
Comprehensive Integration of Hyperdimensional Computing
with Deep Learning towards Neuro-Symbolic AI

Hyunsei Lee1, Jiseung Kim1, Hanning Chen3, Ariela Zeira2, Narayan Srinivasa2, Mohsen Imani3 and Yeseong Kim1

1Daegu Gyeongbuk Institute of Science and Technology, 2Intel Labs, and 3University of California Irvine

{wwhslee, js980408, yeseongkim}@dgist.ac.kr, {ariela.zeira, narayan.srinivasa}@intel.com, {hanningc, m.imani}@uci.edu

Abstract—HD computing is a symbolic representation system which
performs various learning tasks in a highly-parallelizable and binary-
centric way by drawing inspiration from concepts in human long-term
memory. However, the current HD computing is ineffective in extracting
high-level feature information for image data. In this paper, we present
a neuro-symbolic approach called NSHD, which integrates CNNs and
Hyperdimensional (HD) learning techniques to provide efficient learning
with state-of-the-art quality. We devise the HD training procedure, which
fully integrates knowledge from the deep learning model through a dis-
tillation process with optimized computation costs due to the integration.
Our experimental results show that NSHD provides high energy efficiency
as compared to CNN, e.g., up to 64% with comparable accuracy, and
can outperform the learning quality when more computing resources
are allowed. We also show the symbolic nature of the NSHD can make
the learning humnan-interpretable by exploiting the property of HD
computing.

Index Terms—HD Computing, Knowledge Distillation, Neuro-symbolic
AI.

I. INTRODUCTION

Deep learning models, namely Neural Networks (NNs), have proven

to be very effective in solving various challenging problems. One of

the most researched domains is computer vision and Convolutional

Neural Networks (CNNs) have been especially remarkable in image-

related tasks. The success can largely be attributed to their ability to

extract high-quality, high-level features during training. This training,

however, is a heavily time-consuming process. Training data is iter-

atively applied to the model and the model’s parameters, which are

commonly over the millions, are updated for every batch of training

data. In consequence, NNs are expensive both in terms of computation

and memory, making them unfit for deployment to resource-limited

edge devices. Another concern is their “black-box” nature. Which is

to say that although we can observe a networks’s topology, weights,

hyperparameters, etc., drawing conclusions on and explaining what

individual components of complex networks are doing or how the

network as a whole will perform is still very much ongoing research.

This further delays the deployment of machine learning to some fields

such as healthcare industries where many clinicians remain wary of

AI techniques as they are responsible for safety critical tasks [1].

Recently, many research have put forth Hyperdimensional (HD)

computing as an alternative learning model that addresses some

of the concerns of traditional deep learning techniques [2][3]. HD

computing is a symbolic representation system that draws inspiration

from concepts in human long-term memory [4]. It maps data points

to high-dimension, random vectors, called hypervectors. Hypervectors

have dimensions in the thousands and use a holistic mapping, meaning

information is encoded equally over a vector’s components and the

vector as a whole is seen as an entity. This is unlike traditional

representation where bit positions hold specific information.

This work was supported by the National Research Foundation of Korea (NRF)
grant funded by the Korea government(MSIT) (No.2018R1A5A1060031), Basic Science
Research Program through the National Research Foundation of Korea(NRF) funded
by the Ministry of Science. This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP) grant funded by the Korea
government(MSIT) (No.2022-0-00991, 1T-1C DRAM Array Based High-Bandwidth,
Ultra-High Efficiency Processing-in-Memory Accelerator). This work was also supported
in part by National Science Foundation #2127780, Semiconductor Research Corporation
(SRC), Office of Naval Research, grants #N00014-21-1-2225 and #N00014-22-1-2067,
the Air Force Office of Scientific Research under award #FA9550-22-1-0253, and a grant
from Intel.

The dimension-independent nature of HD computing allows im-

plementations of highly parallel hardware accelerators [5], which is

another key advantage of using HD computing. However, hypervectors

and their i.i.d. components are not as effective in extracting high-level

feature information like CNNs. In our experiments, for example, the

state-of-the-art encoding algorithm, non-linear encoding [6], yields an

abysmal 39.88% and 19.7% accuracy on the CIFAR-10 and CIFAR-

100 [7] datasets, respectively.

Neuro-Symbolic AI is an emerging concept in AI that looks to

combine NNs and other symbolic learning approaches [8]. The general

approach is to use deep learning techniques to extract features which

a symbolic model will then use to form a more human-like inter-

pretation. Earlier works [9] [10] have conducted preliminary studies

for a similar approach, i.e., HD computing-based learning methods

which encodes features extracted by state-of-the-art deep learning

models. However, there are two key technical concerns for neuro-

symbolic AI. First, earlier work [10] use convolution layers at the

beginning of deep learning models as feature extractors while simply

abandoning subsequent layers, throwing away any valuable knowledge

potentially stored in them. As a result, their approach only achieved

sub-optimal performance as compared to the CNNs. Furthermore, the

extracted features typically have an enormous number of values due

to archetypal structures of the convolutional layers of the modern

deep learning models, which have many channels. Many prior research

point out that the encoding procedure is the main bottleneck in HD

computing [2]. A large number of extracted features create not only a

huge computational burden but also a large memory overhead to store

the hypervectors during encoding and the whole HD learning process.

In this paper, we present a neuro-symbolic approach that integrates

CNNs and Hyperdimensional (HD) learning techniques, addressing the

two aforementioned concerns hindering accuracy and efficiency. We

name this model Neuro-Symbolic HD (NSHD) and it utilizes a portion

of well-performing CNN models for their superior feature extraction

and integrates them with the HD model. We accelerate the efficient

and highly parallelizable HD operations on GPGPU and FPGA for

an efficient hardware realization. Unlike prior works based on the

traditional HD training, which only take partial knowledge from CNN

models, we further extend the HD training procedure to make NSHD

achieve state-of-the-art learning quality. Our new training procedure

fully integrates knowledge from the deep learning model through a

distillation process between the heterogeneous models. The following

summarizes our contributions:

• We propose NSHD, which aims for accurate and efficient symbolic

learning with better explainability by integrating lightweight HD

computing with state-of-the-art deep learning.

• During training, NSHD explicitly exploits the learned knowledge

of the pre-trained model throughout all the layers, unlike prior

works which take the extracted features only from several convolu-

tional layers. In other words, NSHD trains the HD computing model

by transferring the knowledge trained in both the selected convolution

layers extracting features and the rest of the layers performing sophis-

ticated feature assimilation and prediction. We formulate our solution

by carefully altering HD learning methods and knowledge distillation

techniques [3][11], i.e., the proposed training method used in NSHD

intrinsically transfers the knowledge of the two heterogeneous learning

models, deep learning and HD computing.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:59:54 UTC from IEEE Xplore. Restrictions apply.

• We propose a learning-driven feature compression method

to create an effective information-preserving projection, making

HD learning highly efficient. The projection maps convolution-

extracted features with extreme dimensions into a significantly smaller

dimension before feeding them into the HD computing process. To

this end, we developed a concrete theoretical foundation that tightly

incorporates the backpropagation of deep learning and the state-of-

the-art HD training procedure.

The evaluation results show that NSHD can provide the state-of-

the-art quality for the vision tasks to the HD computing. For example,

NSHD can achieve comparable prediction results with up to 64% of

the execution time reduction. We also show that the NSHD learning

procedure has the human-interpretable property, which can accelerate

the development of the neuro-symbolic AI.

II. RELATED WORK

HD fundamentals HD computing is a computing paradigm inspired

by sparse distributed memory (SDM), a human long-term memory

model studied in neuroscience. Kanerva explains the concept of

HD computing and discusses its mathematical foundations in-depth

in [4]; here, we briefly discuss the fundamentals of HD computing.

HD representation encodes data points to symbolic hypervectors.

The majority of research in the literature generate hypervectors by

randomly sampling each dimension from bipolar values [12][2][6].

The underlying idea behind the high dimensions and random values

is to reach orthogonality between unrelated data points and similarity

between related ones. The relation of hypervectors is measured through

a similarity metric; dot product similarity is most often used for bipolar

hypervectors [9]. Two hypervectors are orthogonal if they have a zero

dot product. If two hypervectors of dimension D taken at random are

each generated with i.i.d. components, they will have a high probability

of a D/2 overlap in bits with a standard deviation of
√

D/4. That

is, when dimensions are in the thousands, they are quasi-orthogonal,

meaning they represent distinct information.

Learning with HD computing Learning models using the HD

representation system aggregate hypervectors belonging to the same

class into a single centroid hypervector that represents the class [2].

Inference is done by comparing similarity between an input hypervec-

tor and the class centroids. HD learning algorithms have proved to be

very successful in several learning tasks such as language recognition

[13], speech recognition [12], and robotics [9].

The concept of combining NNs and HD models has also been

explored in prior research. [14] converts the prediction layer’s output

of various CNN models to form an ensemble of HD models. [10] and

[9] are similar to our work in that they use the first several layers

of a CNN as a feature extractor for a HD model. However, prior

works have two drawbacks. First, they do not utilize the potential

knowledge held in the CNN’s weights. For example, [10] discards all

subsequent layers and also requires the retraining of the entire feature

extractor alongside the HD model. It, consequently, dismisses valuable

knowledge held in the discarded layers and calls for greater computa-

tional resources. Second, the extracted features need to be significantly

reduced to keep the HD learning model and its operations memory

and computation efficient. [9] uses locality sensitive hashing (LSH)

with random hyperplanes to reduce feature dimensions. However,

LSH does not allow radically small bucket sizes and, therefore, the

hashing calculations and computations on the resulting hypervectors

are not negligible. Nevertheless, these approaches still bring significant

performance improvements over standalone HD learning algorithms.

III. OVERVIEW OF NSHD

We present NSHD, a neuro-symbolic framework that combines

modern deep learning models with a more intuitive and brain-like

model, Hyperdimensional (HD) computing. Fig. 1 shows an overview

of NSHD. NSHD first symbolizes an input image into a hypervector

(Sec. IV). We utilize layers of well-performing CNNs for their

Fig. 1: An Overview of NSHD

Fig. 2: NSHD Feature Symbolization Procedure

feature extracting capabilities. NSHD then converts the features into

hyperdimensional representations. Using the symbolic data, we can

reason through the HD model with better explainability and efficiency.

We can utilize the symbolic data, i.e., in our case, the hypervectors,

for diverse learning task. In this paper, we particularly focus on the

classification to better show the learning quality of NSHD as compared

to the prior HD-based work, which usually handles the classification

tasks. Unlike the prior HD computing-based training procedure, we

employ knowledge distillation (KD) to take advantage of knowledge

in the rest of the CNN’s layers. KD is a model compression and

acceleration technique that is used to train a smaller model (student)

with the final prediction logits of a larger, more complex model

(teacher). We devise a distillation procedure between the neural

and symbolic models to integrate their knowledge more completely.

With the distillation training procedure happening across CNN and

HD computing, NSHD trains the HD model that consists of the

representative hypervectors for each class, called class hypervectors.

Once the model is trained, we can perform the inference procedure

by (i) computing the symbolized features called the query hypervector,

and (ii) comparing the query hypervector with all class hypervector

with a similarity metric. Then, we can take the inference result by

selecting the class with the most similar to the query hypervector.

IV. DATA REPRESENTATION – NEURAL TO SYMBOLIC

A. Feature Extractor

NSHD can take virtually any deep learning model as its feature

extractor. Advances in deep learning techniques such as convolutional

layers have allowed CNNs to make great strides in this area. For the

feature extractor, we turned to well-performing CNN models that are

available “off-the-shelf” and pretrained. The models we show in this

paper as our feature extractor are pretrained CNNs: Mobilenetv2 [15],

Efficientnet b0, Efficientnet b7 [16], and VGG16 [17]. These models

all end with fully-connected layers which are focused more towards

the role of classification. A naive way to make a feature extractor is

to use all the convolution layers. However, it is more beneficial to

choose earlier layers for higher efficiency. It is still challenging to

know at which layer a CNN model fully extracts features to the best

of its capability, since human interpretation of NNs is still an ongoing

research [18]. It is beyond the scope of our work here; fortunately,

in practice, it is easy to empirically search for this layer. We take an

intermediate layer near the end of the model that yields good accuracy.

We remove all subsequent layers from the model, but use them later

to transfer their knowledge during the HD model’s training.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:59:54 UTC from IEEE Xplore. Restrictions apply.

Similarities ẟ

Similarities ẟ / t

…

�

Fig. 3: Distillation Across Deep Learning and HD Computing

B. Encoding to a HD Representation

Learning models using HD representation map data to hypervectors

in hyperspace such that related vectors will be closer in similarity

while unrelated vectors remain orthogonal. In this paper, we use a

popular encoding method, random projection [2]. Random projection

encoding exploits binary random projection hypervectors P with F

random bipolar base hypervectors of D dimensions [P0 · · ·PF]
D ,

where F is the number of features in a data sample, in this paper

it is the flattened output size of the feature extractor. With P and

an extracted feature vector V = {V1, · · · , VF }, the random projection

encoding is defined as H = ΦP(V) = sign(V1⊗P1⊕· · ·⊕VF ⊗PF),

where ⊕ and ⊗ are HD arithmetic operations bundling and binding,

respectively. Bundling combines two or more hypervectors into a

single composite hypervector that is similar to its inputs and is

most commonly implemented as an element-wise addition. Binding

associates hypervectors by merging them into a resultant hypervector

that is quasi-orthogonal to its inputs and is implemented as a scalar

or element-wise multiplication.

C. Feature Reduction for Optimal Efficiency

Prior work using HD models for learning tasks have tackled simple

workloads with relatively few features, i.e., less than 1000 [3]. Even

so, the encoding process has traditionally been the main bottleneck

of HD-based learning models. NSHD takes extracted features from

intermediate layers of CNNs which could result in an extremely large

number of features, e.g., the second to last convolution layer of VGG16

outputs 25,088 features. When the number of features is high, the

binding of F features and P hypervectors, which are also of high

dimensions, leads to an extraordinarily large amount of parameters. In

order to reduce parameter count and make our model more efficient,

we propose the use of a manifold learning layer. Our manifold layer

first maxpools the output of the feature extractor with a window of

2, we then add a fully-connected layer that acts as a regressor to

further reduce the number of pooled features to F̂ . We denote it

with Ψ(·) : RF → R
F̂ . To design this process, we draw inspiration

from the learning procedure of work in [19], which maps between

the original pooled feature space to another space. As a result, the

manifold learner takes as input the pooled features flattened to a

1 × F vector and outputs a fixed F̂ features, which will be encoded

to an HD representation with binary random projection. In summary,

the symbolization process of NSHD is H = ΦP(Ψ(conv(x))), where

conv(·) is the CNN feature extractor and x is the input image. The key

challenge here is how to train the feed-forward layer of the manifold

learner, which is essential to achieve high efficiency in using HD

computing. We discuss our approach in Sec. V-C.

V. LIGHTWEIGHT LEARNING WITH HD COMPUTING

A. NSHD Retraining

Early implementations of HD models bundled data samples under

the same class to form a single hypervector, called class hypervectors

C =
∑

n

i=1
Hi, and they would represent the class. The inference

procedure was to simply compare incoming data to class hypervectors,

i.e., argmax(δ([C0 · · ·Ck−1],H)), where k is the number of classes.

For higher accuracy, many prior works retrain the class hypervectors

through multiple iterations. In this paper, we utilize Many-class Simi-

larity Scaling (MASS) retraining, proposed in [3]. MASS further tunes

the class hypervectors such that the class hypervector with the correct

label would become more similar to the input sample while other

class hypervectors would grow more dissimilar. A unique advantage of

MASS compared to prior retraining methods is that it updates the class

hypervector based on class-wise similarity differences. It is performed

by calculating an update vector U by taking the one-hot encodings for

training samples and subtracting the similarity values of the training

sample hypervector, H, i.e., U = one hot − δ(M,H), where M =
[C0 · · ·Ck−1]. U now holds update values that would bring larger

changes for erroneous classifications. The training sample H is finally

scaled with the update values and a learning rate, λ, and bundled to

the class hypervectors: M = M+ λU⊺
H.

By itself, HD learning models are very efficient as their operations

are highly parallelizable [5]. However, as discussed in Sec. II valuable

information stored in the dropped layers are never utilized in prior

works. As a means to retain knowledge from the sophisticated training

procedure of deep learning models and to compress our model, we

implement knowledge distillation [11] as an extension to the MASS

retraining algorithm.

B. Knowledge Distillation – Deep Learning to HD

Fig. 2 illustrates NSHD’s learning procedure. We employ the

teacher-student KD framework [11], which has traditionally been be-

tween models of similar NN architectures, but in this work, we present

a process that distills knowledge from a deep learning architecture to

a HD model. This enables the transfer of knowledge in the unused

layers, allowing for the selection of earlier and efficient, but worse-

performing intermediate layers with minimal performance degradation.

Algorithm 1 NSHD Knowledge Distillation Procedure

1: M = [C0 · · ·Ck−1]
2: for hypervector H in a training dataset do

3: similarity values = δ(M,H)
4: soft pred = similarity values/t

5: soft labels = softmax (teacher pred)/t

6: distilled updates = soft labels − soft pred

7: U = (1− α)× (one hot − similarity values)
8: U = U+ α× distilled updates

9: M = M+ λU⊺
H

Algorithm 1 shows the complete retraining procedure with knowl-

edge distillation. We use the original, uncut CNN as the teacher

and NSHD with an earlier but less accurate layer as the student.

The primary change from the MASS procedure is to calculate U,

i.e., class-wise similarity difference based on the teacher’s prediction

results, which have more useful knowledge than the simple one-

hot encoding vector in describing the training sample. As shown in

Line 4, we calculate the student’s soft prediction value by softening

the similarity values with a hyperparameter t. Similarly, we take the

teacher’s softened predictions by taking the softmax output of the

last prediction layer and softening it with t. With these values we

can get the distilled update vector by subtracting the two. The final

update vector, U, is a weighted sum between the updates using the

teacher as the target and the ground-truth, one-hot encoding based

updates. Finally, the updated training sample H is bound to the class

hypervectors M updating all class hypervectors at each iteration.

C. Training the Manifold Learner

As discussed in Sec. IV-C, NSHD optimizes efficiency by introduc-

ing the manifold layer to reduce the number of encoded features. A

naive way to implement the manifold layer is to instrument the original

CNN model and retrain; however, this requires the costly retraining of

either the entire CNN model or the rest of the layers after the manifold

layer at the very least. We address the issue by decoding the errors

happening in the class hypervectors and back-propagating them to the

manifold layer across the HD encoder.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:59:54 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Design Acceleration On Xilinx ZCU104

LUT FF BRAM URAM DSP

Total 84.9K 146.5K 224 40 844
Available 230.4K 460.8K 312 96 1728
Utilization 36.87% 31.80% 71.79% 41.67% 48.84%

Frequency 200MHz
Power 4.427W

Let us recall Algorithm 1 describing the knowledge distillation

procedure. E = λU⊺
H is the form of the class-wise error hypervec-

tors. We denote each per-class error hypervector by Ei ∈ E, where

0 ≤ i < K, and our goal is to decode Ei into the original feature space

(∈ R
F̂). During the decoding procedure, since the sign function is not

differentiable in the backpropagation, we approximate its effect with

a straight-through estimator usually used for training binary neural

networks [20]. We then apply the HD decoding [2], which applies the

binding with the binary random projection hypervectors, P, and the

dot-product operation in turn. As a result, we can estimate the errors

in the output of the manifold layer, and update the fully-connected

layer through the typical backpropagation procedure of deep learning.

VI. IMPLEMENTATION

A. GPGPU Implementation

We implement the training and inference procedure on a GPGPU.

We can use common tensor frameworks, e.g., TensorFlow or PyTorch,

to run the feature extractor for the given training/test inputs. One of the

key merits of NSHD is that it uses the weights pretrained in the original

CNN model without any modification for both the training and infer-

ence procedure. Thus, we can eliminate the costly backpropagation

procedure of CNN, and furthermore can use any advanced acceleration

platform, e.g., tensor engines or external hardware accelerators. In this

work, we utilize the NVIDIA TensorRT framework, which performs

high-performance deep learning inference based on quantization and

specialized hardware units in GPGPU.

Once the features are extracted, we perform the rest of the train-

ing/inference procedure on the common GPGPU system. Our current

implementation is based on the PyTorch; but we enhance its capability

with custom operations that best utilize the binary-centric nature of

the hypervector operations in an optimized fashion. For example, there

are two primary binary computations: (i) the HD encoding procedure,

which is mainly composed of binding operations with the binary

random projection hypervectors, and (ii) the similarity computation for

the class hypervectors, which takes symbolized binary hypervectors

as its input. We optimize the binary computations on CUDA so

that it utilizes the constant memory, a type of GPGPU memory

that is significantly faster than the common GPU global memory

(GDDR) due to the dedicated cache hierarchy. During the binary HD

computation, we load the binary hypervectors on the constant memory

while loading the other types of the data, e.g., integer or floating-point,

from the global memory to the shared memory whose performance

is similar to the L1 cache. Then, we can perform the computations

eventually without multiplication, i.e., only using relatively lightweight

arithmetic operations, i.e., addition or subtraction depending on the

sign bit for each binary hypervector element in the constant memory.

In addition, since the hypervectors stored in the constant memory are

binary, we can significantly reduce the memory footprints.

B. FPGA Implementation

We also implement the hardware acceleration of the NSHD infer-

ence procedure on FPGGA, Xilinx Zynq UltraScale+ MPSoC ZCU104

(ZCU104). The host program running on ZCU104 PS side (ARM

Cortex 53) is written with Python, and the communication between PS

and PL is based on AMBA AXI interface. For hardware accelerator

on the ZCU104 PL side, we import the Xilinx deep learning unit

(DPU) IP. We exploit NSHD into DPU using Vitis AI framework.

Fig. 4: Percentage Improvements on Energy Efficiency

The trained entire NSHD model can be viewed as a special type of

the neural networks, where the hypervectors and HD operations are

quantized data and tensor operations. Thus, we can compile and map

the trained NSHD model into the Vitis AI framework so that it runs

the convolution layers and HD computing-related computation on the

same platform. Note that the Vitis AI framework quantizes the given

model for better efficiency, and in our observation, the quantization

has very minor impacts on the prediction quality.

VII. EXPERIMENTAL RESULTS

A. Experimental Setup

We implement the proposed NSHD on NVIDIA Xavier Platform,

which aims to the low-power edge systems, and Xilinx Zynq ZCU104

platform. To measure power consumption of the GPGPU, we use

the NVIDIA system management interface (nvidia-smi). Table I

summarizes the resource utilization of Xilinx DPU IP on the MPSoC

programmable logic (PL) side. Compared to traditional GPU-based

accelerators, FPGA-based accelerator consumes less power.

Models used as feature extractors are Mobilenetv2 [15], Efficientnet

b0, Efficientnet b7 [16], and VGG16 [17]. We label layers of the CNN

by their indices; Efficientnet is divided by their blocks, Mobilenetv2

by operators, and VGG16 by each convolution, pooling, and activation

layers. Each fully-connected layer in all models have their own

index. We use datasets Cifar-10 and Cifar-100 [7] for performance

evaluations and set hypervector dimensions at 3,000.

For the knowledge distillation process, we perform hyperparameter

search to identify the best combination of T and α discussed in

Sec. V-B; we also report the full search results in Sec. VII-C2 as

an example. We observe that another hyperparameter, F̂ , which is the

feature size produced by the manifold layer, should be sufficiently

large enough, i.e., at least as large as the number of classes, to

produce accurate prediction results. We empirically set F̂ as 100 in

our evaluations. For the hypervector dimension, we utilize D = 3, 000
by default, which is relatively smaller than the dimension used in most

prior work, i.e., D = 10, 000, since there are very negligible changes

in accuracy; we also show how the accuracy changes over different

dimensions in Sec. VII-D.

B. NSHD Efficiency

1) Energy Efficiency Comparison: In this evaluation, we compare

the energy efficiency of NSHD models during inference by comparing

with the respective CNN model. For NSHD, we empirically select two

convolution layer indices for each CNN model as the layer extracting

features so that the accuracy loss is less than 10%. Figure 4 shows

energy consumption improvements of NSHD at different intermediate

layers as feature extractors on the Cifar-10 and Cifar-100 dataset. The

results show that NSHD can save energy efficiency significantly when

selecting an early convolution layer for feature extraction, e.g., using

VGG16 as the feature extractor at layer 27 uses 64% less energy than

the original CNN model. NSHD achieves higher energy efficiency

when selecting earlier convolution layers. NSHD can take advantage of

the powerful state-of-the-art feature extraction capabilities of modern

deep learning models while being more scalable, even more so if we

are willing to consider trade-offs (discussed in Sec. VII-C).

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:59:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Impact of Manifold Learner on MACs for 3K: D = 3, 000
and 10K: D = 10, 000. The numbers on X-axis for each model are

the layer indices used for the feature extractor.

Fig. 6: Throughput (FPS) of FPGA Implementation

2) Comparison with Prior HD work: As discussed in Section II,

there were a couple of prior HD works which try to use the existing

DNN models as a feature extractor [9]. We name this approach

BaselineHD. The key difference of NSHD from BaselineHD is the

proposed manifold layer, which learns effective compression strategies

to reduce the feature sizes eventually processed in the HD encoding

procedure. To understand how much computations are saved using

the manifold learner, we measured the number of multiply-accumulate

(MAC) operations by assuming that the binding/bundling operations

are element-wise multiplication/addition. Figure 5 summarizes the

experimental results. We observe that the manifold learner plays

an important role in keeping NSHD efficient. For example, NSHD

requires 20.9% and 28.95% fewer computations for Efficientnetb0

using layers 6 and 7 as the feature extractor, respectively. Since the

encoding overhead increases as the hypervector dimension increases,

we observe higher savings for D = 10, 000 than the D = 3, 000
cases, e.g., up to 34% for Mobilenetv2 at the 17th layer.

3) FPGA Acceleration: To examine the practical value of NSHD,

we next examine the throughput of the FPGA accelerator. Figure 6

presents the throughput of NSHD on the ZCU104 platform as com-

pared to the CNN model running on the same DPU accelerator.

Here we choose to use frame per second (FPS) as the inference

throughput metric. For this evaluation, we selected the earliest layer

used in Sec. VII-B1 and measure the throughput over different

hypervector dimension settings. Compared to the original CNN model,

NSHD is hardware friendly, therefore achieving, on average 38.14%
improvement in inference throughput.

TABLE II: Model Size (Learning Parameters) Comparison

Model Layer CNN NSHD BaselineHD

VGG16
27 537.2MB 69.61MB 87.17MB
29 537.2MB 69.05MB 96.61MB

Efficientnetb0

5 16.08MB 5.76MB 11.75MB
6 16.08MB 12.36MB 15.16MB
7 16.08MB 15.69MB 20.38MB
8 16.08MB 20.79MB 39.67MB

Efficientnetb7
6 255.25MB 164.382MB 170.01MB
7 255.25MB 251.03MB 260.45MB
8 255.25MB 264.52MB 302.3MB

Mobilenetv2
14 8.94MB 3.52MB 5.85MB
17 8.94MB 8.55MB 13.24MB

(a) Dataset: Cifar-10

(b) Dataset: Cifar-100

Fig. 7: Accuracy Comparison

Δ

Fig. 8: Impact of KD on the Learning Accuracy

4) Model size: Table II shows a comparison of parameters in terms

of their size in bytes for the original CNN and NSHD at different

intermediate layers as feature extractors. The results show that NSHD

can reduce the model size effectively without sacrificing accuracy.

Note that the NSHD model is significantly smaller than BaselineHD
for many cases thanks to the manifold layer, which effectively reduces

the amount of features passed from the convolution layers in the

feature extractor to the HD model. Without it, a naive approach would

have had 96.61M parameters for VGG16 at the 29th layer which is a

39.91% increase from what we have with the manifold learner.

C. NSHD Learning Accuracy

1) Accuracy Comparison: We evaluate the accuracy of NSHD by

comparing its counterparts: (i) VanillaHD, the HD model that does not

use any feature extractor, (ii) BaselineHD, the HD model that uses the

convolution feature extractor in a similar fashion to prior work [9] but

without the manifold layer and knowledge distillation, and (iii) CNN,

the original CNN models. Figure 7 shows the comparison results.

Our results show that, unlike VanillaHD, NSHD can solve image-

related learning tasks in a neuro-symbolic way. Indeed, NSHD is able

to achieve similar accuracy levels to the respective CNN model at

least, and furthermore, with sufficient feature extraction layers, NSHD

reliably outperforms the CNN model. For example, at layer 7 in

Efficientnet b0, NSHD outperforms the original model while at layer 6,

NSHD shows similar performance as the original model but is more

efficient. Also, NSHD outperforms BaselineHD significantly. Even

though BaselineHD typically uses much more learning parameters as

discussed in Sec. VII-B4, NSHD achieves better accuracy based on

the knowledge distillation.

2) Impact of Knowledge Distillation: NSHD utilizes knowledge

distillation (KD) to fully integrate the knowledge of deep learning and

symbolic HD learning. To better illustrate the impact of KD, Figure 8

(a) shows the results of taking each layer as the feature extractor for

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:59:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: Accuracies for Hyperparameter Search in KD.

Fig. 10: Efficiency and Accuracy Tradeoff on FPGA.

Efficientnetb0 as an example. The results show that KD effectively fills

the accuracy gap by eliciting the knowledge stored in the CNN to the

HD model. Figure 8(b) summarizes the impact of KD on the accuracy

over other models. We observed the same trend over all models, and

thus concluded that distilling knowledge from deep learning to the

symbolic model brings out the full potential of both architectures.

To best utilize the knowledge distillation, a process of hyperpa-

rameter search should be performed. As an example, Figure 9 shows

detailed results of the hyperparameter search for Efficientnetb7 layer

7. The result shows that KD boosts the accuracy by 7.39% while

utilizing the knowledge of the teacher model, in our case, the original

CNN. In our experiments, the two hyperparameters, T and α vary for

different models; but are typically found in the range of 14 to 16.

D. NSHD Dimensionality and Efficiency Tradeoff

In this section, we show the ablation study on how different

dimensions affect NSHD. Figure 10 illustrates the tradeoff relationship

between efficiency and accuracy over different dimensionality sizes.

Traditionally, work in HD computing have defaulted to hypervectors

with a dimension of 10,000 as higher dimensions allows for easier

discrimination between hypervectors [4]. However, we do not require

as high a dimension to achieve maximum accuracy. For most cases,

the dimensionality larger than D = 3, 000 is sufficient to regenerate

the quality of the CNN model, while D = 1, 000 would degrade the

inference quality. For example, the parameters for the HD section of

NSHD can be reduced by 70% by going from 10,000 to 3,000 and a

further 20% improvement can be had with 1,000 dimensions with a

relatively small loss in accuracy of an average of 1.64%.

E. NSHD Explainability

In this section, we look to explain HD learning and hypervectors

through a visual representation to verify the potential of HD computing

(a) First retraining iteration (b) Final results after 50 iterations

Fig. 11: Explainability of HD computing with t-sne Analysis.

for human-like interpretation. Based on the t-SNE projection, Fig-

ure 11a depicts a 2D representation of hypervectors at the first iteration

for the CIFAR-10 dataset using 7th layer of Efficientnet b0 as the

feature extractor. The HD model plots a pattern that is somewhat vague

and difficult to interpret. Knowledge in HD computing is mathematical

in nature and we can add and subtract from these vectors of high

dimensions to pull class hypervectors towards their data samples.

Similarly, we can bring related hypervectors closer such that when

we convert new data they will plot near their class. As shown in

Figure 11b, in the final training iteration the training samples form

several close clusters for each class, meaning that the class hypervector

eventually represents the target class.

VIII. CONCLUSION

In this paper, we propose NSHD, which provides accurate symbolic

learning with better explainability and higher efficiency. We integrate

lightweight HD computing with state-of-the-art deep learning by

using a learning-driven feature compression method and transferring

knowledge between different learning approaches. The experimental

results show that the proposed method yields very comparable results

to deep learning while optimizing the efficiency and memory footprint,

e.g., by up to 64%.

REFERENCES

[1] Jeremy Petch, et al. Opening the black box: The promise and limitations
of explainable machine learning in cardiology. Canadian Journal of
Cardiology, 38(2):204–213, 2022.

[2] Mohsen Imani, et al. A framework for collaborative learning in secure
high-dimensional space. In 2019 IEEE 12th International Conference on
Cloud Computing (CLOUD), pages 435–446, 2019.

[3] Yeseong Kim, et al. Cascadehd: Efficient many-class learning framework
using hyperdimensional computing. In 2021 58th ACM/IEEE Design
Automation Conference (DAC), pages 775–780, 2021.

[4] Pentti Kanerva. Hyperdimensional computing: An introduction to com-
puting in distributed representation with high-dimensional random vec-
tors. Cognitive computation, 1(2):139–159, 2009.

[5] Mohsen Imani, et al. Fach: Fpga-based acceleration of hyperdimensional
computing by reducing computational complexity. In Proceedings of the
24th Asia and South Pacific Design Automation Conference, pages 493–
498, 2019.

[6] Mohsen Imani, et al. Dual: Acceleration of clustering algorithms using
digital-based processing in-memory. In 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 356–371,
2020.

[7] Alex Krizhevsky, et al. Cifar-100 (canadian institute for advanced
research).

[8] Zachary Susskind, et al. Neuro-symbolic ai: An emerging class of ai
workloads and their characterization, 2021.

[9] Peer Neubert, et al. An introduction to hyperdimensional computing for
robotics. KI - Künstliche Intelligenz, 33(4):319–330, Dec 2019.

[10] Arpan Dutta, et al. Hdnn-pim: Efficient in memory design of hyperdi-
mensional computing with feature extraction. New York, NY, USA, 2022.
Association for Computing Machinery.

[11] Geoffrey Hinton, et al. Distilling the knowledge in a neural network,
2015.

[12] Mohsen Imani, et al. Voicehd: Hyperdimensional computing for efficient
speech recognition. In 2017 IEEE International Conference on Rebooting
Computing (ICRC), pages 1–8, 2017.

[13] Mohsen Imani, et al. Low-power sparse hyperdimensional encoder for
language recognition. IEEE Design Test, 34(6):94–101, 2017.

[14] Peter Sutor, et al. Gluing neural networks symbolically through hyperdi-
mensional computing, 05 2022.

[15] Mark Sandler, et al. Inverted residuals and linear bottlenecks: Mo-
bile networks for classification, detection and segmentation. CoRR,
abs/1801.04381, 2018.

[16] Mingxing Tan et al. Efficientnet: Rethinking model scaling for convolu-
tional neural networks. CoRR, abs/1905.11946, 2019.

[17] Shuying Liu et al. Very deep convolutional neural network based image
classification using small training sample size. In 2015 3rd IAPR Asian
Conference on Pattern Recognition (ACPR), pages 730–734, 2015.

[18] Artur d’Avila Garcez et al. Neurosymbolic ai: The 3rd wave, 2020.
[19] Adriana Romero, et al. Fitnets: Hints for thin deep nets, 2014.
[20] Matthieu Courbariaux et al. Binarynet: Training deep neural net-

works with weights and activations constrained to +1 or -1. ArXiv,
abs/1602.02830, 2016.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:59:54 UTC from IEEE Xplore. Restrictions apply.

