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Abstract—HD computing is a symbolic representation system which
performs various learning tasks in a highly-parallelizable and binary-
centric way by drawing inspiration from concepts in human long-term
memory. However, the current HD computing is ineffective in extracting
high-level feature information for image data. In this paper, we present
a neuro-symbolic approach called NSHD, which integrates CNNs and
Hyperdimensional (HD) learning techniques to provide efficient learning
with state-of-the-art quality. We devise the HD training procedure, which
fully integrates knowledge from the deep learning model through a dis-
tillation process with optimized computation costs due to the integration.
Our experimental results show that NSHD provides high energy efficiency
as compared to CNN, e.g., up to 64% with comparable accuracy, and
can outperform the learning quality when more computing resources
are allowed. We also show the symbolic nature of the NSHD can make
the learning humnan-interpretable by exploiting the property of HD
computing.

Index Terms—HD Computing, Knowledge Distillation, Neuro-symbolic
AL

[. INTRODUCTION

Deep learning models, namely Neural Networks (NNs), have proven
to be very effective in solving various challenging problems. One of
the most researched domains is computer vision and Convolutional
Neural Networks (CNNs) have been especially remarkable in image-
related tasks. The success can largely be attributed to their ability to
extract high-quality, high-level features during training. This training,
however, is a heavily time-consuming process. Training data is iter-
atively applied to the model and the model’s parameters, which are
commonly over the millions, are updated for every batch of training
data. In consequence, NNs are expensive both in terms of computation
and memory, making them unfit for deployment to resource-limited
edge devices. Another concern is their “black-box™ nature. Which is
to say that although we can observe a networks’s topology, weights,
hyperparameters, etc., drawing conclusions on and explaining what
individual components of complex networks are doing or how the
network as a whole will perform is still very much ongoing research.
This further delays the deployment of machine learning to some fields
such as healthcare industries where many clinicians remain wary of
Al techniques as they are responsible for safety critical tasks [1].

Recently, many research have put forth Hyperdimensional (HD)
computing as an alternative learning model that addresses some
of the concerns of traditional deep learning techniques [2][3]. HD
computing is a symbolic representation system that draws inspiration
from concepts in human long-term memory [4]. It maps data points
to high-dimension, random vectors, called hypervectors. Hypervectors
have dimensions in the thousands and use a holistic mapping, meaning
information is encoded equally over a vector’s components and the
vector as a whole is seen as an entity. This is unlike traditional
representation where bit positions hold specific information.
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The dimension-independent nature of HD computing allows im-
plementations of highly parallel hardware accelerators [5], which is
another key advantage of using HD computing. However, hypervectors
and their i.i.d. components are not as effective in extracting high-level
feature information like CNNs. In our experiments, for example, the
state-of-the-art encoding algorithm, non-linear encoding [6], yields an
abysmal 39.88% and 19.7% accuracy on the CIFAR-10 and CIFAR-
100 [7] datasets, respectively.

Neuro-Symbolic Al is an emerging concept in Al that looks to
combine NNs and other symbolic learning approaches [8]. The general
approach is to use deep learning techniques to extract features which
a symbolic model will then use to form a more human-like inter-
pretation. Earlier works [9] [10] have conducted preliminary studies
for a similar approach, i.e., HD computing-based learning methods
which encodes features extracted by state-of-the-art deep learning
models. However, there are two key technical concerns for neuro-
symbolic Al. First, earlier work [10] use convolution layers at the
beginning of deep learning models as feature extractors while simply
abandoning subsequent layers, throwing away any valuable knowledge
potentially stored in them. As a result, their approach only achieved
sub-optimal performance as compared to the CNNs. Furthermore, the
extracted features typically have an enormous number of values due
to archetypal structures of the convolutional layers of the modern
deep learning models, which have many channels. Many prior research
point out that the encoding procedure is the main bottleneck in HD
computing [2]. A large number of extracted features create not only a
huge computational burden but also a large memory overhead to store
the hypervectors during encoding and the whole HD learning process.

In this paper, we present a neuro-symbolic approach that integrates
CNNs and Hyperdimensional (HD) learning techniques, addressing the
two aforementioned concerns hindering accuracy and efficiency. We
name this model Neuro-Symbolic HD (NSHD) and it utilizes a portion
of well-performing CNN models for their superior feature extraction
and integrates them with the HD model. We accelerate the efficient
and highly parallelizable HD operations on GPGPU and FPGA for
an efficient hardware realization. Unlike prior works based on the
traditional HD training, which only take partial knowledge from CNN
models, we further extend the HD training procedure to make NSHD
achieve state-of-the-art learning quality. Our new training procedure
fully integrates knowledge from the deep learning model through a
distillation process between the heterogeneous models. The following
summarizes our contributions:

e We propose NSHD, which aims for accurate and efficient symbolic
learning with better explainability by integrating lightweight HD
computing with state-of-the-art deep learning.

o During training, NSHD explicitly exploits the learned knowledge
of the pre-trained model throughout all the layers, unlike prior
works which take the extracted features only from several convolu-
tional layers. In other words, NSHD trains the HD computing model
by transferring the knowledge trained in both the selected convolution
layers extracting features and the rest of the layers performing sophis-
ticated feature assimilation and prediction. We formulate our solution
by carefully altering HD learning methods and knowledge distillation
techniques [3][11], i.e., the proposed training method used in NSHD
intrinsically transfers the knowledge of the two heterogeneous learning
models, deep learning and HD computing.
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e We propose a learning-driven feature compression method
to create an effective information-preserving projection, making
HD learning highly efficient. The projection maps convolution-
extracted features with extreme dimensions into a significantly smaller
dimension before feeding them into the HD computing process. To
this end, we developed a concrete theoretical foundation that tightly
incorporates the backpropagation of deep learning and the state-of-
the-art HD training procedure.

The evaluation results show that NSHD can provide the state-of-
the-art quality for the vision tasks to the HD computing. For example,
NSHD can achieve comparable prediction results with up to 64% of
the execution time reduction. We also show that the NSHD learning
procedure has the human-interpretable property, which can accelerate
the development of the neuro-symbolic Al

II. RELATED WORK

HD fundamentals HD computing is a computing paradigm inspired
by sparse distributed memory (SDM), a human long-term memory
model studied in neuroscience. Kanerva explains the concept of
HD computing and discusses its mathematical foundations in-depth
in [4]; here, we briefly discuss the fundamentals of HD computing.
HD representation encodes data points to symbolic hypervectors.
The majority of research in the literature generate hypervectors by
randomly sampling each dimension from bipolar values [12][2][6].
The underlying idea behind the high dimensions and random values
is to reach orthogonality between unrelated data points and similarity
between related ones. The relation of hypervectors is measured through
a similarity metric; dot product similarity is most often used for bipolar
hypervectors [9]. Two hypervectors are orthogonal if they have a zero
dot product. If two hypervectors of dimension D taken at random are
each generated with i.i.d. components, they will have a high probability
of a D/2 overlap in bits with a standard deviation of /D /4. That
is, when dimensions are in the thousands, they are quasi-orthogonal,
meaning they represent distinct information.

Learning with HD computing Learning models using the HD
representation system aggregate hypervectors belonging to the same
class into a single centroid hypervector that represents the class [2].
Inference is done by comparing similarity between an input hypervec-
tor and the class centroids. HD learning algorithms have proved to be
very successful in several learning tasks such as language recognition
[13], speech recognition [12], and robotics [9].

The concept of combining NNs and HD models has also been
explored in prior research. [14] converts the prediction layer’s output
of various CNN models to form an ensemble of HD models. [10] and
[9] are similar to our work in that they use the first several layers
of a CNN as a feature extractor for a HD model. However, prior
works have two drawbacks. First, they do not utilize the potential
knowledge held in the CNN’s weights. For example, [10] discards all
subsequent layers and also requires the retraining of the entire feature
extractor alongside the HD model. It, consequently, dismisses valuable
knowledge held in the discarded layers and calls for greater computa-
tional resources. Second, the extracted features need to be significantly
reduced to keep the HD learning model and its operations memory
and computation efficient. [9] uses locality sensitive hashing (LSH)
with random hyperplanes to reduce feature dimensions. However,
LSH does not allow radically small bucket sizes and, therefore, the
hashing calculations and computations on the resulting hypervectors
are not negligible. Nevertheless, these approaches still bring significant
performance improvements over standalone HD learning algorithms.

III. OVERVIEW OF NSHD

We present NSHD, a neuro-symbolic framework that combines
modern deep learning models with a more intuitive and brain-like
model, Hyperdimensional (HD) computing. Fig. 1 shows an overview
of NSHD. NSHD first symbolizes an input image into a hypervector
(Sec. 1V). We utilize layers of well-performing CNNs for their
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feature extracting capabilities. NSHD then converts the features into
hyperdimensional representations. Using the symbolic data, we can
reason through the HD model with better explainability and efficiency.
We can utilize the symbolic data, i.e., in our case, the hypervectors,
for diverse learning task. In this paper, we particularly focus on the
classification to better show the learning quality of NSHD as compared
to the prior HD-based work, which usually handles the classification
tasks. Unlike the prior HD computing-based training procedure, we
employ knowledge distillation (KD) to take advantage of knowledge
in the rest of the CNN’s layers. KD is a model compression and
acceleration technique that is used to train a smaller model (student)
with the final prediction logits of a larger, more complex model
(teacher). We devise a distillation procedure between the neural
and symbolic models to integrate their knowledge more completely.
With the distillation training procedure happening across CNN and
HD computing, NSHD trains the HD model that consists of the
representative hypervectors for each class, called class hypervectors.
Once the model is trained, we can perform the inference procedure
by (i) computing the symbolized features called the query hypervector,
and (ii) comparing the query hypervector with all class hypervector
with a similarity metric. Then, we can take the inference result by
selecting the class with the most similar to the query hypervector.

Fig. 2: NSHD Feature Symbolization Procedure

IV. DATA REPRESENTATION — NEURAL TO SYMBOLIC

A. Feature Extractor

NSHD can take virtually any deep learning model as its feature
extractor. Advances in deep learning techniques such as convolutional
layers have allowed CNNs to make great strides in this area. For the
feature extractor, we turned to well-performing CNN models that are
available “off-the-shelf” and pretrained. The models we show in this
paper as our feature extractor are pretrained CNNs: Mobilenetv2 [15],
Efficientnet b0, Efficientnet b7 [16], and VGG16 [17]. These models
all end with fully-connected layers which are focused more towards
the role of classification. A naive way to make a feature extractor is
to use all the convolution layers. However, it is more beneficial to
choose earlier layers for higher efficiency. It is still challenging to
know at which layer a CNN model fully extracts features to the best
of its capability, since human interpretation of NN is still an ongoing
research [18]. It is beyond the scope of our work here; fortunately,
in practice, it is easy to empirically search for this layer. We take an
intermediate layer near the end of the model that yields good accuracy.
We remove all subsequent layers from the model, but use them later
to transfer their knowledge during the HD model’s training.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 03:59:54 UTC from IEEE Xplore. Restrictions apply.



Student
Updates
_—

Teacher pred It | | Teacher
pdates
es 6 /t

Fig. 3: Distillation Across Deep Learning and HD Computing

[ Ground Truth

Feature
Extractor
HD
Encoder

Update vector

B. Encoding to a HD Representation

Learning models using HD representation map data to hypervectors
in hyperspace such that related vectors will be closer in similarity
while unrelated vectors remain orthogonal. In this paper, we use a
popular encoding method, random projection [2]. Random projection
encoding exploits binary random projection hypervectors P with F'
random bipolar base hypervectors of D dimensions [Po - - ~IP’F]D ,
where F' is the number of features in a data sample, in this paper
it is the flattened output size of the feature extractor. With P and
an extracted feature vector V.= {V4, .- , Vg }, the random projection
encoding is defined as H = ®p(V) = sign(ViQP1®- - - Vr @Pr),
where @ and ® are HD arithmetic operations bundling and binding,
respectively. Bundling combines two or more hypervectors into a
single composite hypervector that is similar to its inputs and is
most commonly implemented as an element-wise addition. Binding
associates hypervectors by merging them into a resultant hypervector
that is quasi-orthogonal to its inputs and is implemented as a scalar
or element-wise multiplication.

C. Feature Reduction for Optimal Efficiency

Prior work using HD models for learning tasks have tackled simple
workloads with relatively few features, i.e., less than 1000 [3]. Even
so, the encoding process has traditionally been the main bottleneck
of HD-based learning models. NSHD takes extracted features from
intermediate layers of CNNs which could result in an extremely large
number of features, e.g., the second to last convolution layer of VGG16
outputs 25,088 features. When the number of features is high, the
binding of F' features and P hypervectors, which are also of high
dimensions, leads to an extraordinarily large amount of parameters. In
order to reduce parameter count and make our model more efficient,
we propose the use of a manifold learning layer. Our manifold layer
first maxpools the output of the feature extractor with a window of
2, we then add a fully-connected layer that acts as a regressor to
further reduce the number of pooled features to F. We denote it
with (-) : R¥ — R¥. To design this process, we draw inspiration
from the learning procedure of work in [19], which maps between
the original pooled feature space to another space. As a result, the
manifold learner takes as input the pooled features flattened to a
1 x F' vector and outputs a fixed F' features, which will be encoded
to an HD representation with binary random projection. In summary,
the symbolization process of NSHD is H = ®p(¥(conv(z))), where
conv(-) is the CNN feature extractor and z is the input image. The key
challenge here is how to train the feed-forward layer of the manifold
learner, which is essential to achieve high efficiency in using HD
computing. We discuss our approach in Sec. V-C.

V. LIGHTWEIGHT LEARNING WITH HD COMPUTING
A. NSHD Retraining

Early implementations of HD models bundled data samples under
the same class to form a single hypervector, called class hypervectors
C = >0, H;, and they would represent the class. The inference
procedure was to simply compare incoming data to class hypervectors,
ie., argmaz(§([Co - - - Cr—1], H)), where k is the number of classes.
For higher accuracy, many prior works retrain the class hypervectors
through multiple iterations. In this paper, we utilize Many-class Simi-
larity Scaling (MASS) retraining, proposed in [3]. MASS further tunes
the class hypervectors such that the class hypervector with the correct

label would become more similar to the input sample while other
class hypervectors would grow more dissimilar. A unique advantage of
MASS compared to prior retraining methods is that it updates the class
hypervector based on class-wise similarity differences. It is performed
by calculating an update vector U by taking the one-hot encodings for
training samples and subtracting the similarity values of the training
sample hypervector, H, i.e., U = one_hot — §(M, H), where M =
[Co---Ck_1]. U now holds update values that would bring larger
changes for erroneous classifications. The training sample H is finally
scaled with the update values and a learning rate, A, and bundled to
the class hypervectors: M = M + AUTHL

By itself, HD learning models are very efficient as their operations
are highly parallelizable [5]. However, as discussed in Sec. II valuable
information stored in the dropped layers are never utilized in prior
works. As a means to retain knowledge from the sophisticated training
procedure of deep learning models and to compress our model, we
implement knowledge distillation [11] as an extension to the MASS
retraining algorithm.

B. Knowledge Distillation — Deep Learning to HD

Fig. 2 illustrates NSHD’s learning procedure. We employ the
teacher-student KD framework [11], which has traditionally been be-
tween models of similar NN architectures, but in this work, we present
a process that distills knowledge from a deep learning architecture to
a HD model. This enables the transfer of knowledge in the unused
layers, allowing for the selection of earlier and efficient, but worse-
performing intermediate layers with minimal performance degradation.

Algorithm 1 NSHD Knowledge Distillation Procedure

=[Co--Ci_1]
: for hypervector H in a training dataset do
: similarity_values = 6(M, H)

1
2
3
4: soft_pred = similarity_values/t

5: soft_labels = softmaz(teacher_pred)/t

6: distilled_updates = soft_labels — soft_pred

7 U = (1 — a) x (one_hot — similarity_values)
8 U = U + « x distilled_updates

9 M =M+ A\UTH

Algorithm 1 shows the complete retraining procedure with knowl-
edge distillation. We use the original, uncut CNN as the teacher
and NSHD with an earlier but less accurate layer as the student.
The primary change from the MASS procedure is to calculate U,
i.e., class-wise similarity difference based on the teacher’s prediction
results, which have more useful knowledge than the simple one-
hot encoding vector in describing the training sample. As shown in
Line 4, we calculate the student’s soft prediction value by softening
the similarity values with a hyperparameter t. Similarly, we take the
teacher’s softened predictions by taking the softmax output of the
last prediction layer and softening it with t. With these values we
can get the distilled update vector by subtracting the two. The final
update vector, U, is a weighted sum between the updates using the
teacher as the target and the ground-truth, one-hot encoding based
updates. Finally, the updated training sample H is bound to the class
hypervectors M updating all class hypervectors at each iteration.

C. Training the Manifold Learner

As discussed in Sec. IV-C, NSHD optimizes efficiency by introduc-
ing the manifold layer to reduce the number of encoded features. A
naive way to implement the manifold layer is to instrument the original
CNN model and retrain; however, this requires the costly retraining of
either the entire CNN model or the rest of the layers after the manifold
layer at the very least. We address the issue by decoding the errors
happening in the class hypervectors and back-propagating them to the
manifold layer across the HD encoder.
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TABLE I: Design Acceleration On Xilinx ZCU104

| LUT FF BRAM  URAM DSP
Total 84.9K 146.5K 224 40 844
Available 230.4K  460.8K 312 96 1728
Utilization | 36.87% 31.80% 71.79% 41.67%  48.84%
Frequency 200MHz
Power 4.427W

Let us recall Algorithm 1 describing the knowledge distillation
procedure. E = AUTH is the form of the class-wise error hypervec-
tors. We denote each per-class error hypervector by E; € E, where
0 <4 < K, and our goal is to decode E; into the original feature space
(€ RY). During the decoding procedure, since the sign function is not
differentiable in the backpropagation, we approximate its effect with
a straight-through estimator usually used for training binary neural
networks [20]. We then apply the HD decoding [2], which applies the
binding with the binary random projection hypervectors, P, and the
dot-product operation in turn. As a result, we can estimate the errors
in the output of the manifold layer, and update the fully-connected
layer through the typical backpropagation procedure of deep learning.

VI. IMPLEMENTATION
A. GPGPU Implementation

We implement the training and inference procedure on a GPGPU.
We can use common tensor frameworks, e.g., TensorFlow or PyTorch,
to run the feature extractor for the given training/test inputs. One of the
key merits of NSHD is that it uses the weights pretrained in the original
CNN model without any modification for both the training and infer-
ence procedure. Thus, we can eliminate the costly backpropagation
procedure of CNN, and furthermore can use any advanced acceleration
platform, e.g., tensor engines or external hardware accelerators. In this
work, we utilize the NVIDIA TensorRT framework, which performs
high-performance deep learning inference based on quantization and
specialized hardware units in GPGPU.

Once the features are extracted, we perform the rest of the train-
ing/inference procedure on the common GPGPU system. Our current
implementation is based on the PyTorch; but we enhance its capability
with custom operations that best utilize the binary-centric nature of
the hypervector operations in an optimized fashion. For example, there
are two primary binary computations: (i) the HD encoding procedure,
which is mainly composed of binding operations with the binary
random projection hypervectors, and (ii) the similarity computation for
the class hypervectors, which takes symbolized binary hypervectors
as its input. We optimize the binary computations on CUDA so
that it utilizes the constant memory, a type of GPGPU memory
that is significantly faster than the common GPU global memory
(GDDR) due to the dedicated cache hierarchy. During the binary HD
computation, we load the binary hypervectors on the constant memory
while loading the other types of the data, e.g., integer or floating-point,
from the global memory to the shared memory whose performance
is similar to the L1 cache. Then, we can perform the computations
eventually without multiplication, i.e., only using relatively lightweight
arithmetic operations, i.e., addition or subtraction depending on the
sign bit for each binary hypervector element in the constant memory.
In addition, since the hypervectors stored in the constant memory are
binary, we can significantly reduce the memory footprints.

B. FPGA Implementation

We also implement the hardware acceleration of the NSHD infer-
ence procedure on FPGGA, Xilinx Zynq UltraScale+ MPSoC ZCU104
(ZCU104). The host program running on ZCU104 PS side (ARM
Cortex 53) is written with Python, and the communication between PS
and PL is based on AMBA AXI interface. For hardware accelerator
on the ZCU104 PL side, we import the Xilinx deep learning unit
(DPU) IP. We exploit NSHD into DPU using Vitis Al framework.
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Fig. 4: Percentage Improvements on Energy Efficiency

The trained entire NSHD model can be viewed as a special type of
the neural networks, where the hypervectors and HD operations are
quantized data and tensor operations. Thus, we can compile and map
the trained NSHD model into the Vitis Al framework so that it runs
the convolution layers and HD computing-related computation on the
same platform. Note that the Vitis Al framework quantizes the given
model for better efficiency, and in our observation, the quantization
has very minor impacts on the prediction quality.

VII. EXPERIMENTAL RESULTS

A. Experimental Setup

We implement the proposed NSHD on NVIDIA Xavier Platform,
which aims to the low-power edge systems, and Xilinx Zynq ZCU104
platform. To measure power consumption of the GPGPU, we use
the NVIDIA system management interface (nvidia-smi). Table I
summarizes the resource utilization of Xilinx DPU IP on the MPSoC
programmable logic (PL) side. Compared to traditional GPU-based
accelerators, FPGA-based accelerator consumes less power.

Models used as feature extractors are Mobilenetv2 [15], Efficientnet
b0, Efficientnet b7 [16], and VGG16 [17]. We label layers of the CNN
by their indices; Efficientnet is divided by their blocks, Mobilenetv2
by operators, and VGG16 by each convolution, pooling, and activation
layers. Each fully-connected layer in all models have their own
index. We use datasets Cifar-10 and Cifar-100 [7] for performance
evaluations and set hypervector dimensions at 3,000.

For the knowledge distillation process, we perform hyperparameter
search to identify the best combination of 7" and « discussed in
Sec. V-B; we also report the full search results in Sec. VII-C2 as
an example. We observe that another hyperparameter, F', which is the
feature size produced by the manifold layer, should be sufficiently
large enough, i.e., at least as large as the number ofAclasses, to
produce accurate prediction results. We empirically set F' as 100 in
our evaluations. For the hypervector dimension, we utilize D = 3, 000
by default, which is relatively smaller than the dimension used in most
prior work, i.e., D = 10, 000, since there are very negligible changes
in accuracy; we also show how the accuracy changes over different
dimensions in Sec. VII-D.

B. NSHD Efficiency

1) Energy Efficiency Comparison: In this evaluation, we compare
the energy efficiency of NSHD models during inference by comparing
with the respective CNN model. For NSHD, we empirically select two
convolution layer indices for each CNN model as the layer extracting
features so that the accuracy loss is less than 10%. Figure 4 shows
energy consumption improvements of NSHD at different intermediate
layers as feature extractors on the Cifar-10 and Cifar-100 dataset. The
results show that NSHD can save energy efficiency significantly when
selecting an early convolution layer for feature extraction, e.g., using
VGGI16 as the feature extractor at layer 27 uses 64% less energy than
the original CNN model. NSHD achieves higher energy efficiency
when selecting earlier convolution layers. NSHD can take advantage of
the powerful state-of-the-art feature extraction capabilities of modern
deep learning models while being more scalable, even more so if we
are willing to consider trade-offs (discussed in Sec. VII-C).
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2) Comparison with Prior HD work: As discussed in Section II,
there were a couple of prior HD works which try to use the existing
DNN models as a feature extractor [9]. We name this approach
BaselineHD. The key difference of NSHD from BaselineHD is the
proposed manifold layer, which learns effective compression strategies
to reduce the feature sizes eventually processed in the HD encoding
procedure. To understand how much computations are saved using
the manifold learner, we measured the number of multiply-accumulate
(MAC) operations by assuming that the binding/bundling operations
are element-wise multiplication/addition. Figure 5 summarizes the
experimental results. We observe that the manifold learner plays
an important role in keeping NSHD efficient. For example, NSHD
requires 20.9% and 28.95% fewer computations for EfficientnetbO
using layers 6 and 7 as the feature extractor, respectively. Since the
encoding overhead increases as the hypervector dimension increases,
we observe higher savings for D = 10,000 than the D = 3,000
cases, e.g., up to 34% for Mobilenetv2 at the 17th layer.

3) FPGA Acceleration: To examine the practical value of NSHD,
we next examine the throughput of the FPGA accelerator. Figure 6
presents the throughput of NSHD on the ZCU104 platform as com-
pared to the CNN model running on the same DPU accelerator.
Here we choose to use frame per second (FPS) as the inference
throughput metric. For this evaluation, we selected the earliest layer
used in Sec. VII-B1 and measure the throughput over different
hypervector dimension settings. Compared to the original CNN model,
NSHD is hardware friendly, therefore achieving, on average 38.14%
improvement in inference throughput.

TABLE II: Model Size (Learning Parameters) Comparison

Model | Layer | CNN | NSHD | BaselineHD
VGG16 27 537.2MB 69.61MB 87.17MB
29 537.2MB 69.05MB 96.61MB
5 16.08MB 5.76MB 11.75MB
Efficientnetb0 6 16.08MB 12.36MB 15.16MB
7 16.08MB 15.69MB 20.38MB
8 16.08MB 20.79MB 39.67MB

6 255.25MB 164.382MB 170.01MB

Efficientnetb7 7 255.25MB 251.03MB 260.45MB
8 255.25MB 264.52MB 302.3MB
Mobilenetv2 14 8.94MB 3.52MB 5.85MB
17 8.94MB 8.55MB 13.24MB
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4) Model size: Table II shows a comparison of parameters in terms
of their size in bytes for the original CNN and NSHD at different
intermediate layers as feature extractors. The results show that NSHD
can reduce the model size effectively without sacrificing accuracy.
Note that the NSHD model is significantly smaller than BaselineHD
for many cases thanks to the manifold layer, which effectively reduces
the amount of features passed from the convolution layers in the
feature extractor to the HD model. Without it, a naive approach would
have had 96.61M parameters for VGG16 at the 29th layer which is a
39.91% increase from what we have with the manifold learner.

C. NSHD Learning Accuracy

1) Accuracy Comparison: We evaluate the accuracy of NSHD by
comparing its counterparts: (i) VanillaHD, the HD model that does not
use any feature extractor, (ii) BaselineHD, the HD model that uses the
convolution feature extractor in a similar fashion to prior work [9] but
without the manifold layer and knowledge distillation, and (iii) CNN,
the original CNN models. Figure 7 shows the comparison results.
Our results show that, unlike VanillaHD, NSHD can solve image-
related learning tasks in a neuro-symbolic way. Indeed, NSHD is able
to achieve similar accuracy levels to the respective CNN model at
least, and furthermore, with sufficient feature extraction layers, NSHD
reliably outperforms the CNN model. For example, at layer 7 in
Efficientnet b0, NSHD outperforms the original model while at layer 6,
NSHD shows similar performance as the original model but is more
efficient. Also, NSHD outperforms BaselineHD significantly. Even
though BaselineHD typically uses much more learning parameters as
discussed in Sec. VII-B4, NSHD achieves better accuracy based on
the knowledge distillation.

2) Impact of Knowledge Distillation: NSHD utilizes knowledge
distillation (KD) to fully integrate the knowledge of deep learning and
symbolic HD learning. To better illustrate the impact of KD, Figure 8
(a) shows the results of taking each layer as the feature extractor for
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Templ 42 13 14 15 16 17
Alpha

0 0.6786 0.6786 0.6786 0.6786 0.6786 0.6786
0.1 0.6858 0.6861 0.6787 0.683 0.6876 0.6932)
0.2 0.6986 0.7015 0.6949 0.6941 0.692 0.6917
0.3 0.7201 0.7147 0.7132 0.7254 0.7163 0.7155
0.4 0.7342] 0.738 0.7352] 0.7433] 0.7424| 0.7346|
0.5 0.7421 0.7449 0.7432 0.7446 0.7486 0.7457
0.6 0.7485 0.7455 0.7509 0.7459 0.7439 0.7445
0.7 0.7462| 0.7459]% 0.7505| 0.7473| 0.7498)|
0.8 0.7412 0.7394 0.7455 0.745 0.7466 0.7483
0.9 0.7371 0.7399] 0.7417] 0.7425 0.7468 0.7464

Fig. 9: Accuracies for Hyperparameter Search in KD.
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Fig. 10: Efficiency and Accuracy Tradeoff on FPGA.

Efficientnetb0 as an example. The results show that KD effectively fills
the accuracy gap by eliciting the knowledge stored in the CNN to the
HD model. Figure 8(b) summarizes the impact of KD on the accuracy
over other models. We observed the same trend over all models, and
thus concluded that distilling knowledge from deep learning to the
symbolic model brings out the full potential of both architectures.
To best utilize the knowledge distillation, a process of hyperpa-
rameter search should be performed. As an example, Figure 9 shows
detailed results of the hyperparameter search for Efficientnetb7 layer
7. The result shows that KD boosts the accuracy by 7.39% while
utilizing the knowledge of the teacher model, in our case, the original
CNN. In our experiments, the two hyperparameters, 1" and « vary for
different models; but are typically found in the range of 14 to 16.

D. NSHD Dimensionality and Efficiency Tradeoff

In this section, we show the ablation study on how different
dimensions affect NSHD. Figure 10 illustrates the tradeoff relationship
between efficiency and accuracy over different dimensionality sizes.
Traditionally, work in HD computing have defaulted to hypervectors
with a dimension of 10,000 as higher dimensions allows for easier
discrimination between hypervectors [4]. However, we do not require
as high a dimension to achieve maximum accuracy. For most cases,
the dimensionality larger than D = 3,000 is sufficient to regenerate
the quality of the CNN model, while D = 1,000 would degrade the
inference quality. For example, the parameters for the HD section of
NSHD can be reduced by 70% by going from 10,000 to 3,000 and a
further 20% improvement can be had with 1,000 dimensions with a
relatively small loss in accuracy of an average of 1.64%.

E. NSHD Explainability

In this section, we look to explain HD learning and hypervectors
through a visual representation to verify the potential of HD computing

(a) First retraining iteration (b) Final results after 50 iterations

Fig. 11: Explainability of HD computing with t-sne Analysis.

for human-like interpretation. Based on the t-SNE projection, Fig-
ure 11a depicts a 2D representation of hypervectors at the first iteration
for the CIFAR-10 dataset using 7th layer of Efficientnet b0 as the
feature extractor. The HD model plots a pattern that is somewhat vague
and difficult to interpret. Knowledge in HD computing is mathematical
in nature and we can add and subtract from these vectors of high
dimensions to pull class hypervectors towards their data samples.
Similarly, we can bring related hypervectors closer such that when
we convert new data they will plot near their class. As shown in
Figure 11b, in the final training iteration the training samples form
several close clusters for each class, meaning that the class hypervector
eventually represents the target class.

VIII. CONCLUSION

In this paper, we propose NSHD, which provides accurate symbolic
learning with better explainability and higher efficiency. We integrate
lightweight HD computing with state-of-the-art deep learning by
using a learning-driven feature compression method and transferring
knowledge between different learning approaches. The experimental
results show that the proposed method yields very comparable results
to deep learning while optimizing the efficiency and memory footprint,
e.g., by up to 64%.
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