
BP-NTT: Fast and Compact in-SRAM Number Theoretic

Transform with Bit-Parallel Modular Multiplication

Jingyao Zhang∗, Mohsen Imani†, Elaheh Sadredini∗

∗University of California, Riverside †University of California, Irvine

{jzhan502, elahehs}@ucr.edu, m.imani@uci.edu

Abstract—Number Theoretic Transform (NTT) is an essential
mathematical tool for computing polynomial multiplication in
promising lattice-based cryptography. However, costly division
operations and complex data dependencies make efficient and
flexible hardware design to be challenging, especially on resource-
constrained edge devices. Existing approaches either focus on
only limited parameter settings or impose substantial hardware
overhead. In this paper, we introduce a hardware-algorithm
methodology to efficiently accelerate NTT in various settings
using in-cache computing. By leveraging an optimized bit-parallel
modular multiplication and introducing costless shift operations,
our proposed solution provides up to 29× higher throughput-
per-area and 10-138× better throughput-per-power compared to
the state-of-the-art.

I. INTRODUCTION

With the rise of cloud computing and the Internet of

Things (IoT), concerns about data privacy and security are

escalating, especially for vulnerable edge devices. Lattice-

based cryptography is the most promising candidate to serve

as the foundation of future information security due to its

superior balance of security and operational speed. Currently,

three of four NIST-standardized post-quantum cryptography

algorithms (PQCs) [1] and almost all homomorphic encryp-

tion (HE) schemes are based on lattice-based cryptography.

Typically, lattice-based cryptography is primarily based on the

hardness of two problems: module learning with error (for

PQCs) and ring learning with error (for HEs). The algorithms

based on these two problems involve polynomial operations,

such as modular addition and modular multiplication. With a

complexity of O(N2), the modular multiplication of polyno-

mials is the most time-consuming operation.

To mitigate the computing bottleneck, number-theoretic

transform (NTT) is commonly employed to accelerate poly-

nomial modular multiplication with the principles of the

Fast Fourier Transform (FFT), which lowers the comput-

ing complexity of polynomial multiplication to O(NlogN).
However, the complicated data dependencies among different

NTT stages and the required division operations make efficient

hardware-based acceleration challenging.

To accelerate NTT effectively, ASIC/FPGA-based hardware

acceleration designs are proposed [2]–[4]. Although perfor-

mance is enhanced, they still suffer from frequent data move-

ment between processing components and memory, which

inhibits further performance growth. To eliminate the data

movement bottleneck, in-memory computing techniques for

cryptography algorithms are proposed [5]–[10]. The chal-

Memory
bound

Bound by compute
and memory roofs Compute bound

NTT kernel

INVNTT kernel

Fig. 1: Roofline model for lattice-based cryptography.

lenges with existing solutions are that they (1) expand the

trusted computing base to off-chip memories [8], thus, intro-

ducing security vulnerabilities; (2) introduce complex periph-

eral circuits [8], [9], thus, incurring high area overhead; or (3)

are specialized only for NTT processing [10], thus, sacrificing

generality and flexibility. These restrictions make it even more

challenging to enable secure computing on vulnerable and

resource-constrained edge devices.

To analyze the computational bottleneck of the NTT, modu-

lar multiplication, and reduction (these kernels count for more

the 50% of the computation in PQC algorithms based on our

profiling on CPU) and to answer the question of "where is

the best place to compute in the memory hierarchy?", we first

generate the roofline model of the lattice-based cryptography

algorithms, such as CRYSTAL-Dilithium [11] and CRYSTAL-

Cyber [12] using Intel Advisor [13] (Fig. 1). Our observation

is that the main performance bottleneck for these kernels are

the L1 and L2 bandwidth, and they are not bounded by the

memory bandwidth bottleneck.

Based on these insights, we re-purpose existing on-chip

6T SRAM arrays into large vector computation units and co-

design them with a novel bit-parallel modular multiplication

algorithm and our proposed implicit shift operations to enable

energy-efficient, fast, and low-overhead NTT acceleration,

especially for the IoT devices. Our proposed solution, BP-

NTT (Bit-Parallel NTT), addresses the inefficiency of existing

schemes while preserving safety and flexibility. Since only the

chip itself can be considered a trusted computing base with any

off-chip data requiring encryption [14], our proposed solution

provides data confidentiality by not offloading the plaintext to

off-chip memories. Enabled by our proposed data organization

and modular multiplication, a single 256×256 SRAM subarray

in BP-NTT design can support up to a 250-point polynomial

with 256-bit coefficients or a 4500-point polynomial with 14-

bit coefficients, which covers requirements of the lattice-based

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 04:04:26 UTC from IEEE Xplore. Restrictions apply.

PQC algorithms (256/1024-point polynomial with 14/16/32-bit

coefficients) [11], [12], [15] and three security levels of HE

under the BKZ.qsieve model (1024-point polynomial with

16/21/29-bit coefficients) [16].

In summary, the paper contributes the following:

• We present a compact and low-overhead in-SRAM NTT

acceleration design while preserving the generality (i.e.,

capable of expanding to other crypto kernels) and flexi-

bility (i.e., to easily adjust the bitwidth, polynomial order,

and modulus). Moreover, these arrays incur minimal

hardware modification compared to conventional SRAM

arrays (less than 2%) and can be used for normal cache

operations when they are not used as a crypto accelerator.

• To provide a compact and high-throughput computation,

we present a bit-parallel data layout, which enables a

costless shift for ∼50% of the shift operations in NTT

and its inverse (in other words, #shifts in our bit-parallel

design is half of the prior bit-serial solutions). In addi-

tion, our design exploits the inspiration from carry-save

adder, which eliminates the carry propagation operation

in SRAM arrays and enables higher parallelism.

• Through simulation, we validate the correctness of the

proposed bit-parallel modular multiplication algorithm.

Our evaluations reveal that BP-NTT achieves up to an

order of magnitude higher throughput-per-area and up

to two orders of magnitude higher throughput-per-power

compared to the state-of-the-art in-memory, ASIC, and

FPGA solutions, on the same technology node and similar

parameter settings, thus, making it a low-cost and energy-

efficient option for edge devices.

II. BACKGROUND

A. Ring Learning with Errors (R-LWE)

The R-LWE problem is whether it is possible to create

pk = a ∗ sk+ e given a public vector pk and a vector, where

a is a uniformly sampled vector across R ≡ Zq[x]/ ïx
n + 1ð,

e is a Gaussian distributed error vector of small absolute

value, n is a power of 2, q is a prime number, and sk is a

secret vector. Consequently, when utilizing a method based on

lattice-based cryptography, each encryption/decryption must

conduct at least one polynomial multiplication.

B. Number Theoretic Transform (NTT)

In general, NTT – which is a generalization of DFT over

quotient rings – utilizes the principles of FFT to lower

the complexity of polynomial multiplication from O(N2) to

O(NlogN), where N is the number of polynomial terms. Al-

gorithm 1 illustrates the popular in-place Cooley-Tukey NTT

[17]. The algorithm receives the polynomial a as input and the

n-th roots on R, and yields the NTT-transformed polynomial a

as its output. Then, polynomial a can be multiplied with the

NTT-transformed polynomial b element-by-element, and the

result will be converted from NTT format to standard format

using inverse NTT, as ab = NTT
−1(NTT(a) ∗ NTT(b)).

To avoid the costly division required by modular multipli-

cation in NTT, Montgomery multiplication [18] is generally

Algorithm 1 Cooley-Tukey-based In-place NTT Algorithm.

Input: a = (an−1, ..., a0) ∈ R, and pre-computed n-th roots
ζ0,...,n−1 of unity wn in Zq with bit-reversed order

Output: a = NTT(a) in bit-reversed order
1: k = 0
2: for len = n/2; len > 0; len >> 1 do
3: for idx = 0; idx < n; idx = j + len do
4: z = ζ[+ + k]
5: for j = idx; j < idx+ len; j = j + 1 do
6: t = z ∗ a[j + len] mod q
7: a[j + len] = a[j]− t mod q
8: a[j] = a[j] + t mod q

Fig. 2: Cooley-Tukey butterfly with 3-stage communication.

used. In NTT, the multipliers ζk is pre-computed, which helps

avoid the cost of Montgomery domain transformation [19].

One characteristic of NTT is the intricate data communication

between adjacent stages. As depicted in Fig. 2, for an 8-

point polynomial, the NTT requires three stages, and the data

dependencies between the stages are complicated, resulting

in increased data movement, long wires, and higher area

overhead when designing ASIC and FPGA-based hardware

accelerators. For in-memory architecture, this inefficiency is

translated to a higher number of shift operations to align the

data for bitline computation.

C. Computing in SRAM

BL BL

A A

B B

SA SA

WL

WL

VREF

A NOR B A AND B

..
.

..
.

(a) (b)

A? B

NOR

SA SA

VREF

BL BL

~A&~B A&B

Fig. 3: In-SRAM bitline operations.

In-SRAM processing

is capable of bitline

computing [20] by ac-

tivating more than one

row in the SRAM sub-

array. A diagram of the

logical operations that

can be performed in 6T

SRAM is shown in Fig.

3. AND and NOR op-

erations are realized in

SRAM with the help of

several activated wordlines and sense amplifiers (SAs), as

displayed in Fig. 3(a). If all the cells in the active rows that

are wired to the bitline BL have the value ‘1’, then the SA

on the BL will be able to detect a voltage larger than Vref ,

which is an element-wise AND operation. Only if all the

cells in the activated rows connected to the corresponding

BL contain ‘1’, the SA on the BL senses a voltage greater

than Vref , which in turn requires that all the cells in the

activated rows connected to the corresponding BL contain

‘0’. This means the SA can do element-wise NOR operations.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 04:04:26 UTC from IEEE Xplore. Restrictions apply.

As can be seen in Fig. 3(b), the XOR operation can be

accomplished by combining the capabilities of the logical bit-

wise AND and NOR operations. Cache Automaton [21] uses

a sense-amplifier cycling mechanism to read out multiple bits

in a single time slot, hence reducing input symbol match

time. Compute Cache [22] increases the number of logical

operations by modifying the SA architecture based on the

NOR, AND, and XOR operations stated in [20]. In BP-NTT,

we utilize the XOR capability presented in [20] and 1-bit

shifting (details in Section IV-C).

III. RELATED WORK

ASIC/FPGA solutions: Ni et al. [2] reduce lattice-based

algorithm latency by accelerating Montgomery multiplication

with a three-stage pipeline and systolic array. Banerjee et al.

[3] construct a reconfigurable cryptographic processor with

a low-power modular arithmetic core to improve hardware

overhead and energy efficiency. Xing et al. [4] improve latency

and hardware complexity by proposing a negative wrapped

convolution method to execute polynomial multiplication on

FPGAs. Although the above approaches increase performance,

they still suffer from frequent PE-to-memory data movement.

Moreover, their designs are limited to a few parameter settings.

In-Memory solutions: Nejatollahi et al. [10] propose Cryp-

toPIM, a ReRAM-based NTT accelerator that uses a Shift-Add-

based reduction scheme with the Gentleman-Sande algorithm.

However, (1) the fixed interconnection among ReRAM arrays

increases hardware overhead and makes it inflexible to support

other cryptography kernels, and (2) it only supports a limited

number of moduli which limits the flexibility. Park et al.

[9] present RM-NTT based on vector-matrix multiplication

instead of FFT-like computation to reduce latency. However,

it increases memory footprint and energy consumption. In

general, ReRAM-based solutions suffer from device variation,

which results in reliability problems. In addition, with in-

ReRAM computing, the data is located off-chip in plaintext,

which makes it vulnerable to memory and bus attacks. Li

et al. [8] present MeNTT with a new modular multipli-

cation method and NTT hardware mapping. However, the

fixed routing among SRAM arrays and heavy near-memory

peripheral circuitry introduces large area/energy overhead and

inflexibility. Unlike prior work, this paper aims to design a

flexible, secure, high-performance, low-overhead, and energy-

efficient NTT accelerator.

IV. IMPLEMENTATION
A. Overview

BP-NTT can be realized either by re-purposing a portion

of the L1/L2/L3 cache or by placing a separate in-SRAM

accelerator next to the on-chip caches. Fig. 4 represents an

integration of BP-NTT in the last-level cache (LLC). Each

LLC slice has several SRAM banks, and each bank has usually

four subarrays. We repurposed one subarray for memory-

mapped command/control instructions (CTRL/CMD) and the

rest as vector computing units to perform NTT computation,

as shown in Fig. 4(b). Different banks performing the same

operations can share CTRL/CMD subarray. The instruction sets

(a) (b) (c)

CORE

L1/L2 Cache

LLC BP-NTT

CTRL
CMD

Sub
array

Sub
array

Sub
array

256 bitsBank 256 bitsSubarray

SA

D
ec

od
er

0
D

ec
od

er
1

(d)

2 8Check
2 8Unary 8
2 8Shift 8 1
2 8Binary 8 8 1 5

Type Written
address

Operand 0
Operand 1

XOR/AND
Left/Right

Fig. 4: (a-c) Hierarchical view of BP-NTT-enabled system. (d)

Control signals for different operations in BP-NTT.

Fig. 5: (a) Data organization inside one data subarray. (b)

The structure of the sense amplifier supporting OR/XOR/AND

logic operation and 1-bit left/right shift.

for the BP-NTT are designed and represented in Fig. 4(d). Our

design incurs minimal hardware changes to the SRAM arrays,

i.e., less than 2% area overhead compared to the conventional

SRAM, thus, enabling a low-overhead solution.

B. Data Organization

In BP-NTT, polynomial coefficients are arranged in distinct

rows of the same tile. Fig. 5(a) shows eight independent

polynomials in eight tiles within the same array, with 250 rows

for coefficients and 6 rows for intermediate variables. In this

configuration, each row in a tile stores 32-bit polynomial coef-

ficients. Our design can be easily reconfigured to accommodate

n tiles with +256/n,-bit coefficients. When the number of

polynomial coefficients is less than the tile’s capacity, we can

place coefficients from other polynomials in unused rows to

save memory. On the other hand, if the number of polynomial

coefficients exceeds the tile’s capacity, the excess coefficients

can be stored in adjacent tiles and merged during computation

using the 1-bit shift operation.

Unlike prior methods method [23], our method doesn’t

require shift operations to compute distinct coefficients (i.e.,

costless shift) thanks to our tile-based data layout that place

coefficients in the rows of the same tile so that they can

share the bitlines. This means that we can simply select the

required coefficient by having their row addresses as the input

of the decoders. Although bit-serial alignment doesn’t require

shifting [24] as well, it requires long columns (e.g., 4096 rows

for a 128-point 32-bit polynomial), which is very uncommon,

especially for resource-constrained edge devices.

C. Sense Amplifier Design

As shown in Fig. 5(b), we modify conventional SRAM SAs

to enable in-memory bit-parallel modular multiplication and

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 04:04:26 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 In-memory Bit-Parallel Modular Multiplication

Input: n-bit A = (an−1, ..., a0), B = (bn−1, ..., b0), M < R = 2n,
where n > 2 and M ⊥ R

Output: ABR−1 mod M
1: Sum := (sn−1, ..., s0) = 0 // Initialize
2: Carry := (cn−1, ..., c0) = 0
3: P := Sum+ Carry << 1 //P = 0
4: for i = 0, n− 1 do
5: if ai == 1 then // Implicit compare
6: c1,s1 = {Sum&B,Sum⊕B}
7: Carry << 1 <— Oberservation 1
8: c2,Sum = {Carry&s1,Carry⊕ s1}
9: Carry = c1 |c2 //P = P + aiB

10: end if
11: m = (LSB(Sum) == 1) ? M : 0 //m = M or 0
12: c1,s1 = {Sum&m,Sum⊕m}
13: s1 >> 1 <— Oberservation 2
14: c2,s2 = {s1&c1,s1⊕ c1}
15: c3,Sum = {Carry&s2,Carry⊕ s2}
16: Carry = c2 |c3 //P = P +m; P >> 1
17: end for

addition/subtraction in NTT. By using NOR and inverse gates,

BP-NTT can perform XOR and OR. A MUX and a latch are

introduced to implement 1-bit bidirectional shift operations.

D. In-memory Bit-parallel Modular Multiplication

With the aforementioned data arrangement, a polynomial

can fit the data compactly into a subarray, which is not possible

with a bit-serial design. Another benefit of our suggested

BP-NTT is its capacity to conduct bit-parallel modular mul-

tiplication. Traditional carry-propagation-based multiplication

[8], [24] is not suitable for in-memory parallel computation

because once carry propagation is introduced, the higher bit

must wait for the carry propagation of the lower bits. This

hinders maximally exploiting in-memory computing’s high

parallelism for efficiency.

BP-NTT takes advantage of our proposed in-memory bit-

parallel modular multiplication algorithm so that it can per-

form operations in bit-parallel (e.g., on a 32-bit word) which

reduces the latency. Our proposed algorithm (Algorithm 2) is

based on Montgomery’s algorithm for modular multiplication,

which can produce ABR−1 mod M for the input polyno-

mials A and B, where R is 2n, n is the bitwidth, and M is

the modulo. Notably, although our approach does not directly

output AB mod M (same as Montgomery algorithm), the

twiddle factors can be pre-computed by multiplying them to

R in advance to make the final result (AB = (AR)BR−1

mod M) as expected without extra conversion.

As shown in Algorithm 2, after initialization, our algorithm

determines whether to add partial sum P to multiplier B based

on the presence of ‘1’ in A. In our design, twiddle factor A
is hidden in the control commands. Control commands are

generated from twiddle factors and stored before starting the

NTT computation. For example, if P = P+B is performed on

the third iteration, the third bit a2 of twiddle factor A must be

1. In line 11, the least significant bit (LSB) of Sum is used

to determine m’s value. If LSB = 1, m = M ; otherwise,

A=4, B=3, M=7
AB mod M = 5

B
M
S
C
c1
s1

0 1 1
1 1 1
0 0 0

0 0 0 AND

0 1 1 XOR

0 0 0<-<-

1 B 0 1 1
M 1 1 1
S 0 1 1
C 0 0 0
c1 0 0 0
s1 0 1 1
c2 0 0 0

XOR

AND

2 B 0 1 1
M 1 1 1
S 0 1 1
C 0 0 0
c1 0 0 0
s1 0 1 1
c2 0 0 0

OR

3

B 0 1 1
M 1 1 1
S 0 0 1
C 0 1 0

0 1 0
0 0 1

c2
s2

0 0 0c3

OR

7B 0 1 1
M 1 1 1
S 0 0 1
C 0 0 0

0 1 0
0 0 1

c2
s2

0 0 0c3

XOR

AND

6B 0 1 1
M 1 1 1
S 0 1 1
C 0 0 0
c1
s1

0 1 1
0 1 0
0 1 0
0 0 1

c2
s2

AND

XOR

5B 0 1 1
M 1 1 1
S 0 1 1
C 0 0 0
c1
s1

0 1 1
1 0 0

AND

XOR->-> ->->

4

B 0 1 1
M 1 1 1
S 0 0 0
C 0 0 0

A 1 0 00

 Step 1-3: P = P + aiB

P = P + M; P >> 1 Output: P = S + C << 1 = 5
Step 4-7:

Fig. 6: A 3-bit example of the proposed in-memory bit-parallel

modular multiplication.

m = 0. The partial sum is then added to m and shifted to the

right. We can get an n-bit Sum and Carry after n iterations.

The proposed algorithm uses two variables, Sum and

Carry, to represent the sum of two addends to enable in-

memory bit-parallel modular multiplication. Inspired by carry-

save adder design [27], Sum and Carry are derived directly

using bitwise operations (AND, XOR, OR) and kept distinct

throughout the computation.

The number of bits in the vanilla algorithm can be reduced

from n + 1 to n based on two observations: (1) the highest

bit of the Carry is always 0 after each iteration; and (2)

the lowest bit of the result in P = P + M is always 0.

Thus by shifting Carry 1-bit to the left (line 7) and s1 1-

bit to the right (line 13), all the computations can be done

within n columns, which is crucial for exploiting parallelism

in in-SRAM computing. A 256-column SRAM array with 32-

bit operands can only perform seven modular multiplications

in parallel if n + 1 bits (33 columns) is required, whose

throughput is 12.5% worse than our proposed method.

Fig. 6 depicts an example of bit-parallel modular multiplica-

tion in SRAM. Inputs are A = 4, B = 3, and M = 7. We use

A to directly represent AR because A = AR mod M . Due

to the lowest two bits of A, P remains 0 after two iterations.

In step 1 of the third iteration, B and Sum are bit-parallelly

ANDed and XORed to generate c1 and s1. Carry is shifted

to the left by one bit to align with Sum for subsequent addition

operations. Step 2 performs AND and XOR on Carry and

s1 to produce c2 and Sum. In step 3 , c1 and c2 are ORed

to get Carry. In step 4 , M and Sum produce c1 and s1.

For addition, s1 is shifted to the right by one bit. Steps 5 -

7 are the same as 1 - 3 . Finally, we can obtain the result

P = 001 + 010 << 1 = 5.

E. Implicit Shift in NTT

Inefficient hardware and complex data dependencies make

NTT acceleration challenging. The product of modular multi-

plication should be added to or subtracted from polynomial

coefficients (lines 7-8 in Algorithm 1), which is difficult

with in-memory computing due to shifting overhead. The

implicit shift design prevents word shifting. Thanks to our

data organization, which places all polynomial coefficients in

the same tile, we can perform bitline computing by implicitly

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 04:04:26 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Comparing BP-NTT with state-of-the-art solutions on a 256-point polynomial.

Design Coef.
Bitwidth

Max f
(MHz)

Latency
(µs)

Tput.
(KNTT/s)

Energy
(nJ)

Area
(mm2)

Tput./Area
(KNTT/s/mm2)

Tput./Power
(KNTT/mJ)

BP-NTT (45nm) In-SRAM 16 3.8K 61.9 258.6 34 0.063 4.1K 230.7
MeNTT (45nm∗) [8] In-SRAM 14 218 15.9 62.8 47.8 0.173 364 20.9

CryptoPIM (45nm) [10] ReRAM 16 909 68.7 553.3 2.6K 0.152† 3.6K 14.7
RM-NTT (45nm∗) [9] ReRAM 14 249 0.45 2.2K 602 0.289† 7.7K 1.67

LEIA (45nm∗) [25] ASIC 14 267 0.6 1.7K 44.1 1.77 940.6 22.7
Sapphire (45nm∗) [3] ASIC 14 64 20.1 49.7 236.3 0.354 140.1 4.23
FPGA (45nm∗) [26] FPGA 16 164 24.3 41.2 3061 - - -

CPU [10] x86 16 2K 85 11.8 570K - - -

* Technology nodes are projected to 45nm for an apples-to-apples comparison with BP-NTT.
† These solutions do not provide the area consumption. For the sake of comparison, we optimistically estimate their area overhead based
on the area of memory subarrays used in these designs (i.e., we ignore the peripheral overhead).

selecting the corresponding row of operands, thus, avoiding

shift operations. If we want to add the product of modular

multiplication with the k-th polynomial coefficient, we only

need to activate the rows where the product and the n-

th coefficient are located, to enable bitline computing and

perform the standard addition with 1-bit shifts. As a result,

compared to MeNTT [8], our BP-NTT consumes less energy

due to the reduced shifting overhead.

V. EVALUATION

A. Evaluation Methodology

In this section, we analyze the latency, throughput, area,

energy, throughput-per-area, and throughput-per-power of BP-

NTT performing NTT for 256-point polynomials with 14-

bit and 16-bit coefficients (as they are the most common

parameter choices in PQC algorithms [11], [12]), and compare

them to existing ASICs, FPGAs, and in-memory designs,

as shown in Table I. The correctness of the proposed bit-

parallel modular multiplication has been validated for various

bitwidths. The array size of BP-NTT is 256×256 following the

ARM Cortex-M0+ microcontroller [28]. We then investigate

BP-NTT performance on different parameter configurations.

PyMTL3 [29] and OpenRAM [30] are utilized to construct

SRAM arrays, and Synopsys Design Compiler and Cadence

Innovus are utilized to calculate read and write latency and

area consumption, respectively. Additionally, due to the lack

of area consumption analysis in CryptoPIM [10] and RM-

NTT [9], we utilize the Destiny simulator [31] to optimistically

estimate only the subarray areas, and we do not account for

their complex peripheral circuitry.

B. Memory Footprint and Area Comparison

BP-NTT occupies the least amount of memory footprint and

introduces the least amount of hardware overhead compared

to other in-memory designs. Fig. 7 shows the data layout of

BP-NTT, MeNTT, and RM-NTT for computing NTT with 32-

bit, 128-point polynomial. BP-NTT requires only 4288 SRAM

cells (i.e., 134 rows and 32 columns), however, MeNTT

and RM-NTT require 16,640 (130 rows and 128 columns)

and 524,288 (128 rows and 4096 columns) ReRAM cells,

respectively. In addition, BP-NTT is capable of performing

all NTT-related operations within an SRAM subarray, thanks

Fig. 7: Comparison of different in-memory designs for NTT

on a 32-bit 128-point polynomial.

to our compact data organization and the proposed bit-parallel

modular multiplication. However, MeNTT requires peripheral

circuitry for addition, subtraction, and comparison operations,

and RM-NTT requires additional shift and reduction modules,

resulting in a large area and energy consumption overhead.

As shown in Table I, BP-NTT provides at least 2.4×-

4.6× lower area overhead compared to the state-of-the-art

in-memory designs. This is because their data arrangement

and operation mode (i.e., bit-serial computing in MeNTT

and vector-matrix-based NTT in RM-NTT) necessitates more

memory capacity to support NTT acceleration.

C. Throughput-per-Area & Throughput-per-Power

BP-NTT is a design that exhibits the highest throughput-per-

power (TP) when compared to other designs. This is due to its

energy efficiency, high performance, and minimal overhead,

rendering it a suitable candidate for IoT devices. The pro-

posed bit-parallel modular multiplication and data organization

enable costless shift operations, contributing to BP-NTT’s

superior performance. In addition, BP-NTT provides excellent

throughput-per-area (TA) by making minimal modifications

to existing standard arrays, and it only requires one array to

perform several NTTs with different parameters, resulting in

a low-overhead design. In general, ReRAM-based in-memory

designs offer higher throughput due to their efficient analog

computing capabilities. However, their computing schemes,

including cascaded pipeline and vector-matrix-based NTT,

require a large number of arrays and memory cells, resulting in

high energy consumption. BP-NTT outperforms ASIC/FPGA

designs by up to 30× and 50× in TA and TP metrics,

respectively, due to the latter’s frequent data movement.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 04:04:26 UTC from IEEE Xplore. Restrictions apply.

D. Latency Comparison

The higher latency of BP-NTT compared to ASIC/FPGA

designs is due to the fact that ASIC/FPGA can fine-tune algo-

rithms so that unnecessary operations on the critical path can

be minimized for certain algorithms and parameter settings.

On the other hand, hardware generalization and flexibility are

sacrificed. In-memory designs have lower latency than BP-

NTT because to handle inefficient modular multiplication and

complex inter-stage data communication, either they target a

specific modulus and fixed inter-array connections, or they

introduce a large number of combinational logic circuits (com-

parators, adders, subtractors, and even Montgomery reduction

module), thereby, sacrificing flexibility and adding unneces-

sary area overhead. In contrast, BP-NTT can accomplish all

NTT operations within one subarray with minimal modifica-

tions to the SA and without any extra dedicated modules.

E. Flexibility Analysis

The BP-NTT is flexible to support NTT calculations with

different parameters. Figure 8(a) shows the clock count and

energy overhead for a 256×256 BP-NTT design plus 6 rows

for intermediate data using 2-bit to 64-bit coefficients with a

polynomial order of 256. As the bitwidth increases, both the

clock count and energy overhead grow. The reason for the

steeper increase in energy overhead is that as bitwidth grows,

the number of NTTs that can be computed in parallel in a

fixed-size subarray decreases.

Fig. 8(b) shows the number of clock cycles and energy

consumption for performing NTT on BP-NTT with different

polynomial orders at a bitwidth of 16. The steeper increase

in clock count and energy consumption compared to Fig. 8(a)

is because as the polynomial order rises, not only does the

number of NTTs that can be computed in parallel in the

subarray decrease but also the additional shift overhead in a

single NTT is introduced. However, these additional overheads

can be effectively avoided by using the larger subarray or

interconnection of multiple subarrays.

(a) Polynomial order = 256

(b) Bitwidth = 16

Fig. 8: Performance and energy consumption of BP-NTT (a)

with different bitwidths when polynomial order is 256, (b)

with different polynomial orders when bitwidth is 16.

VI. CONCLUSION

In this paper, we present BP-NTT, an in-SRAM architecture

for flexible, secure, high-performance, low-overhead, energy-

efficient acceleration of NTT. By utilizing bit-parallel modular

multiplication, we take advantage of the parallelism of in-

SRAM computing to enhance performance. By incorporating

our proposed data organization, the majority of shift operations

can be eliminated with minimal hardware modifications. Our

evaluation results indicate that BP-NTT can achieve a signifi-

cant improvement in throughput-per-power (up to 138×) over

the latest ASIC/FPGA and in-memory designs.

VII. ACKNOWLEDGMENTS

This work is funded, in part, by the Hellman Fellowship

from the University of California, NSF #2127780, Semicon-

ductor Research Corporation, and Office of Naval Research.

REFERENCES

[1] Selected algorithms 2022 - post-quantum cryptography [online].
[2] Z. Ni, D.-E.-S. Kundi, M. O’Neill, and W. Liu, “High-performance

systolic array montgomery multiplier for sike,” in ISCAS, 2021.
[3] U. Banerjee, T. S. Ukyab et al., “Sapphire: A configurable crypto-

processor for post-quantum lattice-based protocols,” arXiv, 2019.
[4] Y. Xing and S. Li, “A compact hardware implementation of cca-secure

key exchange mechanism crystals-kyber on fpga,” IACR TCHES, 2021.
[5] J. Zhang, H. Naghibijouybari et al., “Sealer: In-SRAM AES for high-

performance and low-overhead memory encryption,” in ISLPED, 2022.
[6] J. Zhang and E. Sadredini, “Inhale: Enabling high-performance and

energy-efficient in-SRAM cryptographic hash for IoT,” in ICCAD, 2022.
[7] Z. Wang, C. Liu, A. Arora, L. John et al., “Infinity stream: Portable and

programmer-friendly in-/near-memory fusion,” in ASPLOS, 2023.
[8] D. Li et al., “Mentt: A compact and efficient processing-in-memory

number theoretic transform (ntt) accelerator,” IEEE VLSI, 2022.
[9] Y. Park, Z. Wang, S. Yoo et al., “Rm-ntt: An rram-based compute-in-

memory number theoretic transform accelerator,” IEEE JXCDC, 2022.
[10] H. Nejatollahi, S. Gupta, M. Imani et al., “Cryptopim: In-memory

acceleration for lattice-based cryptographic hardware,” in DAC, 2020.
[11] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky et al., “Crystals-

dilithium: A lattice-based digital signature scheme,” IACR TCHES, 2018.
[12] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky et al., “Crystals-

kyber: a cca-secure module-lattice-based kem,” in EuroS&P, 2018.
[13] Design code for parallelism and offloading with intel® advisor [online].
[14] V. Costan et al., “Intel sgx explained,” Cryptology ePrint Archive, 2016.
[15] P.-A. Fouque, J. Hoffstein, P. Kirchner et al., “Falcon: Fast-fourier

lattice-based compact signatures over ntru,” NIST CSRC, 2018.
[16] M. Albrecht, M. Chase et al., “Homomorphic encryption standard,” in

Protecting Privacy through Homomorphic Encryption, 2021.
[17] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation

of complex fourier series,” Mathematics of computation, 1965.
[18] P. L. Montgomery, “Modular multiplication without trial division,”

Mathematics of computation, 1985.
[19] O. Mazonka, E. Chielle et al., “Fast and compact interleaved modular

multiplicationbased on carry save addition,” in ICCAD, 2022.
[20] S. Jeloka et al., “A 28 nm configurable memory (tcam/bcam/sram) using

push-rule 6t bit cell enabling logic-in-memory,” IEEE JSSC, 2016.
[21] A. Subramaniyan, J. Wang et al., “Cache automaton,” in MICRO, 2017.
[22] S. Aga, S. Jeloka et al., “Compute caches,” in HPCA, 2017.
[23] Y. Zhang, L. Xu, Q. Dong, J. Wang, D. Blaauw et al., “Recryptor: A

reconfigurable cryptographic cortex-m0 processor with in-memory and
near-memory computing for iot security,” IEEE JSSC, 2018.

[24] C. Eckert, X. Wang, J. Wang, A. Subramaniyan et al., “Neural cache:
Bit-serial in-cache acceleration of deep neural networks,” in ISCA, 2018.

[25] S. Song, W. Tang, T. Chen, and Z. Zhang, “Leia: A 2.05 mm 2 140mw
lattice encryption instruction accelerator in 40nm cmos,” in CICC, 2018.

[26] H. Nejatollahi et al., “Exploring energy efficient quantum-resistant
signal processing using array processors,” in ICASSP, 2020.

[27] J. G. Earle, “Latched carry save adder circuit for multipliers,” 1967.
[28] LPC1225fbd48 | arm cortex-m0 | 32-bit MCU | NXP [online].
[29] S. Jiang et al., “Pymtl3: A python framework for open-source hardware

modeling, generation, simulation, and verification,” MICRO, 2020.
[30] M. R. Guthaus, J. E. Stine, S. Ataei, B. Chen, B. Wu, and M. Sarwar,

“Openram: An open-source memory compiler,” in ICCAD, 2016.
[31] M. Poremba, S. Mittal, D. Li, J. S. Vetter et al., “Destiny: A tool for

modeling emerging 3d nvm and edram caches,” in DATE, 2015.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on August 07,2024 at 04:04:26 UTC from IEEE Xplore. Restrictions apply.

