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Abstract—Analytic combinatorics in several variables (ACSV)
is a powerful tool for deriving the asymptotic behavior of
combinatorial quantities by analyzing multivariate generating
functions. We use ACSV to derive the first-order sub-exponential
asymptotics of sequences generated by a discrete noiseless
channel under an average cost constraint. As a by-product of
the analysis, we obtain a new proof of the equivalence of the
combinatorial and probabilistic definitions of the cost-constrained
capacity.

I. INTRODUCTION

Since their introduction in Part I of Shannon’s landmark
1948 paper, A Mathematical Theory of Communication [1],
discrete noiseless channels have been a focus of research
by information and coding theorists. They have also found
practical use in the design of transmission codes for digital
communication systems and recording codes for data storage
systems [2].

In this paper, we consider discrete noiseless channels under
an average cost constraint. Such a constraint can arise from
limitations on the transmission power in an optical fiber [3],
the recording voltage in a non-volatile memory [4]–[6], or
the synthesis time per nucleotide in a DNA-based storage
system [7].

A. Background

Constrained channels with cost. The labeled, directed graph
G in Fig. 1 represents an exemplary discrete noiseless channel
describing the synthesis of DNA strands using the alternating
synthesis sequence ACGT ACGT . . . (see [7]).

The channel graph generates sequences of symbols over the
alphabet Σ = {A,C,G,T} by following paths through the
directed graph and reading off the symbols σ(e) ∈ Σ labeling
the edges e in a path. Each edge e also has an associated
positive cost τ(e) ∈ N, denoting the synthesis time of the
edge label σ(e). The edge labels and costs are shown in the
figure as σ(e)|τ(e). The cost is assumed to be additive, so the
cost of a sequence generated by a path in the graph is the sum
of its edge costs.

Discrete noiseless channels in which all edges have unit cost
are well studied [2]. Our interest is in the more general setting
of varying edge costs, as in Fig. 1.

Cost-constrained capacity. Shannon introduced the concept
of (combinatorial) capacity of a discrete noiseless channel as
the asymptotic growth rate of the number of sequences (of
variable length) as a function of the sequence cost. In the
case of Fig. 1, this represents the maximum rate at which
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Fig. 1: Channel graph for DNA synthesis using the alternating
sequence ACGT ACGT . . ..

information can be encoded into the synthesized DNA strands
per unit of synthesis time. Under the assumption of integer
edge costs, Shannon analyzed a system of difference equations
and derived the now-classical result that the capacity is equal
to logarithm of the largest root of a determinental equation
associated with the channel. For a channel represented by a
graph G, we denote this capacity as CG.

Khandekar et al. [8] extended Shannon’s result to non-
integer symbol costs under a mild assumption about the
density of sequence costs, and expressed the capacity CG in
terms of the radius of convergence of a series that can be
interpreted as a generating function for the sequence N(t)
representing the number of sequences with cost equal to t.
Their results were extended to a more general class of channels
by Böcherer et al. [9], who expressed the capacity in terms
of a singularity of a complex generating function F (x) for
N(t). They interpreted this as a generalization of results from
analytic combinatorics in a single variable [10], a connection
that was established by Böcherer [11], who used it to analyze
the sub-exponential asymptotics of N(t). Khandekar et al. [8]
also clarified and extended Shannon’s proof of the equivalence
of the combinatorial capacity and a probabilistic capacity
defined as the maximum entropy rate of a Markov process
generating the sequences of the channel. This relationship was
further addressed in the setting of more general channels in
[12], [13].

In this paper, we consider generalizations of these results
to discrete noiseless channels subject to an average cost
constraint. In the context of Fig. 1, this corresponds to a
constraint on the average synthesis time per nucleotide.



B. Overview of Results

For a channel graph G with integer edge costs, we consider
N(t, ⌊αt⌋), α > 0, the number of sequences with cost at
most t and length ⌊αt⌋, i.e., with average cost per symbol at
most 1

α (asymptotically in t). We study the singularities of a
bivariate complex generating function F (x, y) for N(t, ⌊αt⌋)
and use methods of analytic combinatorics in several vari-
ables (ACSV) [14], [15] to determine precise first-order sub-
exponential asymptotics of N(t, ⌊αt⌋). Defining the cost-
constrained (combinatorial) capacity CG(α) as the asymptotic
growth rate of N(t, ⌊αt⌋) as a function of t, we obtain an
expression for CG(α) in terms of a particular singularity of
F (x, y) determined by α. As a by-product of the analysis, we
obtain a new proof of the equivalence of the combinatorial and
probabilistic definitions of cost-constrained capacity [16]–[18].

Our analysis integrates results across three disparate areas:
(a) spectral properties of channel graphs, (b) singularities
of bivariate generating functions of channel graphs, and (c)
asymptotic expansions via ACSV.

Formal definitions pertaining to channel graphs and channel
capacity are provided in Section II. Our main results on
spectral porperties of channel graphs, singularities of bivariate
generating functions, and precise asymptotics and channel ca-
pacity are stated in Section III. Due to space limitations, proofs
are omitted and will appear in a longer version (see [19]).

II. PRELIMINARIES

A. Channel Graphs

Consider a labeled, directed graph G = (V,E, σ, τ) that
has vertices V and directed edges E. The edges are labeled
with σ : E 7→ Σ and have weights τ : E 7→ N. A
path p = (e1, . . . , en) of length n is a connected sequence
of edges e1, . . . , en ∈ E. It generates a word σ(p) =
(σ(e1), . . . , σ(en)) ∈ Σn and has cost τ(p) = τ(e1) + · · · +
τ(en). We call G a channel graph.

Definition II.1 (Connected and deterministic graphs). A di-
rected graph is strongly connected if there is a path connecting
any two vertices.

A labeled, directed graph G is deterministic if for all
vertices v ∈ V the labels of all edges e ∈ E that emanate
from v are distinct.

When the context is clear, we often refer to a labeled,
directed graph G = (V,E, σ, τ ) simply as G. The following
graph property plays a key role in our results. It generalizes a
concept introduced in [4].

Definition II.2 (Cost diversity and period). A strongly con-
nected graph G is cost-uniform if for each pair of vertices vi,
vj and each length m, the costs of all length-m paths p from
vi to vj are the same. If G is not cost-uniform, then we say
that G is cost-diverse.

For cost-diverse graphs, we further say that G has cost-
period c ∈ N if for each pair of vertices vi, vj and each
length m the costs τ(p) of all length-m paths p connecting
vi and vj are congruent modulo c.

We also recall that, for a strongly connected graph G, we
say G has period d if for each pair of vertices vi, vj , the
lengths of all paths p connecting vi and vj are congruent
modulo d.

Fig. 2 below shows a graph with cost-period 2.

Definition II.3 (Coboundary condition). A graph G satisfies
the c-periodic coboundary condition if there exists a function
B : V → R and a constant b ∈ Q such that if e ∈ E is an
edge from vertex vi to vertex vj then the edge cost satisfies

τ(e) ≡ b+B(vj)−B(vi) (mod c).

A graph satisfies the coboundary condition if the congruence
above holds without the modulo operation.

We associate to G a cost-enumerator matrix, which is
defined as follows.

Definition II.4 (Cost-enumerator matrix). Let v1, . . . , v|V | be
an arbitrary ordering of the vertices V . Then PG(x) is the
|V | × |V | matrix with entries

[PG(x)]ij =
∑

e∈E:vi→vj

xτ(e),

where x ∈ C. The spectral radius of PG(x) is denoted
by ρG(x) and defined as the largest absolute value of the
eigenvalues of PG(x).

For real x > 0, the spectral radius ρG(x) is equal to the
unique real eigenvalue of PG(x) with the largest magnitude,
which we refer to as the Perron root. Later we will see
that ρG(x) plays a central role in the asymptotic behavior of
N(t, ⌊αt⌋).

B. Channel Capacity

For a strongly connected, deterministic graph G we are
interested in the number of words of bounded cost generated
by paths in the graph.

Definition II.5 (Follower set size). For any vertex v ∈ V we
define NG,v(t) to be the size of the cost-t follower set of v,
i.e., the set of words that are gene-rated by some path of cost
at most t that starts in v.

Similarly, we define NG,v(t, n) to be the size of the cost-t
length-n follower set of v, i.e., the set of length-n words in
the cost-t follower set of v.

Now we formally define the (combinatorial) capacity of a
discrete noiseless channel. The capacity of a strongly con-
nected graph is independent of the starting vertex, and we use
this fact implicitly in the definition.

Definition II.6 (Capacity). The combinatorial (or variable-
length) capacity of a discrete noiseless channel G is defined
as

CG = lim sup
t→∞

log2(NG,v(t))

t
.



Similarly, the cost-constrained combinatorial (or fixed-
length) capacity is defined as

CG(α) = lim sup
t→∞

log2(NG,v(t, ⌊αt⌋))
t

.

These capacities have counterparts that are defined prob-
abilistically, in terms of stationary Markov chains P on the
channel graph.

Definition II.7 (Probabilistic capacity). The probabilistic ca-
pacity of a discrete noiseless channel G is defined as

CG,prob = sup
P

H(P)

T (P)
,

where H(P) and T (P) are the entropy rate and average
cost, respectively, of P , and the supremum is taken over all
stationary Markov chains on G.

Similarly, the cost-constrained probabilistic capacity is
defined as

CG,prob(α) = sup
P:T (P)≤ 1

α

H(P)

T (P)
,

where the supremum is over all stationary Markov chains on
G with average cost at most 1

α .

A concise parametric characterization of CG,prob(α), found
by constrained optimization methods, is stated in [8], [16],
[17].

For channels with integer edge costs, Shannon proved the
fundamental equivalence CG = CG,prob. A rigorous proof of
this equivalence for non-integer edge costs is given in [8]. The
cost-constrained extension, CG(α) = CG,prob(α), was proved
in [18].

C. ACSV and Singularities

Analytic combinatorics in several variables (ACSV) [14],
[15] considers multivariate sequences N(t) = N(t1, . . . , td),
t ∈ Nd, and generating functions

F (x)=
∑
t∈Nd

N(t)xt=
∑
t∈Nd

N(t1, . . . , td)x
t1
1 · · ·xtd

d .

ACSV resembles univariate analytic combinatorics [10], trans-
ferring behavior of a generating function near singularities to
an asymptotic expansion of its coefficients. There are many
ways for the coefficient vector t to grow to infinity in the
multivariate setting. Under mild assumptions, if t=tα with
t→∞ and α=(α1, . . . , αd)∈Rd

>0 fixed, then the asymptotic
behavior of N(t) is uniform as α varies in cones of Rd. Thus,
ACSV derives asymptotic behavior of α-diagonals N(tα) as
functions of α.

Fix a direction α ∈ Rd
>0 and coprime polynomials Q(x)

and H(x) such that the multivariate rational function F (x) =
Q(x)/H(x) has a convergent power series expansion F (x) =∑

t∈Nd N(t)xt near the origin. If H(x) is not a constant then,
when d ≥ 2, F (x) admits an infinite set V of singularities
defined by the vanishing of H(x).

Our application of ACSV depends on finding singularities
of a bivariate generating function FG,v(x, y) for NG,v(t, n)
(specified in Lemma III.3) that have particular properties.

Minimal points are the singularities of F (x) on the bound-
ary of its domain of absolute convergence, i.e., x ∈ V is
minimal if and only if H(x) has no other root y with strictly
smaller coordinate-wise modulus. A minimal point is strictly
minimal if no other singularity has the same coordinate-wise
modulus, and finite minimal if only a finite number of other
singularities have the same coordinate-wise modulus.

Critical points are singularities whose explicit definition
depends heavily on the geometry of V . The simplest situation
is the square-free smooth case, when H and all of its partial
derivatives do not simultaneously vanish. Then the critical
points for direction α are solutions of the system of equations

H(x) = α2x1Hx1
(x)− α1x2Hx2

(x)

= · · · = αdx1Hx1
(x)− α1xdHxd

(x) = 0 (1)

containing d equations in d variables. If V is locally a
manifold near a point x ∈ V but H and its partial derivatives
simultaneously vanish at x, then x is a critical point if and only
if (1) holds when H is replaced by the product of its unique
irreducible factors. The only other situation we encounter is
the complete intersection case (see [15, Ch. 9]), when V is
locally the union of d manifolds near x ∈ V , and any such x
is a critical point.

III. MAIN RESULTS

A. Spectral Properties of Channel Graphs

The following lemmas reveal properties of the spectral
radius ρG(x) of the cost-enumerator matrix PG(x) of a cost-
diverse channel graph G.

Lemma III.1. Let G be a strongly connected graph. The
following statements are equivalent.

(a) The graph G has cost-period c.
(b) The graph G satisfies the c-periodic coboundary condi-

tion.
(c) For all x∈C and k∈Z, ρG(xe2πik/c)=ρG(x).

Further, if G is cost-uniform, then the spectral radius ρG(x) is
log-log-linear on x∈R+. If G is cost-diverse then the spectral
radius ρG(x) is strictly log-log-convex on x∈R+.

Lemma III.2. Let G be a strongly connected and cost-diverse
graph with largest cost-period c. Then, for any x∈R+, there
are precisely c solutions ϕk = 2πk/c, k∈{0, 1, . . . , c − 1} to
the equation ρG(xe

iϕ)=ρG(x), in the interval 0 ≤ ϕ < 2π.
For all other ϕ, ρG(xeiϕ) < ρG(x).

B. Generating Functions and Singularities

For the channel graph G, we define the bivariate generating
function FG(x, y) for NG,v(t, n), characterized in the follow-
ing lemma.

Lemma III.3. Let G be a deterministic graph, and let v be a
vertex. Let (1, . . . , 1) denote the all-ones vector of length |V |



and I denote the |V | × |V | identity matrix. The generating
function FG,v(x, y) of NG,v(t, n) is given by the entry of

FG(x, y) =
1

1− x
· (I − yPG(x))

−1(1, . . . , 1)T

corresponding to the vertex v.

Note that FG(x, y) = QG(x, y)/HG(x, y) for a polynomial
vector QG(x, y) and polynomial HG(x, y) = (1−x) det(I −
yPG(x)). In particular, every coordinate of FG(x, y) is a
rational function with the same denominator. We need to
understand the singularities of FG(x, y), i.e., the values (x, y)
where HG(x, y) = 0, to determine the asymptotic behavior of
the integer sequence NG,v(t, n) using ACSV.

Using the results in Section III-A, we prove the following
proposition, which characterizes properties of the singularities
of FG(x, y) associated with the direction α = (1, α).

Proposition III.4. Let G be a strongly connected and cost-
diverse graph with largest period d and largest cost-period
c.
(a) The points {(x0, 1/ρG(x0)) : 0 < x0 < 1} ∪

{(1, y0) : y0 ∈ C, |y0| ≤ 1/ρG(1)} are minimal singular-
ities of each coordinate of FG(x, y). All other minimal
singularities have the form(

x0e
i2πk/c, e−2πi(kb/c+j/d)/ρG(x0)

)
(2)

for some 0 < x0 ≤ 1, k ∈ {0, 1, . . . , c − 1}, and j ∈
{0, 1, . . . , d−1}, where b is the constant of the c-periodic
coboundary condition.

(b) For all x0 ∈ R+ with x0 ̸= 1 and all k ∈
{0, 1, . . . , c− 1}, j ∈ {0, 1, . . . , d− 1}, the points in (2)
are smooth points of FG(x, y) and critical if and only
if αx0ρ

′
G(x0) = ρG(x0). Any point (1, y0) with y0 ∈ C

and |y0| < ρG(1) is not a root of det(I − yPG(x)) and
thus is a smooth point that is never critical.

(c) For all x0 ∈ R+ and k ∈ {0, 1, . . . , c − 1},
j ∈ {0, 1, . . . , d − 1}, the points in (2) are non-
degenerate, meaning that the second derivative of ϕ(θ) =
log(λj(ξk)/λj(ξke

iθ)) + (iθ/α) is non-zero at θ = 0,
where ξk = e2πik/c.

We also make use of the following result.

Lemma III.5. Let G be a strongly connected and cost-diverse
graph. Then, the critical point equation αxρ′G(x) = ρG(x) has
a positive real solution x0 if and only if

lim
x→∞

ρG(x)

xρ′G(x)
< α < lim

x→0+

ρG(x)

xρ′G(x)
.

This solution, if it exists, is unique among all positive real x.
If α > ρG(1)/ρ

′
G(1) then x0 < 1, and x0 > 1 otherwise.

C. Asymptotics and Capacity via ACSV

Our main theorem describes the exact asymptotics of the
number of bounded-cost followers in a graph G = (V,E, σ, τ ).
It follows by an application of ACSV, namely [15, Theorem
5.1] and [15, Prop. 9.1 and Thm. 9.1], using the results

established in Section III-B. In the statement of the theo-
rem, we mean by largest period d and largest cost-period
c the largest integers such that the graph G has period d
and cost-period c, respectively. We also associate to G two
critical values of α, defined as αlo

G ≜ ρG(1)/ρ
′
G(1) and

αup
G ≜ lim

x→0+
ρG(x)/(xρ

′
G(x)).

Theorem III.6. Let G be a strongly connected, deterministic,
and cost-diverse graph with largest period d and largest cost-
period c. Denote by b and B(vj) the quantities from the c-
periodic coboundary condition. For all α with 0 < α < αlo

G,
αt ∈ N and for any v ∈ V , NG,v(t, αt) has the asymptotic
expansion

NG,v(t, αt) =
d−1∑
j=0

(λj(1))
αt[uT

j (1)vj(1)1
T]v +O

(
τ t
)
,

where 0 < τ < (ρG(1))
α and uj(x),vj(x), with

vj(x)u
T
j (x) = 1, are the right and left eigenvectors of PG(x),

corresponding to the eigenvalues λj(x) = ρG(x)e
2πij/d. For

αlo
G < α < αup

G , αt ∈ N,

NG,v(t, αt) =
c−1∑
k=0

d−1∑
j=0

(
(e2πibk/cλj(x0))

α

x0e2πik/c

)t

t−1/2√
2παJ(x0)

(
[D−1

k uT
j (x0)vj(x0)Dk1

T]v

(1− x0e2πik/c)
+O

(
1

t

))
,

where J(es) = ∂2

∂s2 log ρG(e
s), x0 is the unique positive

solution to αxρ′G(x) = ρG(x), and the Dk are the diagonal
matrices with [Dk]jj = e2πikB(vj)/c. For all α > αup

G ,
NG,v(t, αt) is eventually 0.

Remark III.7. The inverse of αlo
G is the average cost per edge,

as n→∞, over all paths of length n in G. Equivalently, it is the
average cost per edge associated with the unique stationary
Markov chain of maximum entropy on G. The inverse of αup

G

is the minimum average cost per edge among the cycles in G.

To the best of our knowledge this is the first sub-exponential
approximation of the size of the cost-t length-⌊αt⌋ follower set
of a general channel graph G. Notably, the multiplicative term
following t−1/2 is (asymptotically) independent of t and only
depends on α. Further terms in the asymptotic expansion are
effectively computable (with each successive term becoming
ever-more unwieldy).

Example III.8. Consider the graph in Fig. 2, representing
DNA synthesis using the alternating sequence AC AC . . .
over the binary alphabet {A,C}. A direct application of
Theorem III.6 gives, for 0 < α < 2

3 ,

N(t, αt) ∼ 2αt

and, for 2
3 < α < 1,

N(t, αt) ∼
(
2α− 1

1− α

)t(
α(1− α)

(1− 2α)2

)αt

t−1/2 · γ(α)

= 2αh(α
−1−1)tt−1/2 · γ(α),
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Fig. 2: Channel graph for DNA synthesis using the binary
alternating sequence AC AC . . ..

where γ(α) =
√

(2α−1)α/(3α−2)
√

2π(1−α) and h(p) =
−p log2 p− (1− p) log2(1− p).

Our next result, which follows from Theorem III.6, shows
that the cost-constrained combinatorial capacity can be ex-
pressed as a logarithmic function of the two-dimensional mini-
mal singularity (x0, 1/ρG(x0)) of FG,v(x, y). This generalizes
Shannon’s classical result which expresses the capacity of
a constrained system in terms of the logarithm of a one-
dimensional minimal singularity.

Theorem III.9. Let G be a strongly connected, deterministic,
and cost-diverse graph. For all α with 0 ≤ α ≤ αlo

G, we have

CG(α) = α log2 ρG(1).

For all α with αlo
G < α < αup

G ,

CG(α) = − log2 x0 + α log2 ρG(x0), (3)

where x0 is the unique real solution to αxρ′G(x) = ρG(x)
in the interval 0 < x < 1. For all α > αup

G , we have that
CG(α) = 0.

Theorem III.9 improves over previous work [8], [16]–[18]
in several ways. None of them recognizes the role of cost-
diversity, nor do they address the full domain of the cost-
constrained capacity.

Interestingly, our formula (3) for the cost-constrained com-
binatorial capacity is identical to the formula for the cost-
constrained probabilistic capacity in [16], [17] (up to differ-
ences in notation). Thus, an immediate corollary of Theo-
rem III.9 is the equivalence between cost-constrained com-
binatorial and probabilistic capacities.

Corollary III.10. [18] For any strongly connected and cost-
diverse graph G, the cost-constrained combinatorial capac-
ity CG(α) and the cost-constrained probabilistic capacity
CG,prob(α) are equal.

Our proof contrasts with that in [18] which used typi-
cal sequence arguments, converse inequalities, optimization
techniques, and an outer-product relationship between the
derivative of PG(x) and ρ′G(x).
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