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Abstract—The Internet of Things (IoT) has become an emerging

trend that connects heterogeneous devices and enables them with new

capabilities. Many applications exploit machine learning methodology to

dissect collected data, and edge computing was introduced to enhance

the efficiency and scalability in resource-constrained computing environ-

ments. Unfortunately, popular deep learning algorithms involve intensive

computations that are overcomplicated for edge devices. Brain-inspired

Hyperdimensional Computing (HDC) has been considered a promising

approach to address this issue. However, existing HDC methods use static

encoders, and thus require extremely high dimensionality and hundreds

of training iterations to achieve reasonable accuracy. This results in a

huge loss of efficiency and severely impedes the application of HDC

algorithms in power-limited machines. In this paper, we propose DistHD,

a novel HDC framework with a unique dynamic encoding technique

consisting of two parts: top-2 classification and dimension regeneration.

Our top-2 classification provides top-2 labels for each data sample based

on cosine similarity, and dimension regeneration identifies and regenerates

dimensions that mislead the classification and reduce the learning quality.

The highly parallel algorithm of DistHD effectively accelerates the learn-

ing process and achieves the desired accuracy with considerably lower

dimensionality. Our evaluation on a wide range of practical classification

tasks shows that DistHD is capable of achieving on average 2.12% higher

accuracy than state-of-the-art (SOTA) HDC approaches while reducing

dimensionality by 8.0×. It delivers 5.97× faster training and 8.09× faster

inference than SOTA learning algorithms. Additionally, the holographic

distribution of patterns in high dimensional space provides DistHD with

12.90× higher robustness against hardware errors than SOTA DNNs.

DistHD has been open-sourced to enable future research in this field. 1

Index Terms—Hyperdimensional Computing, Brain-inspired Learning,

Classification, Machine Learning

I. INTRODUCTION

The Internet of Things (IoT) has recently become an emerging

trend for its extraordinary potential to connect various heterogeneous

smart sensors and devices and enable them with new capabilities.

Many IoT applications exploit machine learning (ML) algorithms

to dissect collected data and perform learning and cognitive tasks.

However, the excellent learning quality of popular ML approaches,

including deep neural networks (DNNs), often comes at the expense

of high computational and memory requirements, involving millions

of parameters that need to be iteratively refined over multiple time

periods [1]. One common approach is to leverage cloud computing

by sending data from the network edge to the centralized location in

the cloud. Unfortunately, this potential solution results in significant

efficiency loss, multiple scalability issues, and serious privacy con-

cerns [2]. Edge computing, a novel computing paradigm performing

calculations in proximity to data sources, has since been introduced

to address these issues. However, accommodating the high resource

requisite of traditional learning methodologies on less powerful

computing platforms remains a critical challenge to surmount [1].

Considering the increasingly massive amount of information nowa-

days, the power and memory limitations of embedded devices, and

the potential instabilities of IoT systems, a more lightweight, efficient,

and robust learning algorithm is of absolute necessity [3].

1
DistHD source code: https://github.com/jwang235/DistHD
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Fig. 1. An Overview of Brain Cerebellum Cortex and HDC Classification
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(a) Comparing State-of-the-art DNN with HDC using Static Encoders

(b) Comparing Top-1, Top-2, Top-3 Classification of State-of-the-art HDCs

Fig. 2. Motivation for Dynamic Encoding and Top-2 Classification

In contrast to traditional artificial intelligence methodologies, HDC

is considered a promising learning approach for less powerful com-

puting platforms for its (i) high computational efficiency ensuring

real-time learning [4], (ii) strong robustness to noise – a key strength

for IoT systems [5], and (iii) lightweight hardware implementation

enabling efficient execution on edge device [6]. As demonstrated in

Fig. 1(a), HDC is motivated by the neuroscience observation that the

cerebellum cortex in the human brain is capable of effortlessly and

efficiently processing memory, perception, and cognition information

without much concern for noisy or broken neuron cells. Closely

mimicking the information representation and memorization func-

tionalities of human brains, HDC encodes low-dimensional inputs to

hypervectors with 104 or more elements to perform various learning

tasks [7] as shown in Fig. 1(b). HDC then conducts highly parallel

and well-defined operations and has been proven to achieve high-

quality results in classification and regression learning tasks with

comparable accuracy to state-of-the-art (SOTA) DNNs and SVMs.

Additionally, the notably faster convergence and higher efficiency

offered by HDC provide a powerful solution for today’s embedded

devices with limited storage, battery, and resources [4]–[6].

Despite the enormous success in the development of HDC, as

demonstrated in Fig. 2(a), existing HDC algorithms require extremely

high dimensionality (D) to outperform DNNs. Consequently, not only

is the learning efficiency considerably lowered with large numbers
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of unnecessary computations involved, but the system efficiency is

also compromised due to the increased data size and communication

cost [5]. This severely impedes the feasibility and scalability of HDC

in resource-constrained computing devices, especially for learning

tasks including massive amounts of data and requiring real-time

analysis. We observed that one of the main causes is that the

encoding module of existing HDC approaches lacks the capability to

utilize and adapt to information learned during the training process.

On contrary, as demonstrated in Fig.1(a), neurons in human brains

dynamically change and regenerate all the time and provide more

useful functionality when they learn new information [8]. While

the goal of HDC is to exploit the high-dimensionality of randomly

generated base hypervectors to represent the information as a pattern

of neural activity, it remains challenging for existing HDC algorithms

to support a similar behavior as brain neural regeneration.

One interesting observation of SOTA HDC approaches is that

they provide considerably higher accuracy and faster convergence

for top-2 classification than top-1 classification, as shown in Fig.

2(b). Here we define a top-k classification for a given data point as

correct if the true label is one of the k most similar classes selected.

Additionally, the accuracy difference between top-2-classification and

top-3 classification is noticeably smaller than that between top-1

classification and top-2-classification. Based on this observation, in

this paper, we propose DistHD, a new HDC framework with an

innovative encoding technique that utilizes and adapts to information

learned from every training iteration. DistHD aims at identifying

dimensions that mislead the classification and decrease the learning

accuracy, and regenerating them for a more positive impact on the

learning quality. The main contributions of the paper are listed below:

• We propose a novel dynamic encoding technique for HDC combin-

ing top-2 classification and dimension regeneration optimizations.

To the best of our knowledge, DistHD is the first HDC algorithm

with a dynamic encoding module that identifies and regenerates

dimensions hurting the classification accuracy to enhance learning

quality. DistHD achieves on average 2.12% higher classification

accuracy than SOTA HDCs while reducing the number of needed

dimensions by 8.0×. This ensures accurate performance for clas-

sification tasks on resource-constrained devices.

• The highly parallel and matrix-wise operations of DistHD ensures

a considerable acceleration for performing classification tasks in

both high-performance and resource-constrained computing envi-

ronments. DistHD delivers 5.97× faster training than SOTA DNNs

and 8.09× faster inference than SOTA HDC algorithms.

• The holographic distribution of patterns in high-dimension space

enables DistHD with notably higher robustness. Our proposed

model demonstrates on average 12.90× higher robustness against

hardware errors than SOTA DNNs. This ensures the effective

execution of classification tasks on noisy IoT devices.

The rest of the paper is organized as follows: in Section II, we

briefly introduce recent works in edge-based learning and HDC. We

then explain our proposed methodology in detail in Section III, and

evaluate our model in terms of accuracy, efficiency, and robustness

against noise in Section IV. We conclude our work in Section V.

II. RELATED WORKS

A. IoT and Edge-based Learning

The rapid development of IoT has engendered a number of inno-

vative works on the feasibility and scalability of edge-based learning.

Prior works have demonstrated that machine learning algorithms

(including DNNs) can possibly be customized for learning on edge

computing devices. Various frameworks and libraries have been de-

veloped for learning on the edge, including TinyML [9], TensorFlow

Lite [10], edge-ml [11], X-Cube-AI [12], etc. These frameworks are

all machine learning or deep learning based tools. Many of these

learning methods require a large number of training samples and long

training cycles, and may not meet the tight constraints of ultra-low-

power edge platforms. On the other hand, people propose techniques

that improve learning efficiency on the edge, leveraging learning

structures and target platform properties. Representative examples

include split computing [13], federated learning [14], [15], knowledge

distillation [16], etc. These techniques are orthogonal to our method

and can potentially be integrated with our learning solution.

B. Hyperdimensional Computing

Prior studies have exhibited enormous success in various ap-

plications of HDCs, such as brain-like reasoning [17], bio-signal

processing [18], and human-activity recognition [19]. A few en-

deavors have been made towards developing novel architecture to

accelerate HDC inference tasks [20]. However, popular HDC methods

use pre-generated static encoders and thus require extremely high

dimensionality to achieve acceptable accuracy [21]. NeuralHD [7],

a recently proposed dynamic encoding approach, successfully com-

pressed dimensionality by eliminating dimensions with minor impacts

on distinguishing patterns. However, its proposed model takes a

significantly longer time than SOTA HDC algorithms [6] to reach

convergence, and it lacks an effective technique to enhance its encod-

ing module with information learned during the training process. In

contrast, we propose DistHD, aiming at fully exploiting information

learned from each iteration and achieving adequate accuracy with

much faster convergence and lower dimensionality.

III. METHODOLOGY

Popular HDC algorithms use static encoding techniques where the

pre-generated base vectors lack the capacity to adapt to information

learned during the training process. The goal of our proposed DistHD

is to effectively exploit information learned from each training

iteration to identify dimensions that reduce the learning quality

and regenerate them. As demonstrated in Fig. 3, DistHD starts

with encoding data points into high-dimensional space with existing

encoding methods depending on the data type ( A ). DistHD then

conducts two innovative steps, top-2 classification and dimension

regeneration, to enable its encoding module and base vectors with

adaptivity to each partially trained model. In each iteration of top-2

classification, DistHD first applies a highly efficient adaptive learning

algorithm over the encoded data ( B ), and then utilizes the partially

trained model to compute the top two most similar classes for each

data point ( I ). In dimension regeneration, we calculate two distance

matrices ( K ) based on results from the top-2 classification, and

identify ( N ) and eliminate ( Q ) undesired dimensions that mislead

the classification tasks. To further improve the learning quality, we

regenerate those dimensions ( P ) for a more positive impact on the

classification. Note that all the operations in this section can be done

in a highly parallel matrix-wise way, as multiple training samples can

be grouped into a matrix of row hypervectors.

A. HDC Preliminaries

Motivated by the high-dimensional information representation and

memorization functionalities in human brains, HDC maps inputs

onto hyperdimensional space as hypervectors ( A ), each of which

contains thousands of elements. One unique property of the hy-

perdimensional space is the existence of a large number of nearly
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Fig. 3. An Overview of DistHD Workflow

orthogonal hypervectors, enabling highly parallel operations such

as similarity calculations, bundlings, and bindings. Mathematically,

consider random bipolar hypervectors H1 and H2 with dimension D,

i.e., H1,H2 ∈ {−1, 1}D , when D is large enough, the dot product

H1 · H2 ≈ 0. Similarity: calculation of the distance between the

query hypervector and the class hypervector (noted as δ(·, ·)). For

real-valued hypervectors, a common measure is cosine similarity, i.e.

δ(H, Cl) =
H · Cl

∥H∥ · ∥Cl∥
=

H

∥H∥
·

Cl

∥Cl∥
∝ H · Nl (1)

where H·Cl is the dot product between H and a class hypervector Cl,

and Nl represents the normalized class hypervector, i.e.,
Cl

∥Cl∥
. Here

∥H∥ is a constant factor when comparing a query with all classes and

thus can be eliminated. The calculation of cosine similarity can hence

be simplified to a dot product operation. For bipolar hypervectors,

it is simplified to the Hamming distance. Bundling (+): element-

wise addition of multiple hypervectors, e.g., Hbundle = H1 + H2,

generating a hypervector with the same dimension as inputs. In

high-dimensional space, bundling works as a memory operation and

provides an easy way to check the existence of a query hypervector in

a bundled set. In the previous example, δ(Hbundle,H1) k 0 while

δ(Hbundle,H3) ≈ 0, (H3 ̸= H1,H2). Binding (*): element-wise

multiplication associating two hypervectors to create another near-

orthogonal hypervector, i.e. Hbind = H1∗H2. Due to reversibility, in

bipolar cases, Hbind ∗H1 = H2, information from both hypervectors

can be preserved. After generating all the encoded hypervectors of

inputs for each class, HDC training can take place. We elaborate our

training framework in section III-B and III-C. The inference phase

of HDC consists of two steps: (i) encode ( A ) inference data with

the same encoder utilized in training to generate a query hypervector

Q ( D ), and (ii) calculate the distance or cosine similarity between

Q and each class hypervector ( E ). We then classify the query Q to

the class where it achieves the highest cosine similarity. ( F ).

B. Top2-Classification

As explained in Section I, SOTA HDC algorithms provide out-

standing learning quality for top-2-classification while considerably

weaker performance for top-1-classification. Inspired by this obser-

vation, our proposed DistHD first trains the model with an efficient

Algorithm 1 Adaptive Learning

Input: Training data points H(H1,H2, . . . ,Hn) with q features and k

classes, labels for each data point L(L1,L2, . . . ,Ln), base vectors

B (B1,B2, . . . ,Bq) each with dimension D, class hypervectors C
(C1, C2, . . . Ck), learning rate η.

Output: Class hypervectors C after one training iteration.

1: H′ = H · B (matrix multiplication), dim(H′) = n×D
2: for each Hi ∈ H

′ do

3: Ci = max{δ(Hi, C1), δ(Hi, C2), . . . , δ(Hi, Ck)}
4: if Li = Ci then

5: continue

6: else if Li ̸= Ci ' Li = Cj(i ̸= j) then

7: Ci ← Ci − η · [1− δ(Hi, Ci)]×Hi

8: Cj ← Cj + η · [1− δ(Hi, Cj)]×Hi

9: return C

and lightweight adaptive learning algorithm ( G , H ), and utilize the

partially trained model in each iteration to identify the top two most

similar classes for every data point( I ). In this way, we can identify

( N ) dimensions that mislead our model to select the incorrect labels

and regenerate ( P ) those dimensions to enhance accuracy.

Adaptive Learning: As demonstrated in Algorithm 1, our adaptive

learning starts with encoding training data onto hyperdimensional

space with a matrix multiplication of training data and base vectors

(line 1). To reduce model saturation, we bundle encoded data points

by scaling a proper weight to each of them depending on how much

new information is added to class hypervectors. For instance, for a

new encoded training sample H, we update the model base on its

cosine similarities (equation (1)) with all class hypervectors (line 3).

If H has the highest cosine similarity with class Li while it actually

has label Lj , the model updates ( H ) as Algorithm 1 line 7 - 8. A

large δl, indicating the input data point is common or already exists

in the model, updates the model by adding a very small portion of

the encoded query (1− δl ≈ 0). In contrast, a small δl, indicating a

noticeably new pattern that is uncommon or does not already exist

in the model, updates the model with a large factor (1− δl ≈ 1).

Top-2 Labels: In every training iteration, after applying the

adaptive learning algorithm, we utilize the partially trained model

to identify the top two most similar labels ( I ) for each data
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Algorithm 2 Identifying Undesired Dimensions

Input: Encoded training data points H(H1,H2, . . . ,Hn) with dimen-

sion D, correct labels L(L1,L2, . . . ,Ln) for all data points, class

hypervectors C (C1, C2, . . . , Ck), weight parameters α, β, θ(θ < β),

regeneration rate R.

Output: Undesired dimensions U to drop.

1: for each Hi ∈ H do

2: ∆ = {δ(Hi, C1), δ(Hi, C2), . . . , δ(Hi, Ck)}
3: Ci = max(∆), Cj = max(∆\Ci)
4: if Li = Ci then

5: continue

6: else if Li = Cj then

7: m = |Hi − Cj |,m1 = |Hi − Ci| (elementwise)

8: Mi = α ·m− β ·m1

9: else if (Li ̸= Ci) ' (Li ̸= Cj) then

10: n = |Hi − Li|, n1 = |Hi − Ci|, n2 = |Hi − Cj |
11: Ni = α · n1 + β · n2 − θ · n

12: M = {M1,M2, . . . ,Mp},N = {N1,N2, . . . ,Nq}
13: M = Normalize(M),N = Normalize(N )
14: M′ = sum(M, columnwise),N ′ = sum(N , columnwise)
15: U = {argsort(M′)[0 : R% · D]} ∩ {argsort(N ′)[0 : R% · D]}
16: return U

point in order to identify the misleading dimensions in the next

step (section III-C). For instance, as demonstrated in Algorithm

2, for a given data point H, we calculate its cosine similarity

(equation (1)) with all class hypervectors (line 2). Suppose we get

δ(H, Ci) > δ(H, Cj) > . . . > δ(H, Ck), then the top-2 labels for
−→
H

here are Ci and Cj (line 3).

C. Dimension Regeneration

Identifying Undesired Dimensions: In each training iteration,

we separate results provided by top-2-classification (section III-B)

into three categories: correct, partially correct, and incorrect. For

instance, for a given data point H, suppose it has the highest cosine

similarity with Ci and the second-highest cosine similarity score

with Cj . We classify the result as correct if its true label is Ci and

as partially correct if its true label is Cj . We classify the result

as incorrect if its true label is neither Ci nor Cj . We then ignore

data points classified as correct in this iteration, and select the

undesired dimensions utilizing those classified as partially correct

and incorrect ( J ). As demonstrated in Algorithm 2, for each data

point H classified as partially correct, we calculate the distance of

each dimension between its hypervector and its true label Cj with

|H − Cj | and Ci, where it has the highest similarity score, with

|H − Ci|, respectively (line 7). To identify dimensions of H that are

closest to the wrong label Ci and farthest away from the true label

Cj , we search for dimensions that maximize |H − Cj | and minimize

|H − Ci|. This is equivalent to search for dimensions that maximize

both |H − Cj | and −|H − Ci|. We thus define distance matrix M,

where each row vector is defined as Mi = α · |H−Cj |−β · |H−Ci|
where α and β are weight parameters (line 8). In this way, we

effectively avoid selecting dimensions storing common information

across the two classes, as eliminating these dimensions can potentially

decrease classification accuracy for other data points. Similarly, for

each data point H′ marked as incorrect, we calculate the distance of

each dimension between its hypervector and its true label Cl, Ci, and

Cj , respectively (line 10). We then define a distance matrix N where

each row is defined as Ni = α · |H−Cl|−β · |H′−Ci|−θ · |H′−Cj |
with weight parameters α, β (line 11), and θ, aiming to search for

dimensions that farthest from the true label and closest to the wrong

labels Ci and Cj(line 8). After calculating both distance matrices M

TABLE I
DATASETS (n: NUMBER OF FEATURES, k: NUMBER OF CLASSES)

n k Train
Size

Test
Size Description

MNIST 784 10 60,000 10,000 Handwritten Recognition [22]
UCIHAR 561 12 6,213 1,554 Mobile Activity Recognition [23]
ISOLET 617 26 6,238 1,559 Voice Recognition [24]
PAMAP2 54 5 233,687 115,101 Activity Recognition(IMU) [25]
DIABETES 49 3 66,000 34,000 Outcomes of Diabetic Patients [26]

and N , we normalize them and sum up each row vector for each

matrix in a column-wise way to obtain two 1 × D distance vectors

M′ and N ′ (line15). To avoid over-eliminating dimensions, we only

drop dimensions that have large values in both M′ and N ′ (Fig. 3,

M ). We conduct this step by choosing the intersection part of the

top R% dimensions of M and N with the largest values (line 15),

where R is the regeneration rate.

Dimension Regeneration: To improve classification accuracy,

DistHD regenerates those dimensions selected to drop ( N ), so

that the new dimensions can potentially have a more positive

impact on the classification and better differentiate patterns. For

classification tasks, considering the non-linear relationship between

features, we utilize an encoding method inspired by the Radial

Basis Function (RBF) [21]. Mathematically, for a feature vector

F = {f1, f2, . . . , fn}(fi ∈ R) with n features, we generate the

corresponding hypervector H = {h1, h2, . . . , hD}(0 f hi f 1, hi ∈
R) with D dimensions by calculating a dot product of feature vector

with a randomly generated vector as hi = cos(Bi·F+c)×sin(Bi·F),
where Bi = {b1, b2, . . . , bn} is a randomly generated base vector

with bi ∼ Gaussian(µ = 0, σ = 1) and c ∼ Uniform[0, 2π].
During regeneration, DistHD replaces the base vector of the selected

dimension in the encoding module with another randomly generated

vector from the Gaussian distribution.

Weight Parameters: We define weight parameters α, β, and θ

when calculating the distance matrices M and N in Algorithm 2. α

scales weights of dimensions being far away from correct labels while

β and θ provide weights for dimensions being close to wrong labels.

Specifically, larger α values provide results with more sensitivity by

reducing the probability of a data sample being not classified to its

true label, i.e. the false negative rate (FNR). In contrast, larger β

and θ values provide results with more specificity by reducing the

probability of a data sample being classified into wrong classes,

i.e. the false positive rate (FPR). Mathematically, sensitivity and

specificity are defined as:

sensitivity =
True Positive

True Positive + False Negative
= 1− FNR

specificity =
True Negative

True Negative + False Positive
= 1− FPR

The weight parameters can be adjusted according to the diverse

needs of different learning tasks. We demonstrate trade-offs between

sensitivity and specificity in section IV-B.

IV. EXPERIMENTAL RESULT

A. Experimental Setup

We evaluated the effectiveness of our proposed DistHD learning

framework with CPU (Intel Core i9-12900) on widely-used machine

learning datasets listed in TABLE I. The DistHD code was written

in Python with NumPy and optimized for performance. We compare

DistHD with state-of-the-art (SOTA) DNNs [27], SVMs [28], SOTA

HDC algorithms [21] in terms of accuracy, training and inference

efficiency, and robustness against hardware noise. We also compare

DistHD with NeuralHD [7], a recently proposed dynamic encoding

technique for HDC aiming at dimension reduction.
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B. DistHD Accuracy

DistHD vs. SOTA ML Algorithms: We compare the classification

accuracy of DistHD with SOTA learning algorithms, including SOTA

deep neural networks (DNNs) and support vector machines (SVMs).

The SOTA DNN algorithm is trained with TensorFlow [27] while

SVM is trained with the scikit-learn library [28]. We utilize the com-

mon practice of grid search to identify the best hyper-parameters for

each model. As demonstrated in Fig. 4, DistHD provides comparable

accuracy to SOTA DNNs and 1.17% higher accuracy than SVMs.

DistHD vs. SOTA HDCs: We compare the accuracy of DistHD

with SOTA HDC algorithms that are incapable of regenerating

dimensions (baselineHD) [6] and a recently proposed HDC learning

approach using a dynamic encoder (NeuralHD) [7]. The results

of baselineHD are reported in two dimensionality: (i) Physical

dimensionality (D = 0.5k) of NeuralHD and DistHD, a compressed

dimensionality designed for resource-constrained computing devices.

(ii) Effective dimensionality (D∗ = 4k), defined as the sum of the

physical dimensions (D) of DistHD with the regenerated dimensions

throughout the retraining iterations. Mathematically, D∗ = D+D×
R% × Number of Iterations, where R is the regeneration rate. We

train each HDC model until it reaches convergence. As shown in

Fig. 7, baselineHD and NeuralHD converge at lower accuracy than

DistHD due to lacking the capability to fully utilize the information

learned during the training process. As demonstrated in Fig. 4,

DistHD (D = 0.5k) delivers on average 6.96% and 1.88% higher

accuracy than baselineHD (D = 0.5k) and NeuralHD (D = 0.5k),

respectively. Additionally, DistHD achieves 1.82% higher accuracy

than baselineHD (D∗ = 4k). This indicates that DistHD is capable

of outperforming SOTA HDC in terms of accuracy while reducing

physical dimensionality by 8.0× on average.

Sensitivity vs. Specificity: We present trade-offs between sensi-

tivity and specificity using ROC curves and area under ROC curves

(AUC) in Fig. 6. For two groups of parameters showing comparable

accuracy and AUC, with the decrease of the specificity, the model

with larger α shows a sharper increase in sensitivity and is more

likely to provide higher sensitivity for classification tasks. In contrast,

the model with larger β loses less specificity with the increase of

sensitivity and is more likely to deliver results with higher specificity.

We can tune our weight parameters according to the diverse needs

of learning tasks for the best outcomes.

C. DistHD Efficiency

For fairness, we compare the training and inference efficiency

of the SOTA DNN, SVM, baselineHD (D∗ = 4k), NeuralHD

(D = 0.5k), and DistHD (D = 0.5k) as they achieve comparable

accuracy according to Fig. 4. As shown in Fig. 5, SVMs take a

significantly longer time for both training and inference for large

datasets such as PAMAP and DIABETES. DistHD delivers consid-
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Fig. 8. Comparing Quality Loss of DistHD with DNNs

erably higher efficiency than SOTA DNNs (5.97× faster training,

comparable inference latency), SVMs, and SOTA HDC (1.15× faster

training, 8.09× faster inference). DistHD also delivers a 2.32×
speedup in training compared to NeuralHD. DistHD achieves such

high training efficiency due to its capability to reach convergence

with noticeably fewer iterations and lower dimensionality than other

HDC algorithms, as demonstrated in Fig. 7. Additionally, DistHD

delivers short inference latency since it requires significantly lower

dimensionality, effectively accelerating the process of encoding query

vectors and calculating similarity scores.

D. Robustness of DistHD against Hardware Noises

One of the main advantages of DistHD is its high robustness

against noise and failure. In DistHD, each hypervector stores in-

formation across all its components so that no component is more

responsible for storing any more information than another, making

each hypervector robust against errors. Here we compare the robust-

ness of DistHD and DNN to hardware noise in Fig. 8 by showing

the average quality loss of the DNN and DistHD under different

percentages of hardware errors. The error rate refers to the percentage

of random bit flips on memory storing DNN and DistHD models.

For fairness, all DNN weights are quantized to their effective 8-

bit representation. In DNN, random bit flip results in significant

quality loss as corruptions on most significant bits can cause major

weight changes. In contrast, DistHD provides significantly higher

robustness to noise due to its redundant and holographic distribution

of patterns in high-dimensional space. Additionally, all dimensions

equally contribute to storing information, and thus failure on partial

data will not result in the loss of entire information.

DistHD demonstrates the maximum robustness using hypervectors

with 4k dimensions in 1-bit precision, that is on average 12.90×
higher robustness than DNN. Increasing precision lowers the robust-

ness of DistHD since random flips on more significant bits will

introduce more loss of accuracy. For instance, for 10% bit flips in

hardware, DistHD using 1-bit precision and 4k dimensions provides

10.35× and 4.13× higher robustness than DNN and DistHD using 8

bits with the same dimensionality, respectively. Additionally, higher

dimensionality improves the robustness of DistHD against noise

due to more redundant and holographic information distribution. For

example, for 10% hardware error, DistHD using 4k dimensions and

8-bit precision achieves 1.43× higher robustness than DistHD using

0.5k dimensions with the same bitwidth.

V. CONCLUSION

In this paper, we propose DistHD, an accurate, efficient, and

robust HDC learning framework. With a powerful dynamic encoding

technique, DistHD identifies and regenerates dimensions that mislead

the classification and reduce the learning accuracy. Our evaluations on

a wide range of machine learning datasets demonstrate that DistHD

delivers on average 2.12% higher accuracy than SOTA HDC algo-

rithms and reduces the dimensionality by 8.0×. It also significantly

outperforms SOTA DNNs and HDCs in terms of both training and

inference efficiency. Additionally, the holographic distribution of

patterns in high dimensional space provides DistHD with 12.90×
higher robustness than SOTA DNNs. The performance of DistHD

makes it an outstanding solution for edge platforms.
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