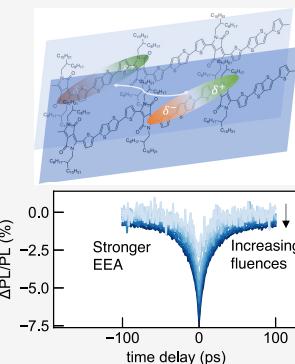


Exciton Bimolecular Annihilation Dynamics in Push–Pull Semiconductor Polymers

Yulong Zheng, Rahul Venkatesh, Esteban Rojas-Gatjens, Elsa Reichmanis, and Carlos Silva-Acuña*

Cite This: <https://doi.org/10.1021/acs.jpcllett.3c03094>

Read Online


ACCESS |

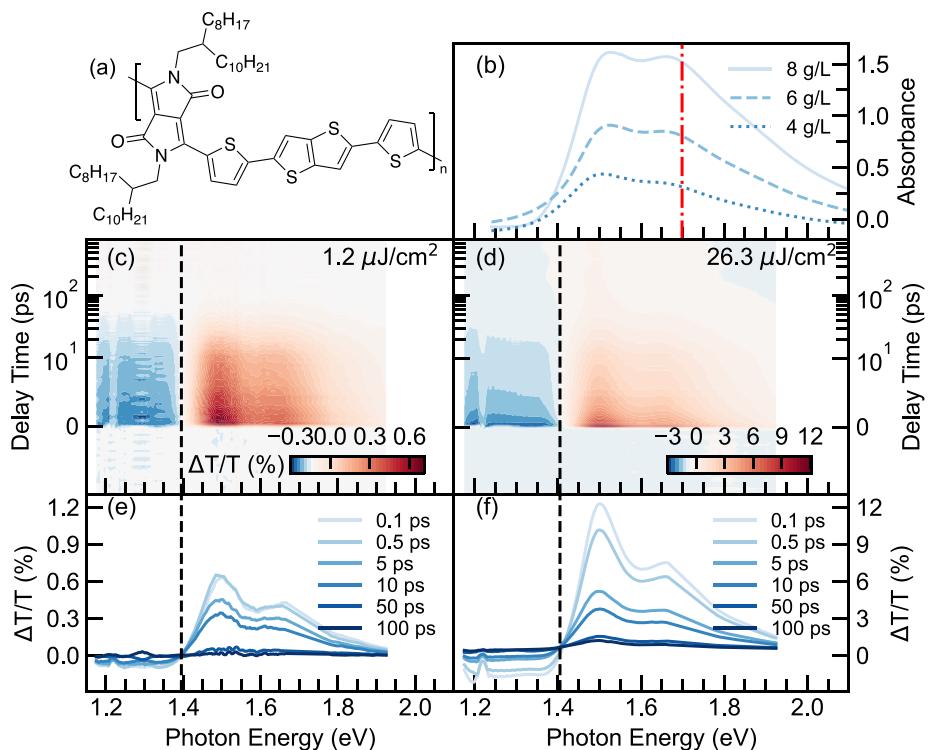
Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Exciton–exciton annihilation is a ubiquitous nonlinear dynamic phenomenon in materials hosting Frenkel excitons. In this work, we investigate the nonlinear exciton dynamics of an electron push–pull conjugated polymer by fluence-dependent transient absorption and excitation–correlation photoluminescence spectroscopy, where we can quantitatively show the latter to be a more selective probe of the nonlinear dynamics. Simulations based on a time-independent exciton annihilation model show a decreasing trend for the extracted annihilation rates with excitation fluence. Further investigation of the fluence-dependent transients suggests that the exciton–exciton annihilation bimolecular rates are not constant in time, displaying a $t^{-1/2}$ time dependence, which we rationalize as reflective of one-dimensional exciton diffusion, with a length estimated to be 9 ± 2 nm. In addition, exciton annihilation gives rise to a long-lived species that recombines on a nanosecond time scale. Our conclusions shed broad light onto nonlinear exciton dynamics in push–pull conjugated polymers.

Frenkel excitons are the primary photoexcitations in conjugated polymers. Following the vertical transitions, excitons experience ultrafast electronic and conformational relaxation to the local minima of the exciton band.^{1–5} During this process, a very small percent of the population may dissociate to form polaron pairs in neat conjugated polymer thin films, even if there is no successive two-quantum excitation.⁶ Thereafter, excitons can be transported through incoherent hopping.^{7,8} When the samples are exposed to sufficiently high laser fluence, high exciton densities may give rise to singlet exciton–exciton annihilation (EEA). In this work, we probe the EEA dynamics in a conjugated push–pull polymer by comparing transient absorption (TA) and excitation correlation photoluminescence (ECPL) spectroscopic measurements. With a time-independent annihilation model, both trends of the annihilation rates appear to decrease with fluence before a plateau is reached. Previously, the Franck–Condon analysis performed on the absorption line shape of the same samples prepared from a variety of precursor-solution concentrations revealed an increasing trend of chain backbone order with the viscosity of the precursor solution.⁹ In this Letter, we report that thin films prepared from higher precursor solution concentrations show higher annihilation rates, likely due to short-range Coulombic interactions and/or wave function overlap enhanced by the chain planarization identified previously. Further investigation of the time evolution of exciton density at an early time (20 ps) in TA indicates that the annihilation rate has a $t^{-1/2}$ dependence, suggesting that exciton diffusion in the push–pull conjugated polymer DPP-DTT (poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-*alt*-5,5-(2,5-di(thien-2-yl)thieno[3,2-*b*]-thiophene)]) is one-dimensional. In addition to the


short-time decay trace, the long-lived tail prevails with increasing pumping fluences, which shows a quadratic dependence, indicating an increasing yield of charges through EEA.

Previously, two mechanisms have been proposed to explain the annihilation process: One is that the annihilation is achieved through Förster-type long-range Coulombic interaction.¹⁰ Due to the random spatial distribution of excitons, the ensemble-averaged annihilation rates will decrease with time.^{8,11,12} Another model considers the anisotropy of exciton diffusion^{13,14} and excitons can only interact when they are in proximity, either through short-range Coulombic interaction or wave function overlap.^{7,15} In either scenario, the temporal dependence of the annihilation rates reflects the spatial dependence of the exciton distribution or their motion.⁶² Despite the fact that the pump fluences used in these measurements are orders of magnitude higher than the solar power, the extracted annihilation parameter with the fluence dependence could be theoretically extrapolated to a fluence-independent value, which suggests the ability of intrinsic exciton diffusion. Subsequent to annihilation, one exciton gets deexcited to the ground state, while the other is promoted to a higher excited state. While energy relaxation to the low-lying excited state could still occur, the probability of the high-lying

Received: November 3, 2023

Revised: December 17, 2023

Accepted: December 28, 2023

Figure 1. (a) Molecular structure of the repeating unit of DPP-DTT. (b) The absorption spectra of the DPP-DTT thin films prepared from precursor solutions of 4 (dotted), 6 (dashed), and 8 (solid) g/L. The red dot-dashed line indicates the pump wavelength used in TA and ECPL measurements. (c and d) Transient absorption maps for samples of 8 g/L, excited by the pump wavelength of (730 nm or 1.70 eV) under low and high fluence, respectively. The 1.2 and 26.3 $\mu\text{J}/\text{cm}^2$ corresponds to the excitation density of 3.8×10^{17} and $8.3 \times 10^{18} \text{ cm}^{-3}$ (see the Supporting Information for experimental details). (e and f) Temporal cuts for the spectra. The dashed line is a guide for the eye to determine the zero cross point.

72 excited state dissociating to polaron pairs also increases.¹⁶
 73 Therefore, new long-lived excited species could also be
 74 observed with increasing pump fluences.¹⁷
 75 The nonlinearity and temporal dependence of EEA
 76 processes could distort the monoexponential dynamics on a
 77 picosecond time scale in traditional time-resolved measure-
 78 ments, such as transient absorption (TA) and time-resolved
 79 photoluminescence (PL).^{13,15,18–21} The mixing among the
 80 natural monoexponential decay, EEA, and other linear
 81 photophysical processes prohibits the isolation of nonlinear
 82 processes from the temporally resolved signals. In comparison,
 83 excitation-correlation (EC) spectroscopy can provide a more
 84 selective response to nonlinear dynamics such as EEA due to
 85 double-amplitude lock-in detection. EC spectroscopy employs
 86 two laser beam replicas, each modulated with one chopper at a
 87 slightly different frequency.^{22,23} Therefore, the linear PL from
 88 each channel can be acquired when demodulating at each
 89 frequency. Furthermore, nonlinear population mixing arising
 90 from EEA between the two beams can also be acquired when
 91 the signal is demodulated at the sum of frequencies.
 92 Commonly, the EC signals, $\Delta\text{PL}/\text{PL}$, are demonstrated as a
 93 proportion of the nonlinear signal from the sum of nonlinear
 94 and linear signals from all three demodulation channels. With
 95 the relative arrival time between the two beams controlled by
 96 the delay stage, the evolution of the nonlinear dynamics can be
 97 further mapped. Although excitation correlation photolumi-
 98 nescence (ECPL) and photocurrent (PC) techniques are not
 99 as widely used as TA or time-resolved PL, their applications
 100 have always resurfaced with discoveries of new excitonic
 101 materials first from a variety of inorganic semiconductors^{24–26}

102 and nanotubes,^{27,28} to more recent two-dimensional dichalco-
 103 genides²⁹ and hybrid organic–inorganic perovskites^{30–33} due
 104 to their sensitivity to nonlinear photophysical responses. Of
 105 particular relevance to organic semiconductors, Rojas-Gatjens
 106 et al. recently investigated the nonlinear PL and PC responses
 107 of an organic small-molecule photovoltaic material, where the
 108 dominant source of charge carrier generation is ascribed to the
 109 EEA process.³⁴ Compared to the conjugated homopolymers,
 110 conjugated push–pull polymers inherit strong charge-transfer
 111 character due to the differences in the electronegativities of the
 112 electron-deficient and -sufficient domains, which could have
 113 another contribution for the driving force of EEA.³⁵ Here, our
 114 work provides new insight into exciton diffusion in conjugated
 115 push–pull polymers by comparing the TA and ECPL
 116 measurements, experimentally and theoretically, which can
 117 be further developed in new optoelectronic systems.¹¹⁷

We focus on a push–pull conjugated polymer, DPP-DTT¹¹⁸ (Figure 1a), following previous ultrafast measurements on this¹¹⁹ material.⁹ A series of samples prepared from precursor¹²⁰ solutions of 4, 6, and 8 g/L in chlorobenzene were cast by¹²¹ using the blade coating technique. The detailed sample¹²² preparation process and characterizations are described¹²³ elsewhere.³⁶ The absorption spectra in Figure 1b show that¹²⁴ the vibronic ratio of 0–0 and 0–1 transition decreases with¹²⁵ increasing concentrations, suggesting increasing interchain¹²⁶ excitonic interactions.⁹ To probe the exciton dynamics,¹²⁷ fluence-dependent TA measurements are first performed¹²⁸ under an excitation wavelength of 730 nm. Here, measure-¹²⁹ ments of the 8 g/L sample under the lowest and highest¹³⁰ fluence are displayed in Figure 1c,d, respectively. The other TA¹³¹

132 measurements with intermediate fluences are also shown in
 133 Figure S1 in the [Supporting Information](#). Both measurements
 134 show similar spectral responses with strong ground-state
 135 bleaching (GSB) from 1.4 to 1.9 eV and photoinduced
 136 absorption (PIA) beyond 1.4 eV. It is worth pointing out that
 137 the 2D map of the higher pumping fluence shows a weak, long-
 138 lived species, which will be examined in more detail later. The
 139 temporal cuts of the spectra are also shown correspondingly in
 140 [Figure 1e,f](#). A small spectral shift (less than 10 meV) is noticed
 141 between the two fluences, which could be ascribed to the
 142 induced electric field under excessive exciton densities.³⁷ The
 143 decay traces are further examined at 750 nm within the GSB
 144 region, where the oscillator strengths stem from the 0–0
 145 vibronic Frenkel exciton. We assume that the primary PL and
 146 GSB share the same dynamics since only the first excited states
 147 are mostly populated. Such an assumption allows the following
 148 EEA equations to be applicable to both TA and ECPL
 149 spectroscopies.

150 To account for the exciton decay trace, a simple bimolecular
 151 exciton–exciton annihilation decay equation reads as

$$\frac{dn}{dt} = -\alpha n - \beta n^2 \quad (1)$$

152 where α is the monomolecular exciton decay constant, while β
 153 denotes the EEA rate constant. It is worth noting that [eq 1](#)
 154 assumes that the natural exciton decay and time-independent
 155 EEA process are the only two primary pathways for exciton
 156 decay which contribute to the final PL signals, where
 157 secondary dynamic processes and excited species could also
 158 contribute in reality.^{21,38} For example, charge-transfer excitons
 159 could be generated either directly^{37,39–41} or through exciton
 160 dissociation from a higher-energy excited state.⁶ Charge
 161 recombination could give rise to delayed PL with power-law
 162 time dependence.^{21,38} Nonetheless, the primary excitation
 163 dominates the majority of the PL signals, and the EEA
 164 mechanism should serve as the simplest quantitative case
 165 study. The equation has an analytical expression

$$n(t) = \frac{\alpha n_0}{(\alpha + n_0\beta)e^{\alpha t} - \beta n_0} \quad (2)$$

166 [Equation 2](#) can be further linearized into^{19,42}

$$\frac{1}{n(t)} = \left(\frac{1}{n_0} + \frac{\beta}{\alpha} \right) e^{\alpha t} - \frac{\beta}{\alpha} \quad (3)$$

167 The initial excitation density is given as n_0 upon excitation. A
 168 quick examination of [eq 3](#) shows that the inverse of the
 169 excitation density should have a negative intercept.

170 To extract the bimolecular annihilation rate, β in the form of
 171 [eq 3](#), the fluence-dependent temporal cuts at 750 nm from TA
 172 are plotted in [Figure 2a](#). At relatively low fluences, the log-scale
 173 differential transmission traces show a mostly linear depend-
 174 ence on delay time, while within 20 ps, the nonlinear decaying
 175 component due to EEA becomes more prevalent. The
 176 monoexponential decay rate α is fixed at 0.053 ps^{-1} as
 177 extracted from an exponential fit, excited by the lowest pump
 178 fluence ($1.2 \mu\text{J}/\text{cm}^2$), which is assumed to be in the regime of
 179 dominant monoexponential decay. Therefore, β can be
 180 acquired by solving the slope and intercept of the linear fit
 181 together, as shown in [Figure 2b](#). Before we move on to
 182 discussing the acquired annihilation rates, it is worth pointing
 183 out that the extraction of the annihilation rates relies on the
 184 assumption that the initial differential signal is attributed to a

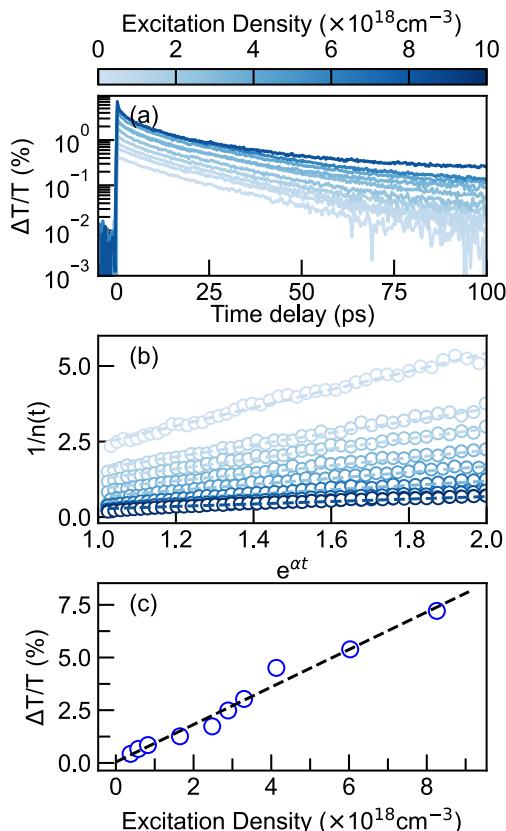
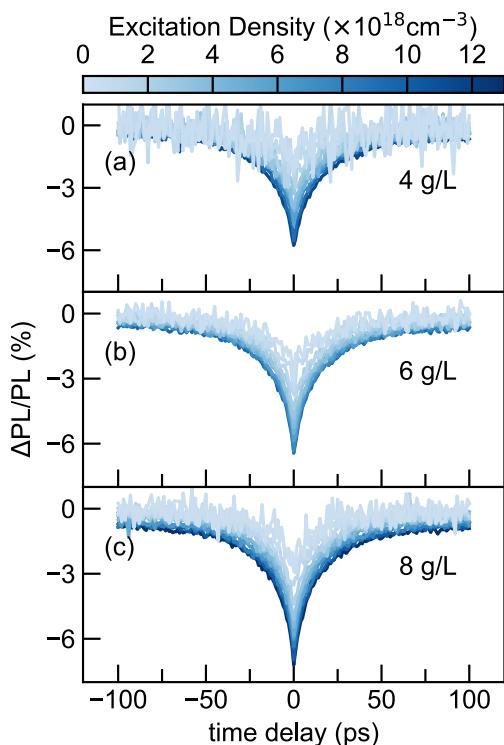



Figure 2. (a) TA Decays at 750 nm with varying excitation densities. With increasing excitation densities, a faster decay is observed within the first few picoseconds. (b) Linearized TA decays (white open circles) fit to [eq 3](#) (dashed straight lines). The first 20 ps is chosen and converted for the exponential x-axis. (c) The dependence of initial differential transmission (open circles) on excitation densities. The black dashed line fits the linear relationship with a slope of $0.889(\pm 0.047)$ and intercept of $0.042(\pm 0.183)$.

185 single-step pumping excitation. As shown by Silva et al.,⁶ two-
 186 step excitation originating from the leading and trailing edge of
 187 a single pulse could also lead to nonlinear decaying dynamics
 188 in TA, which mixes with the EEA source. However, as shown
 189 in [Figure 2c](#), the differential transmission signals at time zero
 190 not only have a linear dependence on the excitation density but
 191 also have an almost 0 y-intercept (0.042 ± 0.183), which
 192 excludes the possibility of two-step excitation. Based on [eq 3](#),
 193 the annihilation rates can be readily calculated since α is
 194 known and n_0 can be estimated with laser fluence, film
 195 thickness, and absorption coefficients.
 196

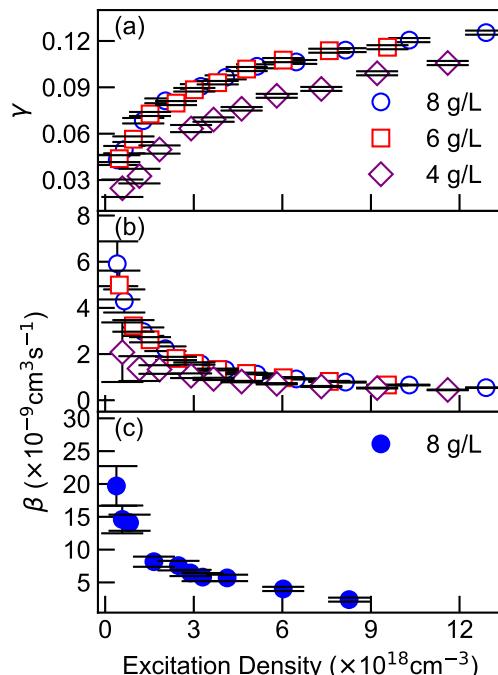
197 The annihilation rates acquired from TA measurements can
 198 be further compared to those of their ECPL counterparts. Prior
 199 to that, we resort to deriving an annihilation-based model in
 200 describing the ECPL signal profiles. Previous work revealed
 201 that with samples prepared from higher-concentration
 202 solutions, polymer interchain excitonic interaction increases,
 203 as well as the chain backbone planarity.^{9,36} Both factors might
 204 contribute to a distinct strength of the exciton–exciton
 205 interaction. With the aforementioned ECPL working principle,
 206 all ECPL profiles measured on DPP-DTT thin films of
 207 different precursor concentrations demonstrate a negative
 208 signal and diminish with delayed times between the two pulses,
 209 as shown in [Figure 3](#). A detailed description of the ECPL setup
 210 can be found in the [Supporting Information](#). The overall
 211 f3

Figure 3. ECPL nonlinear response profiles excited at 730 nm pump for samples prepared from 4 (a), 6 (b), and 8 g/L (c) precursor solutions. The PL signals were filtered to collect the wavelength range of 750–1100 nm. The measurements are performed under a variation of excitation densities coded by the colorbar scale.

213 negative signals reflect EEA as an efficient linear PL quenching
 214 pathway, while the decaying nonlinear signals originate from
 215 the less temporal overlap between the two pulses, thus less
 216 sufficient population mixing. To analyze the results quantita-
 217 tively, we further implement eq 2 based on lock-in detection,
 218 which essentially gives rise to a time-integrated signal

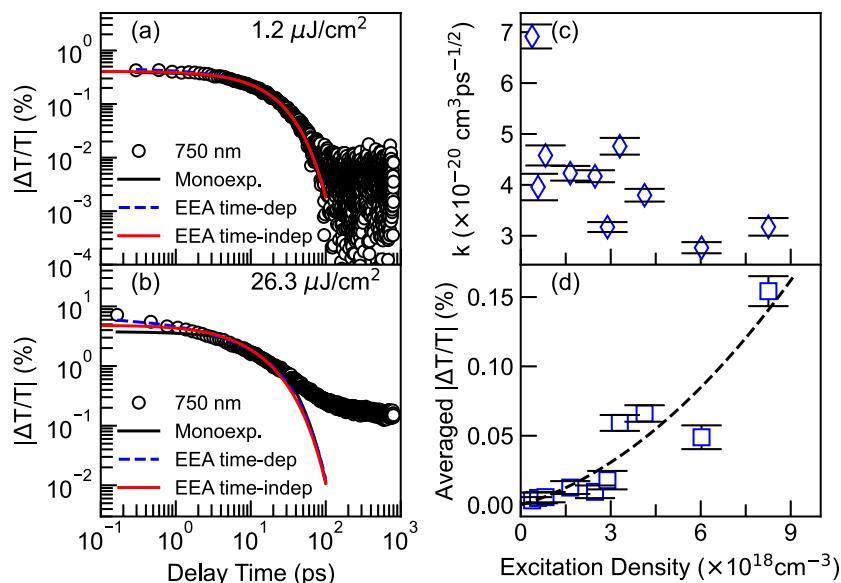
$$219 \quad PL_{ind} = \int_0^{\infty} n(t) dt = 1/\beta \{ \ln[(1 + \gamma)] \} \quad (4)$$

220 where γ is a unitless parameter defined as $\gamma \equiv \frac{n_0 \beta}{\alpha}$. Considering
 221 that the monoexponential decay is constant, the product of the
 222 initial excitation density and annihilation rate, thus γ , is a
 223 measure of the strength of the EEA process. On the other
 224 hand, the nonlinear signal demodulated at the sum of the
 225 chopping frequencies can be toggled through the delay time
 226 between the two beams. The varying delay times impact the
 227 nonlinear signal in the way that excitons generated from the
 228 first pulse will decay until the second pulse comes in.
 229 Thereafter, the total amount of excitons should be given as
 230 the sum of the residual from the first decay and the newly
 231 generated amount


$$232 \quad PL_{sum} = \int_0^{\tau} n(t_1) dt_1 + \int_0^{\infty} n(t_2) dt_2 \\ = 1/\beta \{ \ln[(1 + \gamma)^2 - \gamma^2 e^{-\alpha \tau}] \} \quad (5)$$

233 Eventually, the experimentally meaningful equation can be
 234 given as

$$\Delta PL(\tau)/PL = 1 - \frac{2\ln(1 + \gamma)}{\ln[(1 + \gamma)^2 - \gamma^2 e^{-\alpha \tau}]} \quad (6) \quad 235$$


One extreme scenario can be readily inspected: when the time 236 delay τ approaches infinity, eq 6 will give 0, indicating null 237 nonlinear PL, which is expected as the long intervals between 238 the two pulses prohibit the generation of the cross term. As 239 indicated earlier, ECPL should be more selective in separating 240 nonlinear signals than TA. This can be readily seen if we 241 assume no annihilation, suggesting that the excitation should 242 be completely monoexponential. It then can be shown that 243 PL_{sum} is simply double PL_{ind} , which is $\frac{n_0}{\alpha}$. Therefore, eq 6 will 244 yield 0, which rigorously shows that linear dynamics alone 245 would not give ECPL signals. 246

The complete simulation results are shown in Figures S3– 247 S5, which demonstrate excellent consistency with the 248 experimental results. The extracted γ with increasing excitation 249 densities implies stronger EEA effects as expected (Figure 4a). 250 f4

Figure 4. Excitation-density dependence in DPP-DTT thin films prepared from 4, 6, and 8 g/L solutions of (a) unitless parameter, γ , and (b) EEA rates, β , acquired by fitting ECPL profiles using eq 4 compared with (c) EEA rates acquired from Figure 3b measured from TA.

Interestingly, the γ values acquired from the sample of 4 g/L 251 are notably lower than those prepared from higher precursor 252 concentrations. Furthermore, simulations based on eq 6 yield 253 annihilation rates on the order of magnitude of 1×10^{-9} 254 $cm^{-3} s^{-1}$ (Figure 4b). Meanwhile, the annihilation rates 255 extracted from TA also show a decreasing trend with excitation 256 density even with overall higher β values, as shown in Figure 257 4c. Indeed, annihilation rates acquired from time-integrated 258 measurements are frequently shown to be lower compared to 259 the parameters extracted from their time-resolved counterparts 260 for the same type of conjugated polymer.^{43,44} Such difference 261 might be partially ascribed to integrating long-lived PL signals 262 that originate from polaron pair recombination and/or triplet– 263 triplet annihilation.²¹ Those long-lived PL signals compensate 264

Figure 5. (a and b) Temporal decays under low and high fluences, respectively. The early time decays are fitted with monoexponential decay (black solid line), time-independent EEA model (red solid), and time-dependent EEA model (blue dashed line). (c) Dependence of diffusion constants on excitation densities using eq 5. (d) Time-averaged differential transmission at 800 ps with respect to excitation densities. The black dashed line is the quadratic fit with the *y*-intercept set as 0.

265 for the PL quenching by EEA in that annihilation rates are
 266 underestimated with higher pumping fluences. Except for slight
 267 differences in the absolute values of β , the annihilation rates
 268 show a consistent asymptotic decreasing trend. It is worth
 269 mentioning that decreasing annihilation rates are not
 270 uncommonly observed. Previous literature ascribed the origins
 271 to either excitons generated within the EEA radius annihilating
 272 rapidly or excitons with a shorter effective lifetime under
 273 higher densities.^{19,44} Nevertheless, excitons generated within
 274 the annihilation radius should not be rare even under low
 275 excitation fluences, as the interaction radius is calculated as an
 276 ensemble average. On the other hand, the effective
 277 monomolecular lifetime would shorten due to stimulated
 278 emission or excited-state absorption with fluences; their
 279 variations are much smaller in contrast to the multiple times
 280 change of γ (see Figure S6). Alternatively, it is worth pointing
 281 out that the annihilation rate could be a time-dependent value,
 282 especially in the early stage.¹¹ Previous publications indicate
 283 that such dependence originates from the dimensionality of
 284 exciton diffusion, where not only isotropic but also one- and
 285 two-dimensional diffusion have been identified in different
 286 semiconductor polymers, which might be accountable for the
 287 decreasing trend for the annihilation rates with fluences.^{13,14,42}
 288 The exciton annihilation rate could have a $t^{-1/2}$ time
 289 dependence due to either the spatial distribution of excitons,
 290 which annihilate through long-range Coulombic interactions,
 291 or one-dimensional diffusion-limited annihilation. In either
 292 scenario, the time-dependent annihilation model (eq 2) could
 293 be reformulated as⁴⁵

$$n(t) = \frac{n_0 e^{-\alpha t}}{1 + \frac{n_0 \pi k}{\sqrt{\alpha}} \operatorname{erf}(\sqrt{\alpha} t)} \quad (7)$$

294 where $k \equiv \beta(t) \times \sqrt{t}$ so that the newly defined annihilation
 295 rate, k , can now be simply described as a time-independent
 296 term and erf is the error function. For a better comparison, all
 297 simulations based on monoexponential, time-independent, and
 298 time-dependent models are shown in the lowest and highest

TA decay traces in Figure 5a,b, respectively. Under the lowest 300 fs
 pumping fluence, all three models fit the dynamics closely, 301
 indicating that the dynamics at low pump fluence is dominated 302
 by monoexponential decay with minor impact from EEA. 303
 However, under high pump fluence, a small deviation becomes 304
 clear in the early delay times (first 2 ps) when comparing the 305
 time-dependent annihilation model with the other two; the 306
 first kind fits the experimental result best until 30 ps. 307
 Calculation of the new annihilation constants, k , gives a 308
 consistent value of $4 \pm 1.1 \times 10^{-14} \text{ cm}^3 \text{ s}^{-1/2}$ as shown in 309
 Figure 5c. One large outlier can be readily distinguished at the 310
 lowest fluence case, since the additional annihilation term 311
 could be overfitting. Therefore, we suggest that EEA could be a 312
 time-dependent process in DPP-DTT. 313

Another distinct feature is the drastic offset between all 314
 simulations and the experimental decay trace beyond 50 ps at 315
 the highest fluence (Figure 5b). Furthermore, the long-lived 316
 tail no longer follows an exponential decay. To avoid data 317
 fluctuation at a low signal-to-noise ratio, especially in the low- 318
 fluence case, 20 points around 800 ps are averaged for each 319
 excitation density. The eventual signal at long-time delay 320
 (LTD) dependence on the excitation density is demonstrated 321
 in Figure 5d, where a quadratic dependence is observed. The 322
 corresponding equation is given by 323

$$\left| \frac{\Delta T}{T} \right|_{\text{LTD}} = 0.00129 n_0^2 + 0.0064 n_0 \quad (8)$$

325 where the *y*-intercept is set as 0 since no excited species should
 326 exist without a pump laser. The long-lived excited species likely
 327 originate from the polaron pair, and the quadratic dependence
 328 suggests the EEA as the source.^{6,17} Furthermore, since eq 8
 329 also has a linear dependence on excitation density, it also
 330 suggests that a certain amount of excitons have experienced
 331 direct dissociation. Considering the single-step exciton
 332 generation from Figure 5c, the quantum yield of the polaron
 333 pairs due to direct dissociation is estimated to be 0.7%. This
 334 value is significantly lower than a few other conjugated
 335

Table 1. Comparison of the Diffusion Lengths Acquired from the Time-Dependent and Time-Independent EEA Model Acquired from ECPL and TA Measurements

Conc. (g/L)	4	6	8	Time-indep. TA	Time-dep. TA
Technique	ECPL	ECPL	ECPL		
L (nm) at $n_{0,l}^a$	0.9 ± 0.7	1.4 ± 0.5	1.3 ± 0.6	2.6 ± 1.0	8.2 ± 0.5^c
L (nm) at $n_{0,h}^b$	0.42 ± 0.08	0.49 ± 0.08	0.48 ± 0.08	0.9 ± 0.3	6.6 ± 0.4

^a $n_{0,l}$ and $n_{0,h}$ denote initial excitation density at lowest and highest pump fluence, respectively. ^b $n_{0,l}$ and $n_{0,h}$ denote initial excitation density at lowest and highest pump fluence, respectively. ^cValue obtained for the second highest excitation density as shown in Figure 5c. The first point is ignored for its obvious deviation.

335 polymer systems, where a quantum yield of 10% is estimated
336 within the first 150 fs.⁶ One possibility could be that the
337 quantum yield is estimated at a fairly long time delay, where a
338 large proportion has already decayed, leading to an inaccurate
339 estimate.

340 In this work, we integrate and compare the parameters
341 acquired from both the TA and ECPL measurements based on
342 the exciton–exciton annihilation model. As mentioned earlier,
343 exciton–exciton annihilation can possibly be achieved by two
344 different mechanisms, through either diffusion-limited exciton
345 collision or direct long-range Coulombic interaction. There
346 exists the possibility that EEA suffered from long-range
347 Coulombic interaction, assuming that the time dependence
348 of the EEA rates originates from a spatial ensemble average of
349 exciton interaction. However, in previous work, we showed
350 that the exciton becomes more delocalized with increasing
351 precursors’ concentration.⁹ As the exciton becomes more
352 delocalized, the transition dipole moments would weaken. The
353 long-range Coulombic interaction would deviate from the
354 dipole approximation to multipole approximation (e.g.,
355 quadrupolar interactions), leading to reduced EEA. In
356 addition, it is commonly agreed that incoherent exciton
357 hopping achieved through such Förster-type long-range
358 interaction requires sufficient spectral overlap between the
359 absorption and PL. For DPP-DTT, the Stokes shift increased
360 from 130 to 180 meV with increasing precursor concen-
361 tration,⁹ supposedly leading to weaker EEA. Nevertheless, the
362 opposite trend is observed, which suggests that exciton
363 diffusion and collision might also play an important role;
364 EEA might involve short-range interactions through either
365 Coulombic or wave function overlap. Recently, Tempelaar et
366 al. calculated the exciton annihilation rates theoretically,
367 assuming that excitons interact through resonant Coulombic
368 coupling.⁴⁶ The annihilation rates are found to decrease with
369 decreasing exciton densities, which is the opposite of the trend
370 shown in Figure 4. Such evidence suggests that the annihilation
371 between excitons through a long-range interaction might not
372 be the mechanism considered here.

373 It is worth mentioning that long-lived tails have been widely
374 observed in conjugated polymers with a variety of possibilities
375 for their origins.^{8,21,38,43,47,48} Interchain polaron pairs have
376 been previously identified to be mediated by lattice defects
377 with a linear dependence on pump fluence.⁴⁸ Similar behavior
378 might be expected for homocoupling defects due to the
379 synthesis of DPP-based copolymers, giving rise to an
380 unexpected lower-energy shoulder in the absorption spectra,⁴⁹
381 which is nevertheless not observed in the absorption spectra of
382 this series of samples as shown in Figure 1b. Considering the
383 quadratic dependence on pump fluence, both possibilities can
384 be safely excluded. Another source of the long-lived tails might
385 be from the singlet fission of free triplet exciton and/or
386 triplet–triplet exciton pair formation.^{50,51} In this work, we did

387 not observe a distinct feature that can be assigned undoubtedly
388 as triplet excitons. Besides, the triplet-exciton dependence of
389 the fluence should also be linear since only one excited
390 chromophore is involved in the singlet fission process.
391 Therefore, we assign the long-lived tail as observed in this
392 work to the polaron pairs through the EEA process, to our best
393 knowledge.
393

394 Using the one-dimensional diffusion model, the diffusion
395 coefficients, D , can be calculated based on their relation to k^{18}
395

$$k = 2\sqrt{2\pi D} R^2 \quad (9) \quad 396$$

397 where the annihilation radius, R , in the diffusion limit, is
398 normally estimated as the lamellar layer distance, d_{100} , as
399 extracted from the in-plane profile of grazing incidence wide-
400 angle X-ray scattering.^{20,42} In DPP-DTT, it is found to be
401 around 2 nm.⁵² Therefore, the diffusion coefficient, D , is
402 estimated to be $4 \pm 2 \text{ nm}^2 \text{ ps}^{-1}$ and the diffusion length is
403 given as $L = \sqrt{D/\alpha}$, which is $9 \pm 2 \text{ nm}$. Both values are in
404 good agreement with results found for other conjugated
405 polymers.^{10,13,44}
405

406 To compare the results with the diffusion lengths acquired
407 from the time-independent model, we summarize the results in
408 Table 1. The diffusion lengths acquired from the time-
409 independent EEA model based on three-dimensional isotropic
410 diffusion,⁴⁵ whether from ECPL or TA, have much smaller
411 values than those from the time-dependent model (5–10 times
412 smaller). Such a deviation is inherited from neglecting the
413 dimensionality of exciton diffusion. It can be simply under-
414 stood as the length of the one-dimensional chain will be
415 significantly reduced when “simulating” it into the radius of a
416 three-dimensional sphere, considering the same volume. In
417 addition, the diffusion lengths derived from the same time-
418 independent EEA model differ by one time, comparing the
419 ECPL and TA measurements. The slight difference could be
420 due to the incorporation of the long-lived emission in ECPL
421 measurements, as discussed earlier. Last but not least, the
422 diffusion lengths acquired for the samples of 6 and 8 g/L are
423 higher than those of lower concentration samples, as the
424 diffusion is aided by the short-range interaction supported by
425 the enhanced chain backbone order.
425

426 It is worth mentioning that in our current ECPL analysis, we
427 determined the contribution from stimulated emission and/or
428 excited-state reabsorption from the prompt PL followed by the
429 first pump. Although it can be easily compensated for by
430 loosing the constraint on the monoexponential decay constant,
431 α , but its contribution should be investigated rigorously which
432 is outside the scope of this work. In addition, the complicated
433 eq 7 obviously prohibits us from getting a simple analytical
434 model for ECPL measurement, as was possible with its time-
435 independent counterpart. However, numerical methods such
436 as Genetic Algorithm might be one of the options for achieving
436

437 a universally applicable model for extracting both mono-
438 molecular and annihilation rate constants, which can be further
439 employed in other systems with even more complicated
440 dynamics.²¹

441 In conclusion, we examine the dynamics of exciton–exciton
442 annihilation in a specific push–pull polymer and compare the
443 experimental and simulation results obtained from transient
444 absorption and excitation correlation spectroscopy. Using the
445 time-independent annihilation model, both measurements
446 yield a decreasing annihilation rate trend with increasing
447 fluence until they reach a plateau. Thin films deposited from
448 higher precursor solution concentrations exhibit higher
449 annihilation rates, likely due to stronger short-range
450 Coulombic interactions or wave function overlap between
451 excitons. By analyzing the time evolution of exciton density at
452 an early stage (20 ps) in transient absorption, we find that the
453 annihilation rate follows a $t^{-1/2}$ dependence, suggesting one-
454 dimensional exciton diffusion along the chain in DPP-DTT.
455 The one-dimensional diffusion length is estimated to be 9 nm,
456 which is in good agreement with a variety of other conjugated
457 polymers. Additionally, besides the rapid decay, there is a long-
458 lived tail that becomes more prominent as pumping fluences
459 increase. This tail demonstrates a quadratic dependence,
460 indicating an increasing yield of charges through exciton–
461 exciton annihilation. Our work rigorously shows the
462 application of the ECPL technique in conjugated polymers
463 and a further reach into the wider semiconductor research
464 field.

465 ■ ASSOCIATED CONTENT

466 ■ Supporting Information

467 The Supporting Information is available free of charge at
468 <https://pubs.acs.org/doi/10.1021/acs.jpcllett.3c03094>.

469 Experimental methods for TA and ECPL and their
470 associated measurements and fits under varying fluences
471 ([PDF](#))

472 Transparent Peer Review report available ([PDF](#))

473 ■ AUTHOR INFORMATION

474 Corresponding Author

475 Carlos Silva-Acuña – Institut Courtois & Département de
476 physique, Université de Montréal, Montréal H3C 3J7 Québec,
477 Canada; School of Chemistry and Biochemistry, Georgia
478 Institute of Technology, Atlanta, Georgia 30332, United
479 States; [orcid.org/0000-0002-3969-5271](#);
480 Email: carlos.silva@umontreal.ca

481 Authors

482 Yulong Zheng – School of Chemistry and Biochemistry,
483 Georgia Institute of Technology, Atlanta, Georgia 30332,
484 United States; [orcid.org/0000-0001-5136-1971](#)

485 Rahul Venkatesh – School of Chemical and Biomolecular
486 Engineering, Georgia Institute of Technology, Atlanta,
487 Georgia 30332, United States; [orcid.org/0000-0003-1008-6568](#)

488 Esteban Rojas-Gatjens – School of Chemistry and
489 Biochemistry, Georgia Institute of Technology, Atlanta,
490 Georgia 30332, United States; [orcid.org/0000-0001-9408-9621](#)

491 Elsa Reichmanis – Department of Chemical & Biomolecular
492 Engineering, Lehigh University, Bethlehem, Pennsylvania
493 18015, United States; [orcid.org/0000-0002-8205-8016](#)

496 Complete contact information is available at:
497 <https://pubs.acs.org/10.1021/acs.jpcllett.3c03094>

498 Notes

499 The authors declare no competing financial interest.

500 ■ ACKNOWLEDGMENTS

501 E.R., R.V., and Y.Z. appreciate support associated with 501
502 National Science Foundation Grant No. 1922111, DMREF: 502
503 Collaborative Research: Achieving Multicomponent Active 503
504 Materials through Synergistic Combinatorial, Informatics- 504
505 enabled Materials Discovery. E.R. also acknowledges support 505
506 from Carl Robert Anderson Chair funds at Lehigh University. 506
507 C.S.-A. appreciates support associated with the National 507
508 Science Foundation (Grant DMR-1729737). C.S.-A. also 508
509 acknowledges the Canada Excellence Research Chair in 509
510 Light-Matter Interactions in Photonic Materials, and a 510
511 Courtois Research Chair.

512 ■ REFERENCES

- (1) Banerji, N. Sub-picosecond delocalization in the excited state of 513 conjugated homopolymers and donor-acceptor copolymers. *J. Mater. 514 Chem. C* **2013**, *1*, 3052–3066.
- (2) Banerji, N.; Cowan, S.; Vauthey, E.; Heeger, A. J. Ultrafast 516 relaxation of the poly (3-hexylthiophene) emission spectrum. *J. Phys. 517 Chem. C* **2011**, *115*, 9726–9739.
- (3) Chang, M.; Frampton, M.; Anderson, H.; Herz, L. 519 Intermolecular interaction effects on the ultrafast depolarization of 520 the optical emission from conjugated polymers. *Phys. Rev. Lett.* **2007**, 521 98, No. 027402.
- (4) Fazzi, D.; Grancini, G.; Maiuri, M.; Brida, D.; Cerullo, G.; 523 Lanzani, G. Ultrafast internal conversion in a low band gap polymer 524 for photovoltaics: experimental and theoretical study. *Phys. Chem. 525 Chem. Phys.* **2012**, *14*, 6367–6374.
- (5) Tretiak, S.; Saxena, A.; Martin, R.; Bishop, A. Conformational 527 dynamics of photoexcited conjugated molecules. *Phys. Rev. Lett.* **2002**, 528 89, No. 097402.
- (6) Silva, C.; Dhoot, A. S.; Russell, D. M.; Stevens, M. A.; Arias, A. 530 C.; MacKenzie, J. D.; Greenham, N. C.; Friend, R. H.; Setayesh, S.; 531 Müllen, K. Efficient exciton dissociation via two-step photoexcitation 532 in polymeric semiconductors. *Phys. Rev. B* **2001**, *64*, No. 125211.
- (7) Brédas, J.-L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Charge- 534 transfer and energy-transfer processes in π -conjugated oligomers and 535 polymers: a molecular picture. *Chem. Rev.* **2004**, *104*, 4971–5004.
- (8) Herz, L.; Silva, C.; Grimsdale, A. C.; Müllen, K.; Phillips, R. 537 Time-dependent energy transfer rates in a conjugated polymer guest- 538 host system. *Phys. Rev. B* **2004**, *70*, No. 165207.
- (9) Zheng, Y.; Venkatesh, R.; Callaway, C. P.; Viersen, C.; 540 Fagboghunge, K. H.; Liu, A. L.; Risko, C.; Reichmanis, E.; Silva- 541 Acuña, C. Chain Conformation and Exciton Delocalization in a Push- 542 Pull Conjugated Polymer. *Chem. Mater.* **2023**, *35*, 10258.
- (10) Daniel, C.; Westenhoff, S.; Makereel, F.; Friend, R. H.; 544 Beljonne, D.; Herz, L. M.; Silva, C. Monte Carlo simulation of exciton 545 bimolecular annihilation dynamics in supramolecular semiconductor 546 architectures. *J. Phys. Chem. C* **2007**, *111*, 19111–19119.
- (11) Greene, B.; Millard, R. Singlet-exciton fusion in molecular 548 solids: A direct subpicosecond determination of time-dependent 549 annihilation rates. *Phys. Rev. Lett.* **1985**, *55*, No. 1331.
- (12) Förster, T. Experimentelle und theoretische Untersuchung des 551 zwischenmolekularen Übergangs von Elektronenanregungsenergie. 552 *Zeitschrift für Naturforschung A* **1949**, *4*, 321–327.
- (13) Tamai, Y.; Matsuura, Y.; Ohkita, H.; Benten, H.; Ito, S. One- 554 dimensional singlet exciton diffusion in poly (3-hexylthiophene) 555 crystalline domains. *J. Phys. Chem. Lett.* **2014**, *5*, 399–403.
- (14) Murata, Y.; Takeyama, T.; Sakamoto, Y.; Yamaguchi, K.; 557 Tamai, Y.; Ohkita, H. Two-dimensional exciton diffusion in an HJ- 558

559 aggregate of naphthobisoxadiazole-based copolymer films. *J. Phys.*
560 *Chem. C* **2020**, *124*, 13063–13070.

561 (15) Nguyen, T.-Q.; Martini, I. B.; Liu, J.; Schwartz, B. J. Controlling
562 interchain interactions in conjugated polymers: the effects of chain
563 morphology on exciton–exciton annihilation and aggregation in
564 MEH-PPV films. *J. Phys. Chem. B* **2000**, *104*, 237–255.

565 (16) Zhu, X.-Y.; Yang, Q.; Muntwiler, M. Charge-transfer excitons at
566 organic semiconductor surfaces and interfaces. *Acc. Chem. Res.* **2009**,
567 *42*, 1779–1787.

568 (17) Wang, K.; Chen, H.; Zhang, J.; Zou, Y.; Yang, Y. Intrachain and
569 interchain exciton-exciton annihilation in donor-acceptor copolymers.
570 *J. Phys. Chem. Lett.* **2021**, *12*, 3928–3933.

571 (18) Daniel, C.; Herz, L. M.; Silva, C.; Hoeben, F. J.; Jonkheijm, P.;
572 Schenning, A. P.; Meijer, E. Exciton bimolecular annihilation
573 dynamics in supramolecular nanostructures of conjugated oligomers.
574 *Phys. Rev. B* **2003**, *68*, No. 235212.

575 (19) Lewis, A.; Ruseckas, A.; Gaudin, O.; Webster, G.; Burn, P.;
576 Samuel, I. Singlet exciton diffusion in MEH-PPV films studied by
577 exciton–exciton annihilation. *Organ. Elec.* **2006**, *7*, 452–456.

578 (20) Shaw, P. E.; Ruseckas, A.; Peet, J.; Bazan, G. C.; Samuel, I. D.
579 Exciton–Exciton Annihilation in Mixed-Phase Polyfluorene Films.
580 *Adv. Funct. Mater.* **2010**, *20*, 155–161.

581 (21) Gélinas, S.; Kirkpatrick, J.; Howard, I. A.; Johnson, K.; Wilson,
582 M. W.; Pace, G.; Friend, R. H.; Silva, C. Recombination dynamics of
583 charge pairs in a push-pull polyfluorene-derivative. *J. Phys. Chem. B*
584 **2013**, *117*, 4649–4653.

585 (22) Von der Linde, D.; Kuhl, J.; Rosengart, E. Picosecond
586 correlation effects in the hot luminescence of GaAs. *J. Lumin.* **1981**,
587 *24*, 675–678.

588 (23) Rosen, D.; Doukas, A.; Budansky, Y.; Katz, A.; Alfano, R. Time
589 resolved luminescence of photoexcited p-type gallium arsenide by
590 population mixing. *Appl. Phys. Lett.* **1981**, *39*, 935–937.

591 (24) Johnson, M.; McGill, T.; Hunter, A. Picosecond time-resolved
592 photoluminescence using picosecond excitation correlation spectroscopy.
593 *J. Appl. Phys.* **1988**, *63*, 2077–2082.

594 (25) Chilla, J.; Buccafusca, O.; Rocca, J. Origin of photo-
595 luminescence signals obtained by picosecond-excitation correlation
596 measurements. *Phys. Rev. B* **1993**, *48*, No. 14347.

597 (26) Pau, S.; Kuhl, J.; Khan, M. A.; Sun, C. J. Application of
598 femtosecond-excitation correlation to the study of emission dynamics
599 in hexagonal GaN. *Phys. Rev. B* **1998**, *58*, 12916–12919.

600 (27) Hirori, H.; Matsuda, K.; Miyauchi, Y.; Maruyama, S.;
601 Kanemitsu, Y. Exciton localization of single-walled carbon nanotubes
602 revealed by femtosecond excitation correlation spectroscopy. *Phys.*
603 *Rev. Lett.* **2006**, *97*, No. 257401.

604 (28) Miyauchi, Y.; Matsuda, K.; Kanemitsu, Y. Femtosecond
605 excitation correlation spectroscopy of single-walled carbon nanotubes:
606 Analysis based on nonradiative multiexciton recombination processes.
607 *Phys. Rev. B* **2009**, *80*, No. 235433.

608 (29) Vogt, K. T.; Shi, S.-F.; Wang, F.; Graham, M. W. Ultrafast
609 photocurrent and absorption microscopy of few-layer transition metal
610 dichalcogenide devices that isolate rate-limiting dynamics driving fast
611 and efficient photoresponse. *J. Phys. Chem. C* **2020**, *124*, 15195–
612 15204.

613 (30) Srimath Kandada, A. R.; Neutzner, S.; D’Innocenzo, V.;
614 Tassone, F.; Gandini, M.; Akkerman, Q. A.; Prato, M.; Manna, L.;
615 Petrozza, A.; Lanzani, G. Nonlinear carrier interactions in lead halide
616 perovskites and the role of defects. *J. Am. Chem. Soc.* **2016**, *138*,
617 13604–13611.

618 (31) Valverde-Chávez, D. A.; Rojas-Gatjens, E.; Williamson, J.;
619 Jariwala, S.; Shi, Y.; McCarthy, D. P.; Barlow, S.; Marder, S. R.;
620 Ginger, D. S.; Silva-Acuña, C. Nonlinear photocarrier dynamics and
621 the role of shallow traps in mixed-halide mixed-cation hybrid
622 perovskites. *J. Mater. Chem. C* **2021**, *9*, 8204–8212.

623 (32) Perini, C. A. R.; Rojas-Gatjens, E.; Ravello, M.; Castro-Mendez,
624 A.-F.; Hidalgo, J.; An, Y.; Kim, S.; Lai, B.; Li, R.; Silva-Acuña, C.; et al.
625 Interface Reconstruction from Ruddlesden–Popper Structures
626 Impacts Stability in Lead Halide Perovskite Solar Cells. *Adv. Mater.*
627 **2022**, *34*, 2204726.

628 (33) Shi, Y.; Rojas-Gatjens, E.; Wang, J.; Pothoof, J.; Giridharagopal,
629 R.; Ho, K.; Jiang, F.; Taddei, M.; Yang, Z.; Sanehira, E. M.; et al. (3-
629 Aminopropyl) trimethoxysilane Surface Passivation Improves Perov-
630 skite Solar Cell Performance by Reducing Surface Recombination
631 Velocity. *ACS Ener. Lett.* **2022**, *7*, 4081–4088.

632 (34) Rojas-Gatjens, E.; Yallum, K. M.; Shi, Y.; Zheng, Y.; Bills, T.;
633 Perini, C. A.; Correa-Baena, J.-P.; Ginger, D. S.; Banerji, N.; Silva,
634 Acuña, C. Resolving nonlinear recombination dynamics in semi-
635 conductors via ultrafast excitation correlation spectroscopy: Photo-
636 luminescence versus photocurrent detection. *J. Phys. Chem. C* **2023**,
637 *127*, 15969–15977.

638 (35) Chang, X.; Balooch Qarai, M.; Spano, F. C. HJ-aggregates of
639 donor–acceptor–donor oligomers and polymers. *J. Chem. Phys.* **2021**,
640 *155*, No. 034905.

641 (36) Venkatesh, R.; Zheng, Y.; Viersen, C.; Liu, A.; Silva, C.; Grover,
642 M.; Reichmanis, E. Data Science Guided Experiments Identify
643 Conjugated Polymer Solution Concentration as a Key Parameter in
644 Device Performance. *ACS. Mater. Lett.* **2021**, *3*, 1321–1327.

645 (37) Paquin, F.; Latini, G.; Sakowicz, M.; Karsenti, P.-L.; Wang, L.;
646 Beljonne, D.; Stingelin, N.; Silva, C. Charge separation in semi-
647 crystalline polymeric semiconductors by photoexcitation: is the
648 mechanism intrinsic or extrinsic? *Phys. Rev. Lett.* **2011**, *106*,
649 No. 197401.

650 (38) Gélinas, S.; Paré-Labrosse, O.; Brosseau, C.-N.; Albert-Seifried,
651 S.; McNeill, C. R.; Kirov, K. R.; Howard, I. A.; Leonelli, R.; Friend, R.
652 H.; Silva, C. The binding energy of charge-transfer excitons localized
653 at polymeric semiconductor heterojunctions. *J. Phys. Chem. C* **2011**,
654 *115*, 7114–7119.

655 (39) Roy, P.; Jha, A.; Yasrapudi, V. B.; Ram, T.; Puttaraju, B.; Patil,
656 S.; Dasgupta, J. Ultrafast bridge planarization in donor- π -acceptor
657 copolymers drives intramolecular charge transfer. *Nat. Commun.* **2017**,
658 *8*, 1716.

659 (40) De Sio, A.; Troiani, F.; Maiuri, M.; Réhault, J.; Sommer, E.;
660 Lim, J.; Huelga, S. F.; Plenio, M. B.; Rozzi, C. A.; Cerullo, G.; et al.
661 Tracking the coherent generation of polaron pairs in conjugated
662 polymers. *Nat. Commun.* **2016**, *7*, 13742.

663 (41) Bakulin, A. A.; Silva, C.; Vella, E. Ultrafast spectroscopy with
664 photocurrent detection: watching excitonic optoelectronic systems at
665 work. *J. Phys. Chem. Lett.* **2016**, *7*, 250–258.

666 (42) Shaw, P. E.; Ruseckas, A.; Samuel, I. D. Exciton diffusion
667 measurements in poly (3-hexylthiophene). *Adv. Mater.* **2008**, *20*,
668 3516–3520.

669 (43) Stevens, M. A.; Silva, C.; Russell, D. M.; Friend, R. H. Exciton
670 dissociation mechanisms in the polymeric semiconductors poly (9, 9-
671 dioctylfluorene) and poly (9, 9-dioctylfluorene-co-benzothiadiazole).
672 *Phys. Rev. B* **2001**, *63*, No. 165213.

673 (44) Riley, D. B.; Sandberg, O. J.; Li, W.; Meredith, P.; Armin, A.
674 Quasi-steady-state measurement of exciton diffusion lengths in
675 organic semiconductors. *Phys. Rev. Appl.* **2022**, *17*, No. 024076.

676 (45) Tamai, Y.; Ohkita, H.; Benten, H.; Ito, S. Exciton diffusion in
677 conjugated polymers: from fundamental understanding to improve-
678 ment in photovoltaic conversion efficiency. *J. Phys. Chem. Lett.* **2015**,
679 *6*, 3417–3428.

680 (46) Tempelaar, R.; Jansen, T. L.; Knoester, J. Exciton–exciton
681 annihilation is coherently suppressed in H-Aggregates, but not in J-
682 aggregates. *J. Phys. Chem. Lett.* **2017**, *8*, 6113–6117.

683 (47) Denton, G.; Tessler, N.; Stevens, M.; Friend, R. Optical
684 response of conjugated polymers excited at high intensity. *Syn. Met.*
685 **1999**, *102*, 1008–1009.

686 (48) McBranch, D.; Kraabel, B.; Xu, S.; Kohlman, R.; Klimov, V.;
687 Bradley, D.; Hsieh, B.; Rubner, M. Signatures of excitons and polaron
688 pairs in the femtosecond excited-state absorption spectra of
689 phenylene-based conjugated polymers and oligomers. *Syn. Met.* **1999**,
690 *101*, 291–294.

691 (49) Hendriks, K. H.; Li, W.; Heintges, G. H.; van Praussen, G. W.;
692 Wienk, M. M.; Janssen, R. A. Homocoupling defects in
693 diketopyrrolopyrrole-based copolymers and their effect on photo-
694 voltaic performance. *J. Am. Chem. Soc.* **2014**, *136*, 11128–11133.

696 (50) Huynh, U. N.; Basel, T. P.; Ehrenfreund, E.; Li, G.; Yang, Y.;
697 Mazumdar, S.; Vardeny, Z. V. Transient magnetophotoinduced
698 absorption studies of photoexcitations in π -conjugated donor-
699 acceptor copolymers. *Phys. Rev. Lett.* **2017**, *119*, No. 017401.

700 (51) Musser, A. J.; Al-Hashimi, M.; Maiuri, M.; Brida, D.; Heeney,
701 M.; Cerullo, G.; Friend, R. H.; Clark, J. Activated singlet exciton
702 fission in a semiconducting polymer. *J. Am. Chem. Soc.* **2013**, *135*,
703 12747–12754.

704 (52) Venkatesh, R.; Zheng, Y.; Liu, A. L.; Zhao, H.; Silva, C.;
705 Takacs, C. J.; Grover, M. A.; Meredith, J. C.; Reichmanis, E. Overlap
706 concentration generates optimum device performance for DPP-based
707 conjugated polymers. *Organ. Elec.* **2023**, *117*, No. 106779.