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Abstract—In this work, we present a new version of non-binary
VT codes that are capable of correcting a single deletion or
single insertion. Moreover, we provide the first-known linear-time
algorithms that encode user messages into these codes of length
n over the q-ary alphabet for q > 2 with at most dlogq ne + 1
redundant symbols, while the optimal redundancy required is at
least logq n+ logq(q− 1) symbols. Our designed encoder reduces
the redundancy of the best known encoder of Tenengolts (1984) by
at least 2+logq(3) redundant symbols, or equivalently 2 log2 q+3
redundant bits.

I. INTRODUCTION

Codes correcting deletions and insertions are important for
many data storage systems such as the bit-patterned media
magnetic recording systems [1] and racetrack memory devices
[2]. Insertions and deletions may also occur due to the syn-
chronization errors in communication systems [3] and mobile
data [4]. Furthermore, the problem of correcting such errors
has recently received significantly increased attention due to
the DNA-based data storage technology, which suffers from
deletions and insertions with extremely high probability [5]–
[9]. Designing codes for correcting deletions or insertions is
well-known to be a challenging problem, even in the most
fundamental settings with only a single error.

Over the q-ary alphabet, q > 2, consider a channel model
that suffers from at most one deletion or one insertion, and
suppose that the optimal redundancy required to correct such
errors is ropt, then two crucial coding theory problems are:

P1: Code Design. Can one design the largest possible code C,
with the redundancy rC, such that rC → ropt?

P2: Encoder/Decoder Design. Can one design an efficient
encoder ENC (and a corresponding decoder DEC) that encodes
arbitrary user messages into codewords in C with nearly-
optimal redundancy rENC, rENC → rC?

While the problems of giving nearly-optimal explicit con-
structions of codes (P1) and designing nearly-optimal encoders
for such codes (P2) over the binary alphabet have been settled
for more than 50 years, the approach fails to be extended to
the case of q-ary alphabet for any fixed q > 2 (refer to Table I
for a summary of literature results). In particular, to correct a
single deletion or single insertion, we have the celebrated class
of Varshamov-Tenengolts (VT) codes. In 1965, Varshamov and
Tenengolts introduced the binary VT codes to correct asymmet-
ric errors [10], and Levenshtein subsequently showed that such
codes can be used for correcting a deletion or insertion with

a simple linear-time decoding algorithm [11]. For codewords
of length n, the binary VT codes incur log2(n+ 1) redundant
bits, while the optimal redundancy, provided in [11], is at least
log2 n bits. Curiously, even though the binary VT codes and
efficient decoding algorithm was known since 1965, a linear-
time encoder for such codes was only proposed by Abdel-
Ghaffar and Ferriera in 1998 [12], which used dlog(n + 1)e
redundant bits. We observe that, over the binary alphabet, (P1)
and (P2) are solved asymptotically optimal:

ropt > log2 n, rC = log2(n+ 1), and rENC = dlog2(n+ 1)e.

For the non-binary alphabet, in 1984, a non-binary version
of the VT codes was proposed by Tenengolts [13], and the
constructed codes can correct a single deleted or inserted
symbol in the q-ary alphabet with a linear-time decoder for
any q > 2. The construction of Tenengolts retains the attractive
properties of the binary VT codes, such as the simple decoding
algorithm. For codewords of length n, such codes incur at most
logq n + 1 redundant symbols. In the same paper, Tenengolts
also provided an upper bound for the cardinality of any q-ary
codes of length n correcting a deletion or insertion, which is
at most qn/((q − 1)n), and hence, the minimum redundancy
required is at least logq n + logq(q − 1) symbols. Unlike the
binary case, designing an efficient encoder that encodes arbi-
trary user messages into Tenengolts’ code is a challenging task
(refer to Section III-A for detailed discussion). To overcome the
challenge, several attempts have been made in three variations:
• Targeting a specific value of q. When q = 4, Chee et

al. [14] presented a linear-time quaternary encoder that
corrects a single deletion or insertion with dlog4 ne + 1
redundant symbols. The redundancy is asymptotically op-
timal. Unfortunately, the approach fails to be extended to
the case of q-ary alphabet for arbitrary q > 2.
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TABLE I: Related works for binary/non-binary codes correcting
a single deletion or single insertion. Redundancy is measured
in bits for binary codes, and in symbols for non-binary codes.



• Using more redundancy. Abroshan et al. [15] presented a
systematic encoder that maps user messages into a single
q-ary VT code as constructed in [13] with complexity that
is linear in the code length. Unfortunately, the redundancy
of this encoder is more than logq n+ log2 n symbols (see
Section II).

• Relaxing the condition for output codewords. In [13],
Tenengolts provided a systematic encoder that requires
dlogq ne+ 3 + dlogq 3e symbols, which is the best-known
encoder for codes that correct a single deletion or inser-
tion. In term of redundancy, a natural question is: can one
construct a linear-time encoder with at most r redundant
symbols, where logq n+logq(q−1) 6 r < dlogq ne+3+
dlogq 3e? In addition, The drawback of the encoder in [13]
is that the codewords obtained from this encoder are not
contained in a single q-ary VT code. Note that to correct
a single deletion or insertion, it is not necessary that all
the codewords must belong to the same coset of q-ary
VT codes. Nevertheless, when the words share the same
parameters, Abroshan et al. [15] demonstrated that these
codes can be adapted to correct multiple insertion/deletion
errors, in the context of segmented edits [16]–[18].

Motivated by the code design problem above, we present a
new version of non-binary VT codes that give asymptotically
optimal solutions for (P1) and (P2), as best as over binary
alphabet, summarized as follows:

ropt > logq n+logq(q−1), rC = logq n+1, and rENC = dlogq ne+1.

Our code construction method supports both systematic and
non-systematic linear-time encoders that encode user messages
into these codes. Our constructed codes have the same cardinal-
ity and redundancy, as compared to the best known q-ary single
deletion/insertion codes constructed by Tenengolts [13]. On the
other hand, our proposed code construction method supports
more efficient encoding and decoding procedures (in other
words, it enables an easier method to solve (P2)). Consequently,
our best encoder uses at most dlogq ne+ 1 redundant symbols,
and hence, it reduces the redundancy of the best known encoder
of Tenengolts [13] by at least 2 + logq(3) redundant symbols,
or equivalently 2 log q + 3 redundant bits.

II. PRELIMINARY

Let Σq denote an alphabet of size q. For any positive integer
m < n, we let [m,n] denote the set {m,m + 1, . . . , n} and
[n] = [1, n].

Given two sequences x and y, we let xy denote the con-
catenation of the two sequences. In the special case where
x, y ∈ Σn

q , we use x||y to denote their interleaved sequence
x1y1x2y2 . . . xnyn. For a subset I = {i1, i2, . . . , ik} of coordi-
nates, we use x|I to denote the vector xi1xi2 . . . xik . A sequence
y is said to be a subsequence of x, if there exists a subset of
coordinates I such that y = x|I . Let x ∈ Σn

q . We define the
error ball BInDel(x) to be the set of all sequences y that can
be obtained from x via a single insertion or single deletion.

Definition 1. Let C ⊆ Σn
q . We say that C corrects a single

insertion or single deletion error if and only if BInDel(x) ∩
BInDel(y) = ∅ for all distinct x, y ∈ C.

For a code C ⊆ Σn
q , the code rate is measured by the value

rC = logq |C|/n. In this work, not only are we interested in
constructing large error-correction codes, we desire efficient
encoder that maps arbitrary user data into these codes.

Definition 2. The map ENC : Σk
q → Σn

q is a single-deletion-
insertion-encoder if there exists a decoder map DEC : Σn+1

q ∪
Σn

q ∪ Σn−1
q → Σk

q such that the following conditions hold:
• For all x ∈ Σk

q , we have DEC ◦ ENC(x) = x,
• If c = ENC(x) and c′ ∈ BInDel(c), then DEC(c′) = x.

Hence, we have that the code C = {c : c = ENC(x), x ∈ Σk
q}

and |C| = qk. The redundancy of the encoder is measured by
the value n− k (in symbols) or (n− k) log2 q (in bits).

We now introduce the binary VT codes [10], [11].

Definition 3. The VT syndrome of a binary sequence x ∈
{0, 1}n is defined to be Syn(x) =

∑n
i=1 ixi.

Construction 1 (Binary VT codes [10]). For a ∈ Zn+1, let

VTa(n) = {x ∈ {0, 1}n : Syn(x) = a (mod n+ 1)} . (1)

Theorem 1 (Levenshtein, 1965 [11]). For a ∈ Zn+1, VTa(n)
can correct a single deletion or a single insertion. There exists
a ∈ Zn+1 such that VTa(n) has at least 2n/(n+1) codewords,
and the redundancy of the code is at most log2(n+ 1) bits.

Over the nonbinary alphabet, in 1984, Tenengolts [13] gen-
eralized the binary VT codes to q-ary VT codes for any fixed
q-ary alphabet. Crucial to the construction of Tenengolts in [13]
was the concept of the signature vector defined as follows.

Definition 4. The signature vector of a q-ary vector x of length
n is a binary vector α(x) of length n− 1, where α(x)i = 1 if
xi+1 ≥ xi, and 0 otherwise, for i ∈ [n− 1].

Construction 2 (q-ary VT codes as proposed in [13]). Given
n, q > 0, for a ∈ Zn and b ∈ Zq , set

Ta,b(n; q) ,
{

x ∈ Zn
q :α(x) ∈ VTa(n− 1) and

n∑
i=1

xi = b (mod q)
}
.

Theorem 2 (Tenengolts, 1984 [13]). The set Ta,b(n; q) forms a
q-ary single deletion/insertion correction code and there exists
a and b such that the size of Ta,b(n; q) is at least qn/(qn).
There exists a systematic encoder ENCT with redundancy
dlog2 ne + 3dlog2 qe + 3 (bits) or dlogq ne + 3 + dlogq 3e
(symbols).

On the other hand, the codewords obtained from the encoder
ENCT are not contained in a single q-ary VT code Ta,b(n; q).
Recently, Abroshan et al. [15] presented a systematic encoder
that maps binary messages into Ta,b(n; q). Unfortunately, the
redundancy of the encoder is as large as log2 n(log2 q + 1) +
2(log2 q−1) bits, and hence, more than log2 n+logq n symbols.



A. Paper Organisation and Main Contributions

In Section III, we present a new version of non-binary VT
codes that are capable of correcting a single deletion or a single
insertion. Our decoding algorithm may be considered simpler
than Tenengolts’ method, and more importantly, our proposed
code construction method supports more efficient encoding and
decoding procedures.

In Section IV, we present a linear-time encoder that encodes
user messages into the codes constructed in Section III. For
codewords of length n over the q-ary alphabet, our designed
encoder uses at most dlogq ne + 1 redundant symbols. Our
encoder can also enable more efficient design of the non-
binary segmented edits correcting codes. The efficiency of our
proposed encoders, compared to previous works, is illustrated
in Table II.

III. A NEW VERSION OF q-ARY VT CODES

Note that any code that corrects k deletions if and only if
it can correct k insertions, as established by Levenshtein [19].
Therefore, for simplicity, throughout this paper, we present the
decoding algorithm to correct a deletion only. Crucial to our
construction is the concept of q-ary differential vector.

Definition 5. Given x ∈ Σn
q . The differential vector of x,

denoted by Diff(x), is a sequence y = Diff(x) ∈ Σn
q where:{

yi = xi − xi+1 (mod q), for 1 6 i 6 n− 1,
yn = xn.

Clearly, Diff(x) is a one-to-one function. From y = Diff(x),
we can obtain x = Diff−1(y) as follows.{

xn = yn, and
xi =

∑n
j=i yj (mod q), for n− 1 > i > 1.

A. A Natural Idea from Binary VT Codes

Recall the design of the binary VT codes VTa(n) from
Construction 1 to correct a single deletion or insertion. A
natural question is whether there exists a simple VT syndrome
over q-ary codewords to correct single deletion or insertion for
arbitrary q > 2. Observe that, in the construction of Tenengolts
[13] (refer to Construction 2), the VT syndrome is enforced
over the signature of each codeword, which is a binary se-
quence. That is a drawback leading to the difficulty of designing
an efficient encoder as in the binary case. Consequently, to
encode arbitrary messages into Ta,b(n; q) by enforcing the VT
syndrome over the binary signature sequences, Abroshan et al.
[15] required more than logq n+ log2 n redundant symbols. A
natural solution should be obtained by enforcing a single VT
syndrome over all q-ary sequences.

On the other hand, we observe that, imposing VT syndrome
directly over every q-ary codeword is not sufficient to correct a
deletion or insertion. For example, it is easy to verify that the
following two sequences z1 = x213y and z2 = x132y, where
x, y are arbitrary sequences, have the same VT syndrome,
however, share a common sequence in the single error ball
as z′ = x13y.

Surprisingly, imposing the VT syndrome over the differential
vector of every q-ary codeword allows us to correct a deletion
or an insertion, and that is the main contribution of this work.

B. Codes Construction

Lemma 1. Given x ∈ Σn
q and let y = Diff(x) ∈ Σn

q . Suppose
that x′ is obtained via x by a deletion at symbol xi for 1 6
i 6 n. We then have:

(i) If 2 6 i 6 n, then yi−1yi is replaced by yi−1 +
yi (mod q),

(ii) If i = 1, then y1 is deleted in Diff(x).

Proof. We have y = Diff(x), where yi = xi − xi+1 (mod q)
for 1 6 i 6 n− 1 and yn = xn.

If i = 1, i.e. x1 is deleted in x, we then have x′ =
x2x3 . . . xn. Clearly, Diff(x′) = y2y3 . . . yn, or y1 is deleted
in Diff(x).

If 2 6 i 6 n, a deletion at xi affects yi−1, yi in Diff(x), as
yi−1 = xi−1 − xi (mod q) and yi = xi − xi+1 (mod q). We
observe that the change in Diff(x′) is then

Diff(x′)i−1 = xi−1 − xi+1 (mod q)

= (xi−1 − xi) + (xi − xi+1) (mod q)

= yi−1 + yi (mod q).

We conclude that yi−1yi is replaced by yi−1+yi (mod q). �

Example 1. Consider Σ4 = {0, 1, 2, 3}, and x = 0211301. We
then have y = Diff(x) = 2102331. Suppose that the symbol 2
is deleted in x, resulting x′ = 011301, and Diff(x′) = 302331.
In this example, we observe that, x2 is deleted in x, and the
resulting y1y2 = 21 in Diff(x) is replaced by 3 = y1 + y2.

Construction 3 (New version of q-ary VT codes). Given n >
0. For q > 2, a ∈ Zqn, set

VT∗a(n; q) ,
{

x ∈ Σn
q : Syn(Diff(x)) = a (mod qn)

}
.

The following lemma is crucial to the correctness of our
error-decoding algorithm.

Lemma 2 (Parity check lemma). Given n > 0, q > 2, and a ∈
Zqn. Consider x ∈ Σn

q such that Syn(Diff(x)) = a (mod qn).
We then have

∑n
i=1 xi ≡ a (mod q).

Proof. Let y = Diff(x), where yi = xi − xi+1 (mod q) for
1 6 i 6 n− 1 and yn = xn. Suppose that Syn(y) = a+ kqn
for some positive integer k. We have

Syn(y) =

n−1∑
i=1

iyi + nyn

≡
n∑

i=1

i(xi − xi+1) + nxn (mod q)

≡
n∑

i=1

xi (mod q).

Since Syn(y) = a+kqn, it implies
∑n

i=1 xi ≡ a (mod q). �



Encoder Redundancy (in symbols) Encoding/Decoding
Complexity

Receiver Information
on Code’s Parameters

Encoder Output Remark

Encoder ENCT proposed
by Tenengolts [13] using

Ta,b(n; q)

dlogq ne+ 3 + dlogq 3e O(n) not available not in
Ta,b(n; q)

systematic

Encoder ENCA proposed
by Abroshan et al. [15]

using Ta,b(n; q)

> logq n + log2 n O(n) VT Syndrome (a)
and parity check (b)

in Ta,b(n; q) systematic

Encoder ENC1 proposed
in this work using

VT∗a(n; q)

dlogq ne+ 3 + dlogq 3e O(n) not available not in
VT∗a(n; q)

systematic

Encoder ENC2 proposed
in this work using

VT∗a(n; q)

dlogq ne+ 1 O(n) VT Syndrome (a)
and parity check (a)

in VT∗a(n; q) non-systematic

TABLE II: Efficient encoders for q-ary codes correcting single deletion or insertion proposed in this work and and those in
literature. For each design category, the most desirable option is highlighted in blue. Particularly, our proposed encoder ENC2

incurs the least redundancy of dlogq ne+1 symbols. Here, the receiver information on code’s parameters plays an important role
in error-detecting and error-correcting procedure. For example, it may provide more efficient basis for the design of segmented
deletion/insertion correcting codes (see [16]–[18]).

Theorem 3. The code VT∗a(n; q) can correct a single deletion
or single insertion in linear time. In other words, there exists a
linear-time decoder DECerror : Σn−1

q ∪ Σn+1
q → Σn

q such that
if x′ is obtained from x ∈ VT∗a(n; q) after a deletion or an
insertion, we can recover x = DECerror(x′). In addition, there
exists a ∈ Zqn, such that

∣∣VT∗a(n; q)
∣∣ > qn

qn .

Proof. Observe that the lower bound is verified by using
the pigeonhole principle. It remains to show that the code
VT∗a(n; q) can correct a single deletion in linear time.

For a codeword x ∈ VT∗a(n; q), let x′ be obtained from
x after a deletion at xi. According to Lemma 2, we can
obtain the value of the deleted symbol as follows: xi =
a−

∑n−1
j=1 x

′
j (mod q).

It remains to determine the value of i, i.e. the location of the
deleted symbol. Let y = Diff(x) and y′ = Diff(x′). We then
compute:

∆ = syn(y)− Syn(y′) = a− Syn(y′) (mod qn), and

s =
n−1∑
j=1

y′j , i.e. the sum of symbols in y′.

Observe that both a and y′ are known, hence, the values of ∆
and s can be determined.

Let sR be the sum of symbols on the right of error symbol
yi in y. We show how y can be recovered from y′ and thus x
can be recovered based on ∆ and s, which are computable at
the decoder. We now have the following cases.
Case 1. If i = 1, we must have ∆ = x1 +

∑n−1
j=1 y

′
j = x1 + s.

Case 2. If 2 6 i 6 n, according to Lemma 1, yi−1yi is replaced
by yi−1 + yi (mod q).
• (2a) If yi + yi+1 6 q − 1, then it is easy to verify that

∆ = sR < s.
• (2b) If q 6 yi + yi+1 6 2(q − 1), then it is easy to verify

that ∆ = iq + sR > s.
Therefore, given the computed values ∆ and s, we can distin-
guish (2a) and (2b). Moreover, observe that both sR and iq+sR
are monotonic functions in the index i. Particularly, it is easy

. . .yi yi+1 yi+2. . . yi+3 yn−1

. . .(yi + yi+1). . .
yn

y′￼i

y′￼i+3y′￼i+1 y′￼i+2 y′￼n−1

yi−1

y′￼i−1

Δ = yi+1 +
n−1
∑
j=i+1

y′￼j = sR < s Δ = iq + yi+1 +
n−1
∑
j=i+1

y′￼j = iq + sR > sor

Claim: Given ∆ and s, we can locate the deleted symbol xi.

to verify that sR is decreasing in the index i while iq + sR is
increasing function in the index i. Hence, ∆ is decreasing in the
case (2a) while it is increasing in the case (2b). In other words,
given the value of xi, there is a unique value of i according
to the value of ∆. It is easy to see that, in the case when the
deleted symbol belongs to a run of identical symbols, we then
have more than one options for the index i. Nevertheless, we
obtain the same codeword. Consequently, to locate the error in
y, for (2a), the decoder scans y′ and simply searches for the
first index h where

∑n−1
j=h y

′
j > ∆, while for (2b), the decoder

scans y′ and simply searches for the largest index h where
qh+

∑n−1
j=h y

′
j < ∆. The error location in x is then i = h+ 1.

In conclusion, the code VT∗a(n; q) can correct a single
deletion (or equivalently, a single insertion) in linear time. �

Remark 1. The advantage of our proposed codes design, be-
sides the simplicity of the constraint, is that it enables O(log n)
time to find the error location, since ∆ is a monotonic function
in the index i. In addition, one may construct VT∗a(n; q)
using different variations of the differential function Diff(x).
In general, for all values p, 1 6 p 6 q − 1 and gcd(p, q) = 1,
this coding method works for all p-transformation vector Γp(x),
defined as follows.{

yi = p(xi − xi+1) (mod q), for 1 6 i 6 n− 1,
yn = pxn.

Another variation of the differential vector was used in [20],
[21] for binary codes to correct a burst of at most two deletions.



Example 2. Given n = 10, q = 4, a = 0, Σ4 = {0, 1, 2, 3}.
Consider a codeword x = 0103112013 ∈ VT∗

a(n; q). We obtain
y = Diff(x) = 3112032323. It is easy to verify that Syn(y) =
120 ≡ 0 (mod 40) and

∑10
i=1 xi ≡ 0 (mod 4).

Suppose that we receive x′ = 013112013, i.e. a deletion
occurs at x3 = 0. We then obtain y′ = Diff(x′) = 322032323.
Now, to correct x and find out the value of i, we follow the
decoding procedure in Theorem 3 as follows.

• From x′, the decoder finds the value of the deleted symbol,
which is a−

∑n−1
i=1 x′

i = 0 (mod 4).
• From y′ = Diff(x′) = 322032323, the decoder computes:

∆ = a− Syn(y′) = 0− 104 = 16 (mod 40),

s =

n−1∑
i=1

y′
i = 3 + 2 + 2 + 3 + 2 + 3 + 2 + 3 = 20.

• Since ∆ < s, the decoder concludes that it belongs to the
case (2a) where the deletion is not at the first position, i.e.
i �= 1, and yi−1 + yi < q = 4.

• Find the error location in y. It can be observed that∑9
h=2 y

′
i = 17 > ∆ = 16 while

∑9
h=3 y

′
i = 15 < ∆. The

decoder then concludes that the error in y is at the h = 2
position, and hence, the error in x is at i = h+ 1 = 3.

• To correct x, it inserts the symbol 0 to the third position.

C. Systematic Encoder

It is easy to show that our constructed codes VT∗
a(n; q), from

Construction 3, also support systematic linear-time encoder.
The design is similar to the construction of the systematic
encoder proposed by Tenengolts [13]. For message x ∈ Σk

q ,
the encoder appends the information of the VT syndrome of
the differential vector of x (of length t+1 = �logq k�+1) into
its suffix. In addition, there is a marker of length two, serves as
separators between the data part and the redundancy part (refer
to [13]). We illustrate the main idea of the encoder as follows.

. . .x1 x2 x3 xk
Message x

xk−1

. . .x1 x2 x3 xkxk−1 pp
Marker

. . .z1 z2 zt+1zt
-ary representation 
of 

q
Syn(Diff(x))

Codeword c

RedundancyData

011

Fig. 1: Systematic encoder ENC1. Here t = �logq k�. The
combination 011 at the end of the code sequence plays the
role of the comma between transmitted sequences. The marker
pp, where p = xk + 1 (mod q) serves as separators between
the data part and the redundancy part, while the Syn(Diff(x))
is represented by z1z2 . . . ztzt+1.

IV. MORE EFFICIENT ENCODER AND DECODER

In this section, we present a linear-time encoder that encodes
user data into VT∗

a(n; q) with �logq n�+1 redundant symbols.
Encoder 2. Given n, q, and a ∈ Zqn, set t � �logq n� and
k � n− t− 1. The user message is of length k.

INPUT: x ∈ Σm
q

OUTPUT: c � ENC2(x) ∈ VT∗
a(n; q)

(I) Set S � {qj−1 : j ∈ [t]} ∪ {n} and I � [n] \ S. In
other words, the set S includes the nth index and all the
indices that are powers of q.

(II) Set y = y1y2 . . . yn ∈ Σn
q , where y|I = x and y|S = 0. In

other words, the symbols in x are filled into y excluding
indices in S (refer to Figure 2) and yj = 0 for j ∈ S.

(III) Compute the difference a′ � a− Syn(y) (mod qn).
In the next step, we modify y, by setting suitable values
for yj where j ∈ S, to obtain Syn(y) = a (mod qn).
Since 0 � a′ � qn− 1, we find α, 0 � α < q− 1, to be
the number such that αn � a′ < (α+ 1)n.

(IV) The values for yj where j ∈ S are set as follows.
• Set yn = α, and a′′ = a′ − αn < n.
• Let zt−1 . . . z1z0 be the q-ary representation of a′′.

Clearly, since a′′ < n, the q-ary representation of
a′′ is of length at most t = �logq n�. We then have
a′′ =

∑t−1
i=0 ziq

i.
• Set yqj−1 = zj−1 for j ∈ [t].

(V) Set c = Diff−1(y). In other words, we set cn = yn and
ci =

∑n
j=i yj (mod q) for 1 � i � n.

(VI) Output c.

Example 3. Consider n = 10, q = 3 and a = 0. Then t =
�log3 10� = 3 and k = 10−3−1 = 6. Suppose that the message
is x = 220011 and we compute ENC2(x) � c ∈ VT∗

0(10; 3).
(I) Set S = {1, 3, 9, 10} and I = {2, 4, 5, 6, 7, 8}.

(II) The encoder first sets y = y12y320011y9y10. It then sets
y1 = y3 = y9 = y10 = 0 to obtain y = 0202001100 and
computes a′ = a− Syn(y) = 0− 27 = 3 (mod 30).

(III) Since 0 < a′ = 3 < 10, the encoder sets α = 0 and
a′′ = a′ = 3. It then sets y10 = α = 0.

(IV) The 3-ary representation of 3 is then 010. Therefore, the
encoder sets y1 = 0, y2 = 1, and y9 = 0 to obtain y =
0212001100. We can verify that Syn(y) = 0 (mod 30).

(V) The encoder outputs c = Diff−1(y) = 1121222100.

Theorem 4. Encoder 2 is correct and has redundancy
�logq n� + 1 symbols. In other words, ENC2(x) ∈ VT∗

a(n; q)

for all x ∈ Σ
n−�logq n�−1
q .

Proof. It suffices to show that Syn(Diff(c)) = a (mod qn).
From Step (V) of the Encoder 2, c = Diff−1(y), in other words,
y = Diff(c). It remains to show that Syn(y) = a (mod qn).

Recall that from Step (I) of Encoder 2, S � {qj−1 : j ∈
[t]} ∪ {n} and I � [n] \ S. Therefore,

Syn(y) =
∑
j∈S

jyj +
∑
j∈I

jyj (mod qn)

=
∑
j∈[t]

qj−1yj + nyn +
∑
j∈I

jyj (mod qn)

= a′′ + nα+ (a− a′) (mod qn)

= a′ − αn+ nα+ a− a′ (mod qn)

= a (mod qn) �



y1 y2 y3 y4 y5 y6 y7 y8 y9 . . . yn−1 yn

. . .x1 x2 x3 x4 x5 xkx6

y10

x7

c1 c2 c3 c4 c5 c6 c7 c8 c9 . . . cn−1 cnc10

y3i, ynDetermine so that  Syn(y) = a ( mod 3n ) 

c = Diff−1(y) : cn = yn, ci =
n

∑
j=i

yj mod 3

Message x

Codeword c

Fig. 2: Linear-time encoder to encode arbitrary messages into VT∗a(n; q). In this example, q = 3 and the VT syndrome Syn(y)
is computed in modulo 3n while each symbol is computed in modulo 3. The message is of length k = n− dlog3 ne − 1.

Decoder 2. Given n, q, and a ∈ Zqn, t , dlogq ne and k ,
n− t− 1. Given c = ENC1(x) for some message x ∈ Σk

q .
INPUT: c′ ∈ Σn−1

q ∪ Σn
q ∪ Σn+1

q

OUTPUT: x = DEC2(c′) ∈ Σk
q

(I) The decoder follows the error-decoding procedure in
Theorem 3 to obtain c , DECerror(c′) ∈ Σn

q .
(II) Set y = Diff(c) ∈ Σn

q , yi = ci − ci+1 (mod q) for
1 6 i 6 n− 1 and yn = cn.

(III) Set S , {qj−1 : j ∈ [t]} ∪ {n} and I , [n] \ S.
(IV) Output x = y|I ∈ Σk

q .

V. CONCLUSION

We have presented a new construction method of non-binary
VT codes that are capable of correcting a single deletion or
single insertion. We have further proposed efficient linear-
time encoders that encode user messages into these codes
of length n. Particularly, for codewords of length n, over
the q-ary alphabet for q > 2, our best designed encoder
uses dlogq ne + 1 redundant symbols, which improves the
redundancy of the best known encoder for single deletion or
single insertion correction codes, proposed by Tenengolts [13],
by 2 + logq(3) redundant symbols, or equivalently 2 log2 q+ 3
redundant bits. Our constructed codes also support systematic
linear-time encoding and decoding procedures.
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