

Disciplinary and Interdisciplinary Science Education Research

3D plants: The impact of integrating science, design, and technology on high school student learning and interests in STEAM subjects and career

--Manuscript Draft--

Manuscript Number:		
Full Title:	3D plants: The impact of integrating science, design, and technology on high school student learning and interests in STEAM subjects and career	
Article Type:	Research	
Funding Information:	National Science Foundation (1949463)	Dr. Kristine Callis-Duehl
Abstract:	<p>STEM education is often disconnected from innovation and design, where students self-identify as solely scientists, artists, or technophiles, but rarely see the connection between the disciplines. The inclusion of arts (A) in STEM education (STEAM) offers an educational approach where students see how subjects are integrated through learning experiences that apply to everyday, developing personal connections and becoming motivated learners who understand how skills from each subject are needed for future careers. This project addresses both the disconnect between science, design, and technology and how high school students can benefit from innovative learning experiences in plant science that integrate these disciplines while gaining invaluable skills for future STEM careers. We used the Science-Art-Design-Technology (SADT) pedagogical approach, characterized by its project-based learning that relies on student teamwork and facilitation by educators. This approach was applied through a STEAM educational 3D plant module where teams: 1) investigated plants under research at a plant science research center, 2) designed and created 3D models of those plants, 3) experienced the application of 3D modeling in augmented and virtual reality platforms, and 4) disseminated project results. We used a mixed-method approach using qualitative and quantitative research methods to assess the impact of the 3D modeling module on students' understanding of the intersection of art and design with science, learning and skills gains, and interests in STEAM subjects and careers. A total of 160 students from eight educational institutions (schools and informal programs) implemented the module. Student reflection questions revealed that students see art and design playing a role in science mainly by facilitating communication and further understanding and fostering new ideas. They also see science influencing art and design through the artistic creation process. The students acknowledged learning STEAM content and applications associated with plant science, 3D modeling, and augmented and virtual reality. They also acknowledged gaining research skills and soft skills such as collaboration and communication. Students also increased their interest in STEAM subjects and careers, particularly associated with plant science. The SADT approach, exemplified by the 3D plant module, effectively integrates science, art, design, and technology, enhancing student literacy in these fields, and providing students with essential 21st century competencies. The module's flexibility and experiential learning opportunities benefit students and educators, promoting interdisciplinary learning and interest in STEAM subjects and careers. This innovative approach is a valuable tool for educators, inspiring new ways of teaching and learning in STEAM education.</p>	
Corresponding Author:	Sandra Arango-Caro, Ph.D. Donald Danforth Plant Science Center St. Louis, MO UNITED STATES OF AMERICA	
Corresponding Author E-Mail:	SArango-Caro@danforthcenter.org	
Corresponding Author Secondary Information:		
Corresponding Author's Institution:	Donald Danforth Plant Science Center	
Corresponding Author's Secondary Institution:		
First Author:	Sandra Arango-Caro	

First Author Secondary Information:	
Order of Authors:	Sandra Arango-Caro
	Tiffany Langewisch
	Kaitlyn Ying
	Michelle Arellano Haberberger
	Nate Ly
	Christopher Branton
	Kristine Callis-Duehl
Order of Authors Secondary Information:	
Opposed Reviewers:	
Additional Information:	
Question	Response
Is this study a clinical trial?<p><i>A clinical trial is defined by the World Health Organisation as 'any research study that prospectively assigns human participants or groups of humans to one or more health-related interventions to evaluate the effects on health outcomes'.</i></p>	No

[Click here to view linked References](#)

1
2
3
4 1 **Abstract**
5
6 2 STEM education is often disconnected from innovation and design, where students self-
7
8 3 identify as solely scientists, artists, or technophiles, but rarely see the connection between the
9
10 4 disciplines. The inclusion of arts (A) in STEM education (STEAM) offers an educational
11
12 5 approach where students see how subjects are integrated through learning experiences that
13
14 6 apply to everyday, developing personal connections and becoming motivated learners who
15
16 7 understand how skills from each subject are needed for future careers. This project addresses
17
18 8 both the disconnect between science, design, and technology and how high school students
19
20 9 can benefit from innovative learning experiences in plant science that integrate these disciplines
21
22 10 while gaining invaluable skills for future STEM careers. We used the Science-Art-Design-
23
24 11 Technology (SADT) pedagogical approach, characterized by its project-based learning that
25
26 12 relies on student teamwork and facilitation by educators. This approach was applied through a
27
28 13 STEAM educational 3D plant module where teams: 1) investigated plants under research at a
29
30 14 plant science research center, 2) designed and created 3D models of those plants, 3)
31
32 15 experienced the application of 3D modeling in augmented and virtual reality platforms, and 4)
33
34 16 disseminated project results. We used a mixed-method approach using qualitative and
35
36 17 quantitative research methods to assess the impact of the 3D modeling module on students'
37
38 18 understanding of the intersection of art and design with science, learning and skills gains, and
39
40 19 interests in STEAM subjects and careers. A total of 160 students from eight educational
41
42 20 institutions (schools and informal programs) implemented the module. Student reflection
43
44 21 questions revealed that students see art and design playing a role in science mainly by
45
46 22 facilitating communication and further understanding and fostering new ideas. They also see
47
48 23 science influencing art and design through the artistic creation process. The students
49
50 24 acknowledged learning STEAM content and applications associated with plant science, 3D
51
52 25 modeling, and augmented and virtual reality. They also acknowledged gaining research skills
53
54 26 and soft skills such as collaboration and communication. Students also increased their interest
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 27 in STEAM subjects and careers, particularly associated with plant science. The SADT
5
6 28 approach, exemplified by the 3D plant module, effectively integrates science, art, design, and
7
8 29 technology, enhancing student literacy in these fields, and providing students with essential 21st
9
10 30 century competencies. The module's flexibility and experiential learning opportunities benefit
11
12 31 students and educators, promoting interdisciplinary learning and interest in STEAM subjects
13
14 32 and careers. This innovative approach is a valuable tool for educators, inspiring new ways of
15
16 33 teaching and learning in STEAM education.

19
20 34
21

22 35 **Keywords:** STEAM, 3D modeling, Plant science, Project-based learning, Teamwork,
23
24 36 Augmented reality, Virtual reality

26
27 37
28

29 38
30

31 39
32

33 40
34

35 41
36

37 42
38

39 43
40

41 44
42

43 45
44

45 46
46

47 47
48

49 48
50

51 49
52

53 50
54

55 51
56

57 52
58

59 53
60

61 54
62

63 55
64

65 56

1
2
3
4 53 **Introduction**
5
6 54
7
8 55 To remain a world leader and contribute to science and technological advances, the United
9
10 56 States must have a future science, technology, engineering, and mathematics (STEM)
11
12 57 workforce with the skills necessary to face 21st century global challenges (Perignat & Katz-
13
14 58 Buonincontro, 2019). Developing and implementing successful instructional strategies and
15
16 59 approaches to STEM learning is essential. STEM education is a cohesive interdisciplinary
17
18 60 approach to learning where academic concepts across disciplines are coupled with real-world
19
20 61 lessons to develop student STEM literacy (Tsupros et al., 2008). However, STEM education is
21
22 62 often disconnected from innovation and design, where students self-identify as solely scientists,
23
24 63 artists, or technophiles, but rarely see the connection between the disciplines (Keefe & Laidlaw,
25
26 64 2013). The integration of arts (A) in STEM education involves the inclusion of art and design
27
28 65 principles, concepts and techniques to promote learning in more connected and holistic ways
29
30 66 that foster student creativity and innovation through the development of systematic thinking
31
32 67 skills that combine the mind of a scientist or technologist with that of an artist or designer
33
34 68 (Bazler & Van Sickle, 2017; Meletiou-Mavrotheris et al., 2022). With STEM plus Arts, STEAM
35
36 69 education offers an integrated educational approach for scientific-technological, artistic, and
37
38 70 humanistic competencies that transcends from interdisciplinary to transdisciplinary (Perales &
39
40 71 Aróstegui, 2021). Students see how subjects are integrated through learning experiences that
41
42 72 apply to every day developing personal connection and becoming motivated learners, who
43
44 73 understand how skills from each subject are needed for future careers (Henriksen et al., 2019;
45
46 74 Madden et al., 2013).
47
48 75 STEAM education includes design and design thinking which involves creation,
49
50 76 experimentation, and problem-solving, encouraging different perspectives and approaches that
51
52 77 promote creativity and innovation while engaging students in STEAM learning (Li et al., 2019;
53
54 78 Rolling, 2016). However, in traditional learning school environments, design is usually not
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 79 emphasized or is limited to engineering and technology-related activities (Li et al., 2019). With
5
6 80 the inclusion of emergent technologies such as 3D and multimedia design, the design scope
7
8 81 has expanded using digital fabrication tools and 3D visualization for interactive learning (Leavy
9
10 et al., 2023). Hands-on activities that include designing, developing, and creating students'
11
12 83 products, such as 3D models, allow students to gain practical skills, improve visual imagination,
13
14 84 and formulate, challenge, realize, and validate ideas (Fu et al., 2022; Leavy et al., 2023). The
15
16 85 3D modeling creative process becomes a medium for project-based learning (PBL), problem
17
18 86 solving, and critical and outside-the-box thinking, motivating students to participate and
19
20 87 establish connections with their work and promoting the learning of STEAM subjects and
21
22 88 careers. Since design is relatively new in STEAM school education, examination of student
23
24 89 learning outcomes from design experiences is crucial (Li et al., 2019).

28
29 90 Science literacy in STEAM education is essential as it allows students to comprehend
30
31 91 relevant scientific concepts and use science to understand the world around them and address
32
33 92 complex challenges (Mansfield & Reiss, 2020; National Academies of Sciences, Engineering,
34
35 93 and Medicine, 2021). Exposure to the scientific method empowers students to formulate
36
37 94 questions, investigate and draw conclusions, and present results, developing critical thinking
38
39 95 and motivation to join the scientific workforce (Arango-Caro et al., 2024; Mansfield & Reiss,
40
41 96 2020; Mastronardi et al., 2020). However, science education is not necessarily a priority, and
42
43 97 high-quality, comprehensive learning opportunities are not accessible to many students,
44
45 98 particularly from low-income communities, Black, Hispanic, and Indigenous groups, and rural
46
47 99 areas (Mansfield & Reiss, 2020; National Academies of Sciences, Engineering, and Medicine,
48
49 100 2021; National Science Board, 2024). By integrating art and design in science teaching,
50
51 101 educators can promote scientific literacy and facilitate its access among diverse communities
52
53 102 through STEAM education (Liao, 2016; Perales & Aróstegui, 2021).

57
58 103 With the rapid change of technological advances, STEAM educators need to apply
59
60 104 innovative strategies to keep pace with new ways of learning. Some emergent technologies

1
2
3
4 105 have shown potential to improve learning experiences and outcomes through nontraditional
5
6 106 educational practices, such as augmented and virtual reality (AVR) and 3D design (Leavy et al.,
7
8 107 2023). These technologies, among others, supports self-directed learning, individualized
9
10 learning, and the learning needs of students with disabilities, while facilitating global interaction
11
12 108 and collaboration (Haleem et al., 2022; Mabe et al., 2022; U.S. Department of Education, 2024).
13
14 109 Emergent technologies add to the potential for technology to revolutionize education as society
15
16 110 has entered the Fourth Industrial Revolution, transforming all aspects of everyday life with an
17
18 111 increasing impact on workforce development and demand (Leavy et al., 2023). New
19
20 112 professionals will need a strong background in emergent technologies (e.g., artificial
21
22 113 intelligence, robotics, AVR), data management, and transversal and soft skills (e.g., creativity,
23
24 114 social and emotional intelligence, communication, collaboration, and critical thinking) (Leavy et
25
26 115 al., 2023). Immersive experiences through AVR combine the physical world with digital or
27
28 116 simulated realities, allowing students to explore inaccessible places, visualize abstract content,
29
30 117 travel through time, and face risk safely (Çoban, Akçay, et al., 2022; Çoban, Bolat, et al., 2022;
31
32 118 Huang et al., 2016; Pelletier et al., 2021). Immersive AVR experiences can thus facilitate
33
34 119 learning of factual and conceptual knowledge, motivate scientific learning and interest in STEM
35
36 120 careers, and develop skills in critical and abstract thinking, creativity, and problem solving (Chiu
37
38 121 & Li, 2023; Chng et al., 2023; Xu et al., 2022; Zhang et al., 2022). Today's youth need to be
39
40 122 technologically literate and know how to work collaboratively, participate in social networks,
41
42 123 negotiate across cultural differences, and navigate contradictory data to be prepared for future
43
44 124 jobs (Anderson-Inman, 2009; Keefe & Laidlaw, 2013; Land, 2013). In addition, educational
45
46 125 strategies must be devised to reduce the digital use and access divide that arises from some
47
48 126 institutions having limited resources including technological education tools (Reich & Ito, 2017;
49
50 127 U.S. Department of Education, 2024). Lastly, with technological advances comes the challenge
51
52 128 and responsibility of educators to offer innovative learning opportunities that are interdisciplinary
53
54 129 and
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 130 and holistic through the STEAM model, as students' 21st century skills lack the integration of the
5
6 131 art disciplines (Leavy et al., 2023; Soroko et al., 2021).
7
8 132 Project-based learning in STEAM is an effective means to promote interdisciplinary, self-
9
10 133 directed student learning through students working in collaborative teams to create a product
11
12 134 (Hawari & Noor, 2020; Markula & Aksela, 2022). The approach of PBL deviates from the
13
14 135 teacher-led classroom, making the students active participants and teachers facilitators. When
15
16 136 teachers are facilitators, they guide the learning process so that students can learn through
17
18 137 experience. Students can explore a problem or topic and devise a solution by planning,
19
20 138 investigating primary sources, and using scientific practices (Markula & Aksela, 2022). Students
21
22 139 have autonomy and develop leadership skills and project ownership through collaborating
23
24 140 actively, performing challenging tasks, and exploring real-world affairs (Hawari & Noor, 2020;
25
26 141 Major & Govers, 2014; Nieswandt et al., 2020). Peer-directed group work has a positive effect
27
28 142 on student achievement, social interactions, communication skills, and collective responsibility
29
30 143 (Détienne et al., 2012; Nieswandt et al., 2020). The ability to express oneself and connect with
31
32 144 others is crucial for achieving professional success (Thornhill-Miller et al., 2023). Explaining
33
34 145 science to peers is part of cooperative learning that builds character and self-efficacy (Cormier
35
36 146 & Langlois, 2022; Kulgemeyer, 2018; Liao, 2016). Communicating skills with scientific or general
37
38 147 audiences fosters an understanding of scientific concepts and the process of science. It
39
40 148 develops skills to engage with science regardless of whether students pursue science-related
41
42 149 careers (National Academies of Sciences, Engineering, and Medicine, 2017; Shivni et al., 2021).
43
44 150 A successful PBL-STEAM learning approach allows students to think critically and creatively,
45
46 151 work collaboratively, and practice scientific communication.
47
48 152
49
50 153 **Science-Art-Design-Technology (SADT) Approach**
51
52
53 154 Our project addresses the disconnect between science, art and design, and technology,
54
55 155 exploring how high school students can benefit from innovative learning experiences in plant
56
57
58
59
60
61
62
63
64
65

1
2
3
4 156 science. High school students need guidance that leads them toward the careers of their
5
6 157 interest and exposure to STEM-relevant experiences to help them transition to college and join
7
8 158 the workforce (Heise et al., 2020; Murphy et al., 2019; National Academies of Sciences,
9
10 159 Engineering, and Medicine, 2021). We use the Science-Art-Design-Technology (SADT)
11
12 160 approach, inspired by STEAM pedagogical educational models, to support student learning and
13
14 161 interests in STEAM subjects and careers (Fig 1). The SADT approach is characterized by its
15
16 162 PBL, which relies on student teamwork and facilitation by educators. This approach is applied
17
18 163 through a STEAM educational module where students, working in collaborative teams, develop
19
20 164 projects made of four components: 1) investigation of plants under research at a large science
21
22 165 research center in the Missouri, USA, 2) design and creation of 3D models of those plants, 3)
23
24 166 application of 3D modeling in emergent technology platforms (AVR), and 4) dissemination of
25
26 167 project-results. This project is inclusive and diverse, closing the digital use and access divide by
27
28 168 bringing these transformative learning and emergent technologies into educational institutions
29
30 169 that cannot otherwise access the technology due to limited resources or remote locations and
31
32 170 that have high representation of minority groups underrepresented in STEM (e.g., rural
33
34 171 students, women, Hispanics, and African Americans) (National Academies of Sciences,
35
36 172 Engineering, and Medicine, 2017; U.S. Department of Education, 2024).
37
38 173 This study examines the impact of the SADT approach on high school student's
39
40 174 understanding of the integration of art and science, learning and skills gains, and changes in
41
42 175 interest in STEAM subjects and careers. The study also aims to contribute to high school
43
44 176 STEAM education by sharing lessons learned and best practices to inspire innovative holistic
45
46 177 practices with interdisciplinary approaches. This study was guided by the following questions:
47
48 178 1. What do the students understand about the intersection of art and design with science?
49
50 179 2. What are the students' learning and skill gains from using the SADT approach?
51
52 180 3. How does the SADT approach impact students' interest in STEAM subjects and
53
54 181 careers?
55
56
57
58
59
60
61
62
63
64
65

1. What do the students understand about the intersection of art and design with science?

2. What are the students' learning and skill gains from using the SADT approach?

3. How does the SADT approach impact students' interest in STEAM subjects and

careers?

1
2
3
4 182 4. What are the contributions of the SADT approach to STEAM education?
5
6 183
7
8
9 184 **Methodology**
10
11 185
12
13 186 **Student project-based module**
14
15 187 A 3D plant modeling project-based module for high school students was developed to integrate
16
17 188 science, art, design, and technology into their learning experiences. This module was designed
18
19 189 by researchers from the Education Research and Outreach Lab (EROL) at [the institution –
20
21 blinded] in [the location – blinded], a large non-academic plant scientific research center. The
22
23 190 module was facilitated by formal and informal educators and developed by teams of 3-5 high
24
25 191 school students in collaboration with [the institution – blinded] education researchers and plant
26
27 192 scientists, between the summer of 2021 and the spring of 2024. This module consisted of four
28
29 193 components: 1) investigation of the biology and uses of plant species and their importance for
30
31 194 scientific research at the [the institution – blinded], 2) creation of 3D models of plant structures
32
33 195 from those species, 3) exposure to AVR plant-related immersive experiences to understand the
34
35 196 application of 3D modeling in these platforms, and 4) dissemination of project results through
36
37 197 handouts and presentations.
38
39
40 198

41
42 199 *Protocols and 3D modeling software.* EROL researchers created protocols for educators
43
44 200 and students to conduct the module and made tutorial videos on learning to use two 3D
45
46 201 modeling software systems (Tinkercad® and Fusion 360® from AUTODESK®;
47
48 202 www.autodesk.com). The protocols and videos are available for download on the EROL's
49
50 203 Education Technology Program website ([the institution – blinded], 2024). Tinkercad® is a user-
51
52 204 friendly entry level online 3D modeling program available free of charge to all users. Fusion
53
54 205 360® is free to students and educators. It has more capabilities than Tinkercad® that allow the
55
56 206 creation of professional and intricate pieces, making it more suitable to design organic shapes
57
58 207 such as plants.
59
60
61
62
63
64
65

1
2
3
4 208 *Facilitators.* We recruited formal and informal high school educators to facilitate the
5 implementation of the module in their institutions. We reached out to educators from Missouri
6 and Illinois within a four-hour drive from [the institution – blinded] to ensure the feasibility of
7 implementation of the fourth component of this module. We announced this opportunity via
8 email using our educators' database, which is continuously updated as educators are identified.
9
10 212 After educators expressed interest in this module, they met with researchers to discuss how to
11 implement the module in their educational settings. Facilitators determined if the project would
12 be completed in three weeks or over one or two academic semesters depending on their
13 teaching needs. We introduced the module to the students either in person or virtually. The
14 facilitators provided students with protocols and monitored the different steps involved in
15 developing the teams' projects. Facilitators also distributed online assessments to students
16 before and after the module, collected parent consent and student assent forms, and completed
17 an evaluation of their experience implementing the module (see Assessments section).
18
19 221 *Teams and plants.* The facilitators created collaborative, multidisciplinary teams of self-identified
20 science, technophile, and art students. Each team assigned roles to their members based on
21 their interests and skills (e.g., scientists, designers, artists, science communicators). The teams
22 chose the plant species and structures to model from a selection of plants used by [the
23 institution – blinded] scientists, who volunteered to support the students. Facilitators arranged
24 in-person or virtual meetings between plant scientists and students so that students could ask
25 questions about the species' biology and scientists' research. Researchers also provided
26 specimens for direct observation of plant species and structures.
27
28 229 *Investigation of plants.* The research process was led by student scientists who investigated
29 the plant species' biology, uses, and importance for plant science research. This information
30 was summarized by the students in one-page handouts.
31
32 232 *Creation of 3D plant models.* All students were required to watch tutorial videos created by
33 the research team. Through the videos, students learned how to make Tinkercad® and Fusion
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 234 360® accounts and how to create 3D models using both systems (Autodesk Inc., 2023).
5
6 235 Students used one or both applications, depending on the time available to conduct the module
7
8 236 and the student's experience with 3D modeling. The creative process was led by the student
9
10 artists and designers who developed the concept art through visual representations of the plant
11 structures using freehand or digital sketches and drawings, reference photos, and plant
12 specimens. Examples of concept art are available in Additional file 1: Supplementary Material A.
13
14 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
After the completion of the concept art, students created the 3D models with the option to
contact the 3D modeling expert from EROL for help using the software and creating the models.
Applications of 3D modeling in AVR platforms. Facilitators coordinated with education
researchers to schedule AVR immersive experiences that showcased to students the
applications of 3D modeling in AVR platforms. We offered these immersive experiences at
educational institutions or at our Center during field trips where students also enjoyed a tour of
this state-of-the-art facility. The augmented reality experience consisted of pre-made plant
science-related lessons in groups of 1-3 students in the zSpace AIO computers (zSpace, 2024).
Using 3D glasses, students had lifelike experiences in a 3D view. The virtual reality experience
consisted of an individual experience using Meta Quest 2 head-mounted devices (Meta, 2024).
The students visited a virtual world designed by the research team called the "Soybean Saga to
Food and Climate Security," where students were able to visit four rooms that showcase
information about soybean reproduction and uses, its symbiotic relationship to fix nitrogen, the
problems associated with synthetic nitrogen, and soybean research ([the institution – blinded],
2024).
Dissemination of results. Students prepared project presentations that were delivered
through PowerPoint presentations, hand-made posters, or webpages. The teams decided how
their members participated in the presentations.
Institutions and high school participants

1
2
3
4 260 Here we present results from 160 high school students from eight educational institutions, three
5
6 261 public and five private, who participated in this plant 3D modeling experience in both formal and
7
8 262 informal settings between fall 2021 and spring 2023 (Table 1). All educational institutions except
9
10 263 two were in the St. Louis metropolitan area, MO/IL region. Most of the students participated in
11
12 264 this project in a formal classroom setting (Table 1). Institutions A and H had mostly
13
14 265 underrepresented Hispanic and African American students, respectively. Student demographics
15
16 266 are detailed in Additional file 1: Supplementary Material B. Half of the students were females, a
17
18 267 third were males, and the rest preferred not to answer or did not respond. The students were
19
20 268 mostly juniors and seniors (82.4%). Forty percent of the students identified as white, with the
21
22 269 second largest group being Hispanics/Latinos (21%). Black/African Americans represented 12%
23
24 270 of the students and Asians 14%. Four percent represented other race/ethnic groups, and 10%
25
26 271 of the students did not respond. In the pre-reflection survey, students were asked to self-identify
27
28 272 by subject of interest as art-oriented, tech-oriented, science-oriented, or other. Sixteen percent
29
30 273 of the students identified as science-oriented and the other 16% as tech-oriented. Art-oriented
31
32 274 students were 24%, 14% of the students identified with other subjects, and 33% did not respond
33
34 275 to the question. Students with no previous experience creating 3D models made up 54.3% of
35
36 276 the total. Slightly less than half of the students had previous experience with AVR technologies
37
38 277 and 3D modeling.

43
44 278
45
46 279 [Location of Table 1]
47
48
49 280
50
51 281 **Assessments**
52
53 282 To respond to the questions of this research, we chose a mixed-method approach using
54
55 283 qualitative and quantitative research methods. Students completed written reflection questions
56
57 284 and surveys before and after the module that were administered through Qualtrics^{XM} software
58
59 285 (Qualtrics, 2024). We obtained approval from [the institution – blinded] Institutional Review
60
61
62
63
64
65

1
2
3
4 286 Board (IRB) ([the institution – blinded] IRB_2020_1). Only student responses that had student
5
6 287 assent, parent consent from minor students, and both pre- and post-responses, if needed, were
7
8 288 included in these analyses. Each student's name was assigned with a unique identification
9
10
11 289 number that was the same across all the data collected. Only researchers in the IRB had
12
13 290 access to student names. The other researchers in this project that contributed to data analysis,
14
15 291 were provided with anonymized data sets with student identifiers.
16

17 292 *Qualitative Analyses.* Students completed open-ended pre- and post-written reflection
18
19 293 questions. To assess student understanding of the intersection between science, art and design,
20
21 294 the following pre- and post-questions were administered to the students: "How does science
22
23 295 play a role in art and design?" and "How does art and design play a role in science?" To assess
24
25 296 student benefits from this module, students were asked before the module "What do you hope
26
27 297 to learn by participating in this project?" and after the module "Describe any skills or knowledge
28
29 298 you developed during this project and whether you feel these will be relevant or applicable
30
31 299 outside of the class. How will these be relevant?", "What has been the most important outcome
32
33 300 of participating in this project?" To assess student changes in career interests, the students
34
35 301 were asked after the module "Has participating in this project changed your interest in science
36
37 302 and or art/design careers moving forward? If so, how?"
38
39
40 303 We used the deductive coding method to analyze student responses. This method uses a
41
42 304 top-down approach to systematically categorize excerpts from students' responses based on
43
44 305 recurring themes and patterns (Saldaña, 2013). Two coders read the answers and assigned
45
46 306 excerpts to codes to build a codebook. The coders compared their codes and adjusted them to
47
48 307 create an agreed-upon qualitative codebook (Additional file 1: Supplementary Material C). A
49
50 308 third coder reviewed the final codes and standardized and consolidated themes as applicable to
51
52 309 summarize the results. Table 2 shows the main themes identified per question with examples of
53
54 310 quotes. Frequencies and percentages of students reporting themes and subthemes, were
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 311 summarized for pre- and post-responses aligned with the reflection questions (Additional file 1:
5
6 312 Supplementary Material D and E).

7
8 313 **Quantitative Analyses.** To assess student changes in perceptions towards STEAM subjects
9
10 314 and careers, a modified version of the validated STEM Semantics Survey was completed by the
11
12 315 students before and after the module (Tyler-Wood et al., 2010). The original instrument has five
13
14 316 statements with the first four statements measuring student perceptions towards STEM
15
16 317 subjects. Each statement has a similar format: “To me, [science/math/engineering/technology]
17
18 318 is:”. Each statement is then followed by five Likert-style range questions: 1. Fascinating to
19
20 319 Mundane, 2. Appealing to Unappealing, 3. Exciting to Unexciting, 4. Means nothing to Means a
21
22 320 lot, and 5. Boring to Interesting. Each Likert question allows a numerical range of options from
23
24 321 one to seven within the two polar choices. The smaller the value in each range, the more
25
26 322 positive the perception indicated by the response. For the statement “Boring to Interesting” the
27
28 323 values were reverse coded to have the most positive choice align with the smallest value as for
29
30 324 the other questions. We added a sixth question to the survey: “To me, DESIGN is:” with the
31
32 325 same Likert questions. The last statement of the survey is “To me, a CAREER in science,
33
34 326 technology, engineering, art, or mathematics (is):”, with the same five Likert-style range
35
36 327 questions as above. Student responses were paired pre/post and analyzed using a paired t-test
37
38 328 for each of the six statements using a statistical calculator web application (Statistics Kingdom,
39
40 329 2017).

41
42 330
43
44 331 [Location of Table 2]
45
46 332
47
48 333 **Results**
49
50 334
51
52 335 **Products from the implementation of the SADT module**
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 336 The implementation of the SADT module generated a variety of products and experiences
5
6 337 based on its four components: investigation of plants, creation of 3D models of plants,
7
8 338 application of 3D modeling in AVR platforms, and dissemination of results.
9

10
11 339 *Science Investigation.* Teams investigated the biology, uses, and importance of [the institution –
12
13 340 blinded] research of fifteen species of plants including crops, native prairie plants, and model
14
15 341 organisms (Table 3). For the investigation, the students used scientific articles, websites,
16
17 342 photographs, and interviews with [the institution – blinded] scientists as sources. A few teams
18
19 343 reached out to the scientists and had in-person or virtual meetings with them (32 students). The
20
21 344 results were summarized in handouts, some of which are accessible on the Education
22
23 345 Technology Program website ([the institution – blinded], 2024). Furthermore, 41 students visited
24
25 346 the [the institution – blinded] and toured the facilities where they saw plant science research
26
27 347 first-hand. They visited a molecular lab, the phenotyping facility, and the greenhouses.
28
29
30

31 348 *Creation of 3D plant models.* Student teams created thirty 3D models of full plants or plant
32
33 349 parts such as leaves, stems, seeds, flowers, stolons, and inflorescences (Table 3). A few models
34
35 350 were created using Tinkercad®, while most were created using Fusion 360®. The accuracy of the
36
37 351 models varied among teams (Fig. 2). The Tinkercad® models were the least accurate due to the
38
39 352 limitation of this program to generate organic shapes (Fig. 2A). Some of the Fusion 360® models
40
41 353 were not colored as using the coloring tool requires advanced knowledge of this program (Fig.
42
43 354 2B). The most accurate models were created by students already proficient with 3D modeling
44
45 355 software or who had received support from a 3D modeling expert (Fig. 2C). In the case of the
46
47 356 common milkweed, one student created the stem, another the flower, and another created the
48
49 357 inflorescence, assembled the pieces, and colored the final model (Fig. 2C). The students were
50
51 358 resourceful and tried other ways to create plant models in 2D (Fig. 2A) or in intermediate stages
52
53 359 between 2D and 3D views (Fig. 2C).
54
55
56 360
57
58
59
60 361 [Location of Table 3]
61
62
63
64
65

1
2
3
4 362
5
6 363 *Applications of 3D modeling in AVR platforms.* The AVR immersive experiences were
7 implemented at the educational institution or at the [the institution – blinded]. During [the
8 institution – blinded] visits, 41 students experienced augmented reality using zSpaces and an
9 additional 72 students did so in their classrooms. The virtual reality experience “The Soybean
10 Saga to Food and Climate Security” using Oculus Quest 2 was experienced by 137 students.
11
12 364 Two schools used the Oculus at [the institution – blinded] (27 students), and four used them at
13 their facilities (110 students). EROL members implemented these activities except at two
14 schools where the teachers implemented the activities. School B has zSpaces, and the teacher
15 runs her own zSpace activities. At school A, the Oculus were delivered to the teacher who was
16 experienced in using the technology. Students from two schools experienced only the zSpace or
17 the Oculus experiences. One school chose not to have these activities due to time constraints in
18 implementing the module.
19
20 365
21
22 366
23
24 367
25
26 368
27
28 369
29
30 370
31 371
32
33 372
34
35 373
36
37 374
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

375 *Dissemination of results.* Students had the opportunity to develop and practice their
376 communication skills by disseminating team results, creating handouts and presentations, and
377 presenting their projects to an audience. Most of the handouts about the plant species (18) and
378 the presentations of the projects (18) were created digitally using Microsoft PowerPoint or
379 Google Slides. At school E, four students worked individually and created webpages for their
380 projects. In three cases, teams hand-wrote the handouts and created paper posters where
381 some content was digitally written and printed.

382 Some 3D models and associated handouts that were of high quality went through a further
383 curation process by coauthors in this publication. 3D models were improved for accuracy and
384 color, which were tested for use in the zSpace platform. Handouts were edited to standardize
385 the format style. These products have been added to EROL’s collection of plant science
386 educational material and are available on the Education Technology Program website ([the
387 institution – blinded], 2024).

1
2
3
4 388 The dissemination of project results was mostly through in-person presentations to student
5
6 389 peers. On some occasions, researchers were invited to attend these presentations (school C).
7
8 390 Another setting for the dissemination of project results was an open classroom presentation
9
10 391 where teachers and administrators stopped by at any given time and heard from the students
11
12 392 who were at different stations in the classroom (school E). In addition, students who attended
13
14 393 the summer internship at [the institution – blinded] had the opportunity to present their projects
15
16 394 during the research center's annual scientific retreat which was virtual that year (2021).
17
18 395
19
20 396
21
22 396 **Students' understanding of the intersections of art and design with science**
23
24 397 *The role of art and design in science.* To assess students' understanding of the intersection of
25
26 398 art and science, students were asked to share their thoughts on how art and design play a role
27
28 399 in science. The analysis of pre- and post-responses from 60 students revealed five main
30
31 400 themes: 1) communication and further understanding, 2) fostering new ideas, 3) bringing ideas
32
33 401 to life, 4) bringing science into everyday life, and 5) art and science are complementary (Fig. 3).
34
35 402 Over half of the students recognized that art and design could relate to science through
36
37 403 communication and providing more understanding about a concept before the module. Within
38
39 404 this theme, visual representations and models were the most cited subthemes. After completing
40
41 405 the module, another 30% of the students reported this theme, and 10% of the total students
42
43 406 reported a new subtheme for the understanding of scientific concepts (Fig. 3).
44
45
46 407 The second most common theme was 'fostering new ideas,' which included the subthemes
47
48 408 'create new ideas,' 'creativity,' 'technological advances and tool creation,' and 'aid in problem-
49
50 409 solving.' Before the module, over 20% of the students reported this theme with another 10% of
51
52 410 the students reporting it after completing the module. The other themes were reported by a few
53
54 411 students mostly before the module (Fig. 3). Student counts and percentages per theme are in
55
56 412 Additional file 1: Supplementary Material D.
57
58
59 413 Some quotes from students on the role of art and design in science are:
60
61
62
63
64
65

1
2
3
4 414 *“Art and design plays a role in science as it enables individuals to see the separate facets of*
5
6 415 *a plant or organisms and understand their function, individually, rather than just seeing one*
7
8 416 *whole organism or plant.”*

9
10
11 417 *“Art and design play a role in science because that is how science is able to be*
12
13 418 *communicated. It allows us to better understand scientific concepts through visual*
14
15 419 *representation, and creativity fuels scientific exploration. Art and design allow us to create*
16
17 420 *different tools and technologies in applying scientific knowledge to our everyday lives.”*

18
19
20 421 *“Being able to visually represent elements of an important scientific model that the average*
21
22 422 *person may not understand under strictly scientific jargon is important for advancing the general*
23
24 423 *public's understanding of science.”*

25
26
27 424
28
29 425 *The role of science in art and design.* Student reflections from 58 students to the pre- and
30
31 426 post-question on how science plays a role in art and design reported five themes: 1) science
32
33 427 influences the artistic creation process, 2) similar processes, skills and principles, 3)
34
35 428 technological advances, 4) science influences interactions with art, and 5) art and science are
36
37 429 complementary (Fig. 4).

38
39
40 430 The most common theme identified by over 90% of the students was that science influences
41
42 431 the artistic creation process (Fig. 4). Several subthemes were identified within this theme, with
43
44 432 the most reported being ‘design logistics and specifics’, ‘inspire artistic ideas’, and ‘science
45
46 433 creates art’. Over 50% of the students reported this theme before the module and another 45%
47
48 434 reported it after completing the module. The other themes were reported by a few students, with
49
50 435 the subtheme ‘technological advances’ reported by 10% of the students before and after the
51
52 436 module (Fig. 4). Student counts and percentages per theme are in Additional file 1:
53
54 437 Supplementary Material D.

55
56 438 Some student quotes on the role of science in art and design are:

57
58 439 *“Science is an inspiration for art.”*

1
2
3
4 440 “Science plays a role in art and design because the scientific method is similar to the
5
6 441 creative process, with trial, error, and adjustment.”
7
8 442 “Science shapes how art is made and things are designed.”
9
10
11 443
12 444
13 445 **Students learning and skills gained from using the SADT approach**
14

15 446 Responses from 63 students about what they hoped to learn from the module and outcomes
16
17 447 gained related to learning and gaining skills revealed several themes (Fig. 5). Before the
18
19 448 module’s implementation, students wanted to learn new and interesting things (17.5%) and
20
21 449 about the integration of science, art, design, and technology (14.3%). Less than 10% of the
22
23 450 students expressed interest in learning science and research skills. After completing the
24
25 451 module, few students reported learning about science, but 21% of the students reported
26
27 452 learning research skills (e.g., caring for plants, making detailed observations, best lab practices,
28
29 453 etc.). Twenty-two percent of the students had hoped to learn about plants. Of those students,
30
31 454 10% acknowledged learning about plants and another 40% of students reported learning about
32
33 455 plants only after completing the module. Although few students wanted to learn about
34
35 456 technology in general, 38% wanted to learn about 3D modeling. After implementing the module,
36
37 457 another 6.3% and 17.5% of the students learned about these respective themes. Some
38
39 458 students expressed interest in learning about art and design (14.3%), while another 11% of
40
41 459 students expressed learning about this theme at the end of the module. New themes related to
42
43 460 soft skills emerged at the end of the module implementation. Students gained skills for
44
45 461 teamwork (27%), communication (11.1%), science communication (7.9%), and other skills
46
47 462 (14.3%) including perseverance, time management, problem-solving, and leadership (Fig. 5).
48
49 463 Student counts and percentages per theme are in Additional file 1: Supplementary Material E.
50
51 464 Some student quotes about learning and skills gained are:
52
53 465 “Learning more about the applications of plants to human life and the benefits they provide.”
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 466 *"The most important outcome of participating in this project was that I got to work with*
5
6 467 *others. I really did enjoy collaborating with others and each of us having an important role that*
7
8 468 *benefits us and the project."*

9
10
11 469
12
13 470 Students were also asked about the relevancy or applicability outside of the class of the
14
15 471 skills or knowledge developed. Responses from 35 students were grouped into four 'relevance'
16
17 472 themes. These themes included relevancy for project and class activities (28.6%), undetermined
18
19 473 endeavors outside the class (25.7%), future college areas of study and specific careers of
20
21 474 interest to some students (e.g., biology, business, public relations, computer science) (25.7%),
22
23 475 and future jobs, job interviews, and life endeavors (62.9%). Specific skills and or knowledge
24
25 476 were recorded within themes. Twenty six percent of the students cited science knowledge and
26
27 477 research skills as mostly relevant for future jobs and endeavors later in life. 3D modeling skills
28
29 478 were cited by 37.1% of the students, mainly for relevance to developing projects and activities in
30
31 479 class. Soft skills were cited across the 'relevance' themes, with communication (17.1% of
32
33 480 students) and teamwork skills (20% of students) mostly cited as relevant for future jobs and
34
35 481 endeavors later in life. Student counts and percentages per theme are in Additional file 1:
36
37 482 Supplementary Material E.

38
39 483 Student quotes on the relevancy or applicability of outcomes gained are:

40
41 484 *"The experience of presenting and communicating our process and final models to an*
42
43 485 *audience, as well as working in a research-like setting. These skills and experiences will all be*
44
45 486 *useful for my future endeavors."*

46
47 487 *"I believe the experience gained in working with a group and presenting with a group is one*
48
49 488 *of the most important outcomes as it is one of the most common skill in the professional world."*

50
51 489
52
53 490 **Student interest in STEAM subjects and careers**

1
2
3
4 491 Students showed a significant increase in interest in science, mathematics, and design after the
5
6 492 module was implemented, based on mean comparisons of responses from 77 students per
7
8 493 subject before and after the module (Table 4). Comparisons for technology, engineering, and
9
10 494 STEAM careers did not change significantly after the module was completed (Table 4).

11
12
13 495
14
15 496 **Table 4** Summary of statistical tests for significant differences in interest in STEAM subjects and
16
17 497 careers

Subject	Pre-survey mean (SD)	Post-survey mean (SD)*	t-value	P value	Direction of positive change
Science	2.8 (1.5)	2.6 (1.4)	3.7	0.000	Significant increase
Technology	2.9 (1.7)	2.8 (1.5)	1.3	0.2	No change
Engineering	3.2 (1.6)	3.2 (1.5)	0.3	0.78	No change
Mathematics	4.2 (1.8)	4.0 (1.8)	2.6	0.008	Significant increase
Design	2.9 (1.7)	2.5 (1.3)	4.1	0.001	Significant increase
Careers in STEAM	2.8 (1.6)	2.8 (1.5)	1.0	0.3	No change

20
21
22 498 * The smaller the mean values, the more positive the responses are. Students responded on a
23
24 Likert scale of 1-7, with 1 being the most positive choice and 7 being the most negative choice
25
26 500 for each of the five statements per question. SD – Standard Deviation. Significant p-values
27
28
29 501 equal ≤ 0.05 .

30
31
32 502
33
34 503 However, students expressed positive changes in interest in STEAM careers based on answers
35
36 504 to the post-reflection question "*Has participating in this project changed your interest in science*
37
38 505 *and or art/design careers moving forward? If so, how?*" (Table 5). Answers to this question by 68
39
40 506 students were grouped into two main themes. One theme represents students expressing a
41
42 507 positive change in interest in STEAM careers (39.7%). Among these students, seven
43
44 508 acknowledge interest in plant science (10.3%). The other theme represents the students who
45
46 509 did not have a change in their career interest after the module (60.3%). About 15% of the
47
48 510 students were already interested in STEAM careers and another 15% in non-STEAM careers,

1
2
3
4 511 while the remaining 30% did not provide information on why they did not experience a change in
5
6 512 their career interests.
7
8
9 513

10
11 **Table 5** Student counts by themes on changes in interest in STEAM careers after the module
12
13 515

Themes about changes in interest in STEAM careers	No. students	%
Statements expressing positive changes	27	39.7
More interest in science careers *	10	14.7
More interest in STEAM careers **	12	17.6
More interest in STEAM careers with other subjects	1	1.5
More interest in design careers	3	4.4
More interest in non-STEAM careers	1	1.5
Statements expressing no change	41	60.3
Already interested in science careers	4	5.9
Already interested in STEAM careers	4	5.9
Already interested in art/design careers	1	1.5
Already interested in non-STEAM careers***	8	11.8
No change with unknown reason	24	35.3
Total students	68	100

31 516 * Six students interested in plant science. ** One student interested in plant science.
32
33

34 517 *** Three students acknowledged that the module helped them reinforce their interest in non-
35
36 518 STEAM careers.
37
38
39 519
40
41 520 **Discussion**
42
43 521
44
45 522 This study addressed the disconnect between science, art, design, and technology by
46
47 523 exploring whether a 3D plant modeling learning module for high school students had an impact
48
49 524 on students' learning and interests in STEAM subjects and careers, using the SADT approach
50
51 525 (Fig. 1).
52
53
54 526 Integrating art and science through the SADT approach significantly enhanced students'
55
56 527 understanding of how these fields intersect. Prior to the module, students primarily viewed art
57
58 528 and design as tools for general communication and understanding of science. After participating
59
60
61
62
63
64
65

1
2
3
4 529 in the module, a notable shift occurred. Many students reported that art and design facilitate
5 530 deeper comprehension and communication of scientific concepts, foster new ideas, and bring
6 531 ideas to life, with 45% acknowledging that science influenced their artistic creation processes.
7
8 532 This shift highlights the effectiveness of the SADT approach in fostering an appreciation of the
9 533 interconnectedness of these disciplines, aligning with the broader educational need for
10 534 scientists to effectively communicate their work (Segarra et al., 2018). Such integration
11 535 promotes curiosity and creativity, which are essential for developing positive attitudes toward
12 536 STEM subjects (Stroud & Baines, 2019).
13
14 537 The module also played a critical role in enhancing students' science knowledge and
15 538 research skills through hands-on investigation of plant biology, interactions with scientists, tours
16 539 to the research facility, and dissemination of their findings. Before the module, only a small
17 540 fraction of students expressed interest in learning about plant science and research skills.
18
19 541 However, after completing the module, 40% of the students indicated a deeper understanding of
20 542 plant science and 21% reported new research competencies. This experiential learning is
21 543 crucial for students to connect with real-world problems and develop an interest in scientific
22 544 disciplines that can lead them to future STEM career paths (Arango-Caro et al., 2024; Mansfield
23 545 & Reiss, 2020; National Academies of Sciences, Engineering, and Medicine, 2021).
24
25 546 The design process is central to the SADT approach as it facilitates the application of
26 547 knowledge and develops deeper understanding of global literacy (Gess, 2017). Designing and
27 548 developing products such as 3D models involved cycles of trial-and-error that fostered students'
28 549 abilities and confidence as they complete their projects (Gess, 2017). Creating 3D models has
29 550 benefited student development of abstract thinking, creativity, and problem solving, critical in
30 551 STEAM disciplines and careers (Bicer et al., 2017; Yakman, 2008). Our module followed steps
31 552 that are known to stimulate creative thinking, including the design of goal proposal, creativity
32 553 inspiration, design challenges, and presentation and evaluation (Zhan et al., 2023). Creativity
33 554 was also promoted in our module through the flexibility of implementation, broad range of
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 555 resources, self-directed learning, and team collaboration (Aguilera & Ortiz-Revilla, 2021; Davies
5
6 556 et al., 2013; Markula & Aksela, 2022; Seetoo & Foen, 2022).

7
8 557 Moreover, the SADT approach introduced students to emergent technologies, with over half
9
10 of the participants gaining skills in the use of 3D modeling and AVR tools. Before the module,
11
12 558 many students had no experience with these technologies. The hands-on design experience
13
14 559 with digital tools is particularly relevant in today's rapidly evolving technological landscape,
15
16 560 where such skills are increasingly necessary (Leavy et al., 2023). Exposure to these
17
18 561 technologies broadens students' interests and persistence in STEAM pathways (Bicer et al.,
19
20 562 2017; CEOSE, 2024) and aligns with the growing need for digital literacy in education (Lombard
21
22 563 et al., 2023).

23
24 564 The module's implementation also fostered the development of essential 21st century soft
25
26 565 skills such as collaboration and communication, fostering the development of students'
27
28 566 workforce competencies. Students reported significant gains in teamwork skills, appreciating the
29
30 567 benefits of collaborative learning over individual work. Our results align with other reported
31
32 568 findings that collaborative learning enhances problem-solving abilities and critical thinking
33
34 569 (Wang et al., 2023). These experiences provided students with multiple opportunities to
35
36 570 understand the benefits of peer and partners collaborations. Communication skills were also
37
38 571 notably improved, with students gaining experience presenting their projects and writing about
39
40 572 their scientific findings. These skills are vital for professional success and effective
41
42 573 communication (Bertrand & Namukasa, 2020; Thornhill-Miller et al., 2023). The ability to convey
43
44 574 scientific concepts to peers and general audiences fosters a deeper understanding of science
45
46 575 and builds self-efficacy (Cormier & Langlois, 2022; Kulgemeyer, 2018; Ovid et al., 2023;
47
48 576 Schinske et al., 2016).

49
50 577 Furthermore, the SADT approach positively impacted students' interest in STEAM subjects
51
52 578 and careers. After completing the module, quantitative analyses revealed a significant increase
53
54 579 in interest in science, mathematics, and design. Reflection responses indicated that 39.7% of
55
56 580

1
2
3
4 581 students experienced a positive change in their interest in STEAM careers, with several
5
6 582 expressing a newfound interest in plant science. This increase is particularly important given the
7
8 583 urgent need to promote careers in plant science and agriculture, which is critical for addressing
9
10 584 global challenges (National Academies of Sciences, Engineering, and Medicine, 2021; Niccolai
11
12 585 et al., 2022). We know that during the adolescent stage, students develop understanding of
13
14 586 work fields and how they are related to them (van Tuijl & van der Molen, 2016). Our module
15
16 587 engaged students in hands-on STEAM real-world projects and interactions with professionals,
17
18 588 which prepare students for STEM career trajectories and leverages their developmental interest
19
20 589 in work fields (CEOSE, 2024; Seetoo & Foen, 2022; Segarra et al., 2018; van Tuijl & van der
21
22 590 Molen, 2016).
23
24
25

26 591 The SADT approach's innovative framework for enhancing STEAM education integrates
27
28 592 science with art, design, and technology, fostering cognitive benefits such as engagement,
29
30 593 creativity, and problem-solving skills that will help them navigate 21st century workforce
31
32 594 demands (Kang, 2019; Perignat & Katz-Buonincontro, 2019). This PBL module allowed students
33
34 595 to engage deeply with multiple disciplines promoting interdisciplinary learning and student
35
36 596 ownership of projects through self-directed learning (Gess, 2017; Hawari & Noor, 2020;
37
38 597 Rodrigues-Silva & Alsina, 2023).
39
40
41

42 598 Educators also benefited from the SADT approach by transitioning from traditional teaching
43
44 599 roles to facilitators of learning. This role enabled them to share teaching responsibilities with
45
46 600 students, allowing for more personalized and student-driven learning experiences. Facilitators
47
48 601 reported professional growth through their exposure to innovative teaching methods, new
49
50 602 science content, and emergent technologies, enhancing their teaching practices and confidence
51
52 603 (Kang, 2019).
53
54

55 604 The module's collaborative nature emphasized the importance of teamwork, both among
56
57 605 students and between students and professionals. Students worked in teams to complete their
58
59 606 projects, valuing their peers' support and shared responsibilities. This collaborative environment
60
61
62
63
64
65

1
2
3
4 607 promoted critical and creative thinking and gains in skills that facilitate the communication of
5
6 608 ideas and shared responsibility which are essential for professional success in STEM fields
7
8 609 (Duran & Sendag, 2012; Kerans & Ngongo, 2021; Sanina et al., 2020). Moreover, group work
9
10 610 maximizes the autonomy of students fostering project ownership and improving social/relational
11
12 611 interactions, by practicing expressing oneself and establishing connections with others
13
14 612 (Nieswandt et al., 2020; Thornhill-Miller et al., 2023). Additionally, interactions with plant
15
16 613 scientists and education researchers provided students with valuable insights into the
17
18 614 collaborative nature of scientific research.
19
20
21 615
22
23
24 616 **Conclusion**
25
26
27 617 The SADT approach effectively integrates science, art, design, and technology using the 3D
28
29 618 plant modeling module, enhancing student literacy in these disciplines, and providing students
30
31 619 with essential 21st century competencies. The module's flexibility and experiential learning
32
33 620 opportunities benefit students and educators, promoting interdisciplinary learning and interest in
34
35 621 STEAM subjects and careers. This innovative approach is a valuable tool for educators,
36
37 622 inspiring new ways of teaching and learning in STEAM education.
38
39
40 623 This comprehensive approach to STEAM education highlights the potential for
41
42 624 interdisciplinary PBL to enhance student engagement, understanding, and interest in STEM
43
44 625 fields. By integrating art and design with science and technology, educators can foster a more
45
46 626 holistic and effective learning environment that prepares students for the challenges and
47
48 627 opportunities of the future.
49
50
51 628
52
53
54 629 **Limitations**
55
56 630 The study faced limitations due to the incomplete response rate to surveys and reflection
57
58 631 questions, potentially affecting the data's comprehensiveness. Variations in module
59
60 632 implementation and differences in institutional settings may have also influenced the results.
61
62
63
64
65

1
2
3
4 633 Future analyses will explore these factors further to understand their impact on student
5
6 634 outcomes.
7
8
9 635
10
11 636 **Abbreviations**
12
13 637 AVR: augmented and virtual reality
14
15 638 [the institution – blinded]
16
17 639 IRB: Institutional Review Board
18
19 640 EROL: Education Outreach and Research Laboratory
20
21 641 PBL: project-based learning
22
23 642 SADT approach: Science-Art-Design-Technology approach
24
25 643 STEM: Science, Technology, Engineering, and Mathematics
26
27 644 STEAM: Science Technology, Engineering, Arts, and Mathematics
28
29 645
30
31 646 **References**
32
33 647 Aguilera, D., & Ortiz-Revilla, J. (2021). STEM vs. STEAM education and student creativity: A
34
35 648 systematic literature review. *Education Sciences*, 11(7), 331.
36
37 649 <https://doi.org/10.3390/educsci11070331>
38
39 650 Anderson-Inman, L. (2009). Supported eText: Literacy scaffolding for students with disabilities.
40
41 651 *Journal of Special Education Technology*, 24(3), 1–7.
42
43 652 Arango-Caro, S., Ying, K., Lee, I., Parsley, K., & Callis-Duehl, K. (2024). A model of science,
44
45 653 technology, engineering, and mathematics remote research-based learning: High school
46
47 654 independent authentic research experiences from home. *The American Biology
48
49 655 Teacher*, 86(1), 24–29. <https://doi.org/10.1525/abt.2024.86.1.24>
50
51 656 Bazler, J. A., & Van Sickle, M. L. (Eds.). (2017). *Cases on STEAM Education in Practice*. IGI
52
53 657 Global. <https://doi.org/10.4018/978-1-5225-2334-5>
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 658 Bertrand, M. G., & Namukasa, I. K. (2020). STEAM education: Student learning and
5
6 659 transferable skills. *Journal of Research in Innovative Teaching & Learning*, 13(1), 43–56.
7
8 660 <https://doi.org/10.1108/JRIT-01-2020-0003>
9
10
11 661 Bicer, A., Nite, S. B., Capraro, R. M., Barroso, L. R., Capraro, M. M., & Lee, Y. (2017). Moving
12
13 662 from STEM to STEAM: The effects of informal STEM learning on students' creativity and
14
15 663 problem solving skills with 3D printing. *2017 IEEE Frontiers in Education Conference*
16
17 664 (FIE), 1–6. <https://doi.org/10.1109/FIE.2017.8190545>
18
19
20 665 CEOSE. (2024). *Making Visible the Invisible: STEM Talent of Rural America* [CEOSE Report to
21
22 666 Congress]. Committee on Equal Opportunities in Science and Engineering.
23
24 667 Chiu, T. K. F., & Li, Y. (2023). How can emerging technologies impact STEM education?
25
26 668 *Journal for STEM Education Research*, 6(3), 375–384. <https://doi.org/10.1007/s41979-023-00113-w>
27
28
29 669
30
31 670 Chng, E., Tan, A. L., & Tan, S. C. (2023). Examining the use of emerging technologies in
32
33 671 schools: A review of artificial intelligence and immersive technologies in STEM
34
35 672 education. *Journal for STEM Education Research*, 6(3), 385–407.
36
37 673 <https://doi.org/10.1007/s41979-023-00092-y>
38
39
40 674 Çoban, M., Akçay, N. O., & Çelik, İ. (2022). Using virtual reality technologies in STEM
41
42 675 education: ICT pre-service teachers' perceptions. *Knowledge Management & E-*
43
44 676 *Learning: An International Journal*, 14(3), 269–285.
45
46 677 <https://doi.org/10.34105/j.kmel.2022.14.015>
47
48
49 678 Çoban, M., Bolat, Y. I., & Goksu, I. (2022). The potential of immersive virtual reality to enhance
50
51 679 learning: A meta-analysis. *Educational Research Review*, 36, 100452.
52
53 680 <https://doi.org/10.1016/j.edurev.2022.100452>
54
55
56 681 Cormier, C., & Langlois, S. (2022). Enjoyment and self-efficacy in oral scientific communication
57
58 682 are positively correlated to postsecondary students' oral performance skills. *Education*
59
60 683 *Sciences*, 12(7), 466. <https://doi.org/10.3390/educsci12070466>
61
62
63
64
65

1
2
3
4 684 Davies, D., Jindal-Snape, D., Collier, C., Digby, R., Hay, P., & Howe, A. (2013). Creative
5 learning environments in education—A systematic literature review. *Thinking Skills and*
6 685 *Creativity*, 8, 80–91. <https://doi.org/10.1016/j.tsc.2012.07.004>
7
8 686 [the institution – blinded]. (2024). *Education Technology Program*
9
10 687 Détienne, F., Baker, M., & Burkhardt, J.-M. (2012). Perspectives on quality of collaboration in
11 688 design. *CoDesign*, 8(4), 197–199. <https://doi.org/10.1080/15710882.2012.742350>
12
13 689 Duran, M., & Sendag, S. (2012). A preliminary investigation into critical thinking skills of urban
14 690 high school students: Role of an IT/STEM program. *Creative Education*, 3(2), 241–250.
15
16 691 <https://doi.org/10.4236/ce.2012.32038>
17
18 692 Fu, Y., Zhang, D., & Jiang, H. (2022). Students' attitudes and competences in modeling using
19 693 3D cartoon toy design maker. *Sustainability*, 14(4), 2176.
20
21 694 <https://doi.org/10.3390/su14042176>
22
23 695 Gess, A. H. (2017). STEAM education: Separating fact from fiction. *Technology and*
24 696 *Engineering Teacher*, 77(3), 39–41.
25
26 697 Haleem, A., Javaid, M., Qadri, M. A., & Suman, R. (2022). Understanding the role of digital
27 698 technologies in education: A review. *Sustainable Operations and Computers*, 3, 275–
28 699 285. <https://doi.org/10.1016/j.susoc.2022.05.004>
29
30 700 Hawari, A. D. M., & Noor, A. I. M. (2020). Project based learning pedagogical design in STEAM
31 701 art education. *Asian Journal of University Education*, 16(3), 102–111.
32
33 702 <https://doi.org/10.24191/ajue.v16i3.11072>
34
35 703 Heise, N., Hall, H. A., Ivie, K. R., Meyer, C. A., & Clapp, T. R. (2020). Engaging high school
36 704 students in a university-led summer anatomy camp to promote STEM majors and
37 705 careers. *The Journal of STEM Outreach*, 3(1). <https://doi.org/10.15695/jstem/v3i1.15>
38
39 706 Henriksen, D., Mehta, R., & Mehta, S. (2019). Design thinking gives STEAM to teaching: A
40 707 framework that breaks disciplinary boundaries. In M. S. Khine & S. Areepattamannil
41 708

1
2
3
4 709 (Eds.), *STEAM Education* (pp. 57–78). Springer International Publishing.
5
6 710 https://doi.org/10.1007/978-3-030-04003-1_4

7 711 Huang, T.-C., Chen, C.-C., & Chou, Y.-W. (2016). Animating eco-education: To see, feel, and
8 712 discover in an augmented reality-based experiential learning environment. *Computers &*
9 713 *Education*, 96, 72–82. <https://doi.org/10.1016/j.compedu.2016.02.008>
10
11
12
13
14

15 714 Kang, N.-H. (2019). A review of the effect of integrated STEM or STEAM (science, technology,
16 engineering, arts, and mathematics) education in South Korea. *Asia-Pacific Science*
17 715 *Education*, 5(1), 6. <https://doi.org/10.1186/s41029-019-0034-y>
18
19
20
21

22 717 Keefe, D. F., & Laidlaw, D. H. (2013). Virtual Reality Data Visualization for Team-Based STEAM
23
24 718 Education: Tools, Methods, and Lessons Learned. In R. Shumaker (Ed.), *Virtual,*
25
26 719 *Augmented and Mixed Reality. Systems and Applications* (pp. 179–187). Springer.
27
28 720 https://doi.org/10.1007/978-3-642-39420-1_20
29
30

31 721 Kerans, G., & Ngongo, K. P. (2021). Development of collaborative learning models in improving
32
33 722 student social skills in biology science. *Jurnal Penelitian Pendidikan IPA*, 7(3), 357–363.
34
35 723 <https://doi.org/10.29303/jppipa.v7i3.724>
36
37

38 724 Kulgemeyer, C. (2018). Impact of secondary students' content knowledge on their
39
40 725 communication skills in science. *International Journal of Science and Mathematics*
41
42 726 *Education*, 16(1), 89–108. <https://doi.org/10.1007/s10763-016-9762-6>
43
44 727 Land, M. H. (2013). Full STEAM ahead: The benefits of integrating the arts into STEM. *Procedia*
45
46 728 *Computer Science*, 20, 547–552. <https://doi.org/10.1016/j.procs.2013.09.317>
47
48

49 729 Leavy, A., Dick, L., Meletiou-Mavrotheris, M., Paparistodemou, E., & Stylianou, E. (2023). The
50
51 730 prevalence and use of emerging technologies in STEAM education: A systematic review
52
53 731 of the literature. *Journal of Computer Assisted Learning*, 39(4), 1061–1082.
54
55 732 <https://doi.org/10.1111/jcal.12806>
56
57
58
59
60
61
62
63
64
65

1
2
3
4 733 Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D., &
5
6 734 Duschl, R. A. (2019). Design and design thinking in STEM education. *Journal for STEM*
7
8 735 *Education Research*, 2(2), 93–104. <https://doi.org/10.1007/s41979-019-00020-z>
9
10
11 736 Liao, C. (2016). From interdisciplinary to transdisciplinary: An arts-integrated approach to
12
13 737 STEAM education. *Art Education*, 69, 44–49.
14
15 738 <https://doi.org/10.1080/00043125.2016.1224873>
16
17 739 Lombard, F., Costa, J. D., & Weiss, L. (2023). Teaching with digital biology: Opportunities from
18
19 740 authentic sequences and 3D models. *Progress in Science Education (PriSE)*, 6(1), 80–
20
21 741 97. <https://doi.org/10.25321/prise.2023.1389>
22
23
24 742 Mabe, A., Brown, K., Frick, J. E., & Padovan, F. (2022). Using technology to enhance project-
25
26 743 based learning in high school: A phenomenological study. *Education Leadership Review*
27
28 744 *of Doctoral Research*, 10, 1–14.
29
30
31 745 Madden, M. E., Baxter, M., Beauchamp, H., Bouchard, K., Habermas, D., Huff, M., Ladd, B.,
32
33 746 Pearson, J., & Plague, G. (2013). Rethinking STEM Education: An Interdisciplinary
34
35 747 STEAM Curriculum. *Procedia Computer Science*, 20, 541–546.
36
37 748 <https://doi.org/10.1016/j.procs.2013.09.316>
38
39
40 749 Major, S., & Govers, E. (2014). *Project-based learning in visual arts and design: What makes it*
41
42 750 *work?, Redeveloping a traditional arts and design degree into a 21st century project-*
43
44 751 *based learning programme*. Ako Aotearoa. <https://akoactearoa.ac.nz/research->
45
46 752 *register/list/project-based*
47
48
49 753 Mansfield, J., & Reiss, M. J. (2020). The Place of Values in the Aims of School Science
50
51 754 Education. In D. Corrigan, C. Bunting, A. Fitzgerald, & A. Jones (Eds.), *Values in*
52
53 755 *Science Education* (pp. 191–209). Springer International Publishing.
54
55 756 https://doi.org/10.1007/978-3-030-42172-4_12
56
57
58
59
60
61
62
63
64
65

1
2
3
4 757 Markula, A., & Aksela, M. (2022). The key characteristics of project-based learning: How
5
6 758 teachers implement projects in K-12 science education. *Disciplinary and Interdisciplinary*
7
8 759 *Science Education Research*, 4(2), 1–17. <https://doi.org/10.1186/s43031-021-00042-x>
9
10
11 760 Mastronardi, M., Boklage, A., Hartman, R., Yañez, D., & Borrego, M. (2020). Impact of a
12
13 761 summer research program for high school students on their intent to pursue a STEM
14
15 762 career: Overview, goals, and outcomes. *2020 ASEE Virtual Annual Conference Content*
16
17 763 *Access Proceedings*, 34751. <https://doi.org/10.18260/1-2--34751>
18
19
20 764 Meletiou-Mavrotheris, M., Paparistodemou, E., Dick, L., Leavy, A., & Stylianou, E. (2022).
21
22 765 Editorial: New and emerging technologies for STEAM teaching and learning. *Frontiers in*
23
24 766 *Education*, 7, 971287. <https://doi.org/10.3389/feduc.2022.971287>
25
26
27 767 Meta. (2024). *Quest Products*. <https://www.meta.com/quest/products/quest-2/>
28
29 768 Murphy, S., MacDonald, A., Wang, C. A., & Danaia, L. (2019). Towards an understanding of
30
31 769 STEM engagement: A review of the literature on motivation and academic emotions.
32
33 770 *Canadian Journal of Science, Mathematics and Technology Education*, 19(3), 304–320.
34
35 771 <https://doi.org/10.1007/s42330-019-00054-w>
36
37
38 772 National Academies of Sciences, Engineering, and Medicine. (2017). *Communicating Science*
39
40 773 *Effectively: A Research Agenda*. National Academies Press.
41
42 774 <https://doi.org/10.17226/23674>
43
44
45 775 National Academies of Sciences, Engineering, and Medicine. (2021). *Call to Action for Science*
46
47 776 *Education: Building Opportunity for the Future* (M. Honey, H. Schweingruber, K.
48
49 777 Brenner, & P. Gonring, Eds.). National Academies Press. <https://doi.org/10.17226/26152>
50
51 778 National Science Board. (2024). *The State of U.S. Science and Engineering 2024* (NSB-2024-
52
53 779 3). <https://ncses.nsf.gov/pubs/nsb20243/preface>
54
55
56 780 Niccolai, A. R., Damaske, S., & Park, J. (2022). We won't be able to find jobs here: How
57
58 781 growing up in rural America shapes decisions about Work. *RSF: The Russell Sage*
59
60
61
62
63
64
65

1
2
3
4 782 *Foundation Journal of the Social Sciences*, 8(4), 87–104.
5
6 783 <https://doi.org/10.7758/RSF.2022.8.4.04>
7
8 784 Nieswandt, M., McEneaney, E. H., & Affolter, R. (2020). A framework for exploring small group
9 learning in high school science classrooms: The triple problem solving space.
10
11 785 *Instructional Science*, 48(3), 243–290. <https://doi.org/10.1007/s11251-020-09510-9>
12
13 786 Ovid, D., Abrams, L., Carlson, T., Dieter, M., Flores, P., Frischer, D., Goolish, J., Bernt, M. L.-F.,
14
15 787 Lancaster, A., Lipski, C., Luna, J. V., Luong, L. M. C., Mullin, M., Newman, M. J.,
16
17 788 Quintero, C., Reis, J., Robinson, F., Ross, A. J., Simon, H., ... Tanner, K. D. (2023).
18
19 789 Scientist spotlights in secondary schools: Student shifts in multiple measures related to
20
21 790 science identity after receiving written assignments. *CBE—Life Sciences Education*,
22
23 791 22(2), ar22. <https://doi.org/10.1187/cbe.22-07-0149>
24
25
26 792 Pelletier, K., Brown, M., Brooks, D. C., McCormack, M., Reeves, J., & Arbino, N. (2021). 2021
27
28 793 *EDUCAUSE Horizon Report: Teaching and Learning Edition*. EDUCAUSE.
29
30
31 794 <https://library.educause.edu/>
32
33 795 <https://media/files/library/2021/4/2021hrteachinglearning.pdf?la=en&hash=C9DEC12398593F2>
34
35 796 97CC634409DFF4B8C5A60B36E
36
37 797 Perales, F. J., & Aróstegui, J. L. (2021). The STEAM approach: Implementation and
38
39 798 educational, social and economic consequences. *Arts Education Policy Review*, 125(2),
40
41 799 1–9. <https://doi.org/10.1080/10632913.2021.1974997>
42
43
44 800 Perignat, E., & Katz-Buonincontro, J. (2019). STEAM in practice and research: An integrative
45
46 801 literature review. *Thinking Skills and Creativity*, 31, 31–43.
47
48 802 <https://doi.org/10.1016/j.tsc.2018.10.002>
49
50 803 Qualtrics. (2024). [Computer software]. Qualtrics. <https://www.qualtrics.com>
51
52
53 804 Reich, J., & Ito, M. (2017). *From Good Intentions to Real Outcomes: Equity by Design in*
54
55 805 *Learning Technologies*. Digital Media and Learning Research Hub.
56
57
58 806
59
60
61
62
63
64
65

1
2
3
4 807 Rodrigues-Silva, J., & Alsina, Á. (2023). Conceptualising and framing STEAM education: What
5
6 808 is (and what is not) this educational approach? *Texto Livre*, 16, 1–13.
7
8 809 <https://doi.org/10.1590/1983-3652.2023.44946>
9
10 810 Rolling, J. H. (2016). Reinventing the STEAM engine for art + design education. *Art Education*,
11
12 811 69(4), 4–7. <https://doi.org/10.1080/00043125.2016.1176848>
13
14 812 Saldaña, J. (2013). *The coding manual for qualitative researchers* (second edition). SAGE
15
16 813 Publications Ltd.
17
18 814 Sanina, A., Kutergina, E., & Balashov, A. (2020). The co-creative approach to digital simulation
19
20 815 games in social science education. *Computers & Education*, 149, 103813.
21
22 816 <https://doi.org/10.1016/j.compedu.2020.103813>
23
24 817 Schinske, J. N., Perkins, H., Snyder, A., & Wyer, M. (2016). Scientist spotlight homework
25
26 818 assignments shift students' stereotypes of scientists and enhance science identity in a
27
28 819 diverse introductory science class. *CBE—Life Sciences Education*, 15(3), ar47.
29
30 820 <https://doi.org/10.1187/cbe.16-01-0002>
31
32 821 Seetoo, K., & Foen, N. S. (2022). Arts element in STEAM education: A systematic review of
33
34 822 journal publications. *International Online Journal of Language, Communication, and*
35
36 823 *Humanities*, 5(2), 29–43. <https://doi.org/10.47254/insaniah.v5i2.204>
37
38 824 Segarra, V. A., Natalizio, B., Falkenberg, C. V., Pulford, S., & Holmes, R. M. (2018). STEAM:
39
40 825 Using the arts to train well-rounded and creative scientists. *Journal of Microbiology &*
41
42 826 *Biology Education*, 19(1), 1–7. <https://doi.org/10.1128/jmbe.v19i1.1360>
43
44 827 Shivni, R., Cline, C., Newport, M., Yuan, S., & Bergan-Roller, H. E. (2021). Establishing a
45
46 828 baseline of science communication skills in an undergraduate environmental science
47
48 829 course. *International Journal of STEM Education*, 8(47), 1–15.
49
50 830 <https://doi.org/10.1186/s40594-021-00304-0>
51
52 831 Soroko, N. V., Soroko, V. M., Mukasheva, M., Montes, M. M. A., & Tkachenko, V. A. (2021).
53
54 832 Using of virtual reality tools for the development of STEAM education in general
55
56 833 <https://doi.org/10.1186/s40594-021-00304-0>
57
58 834 <https://doi.org/10.1186/s40594-021-00304-0>
59
60 835 <https://doi.org/10.1186/s40594-021-00304-0>
61
62 836 <https://doi.org/10.1186/s40594-021-00304-0>
63
64 837 <https://doi.org/10.1186/s40594-021-00304-0>
65

1
2
3
4 833 secondary education. *Information Technologies and Learning Tools*, 86(6), 87–105.
5
6 834 <https://doi.org/10.33407/itlt.v86i6.4749>
7
8 835 Statistics Kingdom. (2017). *Paired t-test Calculator* [Web application]. Statistics Calculators.
9
10 836 <https://www.statskingdom.com/paired-t-test-calculator.html>
11
12
13 837 Stroud, A., & Baines, L. (2019). Inquiry, Investigative Processes, Art, and Writing in STEAM. In
14
15 838 M. S. Khine & S. Areepattamannil (Eds.), *STEAM Education: Theory and Practice* (pp.
16
17 839 1–18). Springer Cham.
18
19
20 840 Thornhill-Miller, B., Camarda, A., Mercier, M., Burkhardt, J.-M., Morisseau, T., Bourgeois-
21
22 841 Bougrine, S., Vinchon, F., El Hayek, S., Augereau-Landais, M., Mourey, F., Feybesse,
23
24 842 C., Sundquist, D., & Lubart, T. (2023). Creativity, critical thinking, communication, and
25
26 843 collaboration: Assessment, certification, and promotion of 21st century skills for the
27
28 844 future of work and education. *Journal of Intelligence*, 11(3), 54.
29
30
31 845 <https://doi.org/10.3390/intelligence11030054>
32
33 846 Tsupros, N., Kohler, R., & Hallinen, J. (2008). *STEM Education in Southwestern Pennsylvania*
34
35 847 (pp. 1–36). Leonard Gelfand Center for Service Learning and Outreach and The
36
37
38 848 Intermediate Unit 1 Center for STEM Education.
39
40 849 <https://www.cmu.edu/gelfand/archive/archived-documents/stem-survey-report-cmu->
41
42 850 [iu1.pdf](#)
43
44 851 Tyler-Wood, T., Knezek, G., & Christensen, R. (2010). Instruments for assessing interest in
45
46 852 STEM content and careers. *Journal of Technology and Teacher Education*, 18(2), 341–
47
48 853 363.
49
50
51 854 U.S. Department of Education. (2024). *A Call to Action for Closing the Digital Access, Design,*
52
53 855 *and Use Divides*. U.S. Department of Education, Office of Education Technology.
54
55 856 <https://tech.ed.gov/files/2024/01/NETP24.pdf>
56
57
58
59
60
61
62
63
64
65

1
2
3
4 857 van Tuijl, C., & van der Molen, J. H. W. (2016). Study choice and career development in STEM
5 fields: An overview and integration of the research. *International Journal of Technology*
6
7 858 *and Design Education*, 26(2), 159–183. <https://doi.org/10.1007/s10798-015-9308-1>
8
9 859
10 860 Wang, M., Jiang, L., & Luo, H. (2023). Dyads or quads? Impact of group size and learning
11 context on collaborative learning. *Frontiers in Psychology*, 14, 1168208.
12
13 861
14
15 862 <https://doi.org/10.3389/fpsyg.2023.1168208>
16
17 863 Xu, W.-W., Su, C.-Y., Hu, Y., & Chen, C.-H. (2022). Exploring the effectiveness and moderators
18 of augmented reality on science learning: A meta-analysis. *Journal of Science Education*
19
20 864 *and Technology*, 31(5), 621–637. <https://doi.org/10.1007/s10956-022-09982-z>
21
22 865
23
24 866 Yakman, G. (2008). *STEAM Education: An overview of creating a model of integrative*
25
26 867 *education* [Virginia Polytechnic and State University].
27
28 868 https://www.academia.edu/8113795/STEAM_Education_an_overview_of_creating_a_m
29
30 869 *odel_of_integrative_education*
31
32
33 870 Zhan, Z., Yao, X., & Li, T. (2023). Effects of association interventions on students' creative
34 thinking, aptitude, empathy, and design scheme in a STEAM course: Considering
35
36 871 remote and close association. *International Journal of Technology and Design*
37
38 872 *Education*, 33(5), 1773–1795. <https://doi.org/10.1007/s10798-022-09801-x>
39
40 873
41
42 874 Zhang, J., Li, G., Huang, Q., Feng, Q., & Luo, H. (2022). Augmented reality in K–12 Education:
43
44 875 A systematic review and meta-analysis of the literature from 2000 to 2020.
45
46 876 *Sustainability*, 14(15), 9725. <https://doi.org/10.3390/su14159725>
47
48 877 zSpace. (2024). zSpace. <https://zspace.com>
49
50 878
51
52 879
53
54 880
55
56 881
57
58 882
59
60 883
61
62
63
64
65

1
2
3
4 883 **Figure Titles and Legends**
5
6 884
7
8
9 885 **Fig. 1** The Science, Art, Design, and Technology (SADT) approach
10
11 886
12
13 887 **Fig. 2** 3D plant models created by students
14
15 888 **A.** 3D models with limited accuracy created in Tinkercad® (corn) or Fusion 360® (2D model of
16
17 889 volvox). **B.** Models with limited accuracy created in Fusion 360®. **C.** Detailed 3D models created
18
19 890 in Fusion 360®.
20
21
22 891
23
24 892 **Fig. 3** Student understanding of the role of art and design in science
25
26 893 Number and percentage of students who responded to the questions "How does art and design
27
28 894 play a role in science?" before, before and after, or after the implementation of the module
29
30
31 895
32
33 896 **Fig. 4** Student understanding of the role of science in art and design
34
35 897 Number and percentage of students who responded to the questions "How does science play a
36
37 898 role in art and design?" before, before and after, or after the implementation of the module
38
39
40 899
41
42 900 **Fig. 5** Student learning hopes and learning and skills outcomes
43
44 901 Percentage of students who reported their learning hopes and learning and skills outcomes
45
46 902 before, before and after, or after the implementation of the module
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14
15
16
17
18
19
20 903 **Table 1** Information on participating educational institutions
21
22 904

Educational Institution	No. Students	Type of Institution	Educational Setting	Community Type	Educational Practice	Location	Module Period
A	28	Public	Formal	Urban	Co-ed	Chicago, IL	Spring 2023
B	44	Public	Formal	Semi-rural	Co-ed	Springfield, MO	Fall 2022
C	24	Public	Formal	Urban	Co-ed	St. Louis, MO	Fall 2021
D	22	Private	Formal	Urban	Only females	St. Louis, MO	Fall 2022
E	4	Private	Formal	Urban	Co-ed	St. Louis, MO	Spring 2022
F	17	Private	Formal	Urban	Co-ed	St. Louis, MO	Spring 2022
G	7	Private	Informal	Urban	Co-ed	St. Louis, MO	Summer 2021
H	14	Private	Informal	Urban	Co-ed	St. Louis, MO	Spring 2023
Total students		160					

42 905 *These institutions serve students from underserved communities with a majority of Hispanic students (A) and African

43
44 906 American students (H).

45
46 907

47
48 908

49
50 909

51
52 910

53
54 911

55
56 912

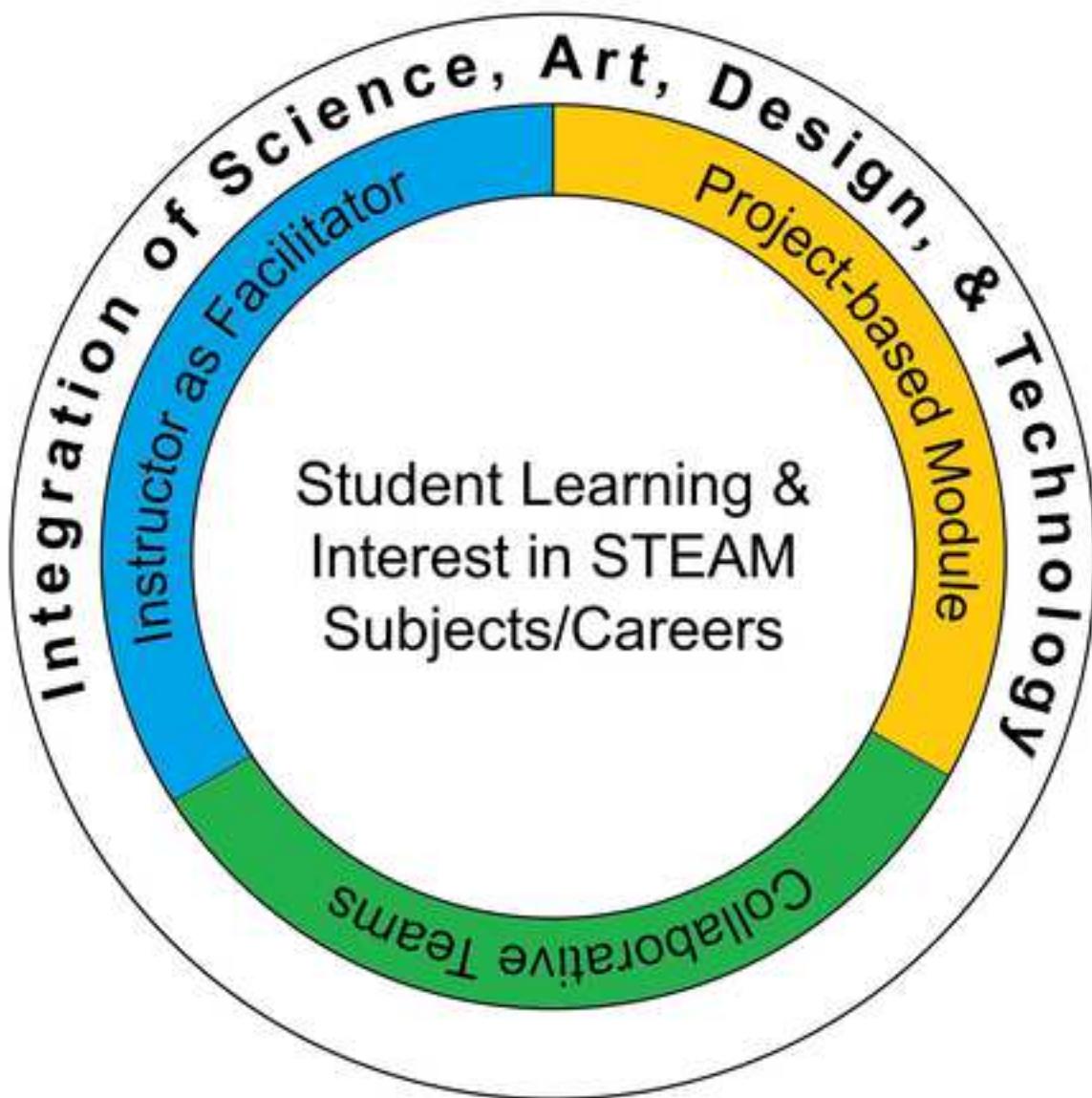
57
58 913

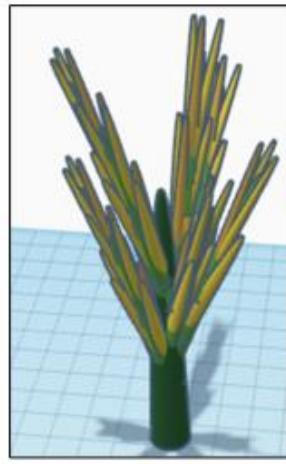
59
60 913

61
62
63
64
65

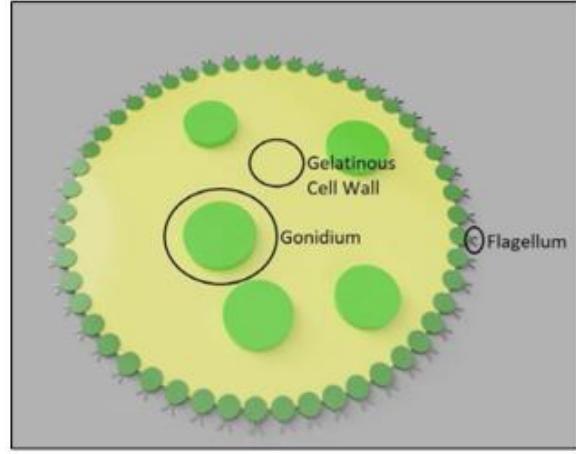
914 **Table 2** Survey questions and associated main themes and example student quotes

Survey Question (codebook numbers associated with main codes are in parenthesis) *	Main Themes	Example
Q2. How does art and design play a role in science? (Pre/post) (1.1.1. - 1.1.10)	Communication and furthering understanding	"Art and design play a role in science because that is how science is able to be communicated. It allows us to better understand scientific concepts through visual representation, and creativity fuels scientific exploration"
	Foster new ideas	"Art gives you inspiration and imagination to try out new things and you have to design how you are going to do that."
Q1. How does science play a role in art and design? (Pre/Post) (1.2.1. – 1.2.9.)	Science influences artistic creation process	"science plays a role in art and design because it describes or says what to draw or show"
Q3. What do you hope to learn by participating in this project? (Pre) Q4a. What has been the most important outcome of participating in this project? Describe any skills or knowledge you developed during this project. (Post) (2.1. – 2.11.)	Learning new/interesting things	"I hope to learn many new things"
	Learning about the integration and connection of art, design, science, and technology	"I hope I can learn more about how to use technology to create art while connecting it to science"
	Learning about science	"I learned more about the plant I was researching"
	Learning about the use of technology	"I was able to improve my skills in 3D modeling and how to model a lot more properly."
	Learning about design/art	"3D art making skills"
	Learning soft skills	"I developed better presenting skills and more skills on how to work with other people and as a group on a project that can contain some pretty individual opinions"
Q4b. [What has been the most important outcome of participating in	Relevance for projects/classes	"I developed being able to create a 3D model and can now do that in future classes or projects."

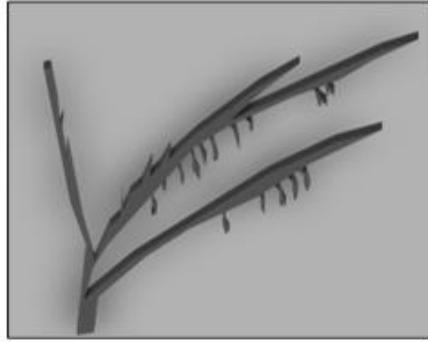

<p>20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36</p> <p>this project? Describe any skills or knowledge you developed during this project] and whether you feel these will be relevant or applicable outside of the class. (Post) (3.1. – 3.5.)</p>	<p>Relevance for endeavors outside of class</p>	<p>“A skill that I developed during this project are more stronger communication skills...This is a skill that will be applicable and relevant outside of class...”</p>
	<p>Relevance for future college or careers</p>	<p>“...the experience of working with a researcher will help me in the future when I participate in undergraduate research in college.”</p>
	<p>Relevance for jobs/job interviews/endeavors later in life</p>	<p>“Working in teams definitely helped my communication skills, which are very important in work environments.”</p>
<p>Q5. Has participating in this project changed your interest in science and or art/design careers moving forward? If so, how? (Post) (4.1. – 4.3.)</p>	<p>Statements expressing positive change</p>	<p>“I think that it has increased my interest in going into a science career, because I really enjoyed working on the models.”</p>
	<p>Statements expressing no change</p>	<p>“I was already interested in careers in the scientific community”</p>


916 * In parentheses it is indicated if the question was administered before, before and after, or only after implementing the module and

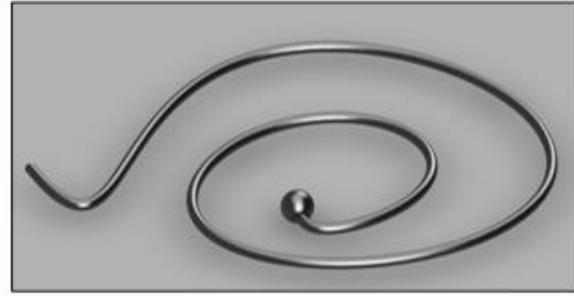
917 the codebook numbers associated with each main theme.


14
15
16
17
18
19
20 918 **Table 3** 3D plant models created by students
21
22 919
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Plant Type	Common Name	Species Name	3D model (plant parts)	Institution
Forb	Common milkweed	<i>Asclepias syriaca</i>	Plant	G
Small weed	Barrel medic	<i>Medicago truncatula</i>	Leaf	B, D
Green algae	Chlamydomonas	<i>Chlamydomonas reinhardtii</i>	Cell	C, G
Green algae	Volvox	<i>Volvox carteri</i>	Colony	G
Grass	Big bluestem	<i>Andropogon gerardii</i>	Spikelet pair	E
			Inflorescence	D
Grass	Fox millet	<i>Setaria viridis</i>	Plant - 3 life stages	G
Grass	Indiangrass	<i>Sorghastrum nutans</i>	Spikelet	E
Grass	Little bluestem	<i>Schizachyrium scoparium</i>	Spikelet pair	E
Grass	Seashore paspalum	<i>Paspalum vaginata</i>	Stolon	D
Crop	Alfalfa	<i>Medicago sativa</i>	Stem and leaves	C
Crop	Barley	<i>Hordeum vulgare</i>	Inflorescence	B
Crop	Cassava	<i>Manihot esculenta</i>	Female flower	D
Crop	Maize (corn)	<i>Zea mays</i>	Male flower	E
			Female flower, germinated kernel	D
			Leaf, seed	E
			Stem, leaves, female and male inflorescence	C
Crop	Oat	<i>Avena sativa</i>	Flower	D
Crop	Soybean	<i>Glycine max</i>	Plant and seed	B



A


Corn (*Zea mays*) male inflorescence

Reproductive phase of Volvox (*Volvox carteri*)

B

Big bluestem (*Andropogon gerardii*) inflorescence

Corn (*Zea mays*) female flower

C

Common milkweed
(*Asclepias syriaca*)

Big bluestem
(*Andropogon gerardii*) spikelet

Chlamydomonas
(*Chlamydomonas reinhardtii*)

Figure 3

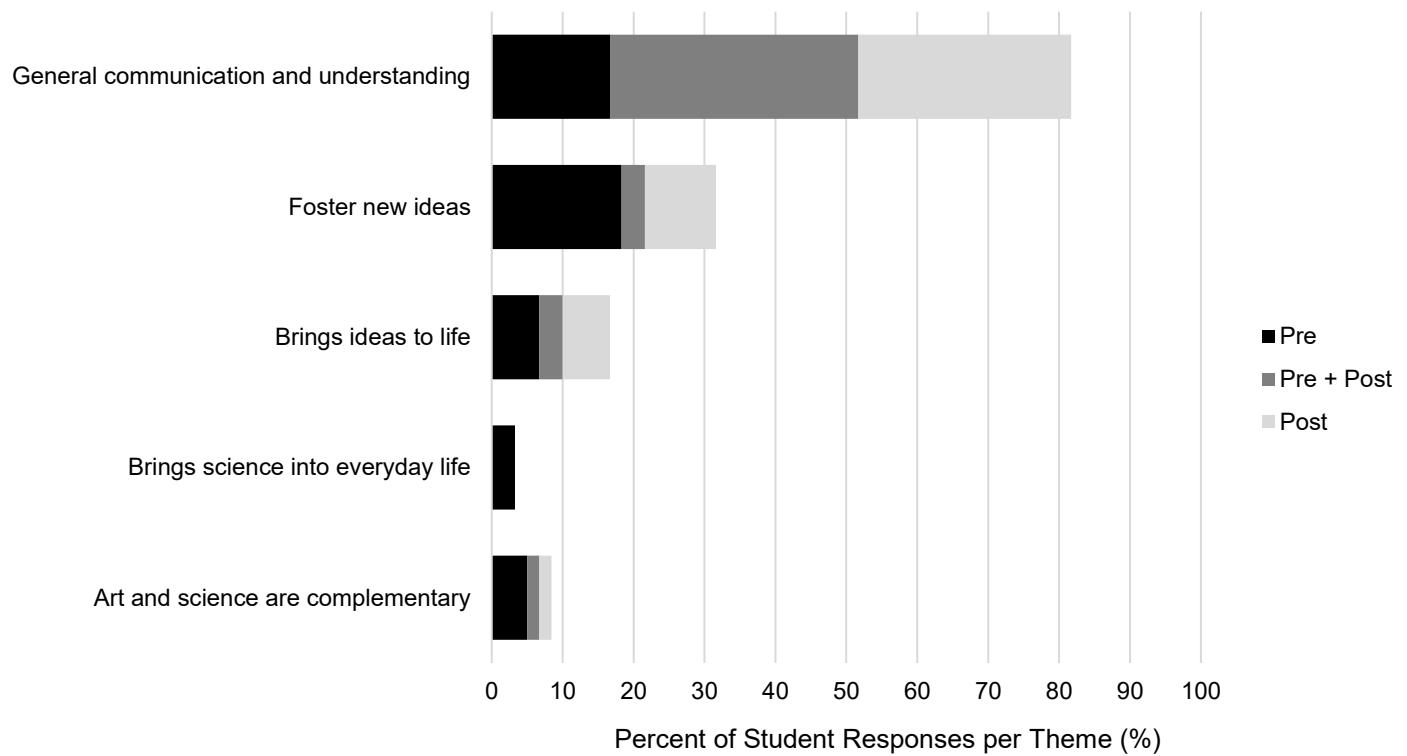

[Click here to access/download;Figure;Figure 3. Role of art in science.docx](#)

Figure 4

Click here to access/download;Figure;Figure 4. Role of science in art and design.docx

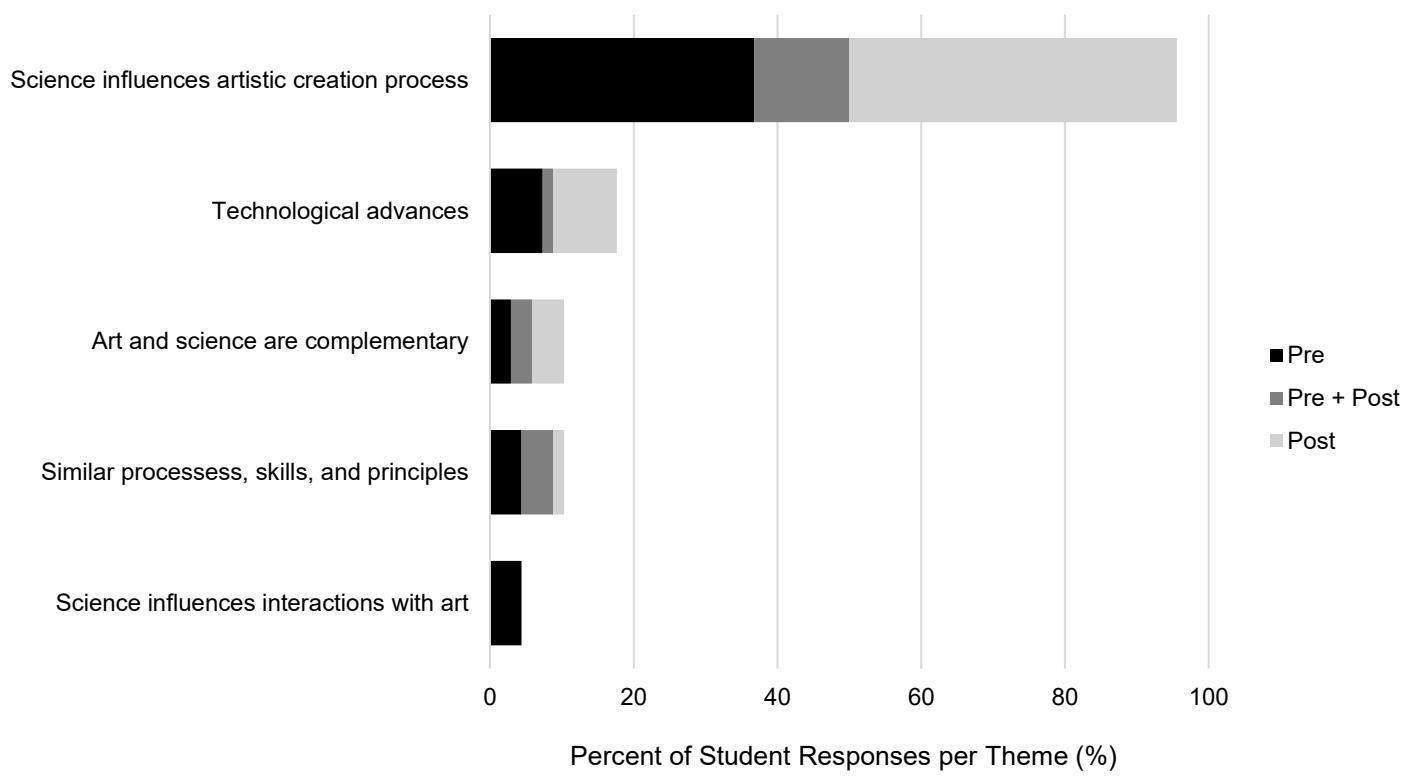
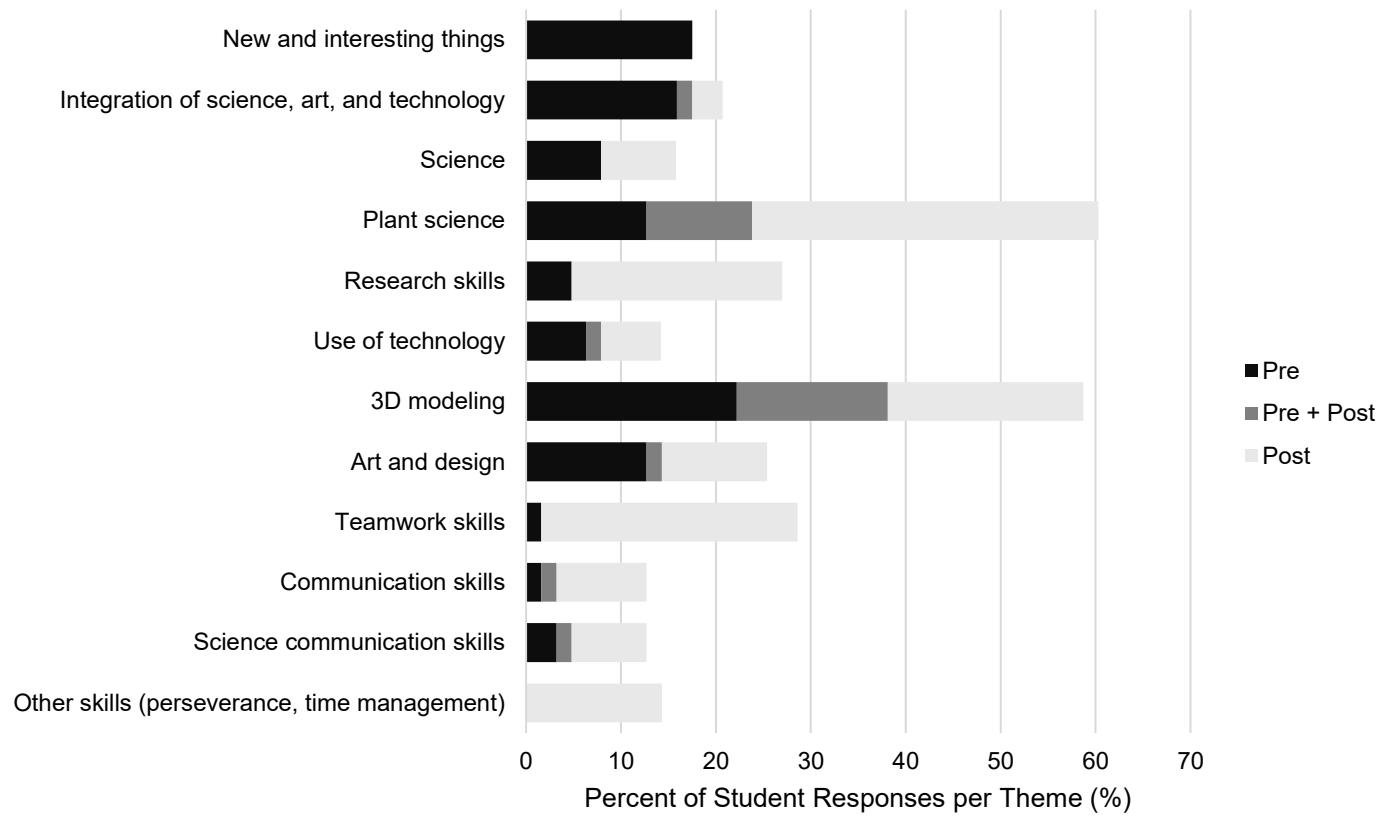



Figure 5

[Click here to access/download;Figure;Figure 5. Learning and skills outcomes.docx](#)

Click here to access/download
Supplementary Material
[**Manuscript_final_supplementary.docx**](#)

3D plants: The impact of integrating science, design, and technology on high school student learning and interests in STEAM subjects and careers

Sandra Arango-Caro^{1*}, Tiffany Langewisch¹, Kaitlyn Ying¹, Michelle Arellano Haberberger¹, Nate Ly¹, Christopher Branton², Kristine Callis-Duehl¹

¹Education Research and Outreach Laboratory, Donald Danforth Plant Science Center, 975 N Warson Rd., St. Louis, Missouri, 63132, USA. ²Drury University, 900 N Benton Av., Springfield, MO 65802, USA.

***Correspondence:** Sandra Arango-Caro, sarango-caro@danforthcenter.org

Declarations

Availability of data and materials

Data will be made available on reasonable request.

Competing interests

The authors have no competing interests to disclose.

Funding

This work was supported by the National Science Foundation ITEST Program, award #1949463.

Authors' Contributions

SAC directed the project, analyzed the data, and was the primary author of the manuscript. TL wrote sections of the manuscript and assisted with data analysis. KY and MA assisted with data analysis. NL created the tutorial videos, was the 3D modeling expert who advised students and curated the models. CB provided external project advice. KCD oversaw the project and assisted with data analysis. All authors reviewed versions of this manuscript.

Acknowledgments

The authors would like to thank the following supporters of this project. Jody Attar provided zSpace training for both students and educators. Elizabeth Kellogg, Armando Bravo, Christopher Topp, Claire Albin, Mohammad Azim, Sebastien Belanger, and Collin Luebbert, plant scientists at DDPSC, served as scientific advisors. Parag Bhatt, Harini Gottumukula, and Ash Kass, members of the EROL at DDPSC, supported the logistics of the student field trips.