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Abstract—Cybersecurity has emerged as a critical challenge for the in-
dustry. With the large complexity of the security landscape, sophisticated
and costly deep learning models often fail to provide timely detection of
cyber threats on edge devices. Brain-inspired hyperdimensional comput-
ing (HDC) has been introduced as a promising solution to address this
issue. However, existing HDC approaches use static encoders and require
very high dimensionality and hundreds of training iterations to achieve
reasonable accuracy. This results in a serious loss of learning efficiency
and causes huge latency for detecting attacks. In this paper, we propose
CyberHD, an innovative HDC learning framework that identifies and
regenerates insignificant dimensions to capture complicated patterns of
cyber threats with remarkably lower dimensionality. Additionally, the
holographic distribution of patterns in high dimensional space provides
CyberHD with notably high robustness against hardware errors.

I. INTRODUCTION

The rapid development of information technology has introduced

increasingly sophisticated cyber threats. As one of the most widely

deployed security devices, network intrusion detection systems

(NIDS) is designed to monitor network traffic and identify suspicious

activity. As shown in Fig. 1(a), when traditional firewalls fail to

intercept intruders, NIDS are aimed at providing timely detection and

alerts to prevent the spread of infection through local area networks.

With an increasingly gigantic amount of network traffic nowadays,

along with the constant evolution of cyber attacks, a more intelligent,

robust, and fully automated NIDS framework is of absolute necessity.

Hyperdimensional Computing (HDC) is considered a promising

solution for NIDS for its (i) high computational efficiency ensuring

real-time attack detection, (ii) holographical pattern distributions of-

fering ultra-robustness against failures, and (iii) lightweight hardware

implementations allowing efficient execution on edge devices [1]. As

shown in Fig. 1(b), closely mimicking information representation and

memorization functionalities of human brains, HDC encodes low-

dimensional inputs to hypervectors with more than 104 elements to

perform various learning tasks. In this way, HDC conducts highly

parallelizable operations and achieves high-quality results with sig-

nificantly faster convergence and higher efficiency.

Besides its lightweight and robust nature, utilizing encoded data

points in hyperspace, HDC exhibits outstanding capabilities to dis-

tinguish various sophisticated attack patterns. Unfortunately, existing

HDC algorithms use pre-generated encoders lacking the capability

to distinguish the importance of each dimension, and hence require

extremely high dimensionality to outperform DNNs. Consequently,

the learning efficiency and scalability are compromised due to large

numbers of unnecessary computations, especially for network intru-

sion detection tasks analyzing billions of network traffic instances.

This work aims at addressing this issue by proposing CyberHD, a

novel HDC learning framework utilizing a dynamic HDC encoding

technique that identifies and regenerates insignificant dimensions. It

ensures a highly effective dimensionality and achieves the desired

accuracy with significantly higher efficiency.

II. RELATED WORK

A recently proposed HDC framework, NeuralHD [2], demonstrated

a dynamic encoding approach by eliminating dimensions with minor

impacts on classifying patterns. Our work optimizes and parallelizes

this dynamic HDC framework with matrix operations and applies it
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Fig. 1. An Overview of NIDS and HDC Classification
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Fig. 2. An Overview of CyberHD Workflow
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Fig. 3. Comparing Accuracy of CyberHD with State-of-the-art Algorithms

to the domain of cyber security for the first time, aiming to deliver

real-time effective attack detection on resource-constrained devices.

III. METHODOLOGY

As shown in Fig. 2, CyberHD starts with encoding data points

into high-dimensional space with existing encoding methods ( A )
depending on the data type. CyberHD then leverage matrix operations

to train the encoded data ( B ) in a highly-parallel way. We then

normalize each class hypervector ( D ) and calculate the variance

of each dimension over all classes to identify dimensions with

minimum impacts on the classification accuracy ( F ). CyberHD then

drops insignificant dimensions from our model depending on the

regeneration rate ( G ). Finally, CyberHD updates the base vectors

on the selected dimensions and retrains the model( H ).
HDC Learning: After encoding training data onto hyperspace

( A ), to reduce model saturation, we bundle encoded data by scaling

a proper weight to each of them depending on how much new

information they bring to class hypervectors. For instance, for a new

encoded training sample H, we update the model base on its cosine

similarities with all class hypervectors, i.e. δl = H·Cl

∥H∥·∥Cl∥
, where

H · Cl is the dot product between H and a class hypervector Cl. If
−→
H has the highest cosine similarity with class l′ while it actually

has label l, the model updates as
−→
Cl ←

−→
Cl + η(1 − δl) ×

−→
H and

−→
Cl′ ←

−→
Cl − η(1 − δl′) ×

−→
H , where η is a learning rate. A large

δl indicates the input data point is common or already exists in the
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Fig. 4. (log scale) Comparing Training and Inference Efficiency of CyberHD with SOTA Algorithms

model and updates the model by adding a very small portion of

the encoded query (1 − δl ≈ 0). In contrast, a small δl indicates a

noticeably new pattern that is uncommon or does not already exist in

the model so we update the model with a large factor (1− δl ≈ 1).

Insignificant dimensions: HDC represents each class with a class

hypervector encoding patterns of that class( C ). In inference, a query

vector( I ) is assigned to the class where it has the highest cosine

similarity( J ). An effective classifier achieves the desired accuracy

with a strong capability to distinguish patterns so that query vectors

have very differentiated cosine similarities to each class. In contrast,

dimensions with similar values over all classes store common infor-

mation and play minimal roles in differentiating patterns. CyberHD

identifies and drops such dimensions by calculating variances over

all classes. After computing variances( F ) over the normalized model

( E ), CyberHD selects R% of dimensions with the lowest variance

to drop ( G ) depending on a regeneration rate R.

Dimension Regeneration: To further improve classification accu-

racy, CyberHD regenerates the dimensions selected to drop ( H ), so

that the new dimensions can potentially better differentiate patterns.

For cybersecurity datasets, considering the non-linear relationship

between features, we utilize an encoder inspired by the Radial Basis

Function (RBF) [3]. During regeneration, CyberHD replaces the base

vector of the selected dimension in the encoding module with another

randomly generated vector from Gaussian Distribution.

IV. EXPERIMENTAL RESULT

We evaluate CyberHD with CPU (Intel Core i9-12900) and

FPGA (Xilinx Alveo U50) on popular cyber-security datasets: NSL-

KDD [4], UNSW-15 [5], CIC-IDS-2017 [6], and CIC-IDS-2018 [7].

We compare CyberHD with state-of-the-art (SOTA) DNNs [8] and

SVMs [9]. We also compare CyberHD with SOTA HDCs [1] without

the capability to regenerate dimensions (baselineHD), and report

results in two dimensionality: physical dimensionality (D = 0.5k)
of CyberHD, and effective dimensionality (D∗ = 4k) as CyberHD.

The effective dimensionality is defined as the sum of the physical di-

mensionality with regenerated dimensions throughout the retraining.

Accuracy: As shown in Fig. 3, CyberHD provides comparable

accuracy to SOTA DNNs, while on average a 1.63% higher accuracy

than SVMs. CyberHD also shows on average 4.28% higher accuracy

than baselineHD (D = 0.5k). Additionally, CyberHD delivers

comparable accuracy to baselineHD using the same dimensionality

as the effective dimension(D∗ = 4k), indicating that CyberHD is

capable of providing comparably high classification accuracy as the

SOTA HDC while using 8.0× lower physical dimensionality.

Efficiency: For fairness, we compare the training and inference

efficiency of the SOTA DNN, SVM, baselineHD (D∗ = 4k), and

CyberHD (D = 0.5k) as they achieve comparable accuracy as shown

in Fig. 3. Since cybersecurity datasets generally include millions of

samples, SVM algorithms take an extraordinarily long time for both

training and inference. Additionally, as shown in Fig. 4, CyberHD

delivers on average 2.47× faster training than SOTA DNN. CyberHD

also provides on average 1.85× faster training and 15.29× faster

inference compared to the baselineHD (D∗ = 4k).

Cross Platform and Quantization Evaluation: TABLE I shows

the impact of the hypervectors’ dimensions and bitwidths on the

TABLE I
IMPACT OF BITWIDTH ON CPU’S AND FPGA’S ENERGY EFFICIENCY

32 bits 16 bits 8 bits 4 bits 2 bits 1 bit

Effective D 1.2k 2.1k 3.6k 5.6k 7.5k 8.8k

CPU 6.6× 4.0× 2.4× 1.5× 1.2× 1.0×
FPGA 16× 24× 34× 31× 28× 26×

training efficiency, normalized to the efficiency of 1-bit CPU im-

plementation. HDC models on CPUs achieve higher efficiency with

low dimensionality and high element bitwidth due to the limited par-

allelism on CPU. CPUs demonstrate more strength for high bitwidth

data due to their high frequency and powerful arithmetic logic

unit (ALU). We also implement CyberHD on FPGA with different

hypervector dimensions and element bitwidths for comparison. FPGA

shows excellent energy efficiency improvement compared to CPU due

to its high parallelism and low power consumption. On the Xilinx

Alveo U50 FPGA board, the power consumption of the CyberHD

accelerator is less than 20 W under 200 MHz frequency.

Robustness Against Hardware Failures: As shown in Fig. 5, in

DNNs, random bit flip results in significant quality loss as corruptions

on most significant bits can cause major weight changes. In contrast,

CyberHD provides notably higher robustness against noise due to its

redundant and holographic distribution. Additionally, all dimensions

equally contribute to storing information so that failure on partial data

will not result in the loss of entire information. CyberHD delivers

the maximum robustness using hypervectors in 1-bit precision, which

is on average 12.90× higher than the robustness of the DNN. An

increase in precision lowers the robustness of CyberHD since random

flips on more significant bits will cause more accuracy loss.

1.0% 2.0% 5.0% 10.0% 15.0%
3.9% 10.7% 17.8% 32.1% 41.2%

1 bit 0.0% 0.0% 1.0% 3.1% 4.1%
2 bits 1.9% 2.3% 4.5% 7.9% 10.4%
4 bits 2.3% 4.7% 8.4% 13.1% 17.3%
8 bits 3.6% 7.9% 13.7% 18.3% 22.9%
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Fig. 5. Comparing Robustness of CyberHD with DNNs
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