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Abstract—Nanopore sequencers, being superior to other se-
quencing technologies for DNA storage in multiple aspects, have
attracted considerable attention in recent times. Their high
error rates however demand thorough research on practical and
efficient coding schemes to enable accurate recovery of stored
data. To this end, we consider a simplified model of a nanopore
sequencer inspired by Mao et al., that incorporates intersymbol
interference and measurement noise. Essentially, our channel
model passes a sliding window of length ℓ over an input sequence,
that outputs the L1-weight of the enclosed ℓ bits and shifts by δ
positions with each time step. The resulting (ℓ + 1)-ary vector,
termed the read vector, may also be corrupted by t substitution
errors. By employing graph-theoretic techniques, we deduce that
for δ = 1, at least log log n bits of redundancy are required to
correct a single (t = 1) substitution. Finally for ℓ ≥ 3, we exploit
some inherent characteristics of read vectors to arrive at an
error-correcting code that is optimal up to an additive constant
for this setting.

I. INTRODUCTION

The advent of DNA storage as an encouraging solution to
our ever-increasing storage requirements has spurred signif-
icant research to develop superior synthesis and sequencing
technologies. Among the latter, nanopore sequencing [1–3]
appears to be a strong contender due to low cost, better
portability and support for longer reads. In particular, this
sequencing process comprises transmigrating a DNA fragment
through a microscopic pore that holds ℓ nucleotides at each
time instant, and measuring the variations in the ionic current,
which are influenced by the different nucleotides passing
through. However, due to the physical aspects of this process,
multiple kinds of distortions corrupt the readout. Firstly, the
simultaneous presence of ℓ > 1 nucleotides in the pore makes
the observed current dependent on multiple nucleotides instead
of just one, thus causing inter-symbol interference (ISI). Next,
the passage of the DNA fragment through the pore is often
irregular and may involve backtracking or skipping a few
nucleotides, thereby leading to duplications or deletions re-
spectively. Furthermore, the measured current is accompanied
by random noise, which might result in substitution errors.
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Several attempts towards developing a faithful mathematical
model for the nanopore sequencer have already been made.
In particular, [4] proposed a channel model that embodies
the effects of ISI, deletions and random noise, while also
establishing upper bounds on the capacity of this channel. The
authors of [5] focused on a more deterministic model that
incorporates ISI and developed an algorithm to compute its
capacity. Efficient coding schemes for this abstracted channel
were also suggested. More recently, a finite-state Markov chan-
nel (FSMC)-based approach was adopted to formulate a model
that accounts for ISI, duplications and noisy measurements [6].

In this work, we adopt a specific variation of the model
proposed in [4], that is also interesting owing to its re-
semblance with the transverse-read channel [7], which is
relevant to racetrack memories. Specifically, we operate in the
binary alphabet, i.e., consider the input symbols to be binary
instead of quaternary as in DNA, and represent the process of
nanopore sequencing as the concatenation of three channels as
depicted in Fig. 1. The ISI channel, parameterized by (ℓ, δ), is
meant to reflect the dependence of the current variations on the
ℓ consecutive nucleotides that are in the pore at any given time.
We may view this stage as a sliding window of size ℓ passing
through an input sequence and shifting by δ positions after
each time instant, thereby producing a sequence of strings of ℓ
consecutive symbols, or ℓ-mers. Next, the substitution channel
captures the effect of random noise by introducing possible
substitution errors into the sequence of ℓ-mers. Finally, this
erroneous sequence of ℓ-mers is converted by a memoryless
channel into a sequence of discrete voltage levels according
to a deterministic function, specifically the L1-weight.

The objective of this work is to design efficient error-
correcting codes for nanopore sequencing. More specifically,
the aforementioned channel model is treated in the case
wherein at most one substitution occurs and δ = 1. The
problem is stated more formally as follows.

Let Rℓ,δ(x) represent the channel output for an input x ∈
Σn

2 , given that no substitution affected the ℓ-mers. According
to our model, this is expressible as

Rℓ,δ(x) = (wt(xδ
δ−ℓ+1),wt(x

2δ
2δ−ℓ+1), . . . ,wt(x

n+ℓ−δ
n−δ+1)),

where for any i ̸∈ [n], we let xi = 0. Now we seek to find
a code C ⊂ Σn

2 such that for any c1, c2 ∈ C, the Hamming
distance between Rℓ,δ(c1) and Rℓ,δ(c2) strictly exceeds 2.
In other words, one can uniquely deduce the channel input
despite ISI and the subsequent occurrence of at most one
substitution, provided it belongs to the code C. As a first step,
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Fig. 1. Simplified model of a nanopore sequencer

we determine the minimum redundancy required by C with
the assistance of methods outlined in [8, 9]. Following this,
an optimal instantiation of C is proposed.

II. PRELIMINARIES

A. Notations & Terminology
In the following, we let Σq indicate the q-ary alphabet
{0, 1, . . . , q − 1}. Additionally, [n] is used to denote the set
{1, 2, . . . , n}. Element-wise modulo operation on a vector, say
y ∈ Σn

q , is represented as

y mod a =
(
y1 mod a, y2 mod a, . . . , yn mod a

)
.

For any vector x = (x1, . . . , xn), we refer to its substring
(xi, xi+1, . . . , xj) as xj

i . The L1-weight of a vector x is
denoted by wt(x) =

∑n
i=1 xi. We also extensively use the

Hamming distance, which is defined for any two vectors
x,y ∈ Σn

q as

dH(x,y) = |{i : i ∈ [n], xi ̸= yi}|.

Throughout this paper, we focus on the case of q = 2 and
assume existence of integers n, ℓ, and δ that satisfy the relation
(n + ℓ) mod δ = 0. In this framework, the (ℓ, δ)-read vector
of any x ∈ Σn

2 is of length (n+ ℓ)/δ − 1 and is denoted by

Rℓ,δ(x) = (wt(xδ
δ−ℓ+1),wt(x

2δ
2δ−ℓ+1), . . . ,wt(x

n+ℓ−δ
n−δ+1)),

where for any i ̸∈ [n], we let xi = 0.
Remark: The above definition of an (ℓ, δ)-read vector

appears similar to that of the (ℓ, δ)-transverse-read vector
introduced in [7], except that Rℓ,δ(x) begins and ends with
the L1-weights of substrings xδ

1 and xn
n−δ+1 respectively, even

though its intermediate elements signify L1-weights of length-
ℓ substrings. This is motivated by the fact that we obtain a
current reading even when the DNA strand has only entered
the nanopore partially.

Next, we denote the i-th element of Rℓ,δ(x) by Rℓ,δ(x)i,
i.e., Rℓ,δ(x)i = wt(xiδ

iδ−ℓ+1). Another useful notation, des-
ignated as the i-th read sub-derivative, represents a specific
subsequence of the derivative of Rℓ,δ(x), and is defined for
any α ∈ Σ⌊ ℓ

δ ⌋
as

∆α
ℓ,δ(x) = (R(x)α+1 −R(x)α,R(x)α+⌊ ℓ

δ ⌋+1 −R(x)α+⌊ ℓ
δ ⌋
,

. . . ,R(x)α+k⌊ ℓ
δ ⌋+1 −R(x)α+k⌊ ℓ

δ ⌋
)

= (wt(x
(α+1)δ
αδ+1 )− wt(x

(α+1)δ−ℓ
αδ−ℓ+1 ), . . .

. . . ,wt(x
(α+k⌊ ℓ

δ ⌋+1)δ

(α+k⌊ ℓ
δ ⌋)δ+1

)− wt(x
(α+k⌊ ℓ

δ ⌋+1)δ−ℓ

(α+k⌊ ℓ
δ ⌋)δ−ℓ+1

)),

where k = ⌊n+ℓ−(α+1)δ
δ⌊ℓ/δ⌋ ⌋ and for any p ̸∈ [n+ℓ−δ

δ ] and
m ̸∈ [n], we let R(x)p = 0 and xm = 0. When clear from the
context, ℓ and δ will be removed from the preceding notations.

Example 1. Consider x = (1, 0, 1, 1, 0, 0). The (3, 1)-read
vector of x is thus R3,1(x) = (1, 1, 2, 2, 2, 1, 0, 0). Evidently,
R3,1(x)3 = 2, ∆0

3,1(x) = (1, 0,−1), ∆1
3,1(x) = (0, 0, 0) and

∆2
3,1(x) = (1,−1, 0).

A straightforward extension of the preceding definitions for
q > 2 involves replacing the L1-weights of substrings with
their respective compositions. Here, the composition of any
x ∈ Σn

q signifies c(x) = 0i01i1 · · · (q−2)iq−2(q−1)n−
∑q−2

j=0 ij ,
if x constitutes i0 0s, i1 1s and so on.

As mentioned earlier, [7] investigated a similar model
designated as the transverse-read channel, in connection with
racetrack memories. Therein, the information limit of this
channel was derived for different parameters and several codes
enabling unique reconstruction were proposed. For ℓ = 2 and
δ = 1, certain error-correcting codes were also presented.

B. Properties of the Read Vectors

By the nature of its definition, each valid read vector pos-
sesses certain properties which often enable us to detect errors
and thereby assist in designing error-correcting constructions
of improved redundancies. These are summarized below.

Proposition 1. P1 For any i ∈ [n+ℓ−2δ
δ ], it holds that

|R(x)i+1 −R(x)i| ≤ δ.
P2 Let two vectors x,y ∈ Σn

2 be such that dH(x,y) = 1.
If ℓ mod δ = 0, then the (ℓ, δ)-read vectors R(x) and
R(y) satisfy dH(R(x),R(y)) = ℓ

δ .
P3 For any ℓ, δ and x ∈ Σn

2 such that ℓ mod δ = 0, it holds
that

∑n+ℓ−δ
δ

i=1 R(x)i =
ℓ
δwt(x).

P4 If δ = 1, then for any x ∈ Σn
2 , x can be directly

inferred from the first or last n elements of either R(x)
or R(x) mod 2.

P5 If ℓ mod δ = 0, then for all α ∈ Σ ℓ
δ

and x ∈ Σn
2 , it

holds that wt(∆α
ℓ,δ(x)) = 0.

P6 For any α ∈ Σℓ and δ = 1, if we denote the non-zero
elements of ∆α(x), in order, by d0, d1, . . . , dD, where
D ≤ n+2ℓ−α−1

ℓ , then d0 = 1 and for any i ∈ ΣD,
{di, di+1} = {−1, 1}.

P7 If ℓ mod δ = 0, then for any x ∈ Σn
2 and α ∈ Σ ℓ

δ
,

the cumulative sum of the first m + 1 elements of
∆α

ℓ,δ(x) is wt(xmℓ+(α+1)δ
mℓ+αδ+1 )1, i.e.,

∑m
j=0

(
R(x)α+jℓ+1−

R(x)α+jℓ

)
= wt(x

mℓ+(α+1)δ
mℓ+αδ+1 ). Thus, ∆α

ℓ,δ(x) deter-
mines (wt(x

(α+1)δ
αδ+1 ),wt(x

ℓ+(α+1)δ
ℓ+αδ+1 ), . . .), which in the

special case of δ = 1, is effectively (xα+1, xα+ℓ+1, . . .).

P4 can be verified through attempts to reconstruct x from
R(x) or R(x) mod 2, sequentially from left to right (or
right to left). One may similarly verify P7 by attempting
reconstruction using ∆α

ℓ,1(x), while the remaining properties
result directly from the definitions in Section II-A.

Example 2. Given R3,1(x) mod 2 = (1, 1, 0, 0, 0, 1, 0, 0)
from Example 1, we wish to reconstruct x. Firstly, we observe
that R(x)1 = x1 = 1. Next, R(x)2 mod 2 = x1 ⊕ x2 =
1, causing x2 = 0. Such a left-to-right reconstruction of

1Analogous result exists for sum of last m+ 1 elements.



R(x) mod 2 leads us to x = (1, 0, 1, 1, 0, 0), as in Example 1.
Right-to-left reconstruction will yield the same result.

A natural consequence of such left-to-right and right-to-left
reconstruction processes is the following.

Corollary 1. If δ = 1, then for any x ∈ Σn
2 , xj

i can be
uniquely determined, either from

1) xi−1
i−ℓ+1 and (R(x)i,R(x)i+1, . . . ,R(x)j); or

2) xj+ℓ−1
j+1 and (R(x)i+ℓ−1,R(x)i+ℓ, . . . ,R(x)j+ℓ−1),

where for all k ̸∈ [n], xk = 0.

Another important consequence of the aforementioned prop-
erties is stated below.

Lemma 1. When ℓ > 1 and δ = 1, for any two distinct
x,y ∈ Σn

2 , dH(R(x),R(y)) ≥ 2.

Proof: Assume that dH(R(x),R(y)) = 1, and let
i denote the index where R(x) and R(y) differ, i.e.,
R(x)i ̸= R(y)i. From P3, we infer that

wt(R(x))− wt(R(y)) = (R(x)i −R(y)i) = 0 (mod ℓ).

Since R(x)i,R(y)i ∈ Σℓ+1, the only possibility involves
{R(x)i,R(y)i} = {0, ℓ}. Due to ℓ > 1, we have that
∆i mod ℓ(x),∆i mod ℓ(y) differ in a unique index, and their
difference at that index equals ±ℓ, which contradicts P5 for
at least one of x,y.

C. Error Model

Similar to [7], we study the occurrence of substitution
errors in read vectors and design suitable error-correcting
constructions. Specifically, a code is said to be a t-substitution
(ℓ, δ)-read code if for any x,y that belong to this code, it holds
that dH(R(x),R(y)) > 2t.

In this work, we focus on the case when δ = 1 and
t = 1. To this end, we seek to find a code that can correct a
single substitution error in the read vectors of its constituent
codewords, i.e., a single-substitution (ℓ, 1)-read code. In the
upcoming sections, we endeavor to derive an upper bound on
the cardinality of such a code, and subsequently propose an
optimal instantiation of the same.

III. MINIMUM REDUNDANCY OF SINGLE-SUBSTITUTION
(ℓ, 1)-READ CODES

To establish a lower bound on the redundancy required
by a single-substitution (ℓ, 1)-read code, we first attempt to
characterize the relationship between any two binary vectors
x,y ∈ Σn

2 , that might be confusable after a single substitution
in their respective read vectors.

A. Characterization of confusable read vectors

To proceed in this direction, we first note from Lemma 1
that there exists no two distinct vectors x,y ∈ Σn

2 that satisfy
dH(R(x),R(y)) = 1 for any ℓ > 1. Thus, we attempt to
ascertain the conditions under which dH(R(x),R(y)) = 2
may occur.

Theorem 1. For ℓ ≥ 3 and any x,y ∈ Σn
2 , the following are

equivalent:
1) dH(R(x),R(y)) = 2.
2) There exist distinct i, j ∈ [n + ℓ − 1], j = i (mod ℓ),

such that R(x)i − R(y)i = R(y)j − R(x)j = 1 and
R(x)r = R(y)r for all r ̸∈ {i, j}.

3) There exist p ≥ 1 and i ∈ [n − (p − 1)ℓ − 1] such
that for all m ∈ Σp it holds that xi+mℓ+1

i+mℓ = (1, 0),
yi+mℓ+1
i+mℓ = (0, 1) (or vice versa), and xr = yr for all

r ̸∈
⋃

m∈Σp
{i+mℓ, i+mℓ+ 1}.

Further, if these conditions hold, then j = i+ pℓ in the above
notation.

B. Upper bound on code size

We derive a lower bound on the redundancy required by a
single-substitution (ℓ, 1)-read code, by adopting the approach
employed in [8, 9]. More precisely, we consider a graph G(n)
containing vertices corresponding to all vectors in Σn

2 . Any
two vertices in G(n) that signify two distinct binary vectors,
say x,y ∈ Σn

2 , are considered to be adjacent if and only if
dH(R(x),R(y)) = 2. Therefore, any subset of vertices of
G(n), wherein no two vertices are adjacent, is a 1-substitution
(ℓ, 1)-read code.

Definition 1. A clique cover Q is a collection of cliques in a
graph G, such that every vertex in G belongs to at least one
clique in Q.

The following graph-theoretic result is well-known [8, 10].

Theorem 2. If Q is a clique cover, then the size of any
independent set is at most |Q|.

For the remainder of this section, we seek to define a clique
cover Q by utilizing Theorem 1. By virtue of Theorem 2, the
size of such a clique cover will serve as an upper bound on
the cardinality of a 1-substitution (ℓ, 1)-read code.

Definition 2. [8, Sec. III] Let G′(n) be the graph whose
vertices are all vectors in Σn

2 , and an edge connects x,y ∈ Σn
2

if and only if {x,y} = {u◦ (01)j ◦v,u◦ (10)j ◦v}, for some
j and sub-strings u,v.

Our method of proof would be to pull-back a clique cover
from G′, based on [8, Lem. 10], into G. In order to do that,
we have the following definition:

Definition 3. For a positive integer p, define a permutation πp

on Σn
2 as follows. For all x ∈ Σn

2 , arrange the coordinates
of x

pℓ⌊n/(pℓ)⌋
1 in a matrix X ∈ Σp⌊n/(pℓ)⌋×ℓ, by row (first

fill the first row from left to right, then the next, etc.). Next,
partition X into sub-matrices of dimension p × 2 (if ℓ is
odd, we ignore X’s right-most column). Finally, going through
each sub-matrix (from left to right, and then top to bottom),
we concatenate its rows, to obtain πp(x) (where unused
coordinates from x are appended arbitrarily).

More precisely, for all 0 ≤ i < ⌊ n
pℓ⌋, 0 ≤ j < ⌊ ℓ2⌋ and

0 ≤ k < p denote

x(i,j,k) = x(ip+k)ℓ+2j+1x(ip+k)ℓ+2j+2;



then
x(i,j) = x(i,j,0) ◦ · · · ◦ x(i,j,p−1)

and
x(i) = x(i,0) ◦ · · · ◦ x(i,⌊ℓ/2⌋−1).

Then πp(x) = x(0)◦· · ·◦x(⌊n/pℓ⌋−1)◦x̃, where x̃ is composed
of all coordinates of x not earlier included.

Example 3. x = (1, 0, 1, 1, 0, 0) and y = (0, 1, 1, 0, 1, 0)
satisfy dH(R3,1(x),R3,1(y)) = 2. To obtain πp(x) and πp(y)
for p = 2, note that

X =

[
1 0 1
1 0 0

]
, Y =

[
0 1 1
0 1 0

]
.

Since ℓ is odd, we ignore the last column in X and Y ,
and partition the respective results into 2 × 2 sub-matrices
to ultimately obtain πp(x) = (1, 0, 1, 0, 1, 0) and πp(y) =
(0, 1, 0, 1, 1, 0) (here, unused coordinates were appended in
the order of their indices).

Definition 4. [8, Sec. III] For a positive integer p, let

Λp =
{
(a)j(b)p−j : j ∈ [p], {a, b} = {01, 10}

}
where a0 = b0 is the empty word, and Λ̃p = Σ2p

2 \Λp. Further,
let

Γ =
{
(u,w) : i ∈ [m],u ∈ Λ̃i−1

p ,w ∈ Σ
2p(m−i)
2

}
,

where m = ⌊ ℓ2⌋⌊
n
pℓ⌋, and Λ̃0

p is the singleton containing an
empty word. Then, for all (u,w) ∈ Γ define

Q
(0)
(u,w) =

{
u(01)h(10)p−hw : h ∈ [p]

}
,

Q
(1)
(u,w) =

{
u(10)h(01)p−hw : h ∈ [p]

}
.

Finally, let

Q(m, p) =
{
{x} : x ∈ Λ̃m

p

}
∪
{
Q(0)

γ , Q(1)
γ : γ ∈ Γ

}
.

Lemma 2. [8, Lem. 10]Q(m, p) is a clique-cover of G′(2pm),
where m = ⌊ ℓ2⌋⌊

n
pℓ⌋.

Theorem 3. Let

Qp =
{
π−1
p (Q× {z}) : Q ∈ Q(m, p), z ∈ Σn−2pm

2

}
,

where π−1
p (A) = {u ∈ Σn

2 : πp(u) ∈ A}. Then Qp is a
clique-cover in G(n).

Proof: First, observe that it readily follows from⋃
Q(m, p) = Σ2pm

2 that
⋃
Qp = Σn

2 . It is therefore left to
prove that every element of Qp is a clique of G(n).

Then, observe for all Q ∈ Q(m, p) and z ∈ Σn−2pm
2 that

either Q is a singleton, or all elements y ∈ Q × {z} agree
on all coordinates yk except 2(i − 1)p < k ≤ 2ip for some
i ∈ [m], and y2ip

2(i−1)p ∈
{
(01)h(10)p−h, (10)h(01)p−h

}
for

some h ∈ [p]. I.e., either π−1
p (Q× {z}) is a singleton, or all

elements x ∈ π−1
p (Q× {z}) agree on all coordinates except,

in the notation of Definition 3, x(i,j) for some 0 ≤ i < ⌊ n
pℓ⌋,

0 ≤ j < ⌊ ℓ2⌋, and x(i,j) ∈
{
(01)h(10)p−h, (10)h(01)p−h

}
for some h ∈ [p]. That is, x(i,j,k) = 01 (10) for all 0 ≤ k <

h, and x(i,j,k) = 10 (respectively, 01) for all h ≤ k < p.
By Theorem 1, it holds that dH(R(x1),R(x2)) = 2 for all
x1,x2 ∈ π−1

p (Q× {z}).
Finally, we can obtain a lower bound on the redundancy of

a single-substitution (ℓ, 1)-read code from the following result.

Lemma 3. [8, Lem. 12]

|Q(m, p)| = 22pm
[(

1− 2p

22p

)m

+
1

p

(
1−

(
1− 2p

22p

)m)]
,

where m = ⌊ ℓ2⌋⌊
n
pℓ⌋.

It readily follows that for any positive integer p,

log2|Qp| = n− log2(p) + log2

(
1 + (p− 1)

(
1− 2p

22p

)m)
.

Based on m ≥ ⌊ n
2p⌋ − ⌊

ℓ
2⌋ we may further bound

log2|Qp| ≤ n−log2(p)+p

(
1− 2p

22p

)⌊n/2p⌋/(
1− 2p

22p

)⌊ℓ/2⌋

.

It was shown in [8] that letting p = ⌈ 12 (1 − ϵ) log2(n)⌉ for

any 0 < ϵ < 1 yields p
(
1− 2p

22p

)⌊n/2p⌋
= o(1), hence based

on Theorem 2 we arrive at the following theorem.

Theorem 4. The redundancy of a 1-substitution (ℓ, 1)-read
code is bounded from below by

log2 log2(n)− log2(
2

1−ϵ )− o(1).

IV. SINGLE SUBSTITUTION READ CODES

It is already implied by P4 that a redundancy of t log n bits
suffices to correct at most t substitutions in the (ℓ, 1)-read
vector. However according to Theorem 4, a more efficient code
may exist for the t = 1 case. This section introduces such a
construction that is optimal up to a constant.

For any x ∈ Σn
2 , we define a specific permutation of

Rℓ,δ(x) as

Rπ(x) = R0(x) ◦ R1(x) ◦ · · · ◦ Rℓ−1(x),

where Ri−1(x) = (R(x)i,R(x)i+ℓ, . . . ,R(x)i+⌊n+ℓ−1−i
ℓ ⌋ℓ)

for all i ∈ [ℓ]. In addition, we introduce the following notation
to represent the concatenation of all i-th read sub-derivatives.

∆(x) = ∆0(x) ◦∆1(x) ◦ · · · ◦∆⌊ ℓ
δ ⌋−1(x).

To simplify presentation, we also define the following.

Definition 5. Let RLL(a) be the set of all finite-length binary
vectors whose runs of 0s are of length at most a.

Definition 6. For n, a > 0, let H(n, a) be the binary linear
code of length n, defined by the parity-check matrix[

Ha Ha · · · Ha

]︸ ︷︷ ︸
n

2a−1 times

,

where Ha represents the parity-check matrix of a Hamming
code of order a, i.e., Ha contains all non-zero binary length-a
vectors as its columns.



Finally, we propose the following code to correct a single
substitution in (ℓ, 1)-read vectors for ℓ ≥ 3.

Construction 1.

C(n, ℓ) = {x ∈ Σn
2 : ∆(x) mod 2 ∈ RLL(log 2(n+ ℓ)),

Rπ(x) mod 2 ∈ H(n+ ℓ− 1, log log 8(n+ ℓ) + 1)}.

From [11, Lemma 2], we infer that this construction requires
at most log log n+ log

(
1+ 3+log(1+ℓ/n)

logn

)
+2 redundant bits.

To prove that C(n, ℓ) is a 1-substitution (ℓ, 1)-read code, we
first show that some error patterns are trivial to correct.

Lemma 4. Let R(x)′ be derived from the (ℓ, 1)-read vector
R(x), where ℓ > 1 and x ∈ Σn

2 , by a single substitu-
tion, and suppose |R(x)i − R(x)′i| > 1 for the unique
i ∈ [(n+ ℓ)/δ − 1] such that R(x)i ̸= R(x)′i. Then R(x)
can be uniquely recovered from R(x)′.

Proof: Supposing that the error occurred at in-
dex k, we may express the noisy read vector as
R(x)′ = (R(x)′1, . . . ,R(x)′n+ℓ−1), where R(x)′k ̸= R(x)k
and R(x)′p = R(x)p for all p ̸= k. It follows from
R(x)p−wt(xp−1

p−ℓ+1) = xp ∈ Σ2 for all p ∈ [n], and R(x)′k−
wt(xk−1

k−ℓ+1) = xk+(R(x)′k−R(x)k) ̸∈ Σ2, that k is the min-
imum index for which this process of left-to-right reconstruc-
tion yields a non-binary value, hence it may uniquely be iden-
tified from R(x)′. Then, if k ≤ n, Corollary 1 allows accurate
reconstruction of xn

k from (R(x)k+ℓ−1, . . . ,R(x)n+ℓ−1).
Due to Lemma 4, we focus for the rest of the section on

proving that C(n, ℓ) can correct a single substitution satisfying
|wt(R(x))−wt(R(x)′)| ≤ 1. Next, we demonstrate that the
index of such substitutions may be narrowed down.

Lemma 5. If a substitution error affects the (ℓ, 1)-read vector
of some x ∈ Σn

2 where ℓ ≥ 3, thus producing a noisy copy
R(x)′, then there exist α, β ∈ Σℓ where β = (α− 1) mod ℓ,
such that wt(∆β(x)′) = −wt(∆α(x)′) ̸= 0, and for all γ ̸∈
{α, β}, wt(∆γ(x)′) = 0. This implies that

1) the error value is wt(∆β(x)′) = −wt(∆α(x)′); and
2) the error occurred at an index k ∈ [n+ ℓ− 1], where

k = α (mod ℓ).

Proof: Suppose that the concerned substitution error
occurs at index k ∈ [n+ℓ−1]. Thus, the noisy read vector can
be expressed as R(x)′ = (R(x)′1, . . . ,R(x)′n−ℓ+1), where
R(x)′k ̸= R(x)k and R(x)′p = R(x)p for all p ̸= k.

Now observe that ∆(k−1) mod ℓ(x)′ and ∆k mod ℓ(x)′ no
longer uphold P5. Instead,

wt(∆(k−1) mod ℓ(x)′) = −wt(∆k mod ℓ(x)′)

= R(x)′k −R(x)k,

which is evidently the error value. The preceding equation sug-
gests that the error occurred somewhere in R(k−1) mod ℓ(x)′,
which is a subsequence of R(x)′. Alternatively, we say that
the error position h satisfies h− k = 0 (mod ℓ).

Example 4. R3,1(v)
′ = (1, 1, 2, 3, 2, 1, 0, 0) arises from a

substitution in the (3, 1) read vector of some v ∈ Σ6
2.

As wt(∆0(v)′) = −wt(∆1(v)′) = 1, Lemma 5 suggests
that the error has value 1 and occurred somewhere in
(R(v)′1,R(v)′4,R(v)′7). Now assigningR(v)′1 ← R(v)′1 − 1
or R(v)′4 ← R(v)′4 − 1 alters R(v)′ into the (3, 1)-read vec-
tor of v = (0, 1, 1, 1, 0, 0) or v = (1, 0, 1, 1, 0, 0) respectively.

Henceforth, we represent the subsequence reconstructed
using P7 from left to right with a noisy read sub-derivative,
say ∆β(x)′, as x̂(β) = (x̂β+1, x̂β+1+ℓ, . . . , x̂β+1+⌊n−β−1

ℓ ⌋ℓ).

Analogously, x̃(β) corresponds to right to left reconstruction.

Lemma 6. For ℓ ≥ 3, let R(x)′ be a noisy (ℓ, 1)-read
vector of x ∈ Σn

2 , such that for some α, β ∈ Σℓ, where
β = (α− 1) mod ℓ , wt(∆β(x)′) = −wt(∆α(x)′) ̸= 0. Re-
construction by P7 with ∆β(x)′ from left to right (respectively,
right to left) yields x̂(β) (x̃(β)) for which we define i (j)
as the minimum (maximum) index at which x̂β+iℓ+1 ̸∈ Σ2

(x̃β+jℓ+1 ̸∈ Σ2), or i = ⌊n−β−1
ℓ ⌋ + 1 (j = −1) if no such

index exists. Then, it holds that for all j + 2 ≤ h ≤ i − 1,
R(x)′β+hℓ+1 = R(x)′β+hℓ and the error position in R(x)′,
say k, satisfies k−β−1

ℓ ∈ {j + 1, j + 2, . . . , i}.

Example 5. We reconsider R3,1(v)
′ from Example 4. From

∆0(v)′ = (1, 1,−1), we reconstruct v̂(0) = (1, 2) and
ṽ(0) = (0, 1). Since v̂4 ̸∈ Σ2 and ṽ(0) ∈ Σ2

2, we set
i = 1 and j = −1 as per Lemma 6. Thus, either R(x)′1
or R(v)′4 is noisy, implying that v = (1, 0, 1, 1, 0, 0) or
v = (0, 1, 1, 1, 0, 0) respectively.

Lemma 6 essentially suggests that attempting reconstruction
with a noisy read sub-derivative may help to narrow down the
error location even further. This finally allows us to arrive at

Theorem 5. For ℓ ≥ 3, C(n, ℓ) is a 1-substitution (ℓ, 1)-read
code.

Proof: Let R(x)′ arise from a single substitution on
(ℓ, 1)-read vector of some x ∈ C(n, ℓ). In light of Lemma 4,
this proof is dedicated to errors of magnitude 1.

Upon identifying α, β ∈ Σℓ where β = (α− 1) mod ℓ,
such that wt(∆β(x)′) = −wt(∆α(x)′) ̸= 0, we attempt re-
construction with ∆β(x)′ from left to right and from right to
left to obtain x̂(β) and x̃(β) respectively, and define indices
i and j according to Lemma 6. Since for all j + 1 < h < i,
R(x)′β+hℓ+1−R(x)′β+hℓ = 0, and a run of 0s in ∆β(x)′ can
be of length at most 2 log 2(n+ℓ)+1 due to the constraints im-
posed on C(n, ℓ), we infer that i− j−2 ≤ 2 log 2(n+ ℓ) + 1.

From Lemma 6, we know that the error exists somewhere in
(R(x)′β+(j+1)ℓ+1,R(x)′β+(j+2)ℓ+1, . . . ,R(x)′β+iℓ+1), which
is evidently a substring of Rπ(x)′ and has a length of at
most 2 log 2(n+ ℓ) + 3. Since an error of magnitude 1 surely
affects Rπ(x)′ mod 2, which belongs to a code that corrects
a substitution error localized to a window of 2 log 2(n+ ℓ)+4
bits, we can uniquely recover Rπ(x) mod 2, and by P4,
also x.
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