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Abstract—Nanopore sequencers, being superior to other se-
quencing technologies for DNA storage in multiple aspects, have
attracted considerable attention in recent times. Their high
error rates however demand thorough research on practical and
efficient coding schemes to enable accurate recovery of stored
data. To this end, we consider a simplified model of a nanopore
sequencer inspired by Mao ef al., that incorporates intersymbol
interference and measurement noise. Essentially, our channel
model passes a sliding window of length ¢ over an input sequence,
that outputs the L,-weight of the enclosed /¢ bits and shifts by ¢
positions with each time step. The resulting (¢ + 1)-ary vector,
termed the read vector, may also be corrupted by ¢ substitution
errors. By employing graph-theoretic techniques, we deduce that
for 6 = 1, at least loglogn bits of redundancy are required to
correct a single (¢ = 1) substitution. Finally for ¢ > 3, we exploit
some inherent characteristics of read vectors to arrive at an
error-correcting code that is optimal up to an additive constant
for this setting.

1. INTRODUCTION

The advent of DNA storage as an encouraging solution to
our ever-increasing storage requirements has spurred signif-
icant research to develop superior synthesis and sequencing
technologies. Among the latter, nanopore sequencing [1-3]
appears to be a strong contender due to low cost, better
portability and support for longer reads. In particular, this
sequencing process comprises transmigrating a DNA fragment
through a microscopic pore that holds ¢ nucleotides at each
time instant, and measuring the variations in the ionic current,
which are influenced by the different nucleotides passing
through. However, due to the physical aspects of this process,
multiple kinds of distortions corrupt the readout. Firstly, the
simultaneous presence of ¢ > 1 nucleotides in the pore makes
the observed current dependent on multiple nucleotides instead
of just one, thus causing inter-symbol interference (ISI). Next,
the passage of the DNA fragment through the pore is often
irregular and may involve backtracking or skipping a few
nucleotides, thereby leading to duplications or deletions re-
spectively. Furthermore, the measured current is accompanied
by random noise, which might result in substitution errors.
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Several attempts towards developing a faithful mathematical
model for the nanopore sequencer have already been made.
In particular, [4] proposed a channel model that embodies
the effects of ISI, deletions and random noise, while also
establishing upper bounds on the capacity of this channel. The
authors of [5] focused on a more deterministic model that
incorporates ISI and developed an algorithm to compute its
capacity. Efficient coding schemes for this abstracted channel
were also suggested. More recently, a finite-state Markov chan-
nel (FSMC)-based approach was adopted to formulate a model
that accounts for ISI, duplications and noisy measurements [6].

In this work, we adopt a specific variation of the model
proposed in [4], that is also interesting owing to its re-
semblance with the transverse-read channel [7], which is
relevant to racetrack memories. Specifically, we operate in the
binary alphabet, i.e., consider the input symbols to be binary
instead of quaternary as in DNA, and represent the process of
nanopore sequencing as the concatenation of three channels as
depicted in Fig. 1. The ISI channel, parameterized by (¢, ), is
meant to reflect the dependence of the current variations on the
¢ consecutive nucleotides that are in the pore at any given time.
We may view this stage as a sliding window of size ¢ passing
through an input sequence and shifting by 0 positions after
each time instant, thereby producing a sequence of strings of ¢
consecutive symbols, or /-mers. Next, the substitution channel
captures the effect of random noise by introducing possible
substitution errors into the sequence of ¢-mers. Finally, this
erroneous sequence of /-mers is converted by a memoryless
channel into a sequence of discrete voltage levels according
to a deterministic function, specifically the L;-weight.

The objective of this work is to design efficient error-
correcting codes for nanopore sequencing. More specifically,
the aforementioned channel model is treated in the case
wherein at most one substitution occurs and § = 1. The
problem is stated more formally as follows.

Let Ry s(x) represent the channel output for an input x €
35, given that no substitution affected the ¢-mers. According
to our model, this is expressible as

Rf,t;(m) = (Wt(wg—é+l)v Wt(mgg—é—kl)? cee 7Wt(wzt§:jl))7
where for any i ¢ [n], we let z; = 0. Now we seek to find
a code C C X% such that for any ci,ce € C, the Hamming
distance between Ry s(c1) and Ry s(co) strictly exceeds 2.
In other words, one can uniquely deduce the channel input
despite ISI and the subsequent occurrence of at most one
substitution, provided it belongs to the code C. As a first step,
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Simplified model of a nanopore sequencer

we determine the minimum redundancy required by C with
the assistance of methods outlined in [8, 9]. Following this,
an optimal instantiation of C is proposed.

II. PRELIMINARIES
A. Notations & Terminology

In the following, we let ¥, indicate the g-ary alphabet
{0,1,...,¢ — 1}. Additionally, [n] is used to denote the set
{1,2,...,n}. Element-wise modulo operation on a vector, say
y € X7, is represented as

y mod a = (y1 mod a, ys mod a, . .., y, mod a).

For any vector & = (z1,...,x,), we refer to its substring
(@i, %ig1,...,2;) as x]. The Li-weight of a vector x is
denoted by wt(z) = > I, ;. We also extensively use the
Hamming distance, which is defined for any two vectors
x,y € Xy as

dH(w’y) = ‘{Z S [n]7xi 7é yz}|

Throughout this paper, we focus on the case of ¢ = 2 and
assume existence of integers n, £, and ¢ that satisfy the relation
(n+¢) mod ¢ = 0. In this framework, the (¢, )-read vector
of any & € X7 is of length (n + ¢)/J — 1 and is denoted by

5 5
Res(x) = (Wh(T5_ gy 1), WH(EHS_441)s-- -

where for any i & [n], we let z; = 0.

Remark: The above definition of an (¢,0)-read vector
appears similar to that of the (¢,d)-transverse-read vector
introduced in [7], except that Ry s(x) begins and ends with
the L;-weights of substrings = and x; 5.1 respectively, even
though its intermediate elements signify L;-weights of length-
{ substrings. This is motivated by the fact that we obtain a
current reading even when the DNA strand has only entered
the nanopore partially.

Next, we denote the i th element of Ry s5(x) by R s(x)i,
ie., Rys(x); = wt(zi3_,,,). Another useful notation, des-
ignated as the i-th read sub-derivative, represents a specific
subsequence of the derivative of R, s(x), and is defined for
any o € X ) as

n—+4—94 ))

Wt(wn—6+1

A7 5(@) = (R(@)art — R@)as R@)ay 1241~ R(@)as 1)
o R(®) o1 — R(®) gy 2))
= (wi(@5iy) = wi(@5 ),
TR N ERC ey )
where k = LWJ and for any p ¢ [“=°] and

m & [n], we let R(x), = 0 and z,,, = 0. When clear from the
context, ¢ and ¢ will be removed from the preceding notations.

Example 1. Consider x = (1,0, .1, ,O). The (3,1)-read
vector of x is thus Rs1(x) = (1,1,2,2,2,1,0,0). Evidently,
Rsi1(x)s =2, Ag’l( ) (1,0,-1), §1(w) (0,0,0) and

Af (=) =(1

A straightforward extension of the preceding definitions for
g > 2 involves replacing the L;-weights of substrings with
their respective compositions. Here, the composition of any
x € Y7 signifies ¢(x) = 001" - - (¢—2)'—> (q—l)"*zg;g R
if x constitutes 79 0s, 71 1s and so on.

As mentioned earlier, [7] investigated a similar model
designated as the transverse-read channel, in connection with
racetrack memories. Therein, the information limit of this
channel was derived for different parameters and several codes
enabling unique reconstruction were proposed. For ¢ = 2 and
& = 1, certain error-correcting codes were also presented.

’ _170)'

B. Properties of the Read Vectors

By the nature of its definition, each valid read vector pos-
sesses certain properties which often enable us to detect errors
and thereby assist in designing error-correcting constructions
of improved redundancies. These are summarized below.

Proposition 1. P! For any i € [“H=22] it holds that
R(x)iv1 — R(®)i| < 6.

P2 Let two vectors x,y € ¥ be such that dy(x,y) = 1.

If mod & = 0, then the (¢,)-read vectors R(x) and

R(y) satisfy du(R(z), R(y)) = 5.

For anynﬁ,zcj 5and x € X such that { mod § = 0, it holds

that 1) R(x); = Lwt(z).

If § = 1, then for any x € X5, x can be directly

inferred from the first or last n elements of either R (x)

or R(x) mod 2.

If fmod 6 = 0, then for all a € Zg and © € XY, it

holds that wt(Ag s(z)) = 0.

pP3

P4

PS5

P6 For any o € ¥y and § = 1, if we denote the non-zero
elements of A“(x), in order, by dy,dy,...,dp, where
D < nt2oa-l phop dy = 1 and for any i € Yp,

{dudz+1} { 1 1}
If fmodd = 0, then for any x € X3 andaEZe,
the cumulative sum of the first m + 1 elements of

mlb+(a+1)6 . m
Ae,a( x) is wt(x m2+((1§+1) ) » Le., Zj:o (R( )a+ﬂ+1_

ml+(a § a
R(®)atje) = Wt(mmfi((lﬁill) )- Thus, Ay s(x) deter-
mines (wt(x ..), which in the

(a+1)6 et (at1)s
a1 ) WEHE a5t )
special case of 6 = 1, is effectively (Xxot1, Tatot1,---)-

P4 can be verified through attempts to reconstruct  from
R(x) or R(x)mod 2, sequentially from left to right (or
right to left). One may similarly verify P7 by attempting
reconstruction using A%, (x), while the remaining properties
result directly from the definitions in Section II-A.

Example 2. Given Rj3;(x) mod2 = (1,1,0,0,0,1,0,0)
from Example 1, we wish to reconstruct x. Firstly, we observe
that R(x); = 1 = 1. Next, R(z)omod2 = z1 @ z2 =
1, causing ro = 0. Such a left-to-right reconstruction of

! Analogous result exists for sum of last m + 1 elements.



R(x) mod 2 leads us to x = (1,0,1,1,0,0), as in Example 1.
Right-to-left reconstruction will yield the same result.

A natural consequence of such left-to-right and right-to-left
reconstruction processes is the following.

Corollary 1. If § = 1, then for any x € X7, mz can be
uniquely determined, either from

]) ZBZ:%_i_l and (R(:B)l, R(CC)H_l, . 772(58)]'),' or

2) @17 and (R(@)ige 1, R(®)ie, - R(®)j10-1),
where for all k & [n], x = 0.

Another important consequence of the aforementioned prop-
erties is stated below.

Lemma 1. When ¢ > 1 and 6 = 1, for any two distinct
x,y € X3, dg(R(z),R(y)) = 2.

Proof: Assume that dg(R(x),R(y)) = 1, and let
i denote the index where R(x) and R(y) differ, ie.,
R(x); # R(y);. From P3, we infer that

wi(R(@)) — wt(R(y)) = (R(@)i = R(y):) =0 (mod £).

Since R(x);, R(y); € X¢t1, the only possibility involves
{R(x);,R(y);} = {0,£}. Due to £ > 1, we have that
Armod £y Atmod £y differ in a unique index, and their
difference at that index equals £/, which contradicts P5 for
at least one of x,y. ]

C. Error Model

Similar to [7], we study the occurrence of substitution
errors in read vectors and design suitable error-correcting
constructions. Specifically, a code is said to be a t-substitution
(¢, 6)-read code if for any @, y that belong to this code, it holds
that dg (R(x),R(y)) > 2t.

In this work, we focus on the case when § = 1 and
t = 1. To this end, we seek to find a code that can correct a
single substitution error in the read vectors of its constituent
codewords, i.e., a single-substitution (¢, 1)-read code. In the
upcoming sections, we endeavor to derive an upper bound on
the cardinality of such a code, and subsequently propose an
optimal instantiation of the same.

III. MINIMUM REDUNDANCY OF SINGLE-SUBSTITUTION
(¢,1)-READ CODES

To establish a lower bound on the redundancy required
by a single-substitution (¢, 1)-read code, we first attempt to
characterize the relationship between any two binary vectors
x,y € X1, that might be confusable after a single substitution
in their respective read vectors.

A. Characterization of confusable read vectors

To proceed in this direction, we first note from Lemma 1
that there exists no two distinct vectors x,y € X5 that satisfy
dp(R(x),R(y)) =1 for any ¢ > 1. Thus, we attempt to
ascertain the conditions under which dy(R(x), R(y)) = 2
may occur.

Theorem 1. For { > 3 and any x,y € XY, the following are
equivalent:

1) du(R(z), R(y)) = 2.

2) There exist distinct i,j € [n+ ¢ —1], j = i (mod ¢),
such that R(x); — R(y)i = R(y); — R(z); = 1 and
R(w)r = R(y)r for all v ¢ {17.7}

3) There exist p > 1 and i € [n — (p — 1)¢ — 1] such
that for all m € X, it holds that azfi%ﬁ“ = (1,0),

21%?‘1 = (0,1) (or vice versa), and x, = y, for all
7 & Upes, {i + ml,i+ml+1}
Further, if these conditions hold, then j = i+ pl in the above
notation.

B. Upper bound on code size

We derive a lower bound on the redundancy required by a
single-substitution (¢, 1)-read code, by adopting the approach
employed in [8, 9]. More precisely, we consider a graph G(n)
containing vertices corresponding to all vectors in X%. Any
two vertices in G(n) that signify two distinct binary vectors,
say ¢,y € X7, are considered to be adjacent if and only if
dg(R(x),R(y)) = 2. Therefore, any subset of vertices of
G(n), wherein no two vertices are adjacent, is a 1-substitution
(¢, 1)-read code.

Definition 1. A clique cover Q is a collection of cliques in a
graph G, such that every vertex in G belongs to at least one
cligue in Q.

The following graph-theoretic result is well-known [8, 10].

Theorem 2. If Q is a clique cover, then the size of any
independent set is at most | Q).

For the remainder of this section, we seek to define a clique
cover Q by utilizing Theorem 1. By virtue of Theorem 2, the
size of such a clique cover will serve as an upper bound on
the cardinality of a 1-substitution (¢, 1)-read code.

Definition 2. [8, Sec. llI] Let G'(n) be the graph whose
vertices are all vectors in 3%, and an edge connects x,y € 35
if and only if {z,y} = {wo (01)? ov,uo (10)/ ow}, for some
J and sub-strings u,v.

Our method of proof would be to pull-back a clique cover
from G’, based on [8, Lem. 10], into G. In order to do that,
we have the following definition:

Definition 3. For a positive integer p, define a permutation T,
on X5 as follows. For all © € X3, arrange the coordinates
of wzf“n/(pm in a matrix X € YP/®OIXL by row (first
fill the first row from left to right, then the next, etc.). Next,
partition X into sub-matrices of dimension p x 2 (if £ is
odd, we ignore X ’s right-most column). Finally, going through
each sub-matrix (from left to right, and then top to bottom),
we concatenate its rows, to obtain m,(x) (where unused
coordinates from x are appended arbitrarily).

More precisely, for all 0 < i < [], 0 < j < |£] and
0 < k < p denote

i,5.k) — .
gik) = T (ip4-k)e+2+1L (ip+k)+25423



then
2(09) — 2(13.0) o . o plidp=1)

and _ ‘ A
20 — p0) o .o pE:1€/2]-1)

Then my(x) = O o...oxl?/Pl=V oz where & is composed
of all coordinates of x not earlier included.

Example 3. = = (1,0,1,1,0,0) and y =(0,1,1,0,1,0)
satisfy dg (Rs1(x), R31(y)) = 2. To obtain m,(x) and m,(y)
for p = 2, note that

1 01 0 1 1
X_{l 0 O}’Y_{O 1 O}

Since { is odd, we ignore the last column in X and Y,
and partition the respective results into 2 X 2 sub-matrices
to ultimately obtain m,(xz) = (1,0,1,0,1,0) and m,(y) =
(0,1,0,1,1,0) (here, unused coordinates were appended in
the order of their indices).

Definition 4. [8, Sec. III] For a positive integer p, let
A, = {(a)J(b)p—j . j € [p],{a,b} = {01, 10}}

where a® = b° is the empty word, and ]\p = ng\Ap. Further,
let

= {(u,w) i€ [mlueA we ng(mﬂ')},

where m = |£]| %], and AV is the singleton containing an
pl P
empty word. Then, for all (u,w) € T" define
QY v = {u(01)"(10)" " w : h € [p]},

(u,w)
QL)) = {u(10)"(01)"w < h € [p]}.
Finally, let

Q(m,p) = {{:c} cx € 1121} U {QEYO),Q(WD iy € F}.

Lemma 2. [8, Lem. 10] Q(m, p) is a clique-cover of G’ (2pm),
where m = | £] Lz )-
Theorem 3. Let

0, = {m (@ x{z}): Q€ Qm.p), 2 € 557"},
where

SHA) = {ueXy:my(u)e A} Then Q, is a
clique-cover in G(n).

Proof: First, observe that it readily follows from
UQ(m,p) = £3P™ that |JQ, = ¥4. It is therefore left to
prove that every element of Q, is a clique of G(n).

Then, observe for all Q € Q(m,p) and z € 23_21”" that
either () is a singleton, or all elements y € Q x {z} agree
on all coordinates y; except 2(i — 1)p < k < 2ip for some
i € [m], and g3 € {(01)"(10)7=", (10)"(01)P="} for
some h € [p]. Le., either 7, (Q x {z}) is a singleton, or all
elements « € 7, ' (Q x {z}) agree on all coordinates except,
in the notation of Definition 3, (/) for some 0 < i < 1k
0 <j < 4], and 209 € {(01)"(10)P~", (10)"(01)P="}
for some h € [p]. That is, 2(*7**) = 01 (10) for all 0 < k <

h, and z("3F) = 10 (respectively, 01) for all h < k < p.
By Theorem 1, it holds that dg (R (x1), R(x2)) = 2 for all

@,y €, 1 (Q x {z}). |
Finally, we can obtain a lower bound on the redundancy of
a single-substitution (¢, 1)-read code from the following result.

Lemma 3. /8, Lem. 12]

[Q(m.p)] = 22’"“[(1 - ?’)m ﬂi(l - (1 } ;p)m)]

where m = | £ Lzl

It readily follows that for any positive integer p,

2 m
logy|Qp| = n —logy(p) + log, (1 +-1) (1 - 221;) )

Based on m > [ ;] — |£] we may further bound

[n/2p] Le/2)
2p 2p
logy|Qp| < nlOgQ(p)er(l - 22])) /<1 - 22p> .

It was shown in [8] that letting p = [5(1 — €)logy(n)] for
any 0 < e < 1 yields p(1 — 22%)m/2pj = o(1), hence based
on Theorem 2 we arrive at the following theorem.

Theorem 4. The redundancy of a 1-substitution (¢,1)-read
code is bounded from below by

log, logy(n) — logz(lze) —o(1).

IV. SINGLE SUBSTITUTION READ CODES

It is already implied by P4 that a redundancy of ¢t logn bits
suffices to correct at most ¢ substitutions in the (¢, 1)-read
vector. However according to Theorem 4, a more efficient code
may exist for the ¢ = 1 case. This section introduces such a
construction that is optimal up to a constant.

For any x € X3, we define a specific permutation of
Res(x) as

R™(x) = R%(x) o R'(z) 0 --- 0 R* (),
where Ri_l(iL‘) = (R(az)“ R(dﬁ)i+g, ce 7R<$)i+|.n+[;17ijé)

for all 4 € [/]. In addition, we introduce the following notation
to represent the concatenation of all i-th read sub-derivatives.

Am) = A(z) o Al(m)o--- 0 ALEI1(m).
To simplify presentation, we also define the following.

Definition 5. Let RLL(a) be the set of all finite-length binary

vectors whose runs of Os are of length at most a.

Definition 6. For n,a > 0, let H(n,a) be the binary linear
code of length n, defined by the parity-check matrix
[Ha Ha Ha} 9

n
2 -1

times

where H, represents the parity-check matrix of a Hamming
code of order a, i.e., H, contains all non-zero binary length-a
vectors as its columns.



Finally, we propose the following code to correct a single
substitution in (¢, 1)-read vectors for £ > 3.

Construction 1.

Cn,t) ={x € Xy : A(x) mod 2 € RLL(log2(n + {)),
R™(x) mod 2 € H(n+ £ — 1,loglog8(n + ¢) + 1)}.

From [11, Lemma 2], we infer that this construction requires
at most loglog n + log (1 + W) + 2 redundant bits.

To prove that C(n, £) is a 1-substitution (¢, 1)-read code, we
first show that some error patterns are trivial to correct.

Lemma 4. Let R(x)" be derived from the ({,1)-read vector
R(x), where £ > 1 and x € X%, by a single substitu-
tion, and suppose |R(x); — R(x);| > 1 for the unique
1€ [(n+4£)/6 —1] such that R(x); # R(x),. Then R(x)
can be uniquely recovered from R (x)’.

Proof: Supposing that the error occurred at in-
dex k, we may express the noisy read vector as
R(x) = (R(@),....R(@),,, ;). where R(2); # R(x)
and R(z), = R(z), for all p # k. It follows from
R(x),—wt(xl_, ) =z, € Ty forall p € [n], and R ()}, —
wt(x} ;1) = 2k+(R(@),—R(x)x) & X2, that k is the min-
imum index for which this process of left-to-right reconstruc-
tion yields a non-binary value, hence it may uniquely be iden-
tified from R (x)’. Then, if k& < n, Corollary 1 allows accurate
reconstruction of &} from (R(x)k1e—1,..., R(X)nte—1). W

Due to Lemma 4, we focus for the rest of the section on
proving that C(n, £) can correct a single substitution satisfying
|[wt(R(x)) — wt(R(x)")| < 1. Next, we demonstrate that the
index of such substitutions may be narrowed down.

Lemma 5. If a substitution error affects the (¢, 1)-read vector
of some x € X5 where { > 3, thus producing a noisy copy
R(x)', then there exist o, B € ¥y where 8 = (o — 1) mod ¥,
such that wt(AP(x)") = —wt(A%(x)") # 0, and for all v ¢
{a, B}, wt(A7(x)") = 0. This implies that
1) the error value is wt(AP(z)") = —wt(A®(x)'); and
2) the error occurred at an index k € [n+ ¢ — 1], where
k=« (mod ¢).

Proof: Suppose that the concerned substitution error
occurs at index k € [n+£¢—1]. Thus, the noisy read vector can
be expressed as R(x) = (R(x)},...,R(x),_,,. ), where
R(x), # R(x)r and R(x), = R(x), for all p # k.

Now observe that A(F=1) mod £y and Ak mod (g} pno
longer uphold P5. Instead,

Wt(A(k—l) mod é(w)/) — —Wt(Ak mod Z(m)/)
=R(z), — R(z)x,

which is evidently the error value. The preceding equation sug-
gests that the error occurred somewhere in R(F~1) mod £(g)/
which is a subsequence of R(x)’. Alternatively, we say that
the error position h satisfies h — k =0 (mod ¢). ]

Example 4. R3;(v) = (1,1,2,3,2,1,0,0) arises from a
substitution in the (3,1) read vector of some v € ¥§.
As wt(A%(w)) = —wt(Al(v)') = 1, Lemma 5 suggests
that the error has value 1 and occurred somewhere in
(R(v)}, R(v)}y, R(v)%). Now assigning R(v)} < R(v); —1
or R(v)) + R(v)) — 1 alters R(v) into the (3, 1)-read vec-
tor of v =(0,1,1,1,0,0) or v = (1,0,1,1,0,0) respectively.

Henceforth, we represent the subsequence reconstructed
using P7 from left to right with a noisy read sub-derivative,
say AB<£Z:)/, as 53(5) = (@5+1, i’ﬁ+1+g, . 73A;‘ﬁ+1+[n7/571J£).

Analogously, z® corresponds to right to left reconstruction.

Lemma 6. For { > 3, let R(x) be a noisy (¢,1)-read
vector of * € X¥, such that for some o, € X, where
B=(a—1)mod ¢, wt(AP(x)) = —wt(A%(zx)") # 0. Re-
construction by P7 with AP (x)' from left to right (respectively,
right to left) yields 2 &?) for which we define i (j)
as the minimum (maximum) index at which Zgiie+1 & X2
(Zp1jep1 & Do), or i = [ "= 41 (j = =1) if no such
index exists. Then, it holds that for all j +2 < h < i—1,
R(2)54ner1 = R(x)j34 10 and the error position in R(z)',
say k, satisfies % e{j+1,j+2,...,i}

Example 5. We reconsider R31(v)" from Example 4. From
A%v) = (1,1,—1), we reconstruct ¥ = (1,2) and
20 = (0,1). Since 9y ¢ Yo and 20 ¢ %2, we set
i =1 and j = —1 as per Lemma 6. Thus, either R(x)}
or R(v)} is noisy, implying that v = (1,0,1,1,0,0) or
v=(0,1,1,1,0,0) respectively.

Lemma 6 essentially suggests that attempting reconstruction
with a noisy read sub-derivative may help to narrow down the
error location even further. This finally allows us to arrive at

Theorem 5. For ¢ > 3, C(n, ) is a 1-substitution (¢,1)-read
code.

Proof: Let R(x)" arise from a single substitution on
(¢, 1)-read vector of some x € C(n,¢). In light of Lemma 4,
this proof is dedicated to errors of magnitude 1.

Upon identifying «, 3 € ¥, where = (a— 1) mod ¥,
such that wt(A®(z)") = —wt(A%(x)") # 0, we attempt re-
construction with A?(x)’ from left to right and from right to
left to obtain #*) and &* respectively, and define indices
i and j according to Lemma 6. Since for all j +1 < h <1,
R(2)s, por1 —R(®)4pe = 0, and a run of 0s in AP (z)’ can
be of length at most 2 log 2(n+¢)+1 due to the constraints im-
posed on C(n, ¢), we infer that i —j —2 < 2log2(n + ¢) + 1.

From Lemma 6, we know that the error exists somewhere in
(R(®)j5 4 (j1ye1 R(®B) gy (42pe410 -+ R(T) 51 i41), Which
is evidently a substring of R™(x)" and has a length of at
most 2log2(n + ¢) + 3. Since an error of magnitude 1 surely
affects R™(x)" mod 2, which belongs to a code that corrects
a substitution error localized to a window of 2log2(n + ¢)+4
bits, we can uniquely recover R7(x) mod 2, and by P4,
also x. ]
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