
ar
X

iv
:2

11
0.

03
11

5v
2 

 [m
at

h.
A

G
]  

21
 Ju

n 
20

22

ON THE TERMINATION OF THE MMP FOR SEMI-STABLE

FOURFOLDS IN MIXED CHARACTERISTIC

LINGYAO XIE AND QINGYUAN XUE

Abstract. We improve on the result of Hacon and Witaszek by showing
that the MMP for semi-stable fourfolds in mixed characteristic terminates in
several new situations. In particular, we show the validity of the MMP for
strictly semi-stable fourfolds over excellent Dedekind schemes globally when
the residue fields are perfect and have characteristics p > 5.
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1. Introduction

Recently there has been much progress in developing the Minimal Model
Program (MMP) in positive and mixed characteristic. For surfaces the theory
is classical, and the MMP for excellent surfaces was proved in [Tan18]. For
threefolds over a perfect field k with char p > 3, most of the important results
in the MMP were established in [HX15, CTX15, Bir16, BW17, GNT19, HW21,
HW19]; see also [Wal18, HNT20]. When the base field k is imperfect (and has
characteristic > 5), some results, for example the existence of minimal models,
were proved in [DW19]. As for mixed characteristic, [BMP+20] established the
MMP for arithmetic threefolds whose residue characteristics are p > 5 (see
[XX22] for the case p > 3), and [TY20] established the MMP for strictly semi-
stable threefolds over excellent Dedekind schemes and some birational cases. The
MMP for varieties with dimension greater than 3 is much harder, but [HW20]
proved the validity of some special MMP for fourfolds in positive and mixed
characteristic.

Our main purpose in this article is to show the validity of the MMP for strictly
semi-stable fourfolds in mixed characteristic (and some partial results in positive
characteristic). To achieve this, we generalize the result of [HW20, Theorem 1.2]
by proving the termination of MMP in the non-effective case and the existence
of Mori fiber spaces.
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2 LINGYAO XIE AND QINGYUAN XUE

Throughout this paper, we assume that log resolutions of all log pairs with
the underlying varieties being birational to X as below exist and are given by a
sequence of blow-ups along the non-snc locus.

Theorem 1.1. Let (X,∆) be a four-dimensional Q-factorial dlt pair projective
over a discrete valuation ring R, where R is of mixed characteristic and has
perfect residue field with characteristic p > 5. Let s ∈ SpecR be the special point
and let φ : X → SpecR be the natural morphism.

Suppose that Supp(φ−1(s)) ⊆ ⌊∆⌋. Then we can run a (KX +∆)-MMP with
scaling of an ample divisor A over SpecR, and

(1) if KX +∆ is pseudo-effective, then this MMP terminates with a minimal
model;

(2) if KX+∆ is not pseudo-effective, then this MMP terminates with a Mori
fiber space.

Since we still do not know the existence of Mori fiber spaces for threefolds
over imperfect fields, we can only obtain a weaker result in purely positive
characteristic.

Theorem 1.2. Let (X ,Φ) be a four-dimensional Q-factorial dlt pair projective
over C, where C is a smooth curve defined over a perfect field with characteristic
p > 5. Let R := OC,s where s ∈ C is a closed point, and (X,∆) := (X ,Φ) ×C

SpecR. We still use s to denote the special point of SpecR. Let φ : X → SpecR
be the natural morphism.

Suppose that Supp(φ−1(s)) ⊆ ⌊∆⌋. If KX + ∆ is pseudo-effective, then we
can run a (KX +∆)-MMP with scaling of an ample divisor A over SpecR which
terminates with a minimal model.

Note that [HW20] proved the termination of MMP when κ(KX+∆ / SpecR) ≥
0 and ∆ has standard coefficients. They use the effectivity to deduce the
termination as in [AHK07]. In fact, in this case it is known that any (KX +∆)-
MMP terminates.

With some extra effort, we can extend Theorem 1.1 to the case where R is a
Dedekind domain instead of a discrete valuation ring.

Corollary 1.3. Let (X,∆) be a four-dimensional Q-factorial dlt pair projective
over an excellent Dedekind scheme V . Assume that XQ ̸= ∅ and that every
residue field of V is perfect. Let s ∈ V be a closed point and let φ : X → V be
the natural morphism.

Suppose that Supp(φ−1(s)) ⊆ ⌊∆⌋ and that k(s) has characteristic p > 5.
Then there exists an open neighborhood U of s in V such that we can run a
(KX + ∆)-MMP over U which terminates with either a minimal model or a
Mori fiber space.

With additional conditions on X → V , we can even run a (KX + ∆)-MMP
globally over V in Proposition 5.2. For example, as a special case, we have

Theorem 1.4. Let V be an excellent Dedekind scheme whose residue fields do
not have characteristic 2, 3 or 5. Let X be a strictly semi-stable and projective
V -variety of relative dimension 3. Assume that XQ ̸= ∅ and that every residue
field of V is perfect. Then we can run a KX -MMP over V which terminates with
either a minimal model or a Mori fiber space.
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Using the same strategy, we can obtain a similar result in positive character-
istic from Proposition 5.8.

Theorem 1.5. Let C be a smooth curve over a perfect field with characteristic
p > 5. Let X be a strictly semi-stable and projective C-variety of relative
dimension 3. Assume KX is big over C. Then we can run a KX -MMP over C
which terminates with a good minimal model.
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2. Preliminaries

A scheme X will be called a variety over a field k (resp. over SpecR, where
R is a discrete valuation ring, or DVR for short) if it is integral, separated, and
of finite type over k (resp. SpecR).

We refer the reader to [KM98, Kol13] for the standard definitions and results in
the Minimal Model Program and to [BMP+20] for those in mixed characteristic.

In this paper, a pair (X,B) consists of a normal variety X and an effective
R-divisor B such that KX + B is R-Cartier. The pair (X,B) is Kawamata log
terminal (klt) (resp. log canonical (lc)) if for any proper birational morphism
f : X → Y and any prime divisor E on Y we have multE(BY ) < 1 (resp.
multE(BY ) ≤ 1), where KY + BY = f∗(KX + B). If (X,B) admits a log
resolution f : Y → X, then it suffices to check the above condition for all prime
divisors E on Y .

For a pair (X,B) such that B =
∑

biBi with 0 ≤ bi ≤ 1, we say that (X,B) is
divisorially log terminal (dlt) if there exists an open subset U ⊆ X such that U is
smooth and Supp(B|U ) is simple normal crossing, and for every proper birational
morphism f : Y → X and any prime divisor E on Y with center Z contained
in X \ U , we have multE(BY ) < 1. We say that aE(X,B) := 1 − multE(BY )
is the log dicrepancy of (X,B) along E. A pair (X,S + B) with ⌊S + B⌋ = S
irreducible, is purely log terminal (plt) if aE(X,B) > 0 for any E ̸= S.

A morphism of schemes f : X → Y is a universal homeomorphism if
for any morphism Y ′ → Y , the induced morphism X ′ = X ×Y Y ′ → Y ′

is a homeomorphism. We say that a variety X is normal up to universal
homeomorphism if its normalization Xν → X is a universal homeomorphism.

We say that ∆ has standard coefficients if the coefficients of ∆ are contained
in {1} ∪ {1− 1

m | m ∈ Z>0}.
We say that a morphism of schemes f : X → Z is a contraction if it is proper,

surjective, and f∗OX = OZ .

We first give the definition of strictly semi-stable morphisms.

Definition 2.1. (strictly semi-stable)
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(1) Let V be the spectrum of a DVR R. Let ω be a uniformizer of R. A flat
V -variety X of relative dimension n is called strictly semi-stable if the
following hold.

• The generic fiber Xη is smooth, where η ∈ V is the generic point.
• For any closed point x in the special fiber Xs, there exists a Zariski
open neighborhood U of x such that U is étale over the scheme
SpecR[X0, ...,Xn]/(X1 · · ·Xm − ω) for some m ≤ n.

As in [dJ96, 2.16], if R has a perfect residue field, the above definition
is equivalent to that (X,Xs) is a simple normal crossing pair.

(2) Let V be a Dedekind scheme. An integral flat quasi-projective V -
variety X of relative dimension n is called strictly semi-stable if XOV,s

→
SpecOV,s is strictly semi-stable for any closed point s ∈ V .

Definition 2.2. Let π : X → U be a projective morphism of normal varieties.
Let D be an R-divisor on X. The stable base locus of D over U is the Zariski
closed set B(D/U) given by the intersection of the support of the elements of
the real linear system |D/U |R. The augmented base locus of D over U is the
Zariski closed set

B+(D/U) = B((D − ϵA)/U)

for any ample divisor A over U and any sufficiently small rational number ϵ > 0.

When running the MMP with scaling of an ample divisor A, the ampleness of
A will not be preserved. However, the properties that A ≥ 0 is big and B+(A)
does not contain any non-klt centers will be preserved by [BCHM10, Lemma
3.10.11]. These properties are already sufficient in most situations.

Lemma 2.3 ([BMP+20, Lemma 2.29], cf. [Bir16, Lemma 9.2]). Let π : (X,∆)→
SpecR be a projective morphism from a klt (resp. dlt) pair over a Noetherian
local domain. Suppose that A is an ample R-divisor on X. Then there exists an
R-divisor 0 ≤ A′ ∼R A such that (X,∆ +A′) is klt (resp. dlt).

With the help of Lemma 2.3, we are able to perturb dlt pairs by ample divisors,
similar to what we usually do in characteristic 0.

The following lemma on the existence of dlt modifications is very useful.

Lemma 2.4 ([HW20, Corollary 4.7]). Let (X,∆) be a four-dimensional Q-
factorial log pair defined over a perfect field k of characteristic p > 5 or a DVR
of characteristic (0, p) for p > 5 with perfect residue field. Then there exists a
dlt modification of (X,∆), that is, a projective birational morphism π : Y → X
such that (Y,π−1

∗ ∆ + Exc(π)) is dlt and Q-factorial, and KY + π−1
∗ ∆ + Exc(π)

is nef over X.

We state a result on the semiampleness in mixed characteristic from [Wit21].

Theorem 2.5 ([Wit21, Theorem 1.2]). Let X be a scheme admitting a proper
morphism π : X → S to an excellent scheme S and let L be a line bundle on X.
Then L is semiample if and only if L|XQ

is semiample and L|Xs is semiample
for every point s ∈ S having positive characteristic residue field.

In order to generalize some results from algebraically closed fields to perfect
fields, we need the following base change result.
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Lemma 2.6. Let (X,∆) be a dlt (resp. klt, plt, lc) geometrically integral log
pair over a perfect field k. Then (Xk̄,∆k̄) is also dlt (resp. klt, plt, lc) over k̄,
where Xk̄ and ∆k̄ are the base changes of X and ∆ to k̄ respectively.

Proof. Let f : Y → X be a log resolution of (X,∆). Since k̄/k is a separable
extension, Spec k̄ → Spec k is a smooth morphism. Therefore Xk̄ is still normal
and fk̄ : Yk̄ → Xk̄ is also a log resolution of (Xk̄,∆k̄). Then the statement follows
immediately. !

The following lemma will be used frequently in Section 5, which helps us
extend the semiampleness from a point to a neighborhood of it.

Lemma 2.7. Let f : X → T be a proper morphism of varieties and F a coherent
sheaf on X. For t ∈ T , let XOT,t

and FOT,t
be the base changes of X and F to

SpecOT,t respectively. Assume that FOT,t
is generated by global sections. Then

F is generated by global sections in a neighborhood of t ∈ T .

Proof. Since f∗F is coherent, the canonical map

φ : f∗f∗F → F

is a homomorphism of coherent OX -modules. By the assumption, the support of
coker φ is disjoint from the fiber f−1(t), and thus does not intersect f−1(U) for
an open neighborhood U ∋ t since f is proper. Hence φ is surjective on f−1(U),
which implies the conclusion. !

Lemma 2.8. Let (X,∆) be a dlt pair projective over an excellent Dedekind
scheme V . Assume that XQ ̸= ∅ and that (X,∆) admits a log resolution. Then
there exists an open subset U of V such that for any closed point s ∈ U , Xs is
reduced and (X,∆ +Xs) is dlt.

Proof. Let f : Y → X be a log resolution of (X,∆) and D the reduced divisor
whose support is Exc(f) ∪ f−1

∗ ∆. We may assume that Dv = 0, where Dv is
the vertical part of D. Since the strata of (Y,D) are relatively smooth over the
generic point of V , by the openness of smoothness (see [Sta, Tag 01V7]), there
exists an open subset U of V such that (YU ,DU ) are relatively smooth over U .
Then our claim immediately follows. !

3. Special termination

In this section we prove the special termination of MMP with scaling, assuming
the termination of MMP with scaling in lower dimensions. This is actually
sufficient to imply termination in our case.

First let us recall results about the termination of flips for three-dimensional
MMP with scaling in positive and mixed characteristic (cf. [BW17, HNT20,
BMP+20]).

Theorem 3.1. Let T be a quasi-projective scheme over a perfect field k of
characteristic p > 5. Let (S,B + A) be a three-dimensional Q-factorial dlt pair
projective over T . Assume that KS +B +A is nef over T , A ≥ 0 is big over T ,
and that B+(A/T ) contains no non-klt centers of (S,B +A). Then we can run
a (KS + B)-MMP with scaling of A over T , and any sequence of steps of such
an MMP terminates.
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Proof. We can run a (KS + B)-MMP with scaling by [HNT20, Theorem 1.3,
Theorem 1.4 and Theorem 4.11] (see also [HNT20, Theorem 6.2] and Lemma
2.6). So it remains to show the termination.

When KS +B is pseudo-effective over T , the statement follows directly from
[HNT20, Theorem 6.11] and Lemma 2.6.

Suppose that KS + B is not pseudo-effective over T . As in the proof of
[HNT20, Corollary 6.10], we can reduce to the case where k is algebraically
closed. Since B+(A/T ) contains no non-klt centers of (S,B +A), we may write
A ∼R,T H + E where H is ample and E is effective such that E contains no
non-klt centers of (S,B + A). Let 0 < ϵ ≪ 1 such that KS + B + ϵA is not
pseudo-effective. Then we can find a boundary ∆ϵ ∼R,T B + ϵH + ϵE such that
(S,∆ϵ + (1 − ϵ)A) is klt. By [BW17, Theorem 1.5], any (KS +∆ϵ)-MMP with
scaling of (1− ϵ)A over T terminates. For any (KS +B)-MMP with scaling of A,
since KS +B+ ϵA is not pseudo-effective, the scaling number λ is always greater
than ϵ. Therefore any (KS + B + λA)-trivial and (KS + B)-negative curve is
also a (KS +∆ϵ+(λ− ϵ)A)-trivial and (KS +∆ϵ)-negative curve, which implies
that this MMP is also a (KS + ∆ϵ)-MMP with scaling of (1 − ϵ)A. Hence it
terminates and the statement follows. !

Theorem 3.2. Let R be a finite-dimensional excellent ring admitting a dualizing
complex, and T a quasi-projective scheme over R whose residue fields do not have
characteristic 2, 3 or 5 (cf. [BMP+20, Setting 9.1]). Let (S,B + A) be a three-
dimensional Q-factorial dlt pair projective over T such that the image of X in
T has positive dimension. Assume that KS +B +A is nef over T , A ≥ 0 is big
over T , and that B+(A/T ) contains no non-klt centers of (S,B + A). Then we
can run a (KS + B)-MMP with scaling of A over T , and any sequence of steps
of such an MMP terminates.

Proof. When KS + B is pseudo-effective over T , the statement follows directly
from [BMP+20, Proposition 9.18].

Suppose that KS + B is not pseudo-effective over T . As in the proof of
Theorem 3.1, we can find some 0 < ϵ≪ 1 such that KS +B+ ϵA is not pseudo-
effective and a boundary ∆ϵ ∼R,T B + ϵH + ϵE such that (S,∆ϵ + (1 − ϵ)A)
is klt. Then we can run a (KS +∆ϵ)-MMP with scaling of (1 − ϵ)A over T by
[BMP+20, Theorem 9.27, Theorem 9.32 and Theorem 9.12]. Any sequence of
steps of such an MMP terminates by the proof of [BW17, Proposition 4.3] and
[BMP+20, Theorem 9.33]. Since any (KS +B)-MMP with scaling of A is also a
(KS +∆ϵ)-MMP with scaling of (1− ϵ)A, the statement follows. !

Remark 3.3. In view of [HW19] and [XX22], Theorem 3.1 and 3.2 are also
expected to hold for p = 5. However, many of the references that we use in our
proofs require p > 5.

Then we can prove the special termination of MMP with scaling for fourfolds
in positive and mixed characteristic. We closely follow the approach in [Fuj07],
and the major difference is that we consider an MMP with scaling rather than
a general MMP.

Theorem 3.4. Let X be a normal Q-factorial fourfold over a perfect field k with
char p > 5, and B an effective R-divisor such that (X,B) is dlt. Let

X0 ""# X1 ""# X2 ""# · · · ""# Xi ""# · · · ,
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be a sequence of (KX +B)-flips with scaling of an ample divisor A. Then after
finitely many flips the flipping locus and the flipped locus are disjoint from ⌊Bi⌋,
where Bi is the strict transform of B on Xi.

In the following we will always use S̄ to denote a non-klt center of the pair
(X,B), i.e. a stratum of ⌊B⌋, and use ν : S → S̄ to denote the normalization.
Note that ν is homeomorphic since S̄ is normal up to universal homeomorphism
([BMP+20, Lemma 2.28]). Now we can apply adjunction for dlt pairs to S and
get a boundaryBS on S such that the pair (S,BS) is also dlt, where (KX+B)|S =
KS +BS.

Definition 3.5. Let I ⊆ [0, 1] be a coefficient set. Then we define

D(I) := {1−
1

m
+
∑

j

rjbj
m

| m ∈ Z>0, rj ∈ Z≥0, bj ∈ I} ∩ [0, 1].

Lemma 3.6 ([K+92, 7.4.4 Lemma]). For any fixed numbers 0 < bj ≤ 1 and
c > 0, there are only finitely many possible values for m ∈ Z>0 and rj ∈ Z≥0

such that

1−
1

m
+

∑

j

rjbj
m
≤ 1− c.

Definition 3.7. Let S̄ be a non-klt center of the dlt pair (X,B) and S → S̄ the
normalization. We define the difficulty

dI(S,BS) :=
∑

α∈D(I)

#{E | a(E,BS) < −α and cS(E) ̸⊆ ⌊BS⌋}.

We know that dI(S,BS) <∞ by Lemma 3.6.

Definition 3.8. Let f : X → Y be a birational contraction with dimX ≥ 2.
We say that f is of type (D) if f contracts at least one divisor, and that f is of
type (S) if f is an isomorphism in codimension one.

Let X
f
−→ Y

g
←− Z be a pair of birational contractions. We say this is of type

(DS) if f is of type (D) and g is of type (S). Type (DD), (SD), (SS) are defined
similarly.

Proof of Theorem 3.4. First we fix some notation. Suppose that ψi : Xi → Zi is
the small contraction, and that Xi+1 → Zi is the corresponding flip. For some
fixed non-klt center S̄i, let Si be the normalization of S̄i and Ti the normalization
of ψi(S̄i)

We divide the proof into 3 steps.

Step 1. We claim that after finitely many flips, the flipping locus does not
contain any non-klt centers. First note that the number of non-klt centers is
finite. If there is a non-klt center contained in the flipping locus, then by the
negativity lemma ([KM98, Lemma 3.38]) the number of non-klt centers will
decrease, which can only happen for finitely many times.

Therefore, we may assume that the flipping locus contains no non-klt centers
of the pair (Xi, Bi) for every i. Then ϕi : Xi ""# Xi+1 induces a birational map
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ϕi|Si : Si ""# Si+1, where S̄i is a non-klt centers of (Xi, Bi) and S̄i+1 is the
corresponding non-klt center of (Xi+1, Bi+1). For simplicity we will omit |Si if
there is no danger of confusion.

The next lemma will be used repeatedly in the next step.

Lemma 3.9. Under the above assumptions, we have

a(E,Si, BSi) ≤ a(E,Si+1, BSi+1
)

for every valuation E. In particular,

totaldiscrep(Si, BSi) ≤ totaldiscrep(Si+1, BSi+1
).

Proof. Let p : W → Xi and q : W → Xi+1 be a common resolution of ϕi : Xi ""#

Xi+1, and let R be the strict transform of Si. By the negativity lemma,

p∗(KXi +Bi) ≥ q∗(KXi+1
+Bi+1).

Restricting to R, we have

p∗(KSi +BSi) ≥ q∗(KSi+1
+BSi+1

),

which implies the lemma. !

Step 2. In this step, we show that after finitely many flips, ϕi induces
an isomorphism of log pairs (Si, BSi) ≃ (Si+1, BSi+1

) for every non-klt center
S̄i. Here by an isomorphism of log pairs we mean that ϕi : Si → Si+1 is an
isomorphism with ϕi∗(BSi) = BSi+1

.
We prove by induction on the dimension d of the non-klt center S̄i. When d =

0, it is obvious. When d = 1, the claimed isomorphism of log pairs follows from
Lemma 3.9 and the fact that dI(Si, BSi) <∞, since if ϕi is not an isomorphism
then dI(Si, BSi) will decrease, which can only happen for finitely many times.

First we reduce to the case where, after finitely many flips, all Si → Ti ← Si+1

are of type (SS). We achieve this by the following lemma.

Lemma 3.10 ([Fuj07, Proposition 4.2.14]). Under the above assumptions, we
have the inequality dI(Si, BSi) ≥ dI(Si+1, BSi+1

).
Moreover, if Si → Ti ← Si+1 is of type (SD) or (DD), then dI(Si, BSi) >

dI(Si+1, BSi+1
).

Therefore, after finitely many flips, all Si → Ti ← Si+1 are of type (SS) or
(DS).

Hence by shifting the index i, we may assume that Si → Ti ← Si+1 is of type
(SS) or (DS) for all i ≥ 0. Since the number of type (DS) is bounded by the
Picard number of S0, there are only finitely many i ≥ 0 such that Si → Ti ← Si+1

is of type (DS). Therefore by further shifting the index i we may assume that
Si → Ti ← Si+1 is of type (SS) for all i ≥ 0.

The next lemma guarantees that the coefficients of BSi eventually become
stationary.

Lemma 3.11 ([Fuj07, Lemma 4.2.15]). By shifting the index i, we may assume
that a(E,Si, BSi) = a(E,Si+1, BSi+1

) for every i if E is a divisor on both Si and
Si+1.
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To summarize, by shifting the index i, we may assume that Si → Ti ← Si+1

is of type (SS) and that ϕi∗(BSi) = BSi+1
for all i ≥ 0.

Denote by λi the scaling number in each step, i.e. λi := inf{λ ∈ R | KXi +
Bi + λAi is nef}. Since A = A0 is ample, we may choose a general member
of |A|Q and assume that (X0, B0 + λ0A0) is dlt. By adjunction for dlt pairs,
(S0, BS0

+ λ0AS0
) is also dlt.

S0
0

!!❴❴❴❴❴❴❴

""

Sk0
0 = S0

1

""

!!❴❴❴❴❴❴❴ Sk1
1 = S0

2

""

S0

##❆
❆
❆
❆
❆
❆
❆

S1

$$✉✉
✉
✉
✉✉
✉
✉✉
✉

%%■
■
■■

■
■■

■
■■

S2

$$✉✉
✉
✉
✉✉
✉
✉✉
✉

T0 T1

Let f : S0
0 → S0 be a small Q-factorial dlt modification. Then run a (KS0

0
+

BS0
0
)-MMP over T0 with scaling of λ0AS0

0
, where KS0

0
+ BS0

0
= f∗(KS0

+ BS0
)

and AS0
0
= f∗AS0

. By Theorem 3.1 this MMP terminates with a minimal model

(Sk0
0 , B

S
k0
0

). Since KS1
+ BS1

is ample over T0, (S1, BS1
) is an ample model of

(S0
0 , BS0

0
) over T0. Therefore Sk0

0 → T0 factors through S1. Since KS1
+ BS1

+

λ1AS1
is nef, so is K

S
k0
0

+B
S
k0
0

+ λ1AS
k0
0

. Set S0
1 := Sk0

0 and continue.

Then we get a sequence of steps of (KS0
0
+BS0

0
)-MMP:

S0
0 ""# S1

0 ""# · · · ""# Sk0
0 = S0

1 ""# S1
1 ""# · · · ""# S0

i ""# · · · .

We claim that this MMP is actually a (KS0
0
+BS0

0
)-MMP with scaling of λ0AS0

0
.

Note that KS0
0
+BS0

0
+λ0AS0

0
is trivial over T0, as KX0

+B0+λ0A0 is trivial over

Z0. Thus the MMP S0
0 ""# S0

1 is (KS0
0
+BS0

0
+λ0AS0

0
)-trivial, and so λ0 is always

the relative nef threshold. Therefore the above sequence is a (KS0
0
+BS0

0
)-MMP

with scaling of λ0AS0
0
(globally).

By the termination of MMP with scaling for threefolds in positive character-
istic (Theorem 3.1), S0

i = S0
j for i, j sufficiently large.

Finally we show that Si = Si+1 for i ≫ 0. This is because KSi + BSi and
KSi+1

+BSi+1
have the same pullback on S0

i = S0
i+1 and are relatively anti-ample

and ample respectively, which is impossible if Si ̸= Si+1.

Step 3. By Step 2, after finitely many flips, (Si, BSi) ≃ (Si+1, BSi+1
).

Applying the negativity lemma to Si → Ti ← Si+1 we see that S̄i contains no
flipping curves and S̄i+1 contains no flipped curves. In particular, ⌊Bi⌋ contains
no flipping curves and no flipped curves. As a result, ⌊Bi⌋ cannot contain the
whole flipping locus. If the flipping locus intersects ⌊Bi⌋, then there exists a
flipping curve C such that C · ⌊Bi⌋ > 0. Hence ⌊Bi+1⌋ intersects every flipped
curve negatively. So ⌊Bi+1⌋ contains a flipped curve, which is a contradiction.
Therefore the flipping locus is disjoint from ⌊Bi⌋. Similarly for the flipped
locus. !
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Remark 3.12. The proof of Theorem 3.4 actually applies to higher dimensions.
Roughly speaking, if we know the termination of MMP with scaling in dimension
≤ n− 1 (under some conditions), then we can deduce the special termination of
MMP with scaling in dimension n (under the same conditions).

We can use the same method to deduce the special termination of MMP with
scaling in mixed characteristic.

Theorem 3.13. Let X be a normal Q-factorial fourfold over a DVR R of mixed
characteristic whose residue field k is perfect with char p > 5, and B an effective
R-divisor such that (X,B) is dlt. Let

X0 ""# X1 ""# X2 ""# · · · ""# Xi ""# · · · ,

be a sequence of (KX +B)-flips with scaling of an ample divisor A. Then after
finitely many flips the flipping locus and the flipped locus are disjoint from ⌊Bi⌋,
where Bi is the strict transform of B on Xi.

Proof. The proof is exactly the same as the proof of Theorem 3.4, except that in
Step 2 we use Theorem 3.2 instead of Theorem 3.1 to conclude the termination
of the (KS0

0
+BS0

0
)-MMP if S0 is not supported on the special fiber. !

4. Relative MMP over DVRs

In this section we prove Theorem 1.1 and 1.2. First we prove the following base
point free theorem (see [Pos21, BBS21] for other recent results on abundance in
mixed characteristic). This is similar to [HW20, Proposition 5.1] and we actually
use the similar strategy in the proof. However, instead of assuming KX +∆ is
nef and big we assume that the boundary ∆ is big. Actually this is enough for
the purpose of running MMP with scaling of an ample divisor. Besides, under
this new assumption we are able to simplify the proof by using the results in
[HNT20].

Proposition 4.1. Let (X,∆) be a four-dimensional Q-factorial dlt pair and
g : X → Z a projective contraction, where Z a projective variety over a DVR R.
Suppose that R has perfect residue field of characteristic p > 5. Let s, η ∈ SpecR
be the special and the generic point respectively, and let φ : X → SpecR be the
natural morphism. Suppose that ⌊∆⌋ = Supp(φ−1(s)) and one of the following
conditions holds:

(1) R is of mixed characteristic (0, p), KX +∆ is g-nef, and ∆ is g-big;
(2) R is purely of positive characteristic p, KX +∆ is g-nef and g-big, and

∆ is g-big.

Then KX +∆ is g-semiample.

Proof. We only prove the case Z = SpecR as the general case is quite similar.
Write SuppXs =

∑r
i=1 Ei for irreducible divisors Ei. Notice that (Xη ,∆η) is

klt and ∆η is big. By the abundance theorem for threefolds in characteristic 0
or [DW19, Theorem 1.4], (KX +∆)|Xη is semiample. Then by Theorem 2.5, it
suffices to show that (KX +∆)|Xs is semiample.

Since ∆ is big, we may write ∆ ∼Q H+F +G where H is ample, F and G are
effective, and F is supported on Xs while the support of G contains no divisors
in Xs. Let π : Y → X be a dlt modification of (X,∆ + δG) for some 0 < δ ≪ 1
(see Lemma 2.4). Let ∆Y = π−1

∗ ∆+Ex(π). Then KY +∆Y = π∗(KX +∆) and
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π−1
∗ G contains no strata of ⌊∆Y ⌋. Let P be an effective π-exceptional divisor

such that −P is π-ample. We may assume that π∗H − P is ample over SpecR.
Note that the support of P is contained in Ys and that ∆Y − π∗∆ is supported
on Ex(π). We have

∆Y ∼Q ∆Y − π
∗∆+ π∗(H + F +G)− P + P

= (π∗H − P ) + (P + π∗F +∆Y − π
∗∆+ π∗G− π−1

∗ G) + π−1
∗ G.

Let HY = π∗H − P − aYs, FY = P + π∗F +∆Y − π∗∆+ π∗G− π−1
∗ G+ aYs,

and GY = π−1
∗ G. Then HY is ample, FY is supported on Ys, and the support

of GY contains no divisors in Ys. Furthermore, if we choose a ≫ 0 then FY

is effective. Therefore, replacing X,∆,H, F,G by Y,∆Y ,HY , FY , GY , we may
assume in addition that (X,∆ + δG) is dlt.

Let ∆ϵ,δ := (1− δ)∆+ δ(H+F +G)+ ϵXs ∼Q ∆, where δ is sufficiently small.
Then the pair (X,∆ϵ,δ) is klt for some small but possibly negative ϵ.

Since H is ample, we may further assume that the support of F =
∑

fiEi

equals Xs where fi are chosen generically. Then fixing δ and increasing ϵ, we
obtain a sequence of rational numbers ϵ < ϵ1 < ϵ2 < · · · < ϵr such that Ui :=
⌊∆ϵi,δ⌋ =

∑i
j=1Ej and Ei occurs with coefficient one in ∆ϵi,δ. Here of course we

have re-indexed the Ei accordingly.

Claim 4.2. (KX + ∆)|Eν
i
is semiample, where Eν

i → Ei is the normalization.
Hence (KX +∆)|Ei is also semiample.

Proof. Set KEν
i
+ ∆Eν

i
= (KX + ∆)|Eν

i
. Since ∆ is big, we may write ∆ ∼Q

H ′ + F ′ + G′, where H ′ is ample, F ′ is supported on Xs and G′ ≥ 0 contains
no divisors in Xs. By shifting F ′ by a multiple of φ−1(s), we may assume that
F ′ = Ei + L′ where SuppL′ does not contain Ei. For 0 < ϵ≪ 1, we have

KX +∆ ∼Q (1− ϵ)(KX + Ei +∆− Ei) + ϵ(KX + Ei + L′ +H ′ +G′)

= KX + Ei + ϵ(H ′ +G′) + ϵL′ + (1− ϵ)(∆− Ei).

By the assumption M ′
ϵ := ϵL′ + (1 − ϵ)(∆ − Ei) is an effective divisor whose

support does not contain Ei. Thus we have

∆Eν
i
= (KX +∆)|Eν

i
−KEν

i

∼Q ((KX +Ei)|Eν
i
−KEν

i
) + ϵ(H ′ +G′)|Eν

i
+M ′

ϵ|Eν
i
.

Since both (KX+Ei)|Eν
i
−KEν

i
and (ϵG′+M ′

ϵ)|Eν
i
are effective, ∆Eν

i
is big. Hence

by [HNT20, Theorem 1.4(3)] the nef divisor KEν
i
+∆Eν

i
is semiample. Finally,

(KX +∆)|Ei is also semiample by [CT20, Lemma 2.11(3)], since Eν
i → Ei is a

universal homeomorphism. !

Now by induction we may assume that (KX + ∆)|Ui−1
is semiample and we

must show that (KX +∆)|Ui is semiample. By [Kee99, Corollary 2.9], it suffices
to show that g2|Ui−1∩Ei has connected geometric fibers where g2 : Eν

i → V
is the morphism associated to the semiample Q-divisor (KX + ∆)|Eν

i
. Since

(KX +∆)|Eν
i
≡V 0, we have −(KEν

i
+∆′

Eν
i
) := −(KX +∆ϵi,δ − δH)|Eν

i
is ample

over V . By [NT20, Theorem 1.2], the fibers of the non-klt locus of (Eν
i ,∆

′
Eν

i
) are

geometrically connected. This non-klt locus actually coincides with Ui−1 ∩Ei as
(X,∆ + δG) is dlt. Hence the statement of the proposition follows. !
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Proposition 4.3. Let (X,∆) be a four-dimensional Q-factorial dlt pair projec-
tive over a DVR R, where R has perfect residue field of characteristic p > 5. Let
s ∈ SpecR be the special point and let φ : X → SpecR be the natural morphism.
Suppose that Supp(φ−1(s)) ⊆ ⌊∆⌋. When R is purely of positive characteristic,
we also assume that it is a local ring of a curve C defined over a perfect field,
and that (X,∆) := (X ,Φ)×C SpecR for a four-dimensional Q-factorial dlt pair
(X ,Φ) which is projective over C.

Let E1, · · · , Er be the irreducible components of φ−1(s) and let Eν
i → Ei be

the normalization. Then we have

(1)
∑r

i=1 NE(E
ν
i )→ NE(X/SpecR) is surjective;

(2) NE(X/SpecR) = NE(X/SpecR)KX+∆≥0 +
∑

1≤i≤r, j≥1R≥0[Γi,j] for
countably many curves Γi,j ⊆ Ei such that (KX +∆) · Γi,j < 0;

(3) NE(X/SpecR) = NE(X/SpecR)KX+∆+A≥0 +
∑

1≤i≤r, 1≤j≤mi
R≥0[Γi,j]

for finitely many curves Γi,j ⊆ Ei such that (KX + ∆ + A) · Γi,j < 0,
where A is an ample R-divisor.

Proof. Since any curve over the generic point η extends to a curve on the special
fiber φ−1(s), (1) follows immediately.

For (2) and (3), we may suppose that KX +∆ is not nef over SpecR. Thus it
is not nef over s. Since KX +∆ is dlt and Ei ⊆ ⌊∆⌋, (Eν

i ,∆i) is also dlt, where
KEν

i
+∆i = (KX +∆)|Eν

i
. Then the statements follow by the cone theorem for

dlt threefolds ([HNT20, Theorem 1.3]). !

Proposition 4.4. Let (X,∆) be a four-dimensional Q-factorial dlt pair projec-
tive over a DVR R, where R has perfect residue field of characteristic p > 5.
Let s, η ∈ SpecR be the special and the generic point respectively, and let
φ : X → SpecR be the natural morphism. Let A be a big Q-divisor on X
such that (X,∆ + A) is dlt and B+(A) does not contain any non-klt centers of
(X,∆ +A).

Suppose that Supp(φ−1(s)) ⊆ ⌊∆⌋ and one of the following conditions holds:

(1) R is of mixed characteristic (0, p) and L := KX +∆+A is nef;
(2) R is purely of positive characteristic p and L := KX +∆+A is nef and

big.

Then L is semiample and induces a morphism f : X → W over SpecR. In
particular, every f -numerically trivial Q-Cartier divisor descends to a Q-Cartier
divisor on W .

Proof. The first statement follows from Proposition 4.1 by perturbing the
boundary ∆ via A. More explicitly, let ⌊∆⌋ = E + F where E is supported
on Xs while the support of F contains no divisors in Xs. Since B+(A) does not
contain any non-klt centers of (X,∆+A), we can write A ∼Q H +G where H is
ample and G ≥ 0 contains no non-klt centers of (X,∆). Hence (X,∆+A+ ϵG)
is still dlt for some sufficiently small ϵ > 0. Then there exists δ > 0 sufficiently
small such that ϵH + δF is ample. Therefore we can choose a general member
H ′ ∼Q ϵH + δF , such that if

∆′ := ∆− δF + (1− ϵ)A+ ϵG+H ′ ∼Q ∆+A,

then (X,∆′) is dlt and ⌊∆′⌋ = Supp(φ−1(s)). Notice that KX + ∆′ ∼Q L.
Applying Proposition 4.1 to the pair (X,∆′) we conclude that L is semiample.
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For the last statement, if M is an f -numerically trivial Q-Cartier divisor on
X, then we claim that B+(A+M + f∗D) ⊆ B+(A) for some sufficiently ample
divisor D on W . Indeed, by definition B+(A) = B(A−ϵH) for any ample divisor
H and any 0 < ϵ≪ 1. Since ϵH +M is f -ample, H̄ := ϵH +M + f∗D is ample
for sufficiently ample D on W . Then the claim follows as B+(A+M + f∗D) ⊆
B(A+M + f∗D − H̄) = B(A− ϵH).

Now we can find A′ ∼Q (1 − 1
n)A + 1

n(A +M + f∗D) such that (X,∆ + A′)
is dlt. Then by Propostion 4.3(3), KX + ∆ + A′ + f∗D′ is nef for sufficiently
ample D′ on W . Applying Proposition 4.1 to KX +∆+A′ + f∗D′, we see that
KX +∆+A′ + f∗D′ is semiample and hence defines a contraction f ′ : X →W ′.
Since D′ is sufficiently ample, f factors through f ′. Since A′ + f∗D′ − A is
f -numerically trivial, we see that f ′ actually coincides with f . Thus

KX +∆+A′ ∼Q,W 0 ∼Q,W KX +∆+A.

Therefore M ∼Q,W 0 and the statement follows. !

Remark 4.5. From the proof we can see that the above proposition also holds
in the relative setting, i.e. for a projective contraction g : X → Z over SpecR.
Indeed, if KX+∆+A is nef over Z, then by Proposition 4.3(3) KX+∆+A+g∗D
is also nef for sufficiently ample D on Z. Thus we reduce to the global case.

Using the same strategy as in [Bir16, Theorem 6.3], we can show the existence
of flips by reducing to the case where the coefficients belong to the standard set,
which is known by [HW20, Proof of Theorem 1.2].

Theorem 4.6. Let (X,∆) be a four-dimensional Q-factorial dlt pair projective
over a DVR R, where R has perfect residue field of characteristic p > 5. Let
s ∈ SpecR be the special point and let φ : X → SpecR be the natural morphism.
Suppose that Supp(φ−1(s)) ⊆ ⌊∆⌋. When R is purely of positive characteristic,
we also assume that it is a local ring of a curve C defined over a perfect field,
and that (X,∆) := (X ,Φ)×C SpecR for a four-dimensional Q-factorial dlt pair
(X ,Φ) which is projective over C.

If f : X → Z is a (KX +∆)-flipping contraction such that ρ(X/Z) = 1, then
the flip of f exists.

Proof. Let ζ(∆) be the number of components of ∆ whose coefficient is not
contained in the standard set Γ := {1} ∪ {1 − 1

n | n > 0}. We prove the result
by induction on ζ(∆).

If ζ(∆) = 0, then this follows by the proof of [HW20, Theorem 1.2]. Therefore
we may assume that ζ(∆) > 0 and write ∆ = aS + B where a /∈ Γ. Note that
S is not contained in φ−1(s). Let ν : Y → X be a log resolution of (X,S + B)
such that ν is an isomorphism at the generic points of strata of ⌊∆⌋ and let
BY = ν−1

∗ B + Exc(ν), SY = ν−1
∗ S. Since ζ(SY + BY ) < ζ(∆), we may run a

(KY + SY +BY )-MMP over Z. This is because the cone theorem is established
in Proposition 4.3 and the contraction theorem is also established in Proposition
4.4. This MMP terminates by [HW20, Theorem 2.14] and we get a minimal
model (W,SW + BW ), where SW , BW are the birational transforms of SY , BY

respectively. Then we run a (KY + aSY +BY )-MMP with scaling of (1 − a)SY

over Z. Note that this is also a (KY +BY )-MMP and ζ(BY ) < ζ(∆). Hence we
can run such an MMP and it terminates by [HW20, Theorem 2.14]. Thus we
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obtain a minimal model (X+, aS+ + B+). Then it is easy to see that X+ → Z
is the desired flip (cf. [HW19, Proof of Theorem 1.1]). !

Proof of Theorem 1.1. Suppose that we already have a sequence of steps of
(KX +∆)-MMP

X = X0 ""# X1 ""# · · · ""# Xk,

and we want to continue this process. Denote the special fiber of Xk by Xk,s,
and the birational transforms of ∆ and A on Xk by ∆k and Ak respectively.
Replace A by a general member in |A|Q, we may assume that (X,∆ + A) is dlt
and that B+(A) does not contain any non-klt centers of (X,∆ + A). Let λi be
the scaling number in each step, i.e. λi := inf{λ ∈ R | KXi +∆i + λAi is nef}.
If KXk

+ ∆k is nef, then we already obtain a minimal model. Otherwise, by
Proposition 4.3 there exists a (KXk

+ ∆k)-negative extremal ray spanned by a
curve Σ ⊆ Xk,s such that (KXk

+ ∆k + λkAk) · Σ = 0. Let Lk be a nef Q-
divisor such that L⊥

k = R[Σ]. Then possibly replacing Lk by a sufficiently large
multiple, Gk := Lk − (KXk

+∆k) has positive intersection with every one-cycle
in NE(X)\{0}, and hence it is ample by Kleiman’s ampleness criterion ([KM98,
Theorem 1.18]). Therefore by Proposition 4.4 L is semiample and defines a
contraction f : Xk → Z. If dimZ < dimXk, then we stop (and obtain a Mori
fiber space). If f : Xk → Z is a divisorial contraction, then we set Xk+1 := Z
and continue. If f : Xk → Z is a flipping contraction, then the flip f+ : X+

k → Z
exists by Theorem 4.6, and hence we can set Xk+1 := X+

k and continue the
MMP.

Thus we can run a (KX+∆)-MMP with scaling of A. Since the special fiber is
contained in the non-klt locus, there is no infinite sequence of flips by Theorem
3.13.

If KX+∆ is pseudo-effective, then Lk is always big in each step, which implies
that the case dimZ < dimXk cannot occur. Hence we can keep on running this
MMP until KXk

+∆k is nef, which means that we obtain a minimal model. This
proves (1).

If KX+∆ is not pseudo-effective, then KXk
+∆k can never be nef. Hence this

MMP must terminate with a Mori fiber space Xk → Z, which proves (2). !

Proof of Theorem 1.2. Similar to the proof of Theorem 1.1. The cone theorem
and the contraction theorem are established in Proposition 4.3 and Proposition
4.4. The existence of flips is shown in Theorem 4.6 and the termination of flips
is ensured by Theorem 3.4. !

Remark 4.7. In Theorem 1.2, if KX + ∆ is not pseudo-effective, we can still
run a (KX + ∆)-MMP with scaling of an ample divisor, and it will terminate
with a model (Xk,∆k) where there exists a (KXk

+∆k)-negative curve Σ ⊆ Xk

such that the divisor Lk satisfying Lk · Σ = 0 is nef but not big. In this case we
expect that Lk defines a Mori fiber space, but the semiampleness of Lk is not
known since so far we do not have the corresponding base free point theorem for
threefolds over imperfect fields.

5. Relative MMP over Dedekind schemes

As applications of Theorem 1.1 and Theorem 1.2, in this section we prove
Corollary 1.3, Theorem 1.4 and Theorem 1.5, where we replace the DVR R by
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the Dedekind scheme V in the setting. The key to extend the MMP from a local
setting to a global setting is to use the semiampleness of some divisor to extend
the contraction to an open neighborhood of a given point.

Proof of Corollary 1.3. We will run a (KX +∆)-MMP with scaling of an ample
divisor A over a neighborhood of s ∈ V . We will repeatedly replace V by some
open neighborhood s ∈ U ⊆ V and X by X ×V U . So we may assume that
the residue fields of V do not have characteristic 2, 3 or 5. Let R := OV,s and
Xs := X ×V SpecR. Let η be the generic point of R.

Let Cartier divisors D1, · · · ,Dm be generators of N1(X/V ). Then by
considering the closure of a divisor, we see that the restriction maps

N1(X/V )→ N1(Xs/SpecR), N1(X/V )→ N1(XU/U)

are surjective since X is Q-factorial. In particular, an ample divisor on Xs can
be lifted to an ample divisor on XU .

If KX + ∆ is nef over s, then it is nef over η. This is an easy consequence
of the well-known fact that ampleness is an open condition. Since (Xη ,∆η) is a
three-dimensional dlt pair defined over a field of characteristic 0, KXη + ∆η is
semiample by the abundance theorem. By Lemma 2.7, KX +∆ is semiample,
thus nef, over a neighborhood of η. Since V is an excellent Dedekind scheme, we
can then find an open neighborhood s ∈ U ⊆ V such that KX +∆ is nef over
U . Hence (X,∆) itself is a log terminal model over U , and we are done.

If KX +∆ is not nef over s, then there exists a (KX +∆)|Xs-negative extremal
ray on Xs which is spanned by a curve Σ ⊆ Xs. As in the proof of Theorem 1.1,
we can find a Q-divisor L on X such that L|Xs is nef with (L|Xs)

⊥ = R[Σ] and
G := L− (KX +∆) is ample over s. Possibly shrinking V we may assume that G
is ample over V . By Proposition 4.4 and Lemma 2.7, L is semiample over V and
defines a contraction f : X → W . Without loss of generality, we may assume
that D1 · Σ > 0. Then by Proposition 4.4 again there exist a2, · · · , am ∈ Q such
that

Di − aiD1 ∼Q,Ws 0

for 2 ≤ i ≤ m, where Ws = W ×V SpecR. Possibly shrinking V we may assume
that Di − aiD1 ∼Q,W 0. Thus the relative Picard number ρ(X/W ) = 1. It
remains to prove that any f -numerically trivial Q-Cartier divisor D descends to
W . By Lemma 2.8, possibly shrinking V we may assume that (X,∆+Xt) is dlt
for any t ∈ V \ {s}. Thus we can apply Proposition 4.4 and Lemma 2.7 to Xt

for any t ∈ V . In particular, L and L + D define the same contraction over a
neighborhood of t. Hence D descends to W over a neighborhood of t. Therefore
D descends to W over V .

If f is not birational, then f : X → W is a Mori fiber space. Thus we may
assume that f is a birational contraction.

If f is a divisorial contraction, then we set X1 = W and continue the MMP.
If f is a flipping contraction, then the flip f+ : X+ →W exists by the following
claim, and we set X1 = X+ and continue the MMP.

Claim 5.1. If f is a flipping contraction, then ft : Xt → Wt (resp. fU : XU →
WU) is either a flipping contraction or an isomorphism for any t ∈ V (resp. any
open subset U of V ). Furthermore, the flip f+ : X+ →W exists.
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Proof. The restriction map N1(X/W ) → N1(Xt/Wt) is surjective, and so
ρ(Xt/Wt) ≤ 1. If ρ(Xt/Wt) = 0 then ft is an isomorphism. If ρ(Xt/Wt) = 1
then ft is a flipping contraction. The same argument holds for fU .

Since the construction of flips is local, it suffices to show that for any t ∈ V
there exists a neighborhood Ut ∋ t such that ProjW

⊕
m≥0 f∗OX(m(KX + ∆))

is finitely generated over Ut. If ft is an isomorphism, then it is obvious. If ft
is a flipping contraction, then by Theorem 4.6 the flip (ft)+ exists. Taking the
closure of (ft)+ we get a projective morphism X ′ → W . Then there is an open
neighborhood Ut of t such that X ′

Ut
→WUt is small and the birational transform

of KX +∆ is ample over WUt . Therefore (fUt)
+ : X ′

Ut
→ WUt is the flip of fUt ,

and hence the desired finite generation follows. !

Finally this MMP terminates by the same reason as in the proof of Theorem
1.1. In particular, we get a log terminal model over a neighborhood of s if
(KX +∆)|Xs is pseudo-effective, or a Mori fiber space over a neighborhood of s
if (KX +∆)|Xs is not pseudo-effective. !

Furthermore, if (X,∆)→ V is a dlt morphism, then we can run an MMP not
only over an open neighborhood but globally over the base.

Proposition 5.2. Let V be an excellent Dedekind scheme whose residue fields
are perfect and do not have characteristic 2, 3 or 5. Let (X,∆) be a four-
dimensional Q-factorial pair projective over V such that XQ ̸= ∅. Assume that
(X,∆+Xt) is dlt for any closed point t ∈ V , where Xt is the fiber of the natural
morphism φ : X → V . Then we can run a (KX +∆)-MMP with scaling of an
ample divisor over V , and

(1) if KX +∆ is pseudo-effective over V , then this MMP terminates with a
minimal model;

(2) if KX+∆ is not pseudo-effective over V , then this MMP terminates with
a Mori fiber space.

Proof. We shall construct a special (KX +∆)-MMP with scaling such that the
scaling number will decrease after finitely many steps, which is important for us
to deduce termination of the MMP.

The assumptions in the proposition are preserved under the (KX +∆)-MMP
over V . So it suffices to prove that we can run such an MMP and it terminates.
We will use the same notation as in the proof of Corollary 1.3.

Let A be a Q-divisor such that for any closed point t ∈ V , there exists At ∼Q,V

A such that

• KX +∆+A is nef over V ,
• (X,∆ +Xt +At) is dlt, and
• B+(A/V ) does not contain any non-klt centers of (X,∆ +Xt +At).

To start with, we can choose A to be a small multiple of a sufficiently ample
divisor over V .

Claim 5.3. c := inf{0 ≤ b ∈ R | KX + ∆ + bA is nef over V } is a rational
number. If c > 0, then there exists a (KX + ∆)-negative curve Σ ⊆ X over V
such that (KX +∆+ cA) · Σ = 0.

Proof. Let a := inf{0 ≤ b ∈ R | KX +∆+ bA is nef over η}. If a = c then we are
done by the cone theorem on Xη. Otherwise, by the cone theorem and the base
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point free theorem on Xη , we see that a is a rational number and KX +∆+ aA
is semiample over η. Lemma 2.7 implies that KX+∆+aA is actually semiample
over an open neighborhood of η. Thus the (KX +∆ + aA)-negative curves are
supported on only finitely many closed fibers. Notice that any (KX +∆+ aA)-
negative extremal ray is also (KX+∆)-negative sinceKX+∆+A is nef. Then the
claim follows by considering adjunction and the cone theorem on each component
of those closed fibers. !

First we show that we can run a (KX +∆)-MMP with scaling of A.

Lemma 5.4. Under the same assumptions as in Proposition 5.2, let A be a
divisor as above. Suppose c := inf{0 ≤ b ∈ R | KX +∆ + bA is nef over V } >
0. Then there exist a (KX + ∆)-negative extremal curve Σ over V such that
(KX +∆+ cA) ·Σ = 0, and a contraction g : X → Z of Σ such that ρ(X/Z) = 1.

Furthermore, if g is a flipping contraction, then the flip g+ : X+ → Z exists.

Proof. Now KX +∆ + cA is semiample over V by Proposition 4.4 and Lemma
2.7. Let f : X →W be the contraction defined by KX +∆+ cA. By Claim 5.3,
f is not an isomorphism.

If KX + ∆ is nef over η, then it is semiample and hence nef over an
open neighborhood of η by the abundance in characteristic 0 and Lemma 2.7.
Therefore the (KX +∆)-negative curves are supported on finitely many closed
fibers Xti . Considering adjunction and the cone theorem on each component of
Xti , we can deduce that there are finitely many curves C1, · · · , Cm, such that

NE(X/W ) = NE(X/W )KX+∆≥0 +
m∑

j=1

R≥0[Cj ].

Then there exists an ample divisor H such that (KX + ∆ + H)⊥ = R[Cj] for
some j. Hence by Proposition 4.4 and Lemma 2.7, KX + ∆ + H is semiample
over V and defines a desired contraction.

Next assume that KX+∆ is not nef over η. Then there is an ample divisor Gη

on Xη such that KXη +∆η +Gη is nef and (KXη +∆η +Gη)⊥ = R[Σ] for some
(KXη +∆η)-negative curve Σ ⊆ Xη. Let G = Gη. Note that G is ample over a
neighborhood of η but may behave badly outside. Let G′ := ϵG+ (1− ϵ)cA for
some sufficiently small ϵ ∈ Q, such that for any t ∈ V there exists G′

t ∼Q,V G′

satisfying

• (X,∆ +Xt +G′
t) is dlt, and

• B+(G′/V ) does not contain any non-klt centers of (X,∆ +Xt +G′
t).

Since L′ := KX+∆+G′ is nef over η, it is semiample and hence nef over an open
neighborhood of η by the base point free theorem in characteristic 0 and Lemma
2.7. If L′ is not nef over W , then the L′-negative curves are supported on finitely
many closed fibers. Hence we can argue as above and deduce the conclusion. If
L′ is nef over W , then by Proposition 4.4 and Lemma 2.7 it is semiample over
W and hence defines a contraction f ′ : X → W ′ over W . By the choice of Gη ,
ρ(Xη/W ′

η) = 1. If ρ(X/W ′) = 1, then f ′ is the desired contraction. Otherwise,
by the proof of Corollary 1.3, ρ(XU/W ′

U ) = 1 for some open subset U ⊆ V . Let
Σ1 be a curve generating N1(XU/W ′

U ), and let Σ2 ∈ N1(X/W ′) be a curve which
is numerically linearly independent with Σ1. Then we can find a divisor H ′ such
that H ′ · Σ1 = 0 while H ′ · Σ2 < 0. Consider L′′ := KX + ∆ + G′ + δH ′ for
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δ ∈ Q sufficiently small. Then L′′ is nef over η but not nef over V . Therefore
the L′′-negative curves are supported on finitely many closed fibers. Hence we
can argue as above and deduce the conclusion.

If g is a flipping contraction, then we can apply Claim 5.1 to conclude the
existence of the flip. !

Then we show the termination of the MMP in a special case.

Lemma 5.5. Under the same assumptions as in Proposition 5.2, if

X = X0 ""# X1 ""# · · · ""# Xi ""# · · ·

is a sequence of steps of (KX +∆)-MMP with scaling of an ample divisor over
V such that it is an isomorphism on XU for some open subset U ⊆ V , then this
MMP terminates.

Proof. First we claim that the restriction of the above MMP to Xt is again an
MMP, where t ∈ V is a closed point. Consider one step of the above MMP
Xi ""# Xi+1, and let fi : Xi → Zi be the corresponding contraction. Let
(Xi)t := Xi ×V SpecOV,t and (Zi)t := Zi ×V SpecOV,t. If fi is a divisorial
contraction, then fi|(Xi)t is either a divisorial contraction or an isomorphism,
since ρ((Xi)t/(Zi)t) ≤ ρ(Xi/Zi) = 1. If fi is a flipping contraction, then by
Claim 5.1 fi|(Xi)t is either a flipping contraction or an isomorphism, and in the
former case the flip exists and is the same as the restriction of the flip. Therefore
we can restrict the above MMP and obtain an MMP of Xt.

Let t1, · · · , tl the closed points which are not in U . By Theorem 1.1, for each
ti there exists an integer Ni such that Xti,j ""# Xti,j+1 are isomorphisms for
j ≥ Ni. In particular, Xj ""# Xj+1 are isomorphisms over U ∪ {ti} for j ≥ Ni.
Therefore, Xj ""# Xj+1 are isomorphisms for j ≥ max{N1, · · · , Nl}. Hence the
MMP in the lemma terminates. !

Now we start to construct the special (KX + ∆)-MMP with scaling of A as
we mentioned in the beginning of the proof.

Note that KX +∆ + cA is nef over V since c is the nef threshold. If c = 0,
then we already get a log terminal model. If c > 0, then by Proposition 4.4 and
Lemma 2.7, KX +∆+cA is actually semiample over V and defines a contraction
f : X → W .

Claim 5.6. We can run a (KX+∆+ c
2A)-MMP over W such that it terminates.

Notice that such an MMP is also a (KX +∆)-MMP over V with scaling of A.

Proof. If KX +∆+ c
2A is nef over W , then we already get a log terminal model.

Otherwise, first consider the case whereKX+∆+ c
2A is nef over Wη. Then by the

base point free theorem in characteristic 0 and Lemma 2.7, it is semiample over
WU for some open subset U ⊆ V . By Lemma 5.4, we can run a (KX +∆+ c

2A)-
MMP with scaling with of c

2A. Note that this MMP is an isomorphism on XU .
Therefore by Lemma 5.5 this MMP terminates.

Next consider the case where KX +∆ + c
2A is not nef over Wη. Then there

exist a (KXη + ∆η + c
2Aη)-negative extremal curve Σ on Xη, and an effective

Q-divisor G on X such that

• G is ample over η,
• L = KX +∆+G is nef over η, and
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• (Lη)⊥ = R[Σ].

Possibly replacing G by (1 − ϵ)cA + ϵG for 0 < ϵ ≪ 1 and ϵ ∈ Q, we may
assume that for any t ∈ V , there exists Gt ∼Q,V G such that (X,∆ +Xt + Gt)
is dlt and B+(G/V ) does not contain any non-klt centers of (X,∆ +Xt +Gt).
Just as in the first case, we can run a (KX + ∆ + G)-MMP with scaling of an
ample divisor over W and it terminates. If the MMP terminates with a Mori
fiber space, then we are done. Otherwise we obtain a minimal model over W .
So we may assume that KX + ∆ + G is nef over W . Then by Proposition 4.4
and Lemma 2.7 it is semiample over W and defines a contraction g : X → Z.
By the proof of Corollary 1.3, there exists an open subset U of V , such that
ρ(XU/ZU ) = 1. By Lemma 5.4 we can run a (KX + ∆ + c

2A)-MMP over Z.
If each step of the MMP is an isomorphism over η, then it is an isomorphism
on XU , since ρ(XU/ZU ) = 1 implies that any contraction contracting a curve
in XU also contracts some curve in Xη . In this situation by Lemma 5.5 the
MMP terminates, which is a contradiction since KX +∆+ c

2A is not nef over η.
Thus we can choose Xi ""# Xi+1 to be the first step in this MMP which is not an
isomorphism over η. Replace X →W by Xi+1 →W and continue the discussion
as above. Then we obtain a sequence of steps of (KX +∆ + c

2A)-MMP, which
must terminate since otherwise restricting to the generic fiber Xη we will get an
infinite sequence of flips on a dlt threefold in characteristic 0. !

We run the MMP as in Claim 5.6. If the MMP terminates with a Mori fiber
space, then we are done. So we may assume that we obtain a model (X ′,∆′)
such that KX′ +∆′ is nef over W . This is also a (KX +∆)-MMP with scaling
of A, and next we prove that the scaling number decreases. More explicitly, we
claim that

c′ := inf{0 ≤ b ∈ R | KX′ +∆′ + bA′ is nef over V } < c.

Indeed, by the construction above there is no (KX′ +∆′)-negative and (KX′ +
∆′+ cA′)-trivial curve, and Claim 5.3 implies that c cannot be the nef threshold
on X ′.

Let X = X0 ""# X1 ""# · · · ""# Xi ""# · · · be the sequence of steps of
(KX + ∆)-MMP with scaling of A we constructed above and λi the scaling
numbers.

Claim 5.7. The MMP above terminates.

Proof. Assume the opposite. Let limi→∞ λi = λ. Then λi > λ since λi will
decrease after finitely many steps. For any s ∈ V , there exists a positive integer
Ns such that Xj ""# Xj+1 are isomorphisms on Xs for j ≥ Ns. When s is a closed
point this follows from Theorem 1.1, and when s = η this follows from the MMP
for threefolds in characteristic 0. In particular, Xj ""# Xj+1 are isomorphisms
over an open neighborhood of s.

First let s = η. Then KXj + ∆j + λjAj are nef on Xη for j ≥ Nη. Let
a := inf{0 ≤ b ∈ R | KXNη

+ ∆Nη + bANη is nef over η}. Then we can see
that a is a rational number and a ≤ λ. By the base point free theorem in
characteristic 0 and Lemma 2.7, KXNη

+ ∆Nη + aANη is semiample and hence
nef over an open subset U of V . Note that the MMP Xj ""# Xj+1 only contracts
(KXj +∆j)-negative and (KXj +∆j +λjAj)-trivial extremal rays. Since λj > a
for any j > 0, Xj ""# Xj+1 is an isomorphism on Xs for any s ∈ U and
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j ≥ Nη. Let {s1, ..., sl} = V \ U . Then Xj ""# Xj+1 will be isomorphisms
when j > max{Nη, Ns1 , ..., Nsl}, which is a contradiction since we assume the
MMP does not terminate. !

We have constructed a (KX +∆)-MMP with scaling of an ample divisor over
V and proved that the MMP terminates. Hence the proposition follows. !

Proof of Theorem 1.4. By the definition of strict semi-stability, we can see that
X satisfies the assumptions in Proposition 5.2. Therefore the statement follows.

!

Note that the proof of Proposition 5.2 also applies to the positive characteristic
case when KX +∆ is big.

Proposition 5.8. Let (X,∆) be a four-dimensional Q-factorial klt pair pro-
jective and surjective over a curve C which is defined over a perfect field of
characteristic p > 5. Assume that (X,∆+Xt) is dlt for any closed point t ∈ C,
where Xt is the fiber of the natural morphism φ : X → C.

If KX +∆ is big over C, then we can run an (KX +∆)-MMP with scaling of
an ample divisor over C which terminates with a good minimal model.

Proof. Since KX + ∆ is big, the semiampleness results needed in the proof of
Proposition 5.2 hold by Proposition 4.4(2) and [DW19, Theorem 1.4]. Note that
the arguments in the proof of Corollary 1.3 also hold in positive characteristic
under this stronger condition. Thus we can argue as in the proof of Proposition
5.2 and get a log terminal model. It is actually a good minimal model by [HW20,
Proposition 5.1] and Lemma 2.7. !

Proof of Theorem 1.5. By the definition of strict semi-stability, we can see that
X satisfies the assumptions in Proposition 5.8. Therefore the statement follows.

!
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