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ABSTRACT 

Polymer-based semiconductors and organic electronics encapsulate a significant research thrust 

for informatics-driven materials development. However, device measurements are described by a 

complex array of design and parameter choices, many of which are sparsely reported. For example, 

the mobility of a polymer-based organic field-effect transistor (OFET) may vary by several orders 

of magnitude for a given polymer, as a plethora of parameters related to solution processing, 

interface design/surface treatment, thin-film deposition, post-processing, and measurement 

settings have a profound effect on the value of the final measurement. Incomplete contextual, 

experimental details hamper the availability of reusable data applicable for data-driven 

optimization, modeling (e.g., machine learning), and analysis of new organic devices. To curate 

organic device databases that contain reproducible and Findable, Accessible, Interoperable, and 

Reusable (FAIR) experimental data records, data ontologies that fully describe sample provenance 

and process history are required. However, standards for generating such process ontologies are 

not widely adopted for experimental materials domains. In this work, we design and implement an 

object-relational database for storing experimental records of OFETs. A data structure is generated 

by drawing on an international standard for batch process control (ISA-88) to facilitate the design. 

We then mobilize these representative data records, curated from literature and laboratory 

experiments, to enable data-driven learning of process-structure-property relationships. The work 

presented herein opens the door for the broader adoption of data management practices and design 

standards for both the organic electronics and the wider materials community. 
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1. INTRODUCTION 

The domain of π-conjugated polymer semiconductors is of keen interest to both the 

materials informatics and organic electronics communities due to the promising opportunities this 

class of materials offers for large-area, printable, deformable electronic devices and energy 

applications.1-3 In the years since the advent of the Materials Genome Initiative in 2011, conjugated 

polymer semiconductors have been associated with over 5,000 peer-reviewed articles (Web of 

Science, March 2023).4 A subset of this body of literature has striven to further accelerate 

knowledge discovery in this materials space through applied data science, machine learning, and 

high-throughput experimentation techniques. For example, data-driven techniques have recently 

been leveraged to pursue targeted advances for thin-film device applications including organic 

field-effect transistors (OFETs),2, 5-8 organic light-emitting diodes (OLEDs),9-12 and organic 

photovoltaics (OPVs).13-17 Early successes include the application of self-driven laboratory 

workflows to screen quaternary OPV formulations at the full device level.13, 18 Indeed, these 

endeavors have positioned organic electronics as a significant research thrust within the materials 

informatics community. 

Despite recent accomplishments, rational design of organic electronic devices, particularly 

those that are polymer-based, still largely materialize through one-parameter-at-a-time, 

hypothesis-driven studies due to the limited availability of representative experimental data. The 

conjugated polymer materials domain is a research area with a compelling need for experimental 

data management solutions. While a few examples of shared datasets or databases that target 

organic electronics research have been reported, such as the Harvard Clean Energy Project19 and 

OCELOT,20 they mostly include computational data on small molecules. A recent effort in 

Deep4Chem mined over 1,000 peer-reviewed articles to build an experimental database of 
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chromophores,21 but similar to prior efforts it largely targets electronic structure-property 

measurements and is not inclusive of process history. In extending database management 

effectively to polymer-based devices, providing data models that are inclusive of experimental 

processing information are priorities for storing accurate and reproducible records. 

Experimental database design and management for polymer electronics however is 

nontrivial, especially when a plurality of the relevant attributes related to the provenance of the 

sample must be included accurately to form a robust, “reusable” data record. Data ontologies are 

not standardized in the organic electronics space: fully capturing all relevant experimental 

information is challenging, and organic device performance is highly sensitive to the many 

parameters associated with the active layer deposition process. For example, the charge-carrier 

mobility (μ), a key figure of merit for OFETs, has been shown to vary significantly for poly(3-

hexylthiophene) (P3HT) (~10-6 – 100 cm2/V∙s)8, 22 and poly[2,5-(2-octyldodecyl)-3,6-

diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno [3,2-b]thiophene)] (DPP-DTT) (~10-5 – 101 

cm2/V∙s).8 This performance variation is not only attributed to batch-to-batch characteristics of the 

polymer, but also a plethora of parameters related to the polymer’s process history, starting with 

the solution state through the thin-film deposition process.23, 24 Another source of variation is that 

mobility values are derived from device measurements via model fitting, and employing different 

methods/parameters (i.e., models, measurement settings, voltage limits) may affect the extracted 

mobility value. Recording processing and measurement parameters provides indispensable 

contextual value to organic device data, but nonetheless recording all of them efficiently is not 

straightforward. Additionally, since the design space is inherently dynamic due to the evolving 

nature of research, data models must be designed with flexibility in mind without sacrificing 
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consistent vocabulary. Thus, generating a representative data ontology describing the experimental 

device realm is a challenge that must be addressed to enable reliable database designs.25  

Though process representations are not new problems for the sake of curating materials 

databases, navigating these challenges for experimental polymer domains has only been explored 

recently by a minority of materials data researchers. The experimental database effort in 

MaterialsMine promotes the inclusion of processing terms for polymer nanocomposites,26-28 while 

the Community Resource for Innovation in Polymer Technology (CRIPT) proposes a framework 

to comprehensively describe polymer data, seeking to unify all aspects of sample provenance from 

synthesis, processing, characterization, properties, and instrumentation/citation metadata.29 These 

active endeavors open the door for a broader adoption of polymer-based data management 

solutions, but it is up to various communities to enable tailored data models for their specific sub-

domains.30 

In this work, we use OFETs as a model system to propose an experimental data ontology 

associated with semiconducting polymer processing. We then produced a data structure that 

focuses on the deposition of the active semiconducting polymer layer and leveraged it to 

implement an experimental repository relating the semiconducting polymer process history to 

device performance. To guide a robust representation of that process history, this work draws upon 

ISA-88, an international standard for automation in batch process control, to construct 

generalizable relationships across process transformations within the fabrication procedure to 

create the semiconducting thin film.31 Building a data repository that can handle the many nuances 

of this complex design space is expected to provide a platform to enhance hypothesis design, 

scientific decision-making, and model development within the traditionally “small data” space of 

the organic electronics community.  
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2. DATA MODEL AND KNOWLEDGE REPRESENTATION 

2.1. Parameter space 

Defining the required information to capture is facilitated by published reporting standards 

for experimental OFET device data.32-34 An overview of the major materials and process stages 

involved in depositing the semiconducting polymer layer, and a non-exhaustive set of their related 

parameters/attributes is presented in Figure 1. A device recipe considers the starting materials – a 

polymer and a device substrate – and tracks these two inputs as they are transformed through a 

series of process steps and ultimately integrated into the output: an OFET on which a device 

measurement is made. Important parameters and nuances to evaluate device performance include 

materials characteristics, solution processing, substrate treatment, and the instrument parameters 

and models used to extract device metrics. 

The primary material parameters describe the components of the active semiconducting 

layer as well as any other materials (i.e., solvents, chemical treatments) included in the processing 

procedure. The polymer and any other components are dissolved into a solution that is ultimately 

deposited onto the device substrate. As the behavior of the polymer in the solution state is a key 

determinant of its thin-film behavior, all information associated with the solution makeup and its 

processing is especially crucial to capture for data provenance purposes.35 Choices in the material 

characteristics of the polymer (i.e., molecular weight distributions, regioregularity, tacticity, etc.) 

yield a range of structural and morphological motifs that in turn significantly impact device 

performance.36 The identity of the solvent(s) used affects not only the polymer-solvent interactions 

in the solution-state, but also the dynamics of the thin-film deposition process, thereby influencing 

the structure and performance of the final active layer.37  
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The OFET device substrate is a layered device structure, comprising substrate, gate 

electrode, dielectric, and source/drain electrodes. The most common electrode configurations used 

in the organic electronics community include (a) bottom-gate bottom-contact (BGBC), (b) bottom-

gate top-contact (BGTC), (c) top-gate bottom-contact (TGBC), and (d) top-gate top-contact 

(TGTC). The electrode configuration is a necessary contextual detail for reporting a device 

measurement, as substrate designs often take advantage of charge carrier behavior at different 

interfaces. Additionally, as substrate design parameters (i.e., channel dimensions such as width 

and length)7 and material choices (i.e., electrode material, dielectric, etc.) may influence device 

measurements,38 this design information is important to include in a data entry to promote 

experimental reproducibility.32  

An emphasis of the work herein is that processing information is indispensable for the 

purpose of storing reproducible device data. Seemingly minor differences in processing can lead 

to significant changes in the recorded charge-carrier mobility of an OFET sample. Omitting 

information related to this process history will therefore lead to errors or inaccuracies when 

comparing device data across experiments. Even prior to deposition, the solution and device 

substrate undergo process transformations that can affect the deposited thin-film and device 

characteristics. Solution-based processes may include operations such as sonication, aging, poor 

solvent addition, cooling, etc.39 in a prescribed sequence to promote solution-state aggregation,40-

42 while surface pretreatment procedure may include, for example, a cleaning process (e.g., UV-

ozone or plasma treatment) followed by a surface modification step via self-assembled monolayer 

(SAM).43 As an example, differences in solution aging times (i.e., 3 hr, 6 hr, 24 hr prior to coating) 

can lead to noticeable structural changes that affect the final value of the device measurement in 

P3HT.44, 45 
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The coating process could be performed through a plethora of solution casting methods 

including drop casting, spin coating, blade coating, inkjet printing, slot die coating, etc. that all 

have different physical impacts on thin-film morphology and therefore device performance, 

especially when coupled with solution pre-treatment.46, 47 Meniscus-guided coating techniques, for 

example, yield a set of deposition regimes governed by a complex parameter space that includes 

flow conditions, coating speeds, stage temperatures, drying times, contact angles, etc.48 In 

combination with solution properties and surface interactions, coating conditions are often chosen 

carefully to tune the morphology of the deposited thin film. Post-processing operations may also 

be performed after the coating stage, such as annealing49 or selective etching,50 to further control 

the thin-film morphology. Throughout all processing steps, the ambient environment (humidity, 

air vs. inert atmosphere, temperature, etc.) may also play a role in the final properties.51 
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Figure 1. Overview of the process associated with transforming a semiconducting polymer into 
the active layer of an OFET sample, including the common parameters associated with a sample 
recipe. 

Instrument settings are classified as attributes of the measurement rather than the 

fabrication process, but this metadata is important as it contextualizes the reported value. 

Particularly, OFET performance metrics can be nontrivial to represent because a charge-carrier 

mobility value is not a measurement per se; it is a parameter value derived from curve fitting of 

the actual measurement, a transfer curve sweep. Therefore, the measurement and fitting protocol 

used to extract the charge-carrier mobility benchmark from the actual transfer curve is an important 

consideration. Unreported details about measurement regimes, voltage sweep range/direction, the 

measurement environment, etc., can lead to misinterpretations about the provenance of device 

metrics such as the mobility. In some cases, mobilities extracted from the same device data can 

differ significantly when different extraction methods are used (e.g., space-charge limited current-

voltage (SCLC), time-of-flight (ToF), etc.)52 or when different voltage ranges are chosen to obtain 

the fitted mobility value.53 Guidelines on robust mobility extraction protocols and measurement 

metadata reporting are relevant here, and are elaborated on in the literature.52-54 

2.2. Sample representation 

The translation of the real-world parameter space and its relationships to a robust data 

model requires definition and elaboration of an ontology. We direct the reader to introductory SQL 

and database literature to facilitate conceptual understanding of the database model enumerated 

below.30, 55 At a high level, the entity-relationship diagram in Figure 2 shows how an organic 

device sample with its associated reported measurement (i.e., a charge-carrier mobility value) may 

be conceptually encapsulated as an experimental data record. This diagram provides an important 

visualization of how various parameters, data, and information in the experimental real world are 
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captured as attributes of related objects, to facilitate the organization of data in constructing a 

database. Rectangles represent entities or objects, diamonds represent relationships between 

entities, and labeled ovals represent attributes containing the data or information associated with 

the various entities, where underlined labels denote a unique identifier for that object.  

 

Figure 2. High level entity-relationship diagram depicting the reporting of an experimental 
Sample, including relationships with Experiment information, the Process recipe, and the 
associated Measurement data. Grey ovals are attributes associated with the labeled entities. Inputs 
to the process recipe are represented by material nodes and process stages (see Figure 3). 

A sample refers to a single organic device in the form in which all its characterization data 

(a set of measurement objects) were collected and contains explicit information associating it 

with its reporting origin (experiment) and its physical origin/process history (process) (Figure 

2). Sample has a one-to-many (1-N) relationship with measurement, since a single OFET could 
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be measured a number of times by a variety of characterization methods not limited to device 

performance. A measurement has a type (e.g., transfer curve, spectroscopy, scattering, thickness, 

etc.) and the heterogeneous data (e.g., value type, value, error, etc.) and metadata (e.g., instrument 

information, date measured, etc.) associated with it. An experiment refers to the source 

information associated with the reporting of the sample, and therefore has a citation type (e.g., 

laboratory, journal article, dissertation) and metadata associated with that source (e.g., digital 

object identifier (DOI), date published, author information, etc.). Experiment and sample have a 

one-to-many relationship, as a single experiment may report multiple samples. A process recipe 

refers to the unique material ingredients and process sequence through which the sample was 

generated. The process recipe contains foreign keys (i.e., references to material nodes) that link 

information about the device substrate and the solution (the latter contains polymer and solvent 

information), and to process stage nodes that subdivide the process history (vide infra). Metadata 

fields linked to the material entities contain information such as polymer batch or lot information, 

supplier information, etc. These material nodes also serve as placeholders to expand the data model 

to include more details on synthetic routes (for polymer) and/or device fabrication routes (for 

device substrate) in future database development. Sample and process recipe have a many-to-

one (N-1) relationship, as a given sample device can only be associated with one process recipe 

but the same process recipe could be used for multiple samples.  

2.3. Process representation 

Comparing device data reported from multiple sources requires that the various nuances of 

the experimental design space are accurately represented in a robust data format. Particularly, 

understanding the sensitivity of the process space is non-negotiable for the sake of reproducibility 

and accurate data representation. However, in contrast to the other entities in Figure 2, it is not 
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straightforward to manifest a data structure that broadly represents the process history for the 

conjugated polymer layer. This is not only because the real-world process history is extremely 

complex, but also because the various events in a process history have an explicit order, and the 

events may not occur consistently across samples. For example, as discussed above, the solution 

processing procedure may include sequenced pre-treatment techniques to induce polymer 

aggregation in the solution state. This procedure may include multiple steps, and the ordering of 

those steps may affect the final film and properties (i.e., sonication then aging, or aging then 

sonication).44 The example above exemplifies a broader challenge in robustly handling 

information in both dynamic and nuanced ways in sample recipes. 

One avenue to formulate a data structure is to sub-divide the sample generation process 

into a series of sub-processes that appear in a consistent ordering for any given polymer active 

layer in an OFET, model the relationships among a standard domain of entities within those sub-

processes, and use the resulting graph to sort data. Recently, Walsh et al. proposed a generalized 

polymer data structure in CRIPT, introducing a data format for process entities that can be 

sequentially arranged to represent successive material transformations.29 However, there is no 

established standard for defining the boundaries of a “process” for the sake of knowledge 

representation in materials data structures. We propose that incorporating a universal standard to 

help compose and arrange individual process stages would foster the adoption of generalized data 

models that can be used to model a broad set of application domains that are sensitive to complex 

processing histories. 

Therefore, herein we adopt an international automation standard in ISA-88 to facilitate the 

conceptual modeling of the conjugated polymer deposition in a logical way (Figure 3a).31 ISA-88 

is a standard that is used in batch process control to organize the various pieces of data associated 
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with a complex network of instrumentation and process stages, wherein a batch process input 

material is fed to a defined order of processing actions (e.g., pieces of equipment) in series or in 

parallel to obtain some output material. Section 4.1 of ISA-88 defines a series of hierarchical 

subdivisions that are increasingly descriptive of an overall batch process. If the first level of the 

hierarchy is the overall process, the process is subdivided at the second level as an ordered set of 

process stages which operate independently from each other, usually in a planned sequence of 

physical changes in the material being processed. Process stages can be broken up into individual 

process operations, which are defined as major activities that result in a chemical or physical 

change in the material inputs. At the lowest level of the process model, process actions represent 

the minor activities that make up a process operation. Within each level of complexity, entities are 

a directed set of process sub-nodes organized in serial, parallel, or both.31 
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Figure 3. (a). Entity-relationship diagram of ISA-88, an international standard in batch process 
control. Material nodes and attributes are not explicitly included in the process model. Here, the 
former participate as inputs and outputs to the process, while attributes may describe a process 
node at the lowest level of complexity (See Figure 2). (b) Expanded graphical representation of an 
OFET fabrication recipe into a set of process stages, using the second level of ISA-88. (c). Process 
stage expansion to directed relationships between process operations at the third level of ISA-88. 
Ovals represent attributes at the model's lowest level. 
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The conjugated polymer process recipe is expanded to process stages of substrate 

pretreatment, solution processing, film deposition, and post processing at the second level of 

ISA-88 (Figure 3b). These entities are fixed stages and represent logical subdivisions that broadly 

describe the active layer transformation of the input materials. Figure 3c represents a third level 

of process description, showing that the sequence of process operations that falls within the 

boundaries of each polymer process stage may vary from sample to sample. Substrate 

pretreatment refers to all the processing activities related to preparing the patterned device 

substrate for the deposition process. This sequence may or may not include cleaning treatments 

(e.g., chemical washing, UV-ozone, plasma treatment, etc.) proceeded by one or more surface 

modification steps, such as the use of a self-assembled monolayer. Solution processing includes 

the various ordered steps (e.g., mixing, sonication, cooling, aging, etc.) that transform the 

polymer/solvent components into the final solution or ink formulation that ultimately gets coated 

onto the treated substrate during the film deposition stage. The film deposition stage includes only 

one node that contains information about the parameters and metadata of the coating method (e.g., 

blade coating, spin coating, drop casting, inkjet printing, etc.). Finally, post-deposition operations 

such as further chemical treatment or annealing appear under the post process stage node. 

Further expanding the process operations into individual process actions is possible but 

provides a level of complexity that may not be required for sufficient database design, as the main 

purpose of the process model is to identify the most appropriate object classification to store 

attributes. For example, a “sonication” node might be expanded to process actions such as “set 

sonication time” or “set sonication intensity”, but this information can be just as easily represented 

by storing the attributes “sonication time” and “sonication intensity” in the parent process 

operation node (Figure 3c). However, it should be noted that this next level of process expansion 
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may be useful for relating data commands or readings to computer-integrated or fully automated 

instrumentation. In either case, all the raw parameters, data, and metadata information are stored 

in the nodes at the lowest process level. 

3. OFET-db: A database implementation and demonstration 

The prior section proposes a general data structure and ontology for storing information 

related to the formation of the conjugated polymer active layer in a device such as an OFET. ISA-

88’s sequenced process model also allows for process history to be effectively captured in a data 

model, as the conjugated polymer is transformed into the final active layer of the measured device 

through a batch process. The process representation provides a high-level fixed structure (the main 

process stages of solution processing, substrate treatment, etc.) to promote aspects of a consistent 

relational schema, while providing flexibility for storing dynamic information within each of the 

stages. Using the data model described above, an experimental repository of OFET device 

measurements was curated from a set of published, peer-reviewed literature data (Supporting 

Information) and unpublished laboratory data. The following section discusses the initial 

construction and continued curation of experimental device records into the database and provides 

a brief demonstration of utilizing the database for meaningful searching and data visualization. 

3.1. Data sourcing 

The database was seeded using a set of experimental datasets for a set of three model 

polymer systems for electronic devices: P3HT, DPP-DTT, and poly([N,N'-bis(2-

octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)) 

(N2200). The P3HT, DPP-DTT, and N2200 data were curated from a body of literature combining 

over 50 peer-reviewed journal articles reporting OFET device performance, containing a 
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heterogeneous set of information including process-related parameters and some structural 

characterization data. A subset of the database was also curated using unpublished records from 

laboratory experiments. 

3.2. Database management system (DBMS)  

The database was constructed using PostgreSQL, an open-source, relational database 

management system primarily based on the structured query language (SQL) that has strong 

support for NoSQL features. This allowed the database to have the preferred functionalities of the 

relational model (e.g., data normalization, data redundancy, error checking, etc.), while allowing 

for storage flexibility where attributes may be dynamic.30 Preserving relationships is also a key 

factor in representing sample provenance in a robust manner, which makes certain aspects of the 

relational model attractive for the sake of interoperability with other community databases. At the 

same time, PostgreSQL can handle storage and queries on a variety of complex data types, 

including JSON, XML, and binary objects, which is not a feature that is always available for SQL 

databases. The mix of SQL and NoSQL features allows the implementation of a data model that 

provides more convenient and robust organization for structured aspects (process stages, e.g., film 

deposition) and flexible storage for unstructured information or data fields that may evolve with 

research thrusts over time (process operations, e.g., coating parameters, and metadata fields). A 

complete description of the DBMS table schema, based on the data model described earlier, is 

available in the Supporting Information. 

3.3. Vocabulary for data curation 

The diversity of categorical or text descriptors in the OFET parameter space requires the 

use of a consistent vocabulary of keywords to guide the naming of attributes and free-text fields. 
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Naming errors can in part be mitigated through built-in DBMS functionalities but may persist, 

especially in JSON formats, due to flexible key-value naming. At the time of writing, the 

implementation of OFET-db uses some keywords borrowed from other large-scale materials 

database efforts (e.g., where applicable and available, citation/source keywords from 

MaterialsMine,26 process and material keywords from CRIPT,56 etc.), but largely uses custom 

keywords that provide more specificity to descriptors relevant to the organic device fabrication 

domain (e.g., blade, spin, inkjet, dip, etc. to specify different classes of solution coating/deposition 

techniques). A full list of terms is available in the Supporting Information for the database 

implementation version described herein. Future design efforts will employ updated terminologies 

from shared community resources when available, as shared vocabularies promote consistent 

descriptions and interoperability. An experimental data entry template that incorporates this 

controlled vocabulary has also been adapted from a similar template shared by MaterialsMine.27 

This template is intended to not only reduce the time and inconvenience that is inevitable for an 

experimentalist or domain expert to fill out a data record for database entry but provides a tool to 

reduce the error checking and validation workload on the back end. Future template versions could 

be implemented as user-friendly webforms, a web application, or directly coupled to electronic 

laboratory notebooks or integrated laboratory instrumentation to facilitate the process of database 

inserts for newly curated experimental records. 

3.4. Data visualization 

Data reads from PostgreSQL are facilitated through built-in Python libraries, such as 

psycopg2 and pandas. The following section demonstrates basic data analyses generated from such 

read queries to highlight the usefulness of enabling databases for experimental research purposes. 
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In the future, it is envisioned that a larger population of data can facilitate data-driven knowledge 

discovery activities through the utilization of data science or machine learning techniques.  

 

Figure 4. Single-axis scatterplots superimposed on boxplots, visualizing the mobility distributions 
for three representative polymers in OFET-db. The interquartile range (IQR) is defined between 
25th and 75th percentiles, where the whisker endpoints are defined by 1.5*IQR.  Data is shown only 
for pure-component active layers; blends are omitted. 

Figure 4 shows the distribution of charge-carrier mobilities generated using data queried 

from OFET-db, showing the total spread and statistics of performance values for three relatively 

well-represented polymers in OFET-db: DPP-DTT, N2200, and P3HT. OFET samples fabricated 

from all individual polymer types show performance variations that span several orders of 

magnitude. The higher average and maximum charge-carrier mobility achieved for the DPP-DTT 

and N2200 data also reflects the general performance advantage of donor-acceptor copolymers 
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versus the model homopolymer P3HT, even despite this large variation. Polymer material 

characteristics, such as molecular weight and polydispersity, are important factors in performance 

differences, as demonstrated by Figure 5. Molecular weight is a well-studied parameter for 

conjugated polymers in OFETs, and it is generally understood that longer conjugated backbones 

promote entanglements and aggregates in solution, and thereby enhance long-range molecular 

order and charge transport pathways in the thin film.36, 41, 57 The positive correlation between 

molecular weight and mobility is generally visible for P3HT and DPP-DTT. Variation in mobility 

for constant molecular weight is visible for all three polymers when, for example, the same study 

uses the same polymer batch to explore the effect of a chosen processing motif on the device 

performance, highlighting the importance of including such process details. A similar positive 

trend in mobility is visible for the polydispersity index (PDI), where devices made from a higher 

PDI polymer are more likely to have mobilities in the upper range of the dataset.  

Compared to molecular weight, however, the effect of PDI on the charge-carrier mobility 

is not as well-understood by the community. While this behavior may at first glance be due to a 

correlation between molecular weight and PDI, a Spearman Correlation analysis shows that these 

two variables are positively correlated only for P3HT (r = 0.79) but remain uncorrelated for DPP-

DTT (0.03) and N2200 (0.23) (Table 1). PDI may be less frequently studied as a tunable 

experimental parameter since batch characteristics are sensitive to the synthetic procedure, 

hindering the design of controlled experiments for OFET performance comparisons. Recently, 

McBride et al. blended different Mw batches of P3HT and found that a wider molecular weight 

distribution exhibited beneficial effects due to a synergistic behavior between shorter tie chains 

connecting aggregated domains of larger chains in aged solutions.58 However, the data analysis 

above shows that a relationship between dispersity and mobility may be a common trend for co-
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polymer systems, which potentially motivates a broader study into the structural mechanisms 

behind the mobility dependence on molecular weight distributions. 

 

Figure 5. Charge-carrier mobility trends plotted against polymer material characteristics (a) 
molecular weight, (b) dispersity 

Table 1. Spearman correlation coefficients calculated between molecular weight (Mw) and PDI for 
datasets classified by polymer 

Polymer Spearman Correlation 
Coefficient: Mw vs PDI 

DPP-DTT 0.03 

N2200 0.23 

P3HT 0.79 
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The data model implemented herein also provides the flexibility to index information from 

structural measurements (e.g., spectroscopic signals, microscopic images, etc.), which enhances 

the ability to interrogate process-structure-property relations. The population of structural 

measurements is much smaller than the number of device measurements, but here we show that 

structural information is available and representative. 

 

Figure 6. (a) Spearman correlation matrix on a subset of material information with thin film 
structural information (100) d-spacing) in GIWAXS. (b). Pair plots showing a 3-dimensional 
relationship between molecular weight, hole mobility and available (100) d-spacing from 
GIWAXS measurements of pure-component DPP-DTT devices. 

For example, Figure 6 analyzes the polymer characteristics of DPP-DTT with respect to 

(100) d-spacing extracted from available GIWAXS data. Most notably, Figure 6 shows a strong 

negative Spearman correlation value between molecular weight and (100) d-spacing, indicating 

that the lamellar spacing tends to decrease with an increasing conjugated backbone length for DPP-

DTT. A corresponding negative correlation between d-spacing and mobility suggests that this 
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change in lamellar spacing is a potential indicator for improved charge transport characteristics in 

the thin film, as decreased lamellar spacing could facilitate charge hopping.59 Though this distance 

is merely one factor characterizing the crystalline domain, this observation draws interest in 

considering further parameters (e.g., full width at half maximum, degree of crystallinity, etc.) to 

study the impact on device performance. As the data reported here is relatively sparse, with only 

31 of the DPP-DTT device samples registering associated GIWAXS data, more meaningful 

structure-property observations could potentially be extracted when a richer set of structural data 

is recorded. Nonetheless, we demonstrate the utility of using our preliminary body of populated 

data to inform future work toward a richer experimental repository and greater physical 

understanding. Such observations can suggest new hypotheses that can then be tested with 

additional experiments. 
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Figure 7. Impact of sequential substrate surface modification on charge carrier mobility for a DPP-
DTT study. Two different surface modifiers, including methyltrichlorosilane (MTS), 
octyltrichlorosilane (OTS-8), octadecyltrichlorosilane (OTS-18), and phenyltrichlorosilane (PTS), 
are used sequentially to treat the substrate as detailed in ref [38]. 

We expect that future data-driven studies that use OFET-db as a resource will benefit from 

representative storage of process history, as materials characteristics alone often provide 

insufficient information for fully understanding the experimental sensitivity of device 

performance. To that end, with our proposed process ontology we aim to enable the curation of 

experimental data with the associated process history of samples, with the future intention of 

providing advanced analyses based on process recipes. A preliminary demonstration of the ability 

to curate, select, and plot process sequenced data is presented briefly herein. We used a query that 

searched for devices deposited on substrates treated by more than one surface modification agent 



25 
 

(Supporting Information) to show the subset of data extracted from the database in Figure 7. 

This subset highlights results from a single study38 that compares the OFET mobility of devices 

deposited onto substrates sequentially pretreated with either of three pairs of silanes: 

methyltrichlorosilane (MTS) and octadecyltrichlorosilane (OTS-18), OTS-18 and 

phenyltrichlorosilane (PTS), and octyltrichlorosilane (OTS-8) and OTS-18. For all three of the 

pairings, noticeable differences in performance were observed depending on whether OTS-18 

treatment was performed before or after the other silane agent.  

This comparison highlights the necessity to capture process history (rather than simply 

process parameters) in fully describing device performance, as such processes will affect the 

relationship between solution-state and thin-film assembly, and therefore the final device 

properties. A major challenge, however, is that drawing device comparisons across different 

authors based on a standard recipe (i.e., isolating a large set of devices made with a standard set of 

process conditions that appear frequently) would require more data since the process space is very 

large.60 Currently, “low” availability of curated data precludes a more comprehensive meta-

analysis of the process-structure-property relationships that govern the device performance of 

conjugated polymers. While the process-structure-property analyses discussed above for OFET-

db demonstrate the challenge in driving data-driven studies in a “small data” environment, they 

also highlight the potential in mobilizing a database that can capture the various experimental 

nuances that could be indispensable toward greater physicochemical understanding of conjugated 

polymer-based organic devices. Therefore, the application of process ontologies is necessary for a 

broader adoption of representative materials databases, which the work herein addresses for 

conjugated polymer processing in OFETs. 

4. CONCLUSIONS 
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Herein, we demonstrate the design and implementation of a data model for the 

experimental domain of OFETs as a foundation for broadly enabling database curation and 

management for organic thin-film electronics. Specifically, capturing process history in a manner 

that conforms to standard data protocols was a key challenge that was addressed by employing 

ISA-88, a batch process data model. Then, a database was constructed based on the model using 

PostgreSQL, enabling storage capabilities for both SQL (structured data) and NoSQL (document-

based data) to provide flexibility without sacrificing the advantages of data 

redundancy/normalization in the relational model. While the work and discussion presented 

provides an experimental database that applies to the OFET active layer, it also serves as a model 

for adaptation to other aspects of organic device experiments by designing the data structure 

around an accepted process standard. Moving forward, enhancing materials ontologies to 

comprehensively capture classifications of process steps would facilitate the future design of data 

models in other domains that accurately manifest the real-world experimental processes. This is a 

necessary pursuit in elucidating the format in which a sample’s provenance is recorded within a 

database in FAIR data structures. Additionally, future work will build upon the preliminary body 

of curated experimental data to mobilize data-driven experimentation for polymer-based organic 

electronics. 
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