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Abstract—The Internet of Things (IoT) has become an emerging
trend that connects heterogeneous devices and enables them with new
capabilities. Many applications exploit machine learning methodology to
dissect collected data, and edge computing was introduced to enhance
the efficiency and scalability in resource-constrained computing environ-
ments. Unfortunately, popular deep learning algorithms involve intensive
computations that are overcomplicated for edge devices. Brain-inspired
Hyperdimensional Computing (HDC) has been considered a promising
approach to address this issue. However, existing HDC methods use static
encoders, and thus require extremely high dimensionality and hundreds
of training iterations to achieve reasonable accuracy. This results in a
huge loss of efficiency and severely impedes the application of HDC
algorithms in power-limited machines. In this paper, we propose DistHD,
a novel HDC framework with a unique dynamic encoding technique
consisting of two parts: top-2 classification and dimension regeneration.
Our top-2 classification provides top-2 labels for each data sample based
on cosine similarity, and dimension regeneration identifies and regenerates
dimensions that mislead the classification and reduce the learning quality.
The highly parallel algorithm of DistHD effectively accelerates the learn-
ing process and achieves the desired accuracy with considerably lower
dimensionality. Our evaluation on a wide range of practical classification
tasks shows that DistHD is capable of achieving on average 2.12% higher
accuracy than state-of-the-art (SOTA) HDC approaches while reducing
dimensionality by 8.0 x. It delivers 5.97 x faster training and 8.09 x faster
inference than SOTA learning algorithms. Additionally, the holographic
distribution of patterns in high dimensional space provides DistHD with
12.90x higher robustness against hardware errors than SOTA DNNs.
DistHD has been open-sourced to enable future research in this field. !

Index Terms—Hyperdimensional Computing, Brain-inspired Learning,
Classification, Machine Learning

I. INTRODUCTION

The Internet of Things (IoT) has recently become an emerging
trend for its extraordinary potential to connect various heterogeneous
smart sensors and devices and enable them with new capabilities.
Many IoT applications exploit machine learning (ML) algorithms
to dissect collected data and perform learning and cognitive tasks.
However, the excellent learning quality of popular ML approaches,
including deep neural networks (DNN5s), often comes at the expense
of high computational and memory requirements, involving millions
of parameters that need to be iteratively refined over multiple time
periods [1]. One common approach is to leverage cloud computing
by sending data from the network edge to the centralized location in
the cloud. Unfortunately, this potential solution results in significant
efficiency loss, multiple scalability issues, and serious privacy con-
cerns [2]. Edge computing, a novel computing paradigm performing
calculations in proximity to data sources, has since been introduced
to address these issues. However, accommodating the high resource
requisite of traditional learning methodologies on less powerful
computing platforms remains a critical challenge to surmount [1].
Considering the increasingly massive amount of information nowa-
days, the power and memory limitations of embedded devices, and
the potential instabilities of IoT systems, a more lightweight, efficient,
and robust learning algorithm is of absolute necessity [3].

IDistHD source code: https:/github.com/jwang235/DistHD
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Fig. 2. Motivation for Dynamic Encoding and Top-2 Classification

In contrast to traditional artificial intelligence methodologies, HDC
is considered a promising learning approach for less powerful com-
puting platforms for its (i) high computational efficiency ensuring
real-time learning [4], (ii) strong robustness to noise — a key strength
for IoT systems [5], and (iii) lightweight hardware implementation
enabling efficient execution on edge device [6]. As demonstrated in
Fig. 1(a), HDC is motivated by the neuroscience observation that the
cerebellum cortex in the human brain is capable of effortlessly and
efficiently processing memory, perception, and cognition information
without much concern for noisy or broken neuron cells. Closely
mimicking the information representation and memorization func-
tionalities of human brains, HDC encodes low-dimensional inputs to
hypervectors with 10* or more elements to perform various learning
tasks [7] as shown in Fig. 1(b). HDC then conducts highly parallel
and well-defined operations and has been proven to achieve high-
quality results in classification and regression learning tasks with
comparable accuracy to state-of-the-art (SOTA) DNNs and SVMs.
Additionally, the notably faster convergence and higher efficiency
offered by HDC provide a powerful solution for today’s embedded
devices with limited storage, battery, and resources [4]-[6].

Despite the enormous success in the development of HDC, as
demonstrated in Fig. 2(a), existing HDC algorithms require extremely
high dimensionality (D) to outperform DNNs. Consequently, not only
is the learning efficiency considerably lowered with large numbers
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of unnecessary computations involved, but the system efficiency is
also compromised due to the increased data size and communication
cost [5]. This severely impedes the feasibility and scalability of HDC
in resource-constrained computing devices, especially for learning
tasks including massive amounts of data and requiring real-time
analysis. We observed that one of the main causes is that the
encoding module of existing HDC approaches lacks the capability to
utilize and adapt to information learned during the training process.
On contrary, as demonstrated in Fig.1(a), neurons in human brains
dynamically change and regenerate all the time and provide more
useful functionality when they learn new information [8]. While
the goal of HDC is to exploit the high-dimensionality of randomly
generated base hypervectors to represent the information as a pattern
of neural activity, it remains challenging for existing HDC algorithms
to support a similar behavior as brain neural regeneration.

One interesting observation of SOTA HDC approaches is that
they provide considerably higher accuracy and faster convergence
for top-2 classification than top-1 classification, as shown in Fig.
2(b). Here we define a top-k classification for a given data point as
correct if the true label is one of the k most similar classes selected.
Additionally, the accuracy difference between top-2-classification and
top-3 classification is noticeably smaller than that between top-1
classification and top-2-classification. Based on this observation, in
this paper, we propose DistHD, a new HDC framework with an
innovative encoding technique that utilizes and adapts to information
learned from every training iteration. DistHD aims at identifying
dimensions that mislead the classification and decrease the learning
accuracy, and regenerating them for a more positive impact on the
learning quality. The main contributions of the paper are listed below:

« We propose a novel dynamic encoding technique for HDC combin-
ing top-2 classification and dimension regeneration optimizations.
To the best of our knowledge, DistHD is the first HDC algorithm
with a dynamic encoding module that identifies and regenerates
dimensions hurting the classification accuracy to enhance learning
quality. DistHD achieves on average 2.12% higher classification
accuracy than SOTA HDCs while reducing the number of needed
dimensions by 8.0x. This ensures accurate performance for clas-
sification tasks on resource-constrained devices.

o The highly parallel and matrix-wise operations of DistHD ensures
a considerable acceleration for performing classification tasks in
both high-performance and resource-constrained computing envi-
ronments. DistHD delivers 5.97 x faster training than SOTA DNNs
and 8.09x faster inference than SOTA HDC algorithms.

o The holographic distribution of patterns in high-dimension space
enables DistHD with notably higher robustness. Our proposed
model demonstrates on average 12.90x higher robustness against
hardware errors than SOTA DNNs. This ensures the effective
execution of classification tasks on noisy IoT devices.

The rest of the paper is organized as follows: in Section II, we
briefly introduce recent works in edge-based learning and HDC. We
then explain our proposed methodology in detail in Section III, and
evaluate our model in terms of accuracy, efficiency, and robustness
against noise in Section IV. We conclude our work in Section V.

II. RELATED WORKS

A. IoT and Edge-based Learning

The rapid development of IoT has engendered a number of inno-
vative works on the feasibility and scalability of edge-based learning.
Prior works have demonstrated that machine learning algorithms
(including DNNs) can possibly be customized for learning on edge

computing devices. Various frameworks and libraries have been de-
veloped for learning on the edge, including TinyML [9], TensorFlow
Lite [10], edge-ml [11], X-Cube-Al [12], etc. These frameworks are
all machine learning or deep learning based tools. Many of these
learning methods require a large number of training samples and long
training cycles, and may not meet the tight constraints of ultra-low-
power edge platforms. On the other hand, people propose techniques
that improve learning efficiency on the edge, leveraging learning
structures and target platform properties. Representative examples
include split computing [13], federated learning [14], [15], knowledge
distillation [16], etc. These techniques are orthogonal to our method
and can potentially be integrated with our learning solution.

B. Hyperdimensional Computing

Prior studies have exhibited enormous success in various ap-
plications of HDCs, such as brain-like reasoning [17], bio-signal
processing [18], and human-activity recognition [19]. A few en-
deavors have been made towards developing novel architecture to
accelerate HDC inference tasks [20]. However, popular HDC methods
use pre-generated static encoders and thus require extremely high
dimensionality to achieve acceptable accuracy [21]. NeuralHD [7],
a recently proposed dynamic encoding approach, successfully com-
pressed dimensionality by eliminating dimensions with minor impacts
on distinguishing patterns. However, its proposed model takes a
significantly longer time than SOTA HDC algorithms [6] to reach
convergence, and it lacks an effective technique to enhance its encod-
ing module with information learned during the training process. In
contrast, we propose DistHD, aiming at fully exploiting information
learned from each iteration and achieving adequate accuracy with
much faster convergence and lower dimensionality.

[II. METHODOLOGY

Popular HDC algorithms use static encoding techniques where the
pre-generated base vectors lack the capacity to adapt to information
learned during the training process. The goal of our proposed DistHD
is to effectively exploit information learned from each training
iteration to identify dimensions that reduce the learning quality
and regenerate them. As demonstrated in Fig. 3, DistHD starts
with encoding data points into high-dimensional space with existing
encoding methods depending on the data type (e) DistHD then
conducts two innovative steps, top-2 classification and dimension
regeneration, to enable its encoding module and base vectors with
adaptivity to each partially trained model. In each iteration of rop-2
classification, DistHD first applies a highly efficient adaptive learning
algorithm over the encoded data (@)), and then utilizes the partially
trained model to compute the top two most similar classes for each
data point (@) In dimension regeneration, we calculate two distance
matrices (@9) based on results from the top-2 classification, and
identify (@) and eliminate (()) undesired dimensions that mislead
the classification tasks. To further improve the learning quality, we
regenerate those dimensions (@) for a more positive impact on the
classification. Note that all the operations in this section can be done
in a highly parallel matrix-wise way, as multiple training samples can
be grouped into a matrix of row hypervectors.

A. HDC Preliminaries

Motivated by the high-dimensional information representation and
memorization functionalities in human brains, HDC maps inputs
onto hyperdimensional space as hypervectors (€), each of which
contains thousands of elements. One unique property of the hy-
perdimensional space is the existence of a large number of nearly
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Fig. 3. An Overview

orthogonal hypervectors, enabling highly parallel operations such
as similarity calculations, bundlings, and bindings. Mathematically,
consider random bipolar hypervectors H1 and Ho with dimension D,
ie., Hi,Hs € {—1,1}P, when D is large enough, the dot product
Hi - H2 ~ 0. Similarity: calculation of the distance between the
query hypervector and the class hypervector (noted as 4(:,-)). For
real-valued hypervectors, a common measure is cosine similarity, i.e.

H-C _ H C
EREEINE

where H -C; is the dot product between H and a class hypervector C;,
and N represents the normalized class hypervector, i.e., H(éﬁ Here
||| is a constant factor when comparing a query with all classes and
thus can be eliminated. The calculation of cosine similarity can hence
be simplified to a dot product operation. For bipolar hypervectors,
it is simplified to the Hamming distance. Bundling (+): element-
wise addition of multiple hypervectors, e.g., Houndie = H1 + Ha,
generating a hypervector with the same dimension as inputs. In
high-dimensional space, bundling works as a memory operation and
provides an easy way to check the existence of a query hypervector in
a bundled set. In the previous example, §(Hpundie, H1) > 0 while
0(Hbundie, H3) = 0, (H3 # Hi,Hz2). Binding (¥): element-wise
multiplication associating two hypervectors to create another near-
orthogonal hypervector, i.e. Hyina = H1*Hz2. Due to reversibility, in
bipolar cases, Hpind * H1 = Ho, information from both hypervectors
can be preserved. After generating all the encoded hypervectors of
inputs for each class, HDC training can take place. We elaborate our
training framework in section III-B and III-C. The inference phase
of HDC consists of two steps: (i) encode (€)) inference data with
the same encoder utilized in training to generate a query hypervector
Q (@), and (ii) calculate the distance or cosine similarity between
Q and each class hypervector (). We then classify the query Q to
the class where it achieves the highest cosine similarity. ().

(M, C) = < H N (€]

B. Top2-Classification

As explained in Section I, SOTA HDC algorithms provide out-
standing learning quality for top-2-classification while considerably
weaker performance for top-1-classification. Inspired by this obser-
vation, our proposed DistHD first trains the model with an efficient

Dimension Regeneration
of DistHD Workflow

Algorithm 1 Adaptive Learning

Input: Training data points H(H1, Ha, ..., Hn) With g features and &
classes, labels for each data point £(L1,L2,...,Ln), base vectors
B (Bi,B2,...,B,) each with dimension D, class hypervectors C
(C1,Ca,...C), learning rate 7.
Output: Class hypervectors C after one training iteration.
1: H' =H - B (matrix multiplication), dim(H') = n x D
2: for each H; € H' do
3: C; = max{d(Hi,C1),
if £; = C; then
continue
else if £; #C; AN L; =Cj(i # j) then
Ci+Ci—m-[1—86Hi,Ci)] X H;
Cj — Cj +n- [1 — 5(Hi,Cj)] X H;
: return C

6(Hqi,C2),...,0(H4,Ck)}

4
5
6
7.
8.
9

and lightweight adaptive learning algorithm (@, @), and utilize the
partially trained model in each iteration to identify the top two most
similar classes for every data point(€)). In this way, we can identify
(@) dimensions that mislead our model to select the incorrect labels
and regenerate (@) those dimensions to enhance accuracy.
Adaptive Learning: As demonstrated in Algorithm 1, our adaptive
learning starts with encoding training data onto hyperdimensional
space with a matrix multiplication of training data and base vectors
(line 1). To reduce model saturation, we bundle encoded data points
by scaling a proper weight to each of them depending on how much
new information is added to class hypervectors. For instance, for a
new encoded training sample H, we update the model base on its
cosine similarities (equation (1)) with all class hypervectors (line 3).
If #H has the highest cosine similarity with class £; while it actually
has label £;, the model updates (§)) as Algorithm 1 line 7 - 8. A
large §;, indicating the input data point is common or already exists
in the model, updates the model by adding a very small portion of
the encoded query (1 — §; = 0). In contrast, a small d;, indicating a
noticeably new pattern that is uncommon or does not already exist
in the model, updates the model with a large factor (1 — ¢; ~ 1).
Top-2 Labels: In every training iteration, after applying the
adaptive learning algorithm, we utilize the partially trained model
to identify the top two most similar labels (€)) for each data
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Algorithm 2 Identifying Undesired Dimensions

Input: Encoded training data points H(H1,Ha, ..., Hn) with dimen-
sion D, correct labels £(L1,L2,...,Ly) for all data points, class
hypervectors C (C1,Ca,...,Ck), weight parameters a, 8,0(0 < B),
regeneration rate R.

Output: Undesired dimensions U to drop.

1: for each H, € H do

2 A ={6(Hi,C1),6(Hi,C2),...,06(Hi,Ci)}

3 C; = max(A),C; = max(A\C;)

4. if [:7; = Ci then

S: continue

6: else if £; = C; then

7 m = |H; — Cj|l,m1 = |H; —C;| (elementwise)
8: M, =a-m—p-m

9: else if (£; # C;) A (L; # C;) then

10: n=|7'[i7[,i|,n1=|’Hifci|,’n2=|7'[¢fcj"

11: Ni=a-ni+B-n2—60-n

122 M= {Mi,Ma,..., Mp}, N = {Ni,No,...

13: M = Normalize(M), V' = Normalize(/\)

14: M’ = sum(M, columnwise), N’/ = sum(N/, columnwise)

15: U = {argsort(M’)[0 : R% - D]} N {argsort(N’)[0 : R% - D]}

16: return U/

sNa}

point in order to identify the misleading dimensions in the next
step (section III-C). For instance, as demonstrated in Algorithm
2, for a given data point H, we calculate its cosine similarity
(equation (1)) with all class hypervectors (line 2). Suppose we get
O0(H,Ci) > 6(H,Cj) > ... > 6(H,Ck), then the top-2 labels for H
here are C; and C; (line 3).

C. Dimension Regeneration

Identifying Undesired Dimensions: In each training iteration,
we separate results provided by fop-2-classification (section III-B)
into three categories: correct, partially correct, and incorrect. For
instance, for a given data point H, suppose it has the highest cosine
similarity with C; and the second-highest cosine similarity score
with C;. We classify the result as correct if its true label is C; and
as partially correct if its true label is C;. We classify the result
as incorrect if its true label is neither C; nor C;. We then ignore
data points classified as correct in this iteration, and select the
undesired dimensions utilizing those classified as partially correct
and incorrect (). As demonstrated in Algorithm 2, for each data
point ‘H classified as partially correct, we calculate the distance of
each dimension between its hypervector and its true label C; with
|H — C;| and C;, where it has the highest similarity score, with
|H — C;|, respectively (line 7). To identify dimensions of # that are
closest to the wrong label C; and farthest away from the true label
C;, we search for dimensions that maximize |H — C;| and minimize
|H — C;|. This is equivalent to search for dimensions that maximize
both |H — C;| and —|H — C;|. We thus define distance matrix M,
where each row vector is defined as M; = a.-|H —C;|—8-|H — C4|
where o and [ are weight parameters (line 8). In this way, we
effectively avoid selecting dimensions storing common information
across the two classes, as eliminating these dimensions can potentially
decrease classification accuracy for other data points. Similarly, for
each data point %' marked as incorrect, we calculate the distance of
each dimension between its hypervector and its true label C;, C;, and
Cj, respectively (line 10). We then define a distance matrix N where
each row is defined as V; = a- |[H —Ci|-8-|H' —Ci|-0-|H —C;|
with weight parameters «, S (line 11), and 6, aiming to search for
dimensions that farthest from the true label and closest to the wrong
labels C; and C;(line 8). After calculating both distance matrices M

TABLE I
DATASETS (n: NUMBER OF FEATURES, k: NUMBER OF CLASSES)
‘ n k g‘}g‘e" glezset Description

MNIST 784 10 60,000 10,000 Handwritten Recognition [22]
UCIHAR 561 12 6,213 1,554 Mobile Activity Recognition [23]
ISOLET 617 26 6,238 1,559 Voice Recognition [24]
PAMAP2 54 5 233,687 115,101 Activity Recognition(IMU) [25]
DIABETES 49 3 66,000 34,000 Outcomes of Diabetic Patients [26]

and N, we normalize them and sum up each row vector for each
matrix in a column-wise way to obtain two 1 X D distance vectors
M’ and N (linel5). To avoid over-eliminating dimensions, we only
drop dimensions that have large values in both M’ and N (Fig. 3,
@). We conduct this step by choosing the intersection part of the
top R% dimensions of M and A with the largest values (line 15),
where R is the regeneration rate.

Dimension Regeneration: To improve classification accuracy,
DistHD regenerates those dimensions selected to drop (@), so
that the new dimensions can potentially have a more positive
impact on the classification and better differentiate patterns. For
classification tasks, considering the non-linear relationship between
features, we utilize an encoding method inspired by the Radial
Basis Function (RBF) [21]. Mathematically, for a feature vector
F = A{f1,f2,..., [o}(fi € R) with n features, we generate the
corresponding hypervector H = {h1,ha,...,hp}(0 < h; < 1,h; €
R) with D dimensions by calculating a dot product of feature vector
with a randomly generated vector as h; = cos(BB;-F+c) xsin(B;-F),
where B; = {b1,b2,...,bn} is a randomly generated base vector
with b; ~ Gaussian(pp = 0,0 = 1) and ¢ ~ Uniform|0, 27].
During regeneration, DistHD replaces the base vector of the selected
dimension in the encoding module with another randomly generated
vector from the Gaussian distribution.

Weight Parameters: We define weight parameters «, (3, and 6
when calculating the distance matrices M and N in Algorithm 2. «
scales weights of dimensions being far away from correct labels while
[ and 0 provide weights for dimensions being close to wrong labels.
Specifically, larger a values provide results with more sensitivity by
reducing the probability of a data sample being not classified to its
true label, i.e. the false negative rate (FNR). In contrast, larger
and 6 values provide results with more specificity by reducing the
probability of a data sample being classified into wrong classes,
i.e. the false positive rate (FPR). Mathematically, sensitivity and

specificity are defined as:
. True Positive
sensitivity = — — =
True Positive + False Negative
True Negative

1 —FNR

specificity = =1—FPR
pecificity True Negative + False Positive

The weight parameters can be adjusted according to the diverse
needs of different learning tasks. We demonstrate trade-offs between
sensitivity and specificity in section IV-B.

IV. EXPERIMENTAL RESULT
A. Experimental Setup

We evaluated the effectiveness of our proposed DistHD learning
framework with CPU (Intel Core i9-12900) on widely-used machine
learning datasets listed in TABLE 1. The DistHD code was written
in Python with NumPy and optimized for performance. We compare
DistHD with state-of-the-art (SOTA) DNNs [27], SVMs [28], SOTA
HDC algorithms [21] in terms of accuracy, training and inference
efficiency, and robustness against hardware noise. We also compare
DistHD with NeuralHD [7], a recently proposed dynamic encoding
technique for HDC aiming at dimension reduction.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 04:03:31 UTC from IEEE Xplore. Restrictions apply.



ODNN OSVM OBaselineHD (D=0.5k) 0O BaselineHD (D*=4k) O NeuralHD (D=0.5k) 0ODistHD (D=0.5k) (this work)

100
é - - ] — . — - - ] . ] ] —
>
Q
c 90
=
Q
Q
<
80
MNIST ISOLET UCIHAR PAMAP2 DIABETES
Fig. 4. Comparing Classification Accuracy of DistHD with State-of-the-art Learning Algorithms
[JDNN []SVM []BaselineHD (D*=4k) []NeuralHD (D=0.5k) [ ]DistHD (D=0.5k) (this work)
103 — —
0
0 M 2 102 M
2
= 3
o 0
£ 10! g 10
£ S
E Tl Ll 5 I . (DU
(= =
MNIST  ISOLET UCIHAR PAMAP2 DIABETES MNIST ISOLET UCIHAR PAMAP2 DIABETES
Fig. 5. Comparing Training and Inference Efficiency of DistHD with State-of-the-art Learning Algorithms
s 1
¥ 075 dimensionality (D = 0.5k) of NeuralHD and DistHD, a compressed
& dimensionality designed for resource-constrained computing devices.
> 05 (ii) Effective dimensionality (D* = 4k), defined as the sum of the
2 a/B=0.5, AUC = 0.91 physical dimensions (D) of DistHD with the regenerated dimensions
Z’ 0.25 a/p=2, AUC = 0.91 throughout the retraining iterations. Mathematically, D* = D + D X
3 0 Random Guess R% x Number of Iterations, where R is the regeneration rate. We
0 0.25 05 0.75 1 train each HDC model until it reaches convergence. As shown in

1-Specificity (FPR) (%)
Fig. 6. ROC curve of DistHD using different weight parameters o and 3

Faster Convergence Faster Convergence
100 100 ‘
S Higher Accuracy { g
> > 90
1) )
£ o
Q 2 80 . .
Q Q DistHD (this work)
< < NeuralHD
= BaselineHD
80 70 aseline
0 20 40 60 80 1k 2k 3k 4k
Iterations Dimensions

Fig. 7. Comparing Convergence Speed of DistHD with other HDC algorithms

B. DistHD Accuracy

DistHD vs. SOTA ML Algorithms: We compare the classification
accuracy of DistHD with SOTA learning algorithms, including SOTA
deep neural networks (DNNs) and support vector machines (SVMs).
The SOTA DNN algorithm is trained with TensorFlow [27] while
SVM is trained with the scikit-learn library [28]. We utilize the com-
mon practice of grid search to identify the best hyper-parameters for
each model. As demonstrated in Fig. 4, DistHD provides comparable
accuracy to SOTA DNNs and 1.17% higher accuracy than SVMs.

DistHD vs. SOTA HDCs: We compare the accuracy of DistHD
with SOTA HDC algorithms that are incapable of regenerating
dimensions (baselineHD) [6] and a recently proposed HDC learning
approach using a dynamic encoder (NeuralHD) [7]. The results
of baselineHD are reported in two dimensionality: (i) Physical

Fig. 7, baselineHD and NeuralHD converge at lower accuracy than
DistHD due to lacking the capability to fully utilize the information
learned during the training process. As demonstrated in Fig. 4,
DistHD (D = 0.5k) delivers on average 6.96% and 1.88% higher
accuracy than baselineHD (D = 0.5k) and NeuralHD (D = 0.5k),
respectively. Additionally, DistHD achieves 1.82% higher accuracy
than baselineHD (D* = 4k). This indicates that DistHD is capable
of outperforming SOTA HDC in terms of accuracy while reducing
physical dimensionality by 8.0x on average.

Sensitivity vs. Specificity: We present trade-offs between sensi-
tivity and specificity using ROC curves and area under ROC curves
(AUC) in Fig. 6. For two groups of parameters showing comparable
accuracy and AUC, with the decrease of the specificity, the model
with larger o shows a sharper increase in sensitivity and is more
likely to provide higher sensitivity for classification tasks. In contrast,
the model with larger 3 loses less specificity with the increase of
sensitivity and is more likely to deliver results with higher specificity.
We can tune our weight parameters according to the diverse needs
of learning tasks for the best outcomes.

C. DistHD Efficiency

For fairness, we compare the training and inference efficiency
of the SOTA DNN, SVM, baselineHD (D* = 4k), NeuralHD
(D = 0.5k), and DistHD (D = 0.5k) as they achieve comparable
accuracy according to Fig. 4. As shown in Fig. 5, SVMs take a
significantly longer time for both training and inference for large
datasets such as PAMAP and DIABETES. DistHD delivers consid-
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Hardware Error 1.0% 2.0% 5.0% 10.0% 15.0%
DNN 3.9% 10.7% 17.8% 32.1% 41.2%

0.5k 1.1% 1.7% 3.6% 5.4% 7.2%

1 bit 1k 0.7% 1.3% 2.8% 4.2% 6.4%

2k 0.4% 0.7% 1.3% 3.7% 5.9%

4k 0.0% 0.0% 1.0% 3.1% 4.1%

0.5k 1.9% 2.3% 4.5% 7.9% 10.4%

2 bits 1k 1.2% 1.7% 3.7% 6.8% 9.9%

a 2k 0.5% 1.1% 2.5% 5.9% 8.7%
I 4k 0.0% 0.5% 1.6% 4.8% 8.0%
.Z 0.5k 2.3% 4.7% 8.4% 13.1% 17.3%
Q 4 bits 1k 1.6% 3.2% 6.9% 12.7% 15.9%
2k 0.9% 21% 4.7% 10.2% 13.7%

4k 0.2% 1.0% 2.9% 7.4% 1.7%

0.5k 3.6% 7.9% 13.7% 18.3% 22.9%

8 bits 1k 2.7% 6.1% 10.8% 15.7% 20.1%

2k 1.9% 4.9% 8.1% 14.1% 19.8%

4k 1.4% 3.6% 5.1% 12.8% 17.6%

Fig. 8. Comparing Quality Loss of DistHD with DNNs

erably higher efficiency than SOTA DNNs (5.97x faster training,
comparable inference latency), SVMs, and SOTA HDC (1.15x faster
training, 8.09x faster inference). DistHD also delivers a 2.32x
speedup in training compared to NeuralHD. DistHD achieves such
high training efficiency due to its capability to reach convergence
with noticeably fewer iterations and lower dimensionality than other
HDC algorithms, as demonstrated in Fig. 7. Additionally, DistHD
delivers short inference latency since it requires significantly lower
dimensionality, effectively accelerating the process of encoding query
vectors and calculating similarity scores.

D. Robustness of DistHD against Hardware Noises

One of the main advantages of DistHD is its high robustness
against noise and failure. In DistHD, each hypervector stores in-
formation across all its components so that no component is more
responsible for storing any more information than another, making
each hypervector robust against errors. Here we compare the robust-
ness of DistHD and DNN to hardware noise in Fig. 8 by showing
the average quality loss of the DNN and DistHD under different
percentages of hardware errors. The error rate refers to the percentage
of random bit flips on memory storing DNN and DistHD models.
For fairness, all DNN weights are quantized to their effective 8-
bit representation. In DNN, random bit flip results in significant
quality loss as corruptions on most significant bits can cause major
weight changes. In contrast, DistHD provides significantly higher
robustness to noise due to its redundant and holographic distribution
of patterns in high-dimensional space. Additionally, all dimensions
equally contribute to storing information, and thus failure on partial
data will not result in the loss of entire information.

DistHD demonstrates the maximum robustness using hypervectors
with 4k dimensions in 1-bit precision, that is on average 12.90x
higher robustness than DNN. Increasing precision lowers the robust-
ness of DistHD since random flips on more significant bits will
introduce more loss of accuracy. For instance, for 10% bit flips in
hardware, DistHD using 1-bit precision and 4k dimensions provides
10.35x and 4.13 x higher robustness than DNN and DistHD using 8
bits with the same dimensionality, respectively. Additionally, higher
dimensionality improves the robustness of DistHD against noise
due to more redundant and holographic information distribution. For
example, for 10% hardware error, DistHD using 4k dimensions and
8-bit precision achieves 1.43x higher robustness than DistHD using
0.5k dimensions with the same bitwidth.

V. CONCLUSION

In this paper, we propose DistHD, an accurate, efficient, and
robust HDC learning framework. With a powerful dynamic encoding
technique, DistHD identifies and regenerates dimensions that mislead

the classification and reduce the learning accuracy. Our evaluations on
a wide range of machine learning datasets demonstrate that DistHD
delivers on average 2.12% higher accuracy than SOTA HDC algo-
rithms and reduces the dimensionality by 8.0x. It also significantly
outperforms SOTA DNNs and HDCs in terms of both training and
inference efficiency. Additionally, the holographic distribution of
patterns in high dimensional space provides DistHD with 12.90x
higher robustness than SOTA DNNs. The performance of DistHD
makes it an outstanding solution for edge platforms.

VI. ACKNOWLEDGEMENTS

This work was supported in part by National Science Foundation
#2127780, Semiconductor Research Corporation (SRC), Office of
Naval Research, grants #N00014-21-1-2225 and #N00014-22-1-2067,
the Air Force Office of Scientific Research under award #FA9550-
22-1-0253, and generous gifts from Xilinx and Cisco.

REFERENCES

[1] Jiasi Chen and Xukan Ran. Deep learning with edge computing: A review.
Proceedings of the IEEE, 2019.

[2] Weisong Shi et al. Edge computing: Vision and challenges. IEEE Internet
of Things journal, 2016.

[3] Jianli Pan et al. Future edge cloud and edge computing for internet of things
applications. Internet of Things Journal, 2017.

[4] Lulu Ge and Keshab K Parhi. Classification using hyperdimensional
computing: A review. IEEE Circuits and Systems Magazine, 2020.

[5] Mohsen Imani, Yeseong Kim, et al. A framework for collaborative learning
in secure high-dimensional space. In CLOUD. IEEE, 2019.

[6] Abbas Rahimi et al. A robust and energy-efficient classifier using brain-
inspired hyperdimensional computing. In ISLPED, 2016.

[71 Zhuowen Zou et al. Scalable edge-based hyperdimensional learning system
with brain-like neural adaptation. In SC, 2021.

[8] Birgitte Bo Andersen et al. Aging of the human cerebellum: a stereological
study. Journal of Comparative Neurology, 2003.

[9] Pete Warden et al. TinyML. O’Reilly Media, Incorporated, 2019.

[10] Robert David et al. Tensorflow lite micro: Embedded machine learning for
tinyml systems. Proceedings of MLSys, 2021.

[11] Fouad Sakr, Francesco Bellotti, Riccardo Berta, and Alessandro De Gloria.
Machine learning on mainstream microcontrollers. Sensors, 2020.

[12] X-Cube-Al: Al expansion pack for STM32CubeMX. https://www.st.com/
en/embedded- software/x-cube-ai.html.

[13] Jong Hwan Ko et al. Edge-host partitioning of deep neural networks
with feature space encoding for resource-constrained internet-of-things
platforms. In AVSS. IEEE, 2018.

[14] Keith Bonawitz et al. Practical secure aggregation for privacy-preserving
machine learning. In ACM SIGSAC CCS, 2017.

[15] Tian Li et al. Federated learning: Challenges, methods, and future direc-
tions. Signal Processing Magazine, 2020.

[16] Haoyu Luo et al. Keepedge: A knowledge distillation empowered edge
intelligence framework for visual assisted positioning in uav delivery.
Transactions on Mobile Computing, 2022.

[17] P. Poduval et al. GrapHD: Graph-based hyperdimensional memorization
for brain-like cognitive learning. Frontiers in Neuroscience, 2022.

[18] Alessio Burrello et al. Laelaps: An energy-efficient seizure detection
algorithm from long-term human ieeg recordings without false alarms. In
DATE. 1IEEE, 2019.

[19] Yeseong Kim et al. Efficient human activity recognition using hyperdimen-
sional computing. In /0T, 2018.

[20] Mohsen Imani et al. Exploring hyperdimensional associative memory. In
HPCA. IEEE, 2017.

[21] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel
machines. Advances in neural information processing systems, 2007.

[22] Dan Ciregan, Ueli Meier, and Jiirgen Schmidhuber. Multi-column deep
neural networks for image classification. In CVPR. IEEE, 2012.

[23] Davide Anguita et al. Human activity recognition on smartphones using a
multiclass hardware-friendly support vector machine. In /IWAAL. Springer,
2012.

[24] Hansheng Lei et al. Half-against-half multi-class support vector machines.
In International Workshop on Multiple Classifier Systems. Springer, 2005.

[25] Attila Reiss et al. Introducing a new benchmarked dataset for activity
monitoring. In ISWC. IEEE, 2012.

[26] Beata Strack et al. Impact of hbalc measurement on hospital readmission
rates: analysis of 70,000 clinical database patient records. BioMed research
international, 2014.

[27] Hind Taud et al. Multilayer perceptron (mlp). In Geomatic approaches for
modeling land change scenarios. Springer, 2018.

[28] Marti A. Hearst et al. Support vector machines. [Intelligent Systems and
their applications, 1998.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 04:03:31 UTC from IEEE Xplore. Restrictions apply.



