuit. The largest
prediction errors are correlated with a low duty cycle and a low number of
voltage transitions.

to derive a simple rule-based solution to contain the potential

timing errors due to insufficient guardbands.

The SVR shows a similar pattern. Overestimations correlate

with a low duty cycle combined with a low number of tran-

sitions in the waveform. Underestimations are not as frequent

and as pronounced. While they occur mainly above a duty

cycle of 0.4, worst-case underestimations do not correlate with

the number of transitions in the waveform. Hence, similar

to the LSTM, a simple rule-based error reduction cannot
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Fig. 14. Training on an 8-bit adder and testing on a 32-bit MAC circuit at 30 ◦C. The results align with the 90 ◦C case in Fig. 12 demonstrating the versatility
of the proposed approach.

TABLE III

AGING-INDUCED DELAY FOR TRAIN ON STANDARD CELLS

AND TEST ON ADDER CIRCUIT

be derived. In summary, the models perform well for most

samples but outliers, especially underestimations, still pose a

challenge.

D. Impact of Temperature on the Accuracy

The full flow is repeated at 30 ◦C. The models are trained

on the waveforms of the 8-bit adder circuit and employed for

the 32-bit MAC circuit, both at 30 ◦C. The results presented

in Fig. 14 align with the results at 90 ◦C (Fig. 12) and

demonstrate that the general approach is flexible and can be

applied analogously to different operating conditions, opening

a wide field of applications.

VI. DISCUSSION

The focus of this work is on NBTI, the dominant degrada-

tion effect in current transistor technology [2]. Nevertheless,

PBTI and HCD also play an important role. Their impact

on the transistor has to be considered as well to design the

circuit with small yet sufficient timing guard bands. Hence,

an investigation into replacing those models with ML-based

models is necessary. Preliminary results suggest that the

methods explored in this work are challenged by the different

types of stimuli driving those degradation effects. In NBTI, the

on/off time is the dominant factor whereas in HCD the number

of transitions has to be considered, among other stimuli.

Every modeling of a behavior, such as transistor aging,

includes some inaccuracies. Modeling another model intro-

duces another layer of inaccuracies, especially if ML methods

are employed abstracting the behavior even further. However,

the goal of this work is not the most accurate modeling

of transistor aging and outperforming physics-based models,

which are the most accurate. The goal of this work is to

reduce the fundamental barriers of confidentiality for the

circuit designers. Without our proposed ML models, they have

TABLE IV

AGING-INDUCED DELAY FOR TRAIN ON ADDER AND TEST ON MAC

to fall back to worst-case estimations and overestimating the

impact of aging. Tab. IV shows the estimations from the

ML models and the worst case. Even after doubling the ML

models’ prediction to account for the additional inaccuracies

introduced by another layer of modeling, our work reduces

the Vth guardbands by 8× for the mean and 30× for the

maximum. The speedup introduced by the HDC-based aging

model also enables an exploration of the impact of aging on

complex ML accelerators. The resulting timing errors would

present a new fault model with which the ML algorithms

would be confronted. Although some ML algorithms are

robust against incorrect computations [36], timing errors can

challenge them [37].

VII. CONCLUSION

Accurate physics-based aging models include confidential

technology and material parameters. Thus, such models are

not available to circuit designers to optimize their designs

under the actual impact of aging. This work explores the

applicability of ML-based methods to train on the physics-

based models, in particular traditional SVM, LSTM, and

brain-inspired HDC. While ML-based models can predict

the impact of aging for most transistors accurately, outliers

can be over- or underestimated. Nevertheless, the explored

ML-based methods predict the degradation about 3x more

precise than available worst-case models. For the first time,

circuit designers have access to an accurate aging model which

is indispensable for efficient designs. This work opens the door

to narrow the boundary between foundry and circuit designers.
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