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Abstract
This review examines the biological physics of intracellular transport probed by the coherent
optics of dynamic light scattering from optically thick living tissues. Cells and their constituents
are in constant motion, composed of a broad range of speeds spanning many orders of
magnitude that reflect the wide array of functions and mechanisms that maintain cellular health.
From the organelle scale of tens of nanometers and upward in size, the motion inside living
tissue is actively driven rather than thermal, propelled by the hydrolysis of bioenergetic
molecules and the forces of molecular motors. Active transport can mimic the random walks of
thermal Brownian motion, but mean-squared displacements are far from thermal equilibrium
and can display anomalous diffusion through Lévy or fractional Brownian walks. Despite the
average isotropic three-dimensional environment of cells and tissues, active cellular or
intracellular transport of single light-scattering objects is often pseudo-one-dimensional, for
instance as organelle displacement persists along cytoskeletal tracks or as membranes displace
along the normal to cell surfaces, albeit isotropically oriented in three dimensions. Coherent
light scattering is a natural tool to characterize such tissue dynamics because persistent directed
transport induces Doppler shifts in the scattered light. The many frequency-shifted partial waves
from the complex and dynamic media interfere to produce dynamic speckle that reveals
tissue-scale processes through speckle contrast imaging and fluctuation spectroscopy.
Low-coherence interferometry, dynamic optical coherence tomography, diffusing-wave
spectroscopy, diffuse-correlation spectroscopy, differential dynamic microscopy and digital
holography offer coherent detection methods that shed light on intracellular processes. In
health-care applications, altered states of cellular health and disease display altered cellular
motions that imprint on the statistical fluctuations of the scattered light. For instance, the
efficacy of medical therapeutics can be monitored by measuring the changes they induce in the
Doppler spectra of living ex vivo cancer biopsies.

Original content from this workmay be used under the terms
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ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.
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1. Introduction: life and disease at low Reynolds
number

1.1. Life at low Reynold’s number

At a symposium held in honor of theoretical particle physicist
Victor Weisskopf in 1976, the Nobel laureate Edward Purcell
delivered a talk titled Life at Low Reynold’s Number, publish-
ing a paper the following year with the same title [1]. The pur-
pose of the talk was to illustrate and explain how the physical
environment experienced by micron-scale living things is rad-
ically different than the world we experience. The deciding
factor is Reynold’s number, the ratio of inertial forces relative
to viscous forces

Re=
ρva
η

=
va
υ

(1.1)

where ρ is the density, v is the velocity, a is the size (assuming
a sphere), η is the dynamic viscosity and ν is the kinematic vis-
cosity. The values of viscosity for water are η = 1× 10−3 Pa·s
and ν = 1× 10−6 m2 s−1. For instance, the Reynold’s number
for a 1 µmbacterium swimming at 1 µm s−1 is Re= 1× 10−4,
while for a 10 mm tadpole swimming at 10 mm s−1 it is
Re = 100. The tadpole lives in the world of Newton’s law
(F = ma) and swims by accelerating water. In contrast, the
bacterium lives in a world without inertia and swims by asym-
metric shear movement that is more like crawling through
water. The negligible role of inertial forces for micron-scale
living things, or micron-scale objects inside living things,
means that everything moves instantaneously at their terminal
velocity—Newton’s second law is inoperable on practical time
scales. Velocities respond instantaneously to changes in forces
balanced by drag.

The consequence of low Reynold’s number for life in this
micro-world is the dominance of diffusion as the primary
mechanism of transport rather than drift. However, inside
the cytosol of a cell a form of active drift becomes domin-
ant over diffusion through molecular action-reaction forces
operating by, and on, cellular infrastructure like the cyto-
skeleton. Intracellular drift is an active process, far from
thermal equilibrium, driven by energetic processes fueled by
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energetic molecules of ATP and GTP. Molecular motors [2,
3], hydrolyzing ATP, walk on components of the cytoskel-
eton and drag along organelle and vesicle cargo. Similarly,
the persistent growth and collapse of supporting cytoskeletal
structures are enabled by hydrolyzing GTP. The enthalpy
of ATP hydrolysis at physiological temperature is 0.37 eV,
and the energy density per ATP molecule has an equi-
valent temperature of Teff =∆E/kB = 4300 K. In compar-
ison, the effective temperature Teff for active organelle
walks can be assessed from an effective diffusion coefficient
as

Deff = v20τ =
kBTeff

6πηa
(1.2)

where v0 is speed (on the order of microns per second) and
τ is the persistence time (on the order of seconds). If the
speed of an organelle with a 0.1 µm radius is 1 µm s−1 for
a persistence length of 1 µm at an intracellular viscosity of
0.1 Pa·s [4], then the effective temperature is about 12 000 K.
In terms of energy dissipation, if the force on the organelle is
6 pN (typical of the force applied by a molecular motor on
an organelle), then the average power dissipated is approx-
imately 37 eV s−1 which is the hydrolysis of approximately
100 ATP molecules per persistence length [5, 6]. These rough
approximations point to highly non-equilibrium conditions for
intracellular transport, although effective thermal properties
for systems far from equilibriummust be interpreted with cau-
tion. Molecular motors are not thermal engines but rather are
chemical engines, which is why effective temperatures can be
so large.

Intracellular transport, driven either by molecular motors
or by cytoskeletal restructuring, exhibits high persistence for
both speed and direction. Persistent transport, also known
as processive transport (see section 3), has finite persist-
ence times during which velocity can be steady and correl-
ated during periods between stochastic changes. Processive
intracellular transport consists of runs and pauses, not unlike
the run and tumble motion of bacteria. Processivity defines
the number of steps taken before a motor detaches, or it
expresses the prevalence of directed versus random steps.
The run and pause motion of intracellular transport creates a
continuous-time flight that has many properties of a random
walk, but with piecewise continuous runs rather than jumps
(see section 2). Light scattered from intracellular constituents
executing persistent walks acquires small Doppler shifts that
range from milli-Hertz to tens of Hertz. The transport inside
cells and tissues is essentially isotropic, and the superposi-
tion of many different transport processes across many scales
ensures that the average Doppler shift vanishes. However,
the interference and beats among all the Doppler frequencies
produce statistical fluctuations in the scattered light intens-
ity that carries information about the subcellular dynamics
that can be extracted through fluctuation spectroscopy (FS)
(see section 2).

1.2. Dynamical disease

From a dynamical system point of view, cellular health is
a time-dependent dynamic equilibrium that balances fluxes
among a hierarchy of cellular components and subcompon-
ents. The healthy state is a generalized limit cycle within a
dynamical phase space of high dimensionality composed of
all the dynamical coordinates (variables) of the complex sys-
tem. The idea of ‘normal’ health is not a single point in this
state space (or health space), rather it is a cloud of points
that inhabit a sub volume restricted within nominal ranges
in the state-space description. In this context, disease is a
deviation of this state-space cloud from its usual range to
new regions within the space. Homeostasis, or feedback, con-
fines the limit cycle to its healthy region. However, when
variables change, either through genetic mutation, or through
viral or bacterial attack, or through environmental stress and
changing microenvironments, or though shocks to the sys-
tem, then the dynamic equilibria can shift out of the nom-
inal healthy range. Because of the high dimensionality of this
health space, the volume of ‘unhealthy’ conditions far exceeds
the volume of healthy conditions, causing a wide variety of
possible unhealthy behaviors.

The study of dynamical disease, viewed as nonlinear
dynamical systems, was initiated by Art Winfree and inde-
pendently by Leon Glass and Michael Mackey, among oth-
ers. Nonlinear dynamics can describe circadian rhythms [7],
biological feedback control systems [8], heart arrythmias [9,
10], neurodegenerative diseases [11–13], and hematological
disease [14, 15]. These dynamical diseases are macroscopic at
the tissue or organ scale and are studied in low dimensions
with typically less than a dozen dynamic variables [16]. In
contrast, cancer is a dynamical disease at the cellular and sub-
cellular level with a high-dimensional state space composed
of dynamical variables associated with genetic networks [17–
20] that can have high dimensionality. Dynamical processes
also occur within the cell, involving signaling pathways and
the cell cycle [21–23].

At the microscopic level there is an astonishing array
of dynamical systems associated with cellular function and
health. A major class of these dynamical systems involve
motor proteins that execute directed motion along structure
elements. These include kinesin and dynein molecular motors
[24] that move along microtubules [25] at speeds of microns
per second, myosin molecular motors [26, 27] that move along
actin [28, 29], DNA helicase [30–32] and RNA polymerase
[33] that travel along DNA, ribosomes [34, 35] that move
along m-RNA, and MMP-1 proteins [36] that travel along
extracellular collagen. In addition, the formation of the struc-
tural elements themselves (such as microtubules, actin fila-
ments and intermediate filaments) involve the dynamically
fluctuating formation and collapse of long-range assemblies
through cytoskeletal restructuring [37] and adhesions [38–
40] that exert forces on subcomponents of the cell and on
the cell membrane causing directed movement (drift) super-
posed on fluctuations. Dramatic examples of concerted and
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collective motions caused by cellular dynamics are the forma-
tion of the mitotic spindle [41], the separation of the chromo-
somes, and cytokinesis [42] during mitosis [43–45] as cells
divide at speeds of tens of nanometers per second. Another
example is endocytosis [46, 47], as dynamic reassembly of the
actin cortex generates endocytic vesicles from the cell mem-
brane that move rapidly with speeds as high as tens of microns
per second. Among the longest-range consequences of cellu-
lar dynamics are cell crawling, immune cell infiltration, and
metastasis [48, 49] that occur over scales of tens of microns
and longer.

Many disease states involve the cellular cytoskeleton and its
associated molecular motors. For instance, molecular motors
can participate in cancer processes, such as a possible con-
nection between KIF11 and prostate cancer [50], and between
KIF11 and Taxol resistance [51]. Molecular motors also can
participate in neurogenerative disease, such as a functional
interaction between kinesin-I and amyloid precursor protein in
Alzheimer’s disease [52], in phosphorylation in Huntington’s
disease [53], and in axonal transport in Alzheimer’s disease
[54, 55]. Metabolism is central to all cellular processes,
and modifications in motors can affect dynamin and gluc-
ose uptake [56] and mitochondrial fusion and fission [57].
Tissue dysfunction likewise is affected, as in myosin-5B and
microvillus inclusion disease [58], andmyosin motor dysfunc-
tion related to cardiomyopathy [59]. These modifications pro-
duce changes in cellular dynamics, either displaying modified
cellular phenotypes that could help in the diagnosis of disease,
or providing dynamic biomarkers that signal how effectively
treatments may be applied.

The cytoskeleton provides a template for many cellular
processes, and alteration of normal cytoskeleton function can
have deleterious effects. For instance, there are connections
between microtubules and neurodegenerative disease such
as Krabbe’s disease [60], Huntington’s disease [61, 62] and
multiple sclerosis and Alzheimer’s disease [63]. Alzheimer’s
disease has also been associated with synaptic actin [64].
Connections have been assessed between integrin and renal
disease [65]. Intermediate filaments and desmosomes affect
monogenic diseases (severe skin fragility, myopathics, neuro-
degeneration, and premature ageing) and polygenic dis-
eases (liver and inflammatory bowel disease) characterized as
‘mechanical weakness’ disorders [66]. Keratin is related to
liver disease [67]. Intermediate filament aggregates relate to
Charcot–Marie–Tooth disease and amyotrophic lateral scler-
osis, while tau inclusions and frontotemporal dementia relate
to parkinsonism, progressive supranuclear palsy and cortico-
basal degeneration [68]. Muscle activity is affected by actin
in congenital myopathy [69, 70] and cardiomyopathy [71].
These connections between disease state and the structure
and dynamics of cells provide an opportunity to use dynamic
probes such as dynamic light scattering (DLS) to assess health
and disease.

Just as disease is characterized by a change in intracellu-
lar motion, the treatment of disease also modifies motions.

Antimitotic drugs inhibit the functions of the cytoskeleton
which affects the dynamic restructuring of the cytoskeleton
as well as cellular mechanical properties. For instance, the
cytochalasins degrade the actin cortex which decreases the
stiffness of the cell membrane and causes increased mem-
brane fluctuations [72]. Taxol stabilizes tubulin polymeriz-
ation, preventing microtubule treadmilling [73]. Colchicine
degrades microtubules, decreasing the persistence of molecu-
lar motors and organelle transport [74]. Motor poisons affect
the functioning of motors associated with the kinetochore
during mitosis [75]. Cellular adhesions are critical elements
in the maintenance of mechanical homeostasis and are tar-
gets of applied therapies [76]. In contrast to the direct mech-
anical effects of cytoskeletal and molecular motor drugs,
the desired endpoint of many cytotoxic chemotherapies is
induced apoptosis. Apoptosis is a highly energetic process
in which the cell systematically disassembles itself and is
associated with enhanced vesicle transport [77] and the frag-
mentation of the cell into apoptotic bodies [78]. These pro-
cesses are characterized by dramatic short-range and long-
range motions. Targeted therapies, such as tyrosine kinase
inhibitors, are directed to specific proteins in intracellular
signaling pathways, including mutations in KRAS, BRAF,
mTOR, PI3K, all of which have downstream cascades that
affect cellular motions such as FAK (cytoskeletal reorgan-
ization), PRK-1 (membrane trafficking), Citron and Septins
(cytokinesis), P140 (membrane ruffling), Cofilin (actin nuc-
leation), NHE1 (focal adhesions), MLC (actomyosin contrac-
tion), CEP2/3 (regulation of the cytoskeleton), aPKCs (MTOC
orientation), OP18 (microtubule growth), IQGAP (cell–cell
adhesions), amongmany others. In all of these examples, mod-
ified function induces modified motions of and within the
cells. Consequently, these changes in motion can be detec-
ted using light scattering techniques to monitor the state
of health of living tissues and the efficacy of treatment of
disease.

1.3. Dynamic 3D tissue beyond 2D cell culture

Natural disease occurs in a natural three-dimensional envir-
onment. However, two-dimensional cell culture has been
the mainstay of cellular biology for over half a century.
Fundamental biological research, as well as applied research
for drug development, have been pursued in the context of
cells modified to grow on flat hard surfaces with altered shapes
and sizes and with minimal contact to other cells [79–82].
Over the past few decades, growing evidence shows that these
artificial environments modify the structure and function of
cells with important consequences for the study of biologic-
ally relevant processes. There are different genetic expres-
sion profiles [83–85], different intercellular signaling [86–
89], and different forces attaching them to their environment
[90–92]. Furthermore, the tumor microenvironment exerts
a dominant influence on the effectiveness of chemotherapy
[80, 93, 94], including the presence of immune cells that
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infiltrate the tumor in vivo and are indicative of patient
prognosis [95].

The three-dimensional microenvironment is particularly
important for understanding (and recapitulating) tumor
behavior [93, 94, 96], especially regarding the emergence of
drug resistance [97–99]. For example, it has been shown that
indiscriminate cytotoxic drugs damage the tumor microen-
vironment and can actually promote tumor growth [100].
Therefore, maintaining the three-dimensional structure of
tumor biopsies is imperative when studying tumor physiology.
Ideally, testing the sensitivity of a patient to prescribed can-
cer therapeutics would use techniques based on living ex vivo
biopsies that retain the full 3D microenvironment, includ-
ing signatures of intracellular transport. For these reasons,
studies of dynamic processes in tumors should rely on three-
dimensional primary tissue rather than on cell culture.

To probe three-dimensional tissue, optical approaches have
several advantages. Light scattering is a remote sensing tech-
nique that is nondestructive. In translucent tissue that is not
highly absorptive, infrared light can penetrate up to 1 mm bal-
listically, and can penetrate up to many centimeters diffus-
ively. While direct imaging is limited to depths less than sev-
eral hundred microns [101–103], several deep-tissue probes
exist that can extract dynamic information, such as diffuse cor-
relation spectroscopy [104], digital holography [105], optical
coherence tomography (OCT) [106] and diffusing wave spec-
troscopy (DWS) [107]. There have also been recent advances
using superresolution microscopy to evaluate intracellular
dynamics at shallow depths [108] with efforts to extend super-
resolution to deep tissue [109–111]. These optical techniques
enable dynamic processes to be investigated deep inside tis-
sue, far from perturbing surfaces, in a biologically relevant
context.

2. Light transport: coherent light scattering

The coherent properties of light is a sophisticated topic of
study in physics [112] and provides a powerful tool for experi-
mental science and sensing [113].When light with at least par-
tial coherence scatters frommoving objects it acquires inform-
ation pertaining their size, shape and motion relative to the
directions of the incident and scattered light rays or photons.
When there are many objects with complex structures and
motion, the coherent superposition of the scattered light is con-
veniently studied through statistical optics [114] where one of
the salient characteristics of ensemble light scattering is the
observation of coherent speckle [115, 116] that may have both
static and dynamic components [117]. The study of dynamic
speckle is performed through FS [118] which yields informa-
tion on the properties of the light-scattering objects. Therefore,
coherent light scattering is particularly helpful for the under-
standing of cellular and intracellular motion in living tissue.

Figure 1. The incident k-vector in Doppler light scattering is
deflected through an angle θ. The difference between the incident
and scattered k-vector defines the momentum transfer, called the
q-vector. The angle between the q-vector and the particle velocity is
φ, and the Doppler frequency shift is given by the inner product of
the q-vector with the particle velocity.

2.1. The Doppler effect in light scattering

Light scattered from moving scatterers acquires a small fre-
quency shift that depends on the relative direction of motion of
the scatterer and themomentum change of the light. This effect
[119] was proposed in 1842 by Christian Doppler [120] and
independently in 1848 by Armand Fizeau [121]. The relativ-
istic form for angular scattering was first derived in 1905 by
Einstein [122]. For an incident photon with k-vector k⃗1 that
scatters into k⃗2 from a particle moving with velocity v⃗, the
Doppler shift upon scattering can be described as

ω =
ω2
0

γ (ω0 − q⃗ · v⃗)
(2.1)

where the Lorentz factor is γ = 1/
√

1−β2, and where the
‘momentum transfer’ is

q⃗= k⃗2 − k⃗1 (2.2)

and

|⃗q|= k
√

2(1− cosθ)

= 2ksin(θ/2)
. (2.3)

The scattering geometry is shown in figure 1. The scattered
k-vector k⃗2 is characterized by the angle θ relative to the dir-
ection of k⃗1, and the momentum transfer q⃗ is described by the
angle φ and q⃗ · v⃗= qvcosϕ . The shifted angular frequency of
the scattered photon is

ω =
ω2
0

γ (ω0 − qvcosϕ)
(2.4)
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and the low-velocity expansion of the Doppler frequency is

ω = ω0
1

γ
(
1∓ q⃗·⃗v

ω0

)
≈ ω0 ± q⃗ · v⃗ (2.5)

showing the direct relationship to the scattering vector and the
particle velocity. The Doppler frequency shift is then

ωD = q⃗ · v⃗= qvcosϕ

= 2kvsin(θ/2)cosϕ. (2.6)

An equivalent description of the Doppler light scattering
process uses the phase of the scattered wave, for which the
scattered field can be expressed as [117]

E= Es exp(iω0t± q⃗ · v⃗t)
= Es exp [iω0t± q⃗ · r⃗(t)] = Es exp

[
iω0t± q

(
∆xt− x0

)]
= Ese

iϕ 0 exp(iω0t)exp(±q∆xt) (2.7)

where the time-dependent displacement is ∆xt = x(t) − x(0).
In the final expression for a given momentum transfer q⃗, there
is only one degree of freedom, designated as the variable x,
which is the projection of the displacement of the particle
onto the direction of the vector q⃗. Therefore, low-frequency
Doppler frequency shifts are detected through phase-sensitive
interferometric detection of one-dimensional particle dis-
placements. Displacement and velocity are related simply
through time, and time-dependent fringe intensity modulation
is equivalent to a Doppler beat frequency.

2.2. Ensemble Doppler spectroscopy

The angle θ in equation (2.6) is set by the optical scattering
geometry, but the angle φ is related to the motion of the scat-
tering objects. In the case of intracellular motions, these angles
are isotropically oriented, and the average Doppler frequency
shift is zero. However, the distribution of object speeds and
orientations are contained in the fluctuations in the Doppler
frequency spectrum. Therefore, ensemble FS [118, 123, 124]
becomes the primary means to extract information about the
velocity distributions within the scattering volume. FS oper-
ates in the statistical optics limit of a large number of scattering
objects producing a large number of interfering partial waves.

2.2.1. Partial wave sums. When coherent light illuminates
a group of N discrete scattering objects, the total scattered
field is

ET =
N∑
j=1

Eje
iϕ j . (2.8)

The amplitudes Ei of the fields are real-valued, and the
phases φi span the unit circle modulo 2π. In statistical optics,
the amplitudes and phases are stochastic variables. For a
Gaussian probability distribution with variance δE2, when

the phase is uniformly distributed on 2π, the random sum
describes Gaussian diffusion on the complex phasor plane.

The intensity from N sources without a reference field
(homodyne detection) is

IHom = |EHom|2 =

∣∣∣∣∣∣
N∑
j=1

Eje
iϕ j

∣∣∣∣∣∣
2

=
N∑
j=1

|Ej|2 + 2
∑
j ̸=k

EjEk cos(ϕ j−ϕ k) . (2.9)

In the large-N limit, the second term averages to zero
because of the random phases in the exponent [113], giving

⟨IHom⟩=
N∑
j=1

|Ej|2 = NIs (2.10)

where Is is the average squared field per scatterer. The average
intensity depends linearly on the number N of sources as an
incoherent sum. The fluctuations are

∆I2 = ⟨I2Hom⟩− ⟨IHom⟩2 (2.11)

where the expression for ⟨I2Hom⟩ is

⟨I2Hom⟩=

〈 N∑
j=1

Ij+ 2
∑
j ̸=k

EjEk cos(ϕ j−ϕ k)

2〉
= 2N2I2s . (2.12)

Because the field takes positive and negative values, the
cross-terms average to zero, and the factor of two is the res-
ult of adding two random Gaussian distributions of equal vari-
ance. The variance of the fluctuating intensity is

∆I2 = 2N2I2s −N2I2s

= N2I2s
(2.13)

and the fluctuations in the homodyne intensity are equal to the
average intensity ∆IHom = ⟨IHom⟩

For a heterodyne condition

EHet = E0e
iϕ 0 +

N∑
j=1

Eje
iϕ j (2.14)

where φ0 is the reference phase [113], the intensity is

IHet = |EHet|2 =

∣∣∣∣∣∣E0e
iϕ 0 +

N∑
j=1

Eje
iϕ j

∣∣∣∣∣∣
2

= I0 + 2E0

N∑
i=1

Ej cos(ϕ j−ϕ 0)

+
N∑
j=1

E2
j + 2

∑
j ̸=k

EjEk cos(ϕ j−ϕ k) (2.15)
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with an ensemble average

⟨IHet⟩= I0 +NIs = I0 + ⟨IHom⟩. (2.16)

When the reference magnitude E0 is much larger than
√
Is

(i.e. a strong reference wave) then the heterodyne intensity
fluctuations are

∆IHet =
√

2NI0Is (2.17)

and the intensity fluctuations scale as the square root of the
number of scattering sources.

2.2.2. Autocorrelation. For homodyne detection without a
reference field the intensity autocorrelation is the product of
the intensity with itself [117]

I∗ (0) I(t) = N2I2s + I2s
∑
n̸=m

exp(−iq∆xtn)exp(iq∆xtm)

(2.18)

neglecting terms of random phase in the large N limit. The
ensemble average is

AI (τ) = ⟨I(0) I(τ)⟩

= I2 + I2
∞̂

−∞

W(x,y, τ)exp(−iqx)exp(iqy)dxdy

(2.19)

where the discrete sum is replaced by an integral over a joint
probability distributionW(x,y,τ ), and the variables x and y are
the one-dimensional displacements relative to the direction of
q⃗. If the displacements of the particles are uncorrelated, then
the joint probability distribution W(x,y,t) is separable and the
sum is converted to the product of integrals

AI (τ) = I2 + I2

 ∞̂

−∞

W(x, τ)exp(−iqx)dx


×

 ∞̂

−∞

W(y, τ)exp(iqy)dy


= I2 + I2|FTq ◦W(x, τ)|2 (2.20)

expressed as a spatial Fourier transform indexed by spatial
frequency q that operates on the W function (the operation
denoted by the small circle). This expression is the central
statement of FS: the autocorrelation function of the fluctu-
ations are directly related to the Fourier transform of the prob-
ability function W(x,t) that defines the time-dependent dis-
placements of the particles.

For heterodyne detection with a reference field, the
scattered field mixes with the reference to produce the net field

E(t) = E0 +
N∑
n=1

En exp
(
−iqx0n

)
exp(−iq∆xtn) . (2.21)

The time autocorrelation function averages the product of
the field over a time-shifted field. In the limit of large N this
yields [113]

E∗ (0)E(t) = E2
0 +

N∑
n=1

E2
n exp(−iq∆xtn). (2.22)

The autocorrelation is an ensemble average of this quant-
ity, where ensemble averages and time averages are equival-
ent under stationary statistics. The stochastic sum is evaluated
using an integral

AE (τ) = ⟨E∗ (0)E(τ)⟩−E2
0 = NIs

∞̂

−∞

W(x, τ)exp(−iqx)dx

= NIsFTq ◦W(x, τ) (2.23)

where Is is the average scattered intensity, FTq is a Fourier
transform over spatial frequency, and W(x,t) is again the
probability distribution of particle displacements. Therefore,
W(x,t) is the central object of interest in the study of anom-
alous transport (see section 4). The homodyne autocorrelation
is related to the heterodyne autocorrelation through the Siegert
relation [125, 126]

AI (τ) = I2 +β
∣∣AE (τ)∣∣2 (2.24)

where β is a factor related to the coherence contrast at the
observation plane.

2.2.3. Wiener–Khinchine theorem. A statistically stationary
time-series f (t) is shown in figure 2(a) sampled by an expos-
ure (integration) time texp at a periodic frame rate trep. A time-
series analysis of the discretely sampled intensity can generate
an autocorrelation function or a spectral power density. The
Wiener–Khinchine theorem [127, 128] connects autocorrela-
tion functions with spectral power density through

S(ω) = F(ω)F∗ (ω) =W(q,ω) = FTω ◦W(q, τ)

= FTω ◦
∞̂

−∞

fq (t) fq (t+ τ)dt (2.25)

where the heterodyne fluctuation power density is proportional
to the spatial-temporal Fourier transform of the distribution
probability functional W(x,t). Therefore, the autocorrelation
function contains the same information as the spectral power
density and the two may be viewed as equivalent descriptions.
Autocorrelation functions are well-suited to characterize dis-
sipative systems, but power spectra provide a different per-
spective. For instance, when a system has persistent drift, the
associated Doppler frequency is represented directly in the
spectrum. Therefore, FS is a useful tool for studying biological
systems, consisting of different types of directed motion. In
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Figure 2. Dynamic light scattering autocorrelation and spectral density. (a) An intensity time series is sampled by a frame rate fps = 1/trep
and an exposure time texp. The intensity is integrated over the exposure time. (b) The autocorrelation function varies between the average
squared field and the squared average field. The slope at short delay is the inverse correlation time. A distribution of phase fluctuations
produces an exponentially decaying autocorrelation. (c) The Fourier transform of the autocorrelation function produces the spectral density.
A knee frequency is associated with the autocorrelation time. The floor of the spectral density at the Nyquist frequency is the integrated
power between the Nyquist frequency and the detection bandwidth (inverse exposure time). Nyquist floors can be considerably higher than
noise floor in active biological systems.

DLS, a classic transform pair is the exponential decay paired
with a Lorentzian line shape

FTω ◦
[
A2
0 exp(−|t|/τ)+A2

N

]
=
A2
0

π

(1/τ)

ω2 +(1/τ)2
+A2

Nδ (0) ,

(2.26)

where AN is the noise floor of the autocorrelation. Classic dif-
fusion of scatterers produces the decaying exponential auto-
correlation function for light scattering. The Lorentzian line
shape on a log–log graph has a low-frequency plateau, a char-
acteristic knee frequency set by the decay rate of the autocor-
relation function, and an inverse square roll-off to a Nyquist
floor as shown in figure 2. Another important transform pair
is the stretched decaying exponential and Lévy stable distribu-
tions (see section 4).

2.2.4. Non-stationarity and non-ergodicity in DLS. Light
scattering from living tissues is subject to non-ideal condi-
tions that arise from its heterogeneous properties in both space
and time [129–133]. Although the highly useful Wiener–
Khinchine theorem holds for stochastic systems that have sta-
tionary statistics, living biological systems are prone to drifts
in their properties over time, raising questions of when it

is valid to apply the Wiener–Khinchine theorem to experi-
mental time series and when it is not. Stationarity is defined as
a stochastic system having probability distribution functions
(PDFs) that are time-shift invariant. A slightly weaker con-
straint is called wide-sense-stationary for which the mean and
the autocorrelation are time invariant, for which the Wiener–
Khinchine theorem continues to hold. If the mean or autocor-
relation of intensity fluctuations in a DLS measurement drift
slowly relative to a sampling rate, then the drift can be com-
pensated to convert the non-stationary time series to a station-
ary time series, and the Wiener–Khinchine theorem can be
applied. However, if the drift rate is comparable to a sampling
rate, then the Wiener–Khinchine theorem breaks down, and
the spectral power density and autocorrelations functions are
no longer related through a simple Fourier transform. In this
case, Fourier transformation of the fluctuating intensities can
still be performed, and the modulus-squared spectral func-
tions averaged, but the resulting spectral function will have
a 1/f noise characteristic at low frequency with high variab-
ility. Adjusting sampling rates in a DLS experiment on liv-
ing tissues to bring the measurement system into the Wiener–
Khinchine regime is a key design feature for such experiments.
Living tissues experience slow drifts over minutes to hours
corresponding to changes in nutrients or oxygen and possible
changes in temperature. Therefore, sampling rates in the range
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of many per second for observation times extending from 10
to a 100 s are appropriate for maintaining the validity of the
Wiener–Khinchine theorem for DLS experiments on tissues.

Ergodicity is another an important feature of a stochastic
system when defining its light scattering properties [134].
Systems are called ergodic if they sample all their available
configurations in sufficiently long times. For an ergodic sys-
tem, the time averages of its properties are equal to ensemble
averages. This important property allows time averages to
stand in for spatial averages when analyzing experiments.
Ergodic systems are stationary, but systems can be stationary
without being ergodic. Such stationary but non-ergodic sys-
tems are the most common situation in light-scattering experi-
ments on living tissue. The non-ergodicity of tissue dynamics
arises for multiple reasons chiefly related to the spatial het-
erogeneity of tissue from the molecular scale through organ-
elle and cytoplasm scale to the cellular scale and beyond. In
this case, ensemble averages will not match isolated time aver-
ages. Non-ergodicity also arises from the wide range of intra-
cellular and cellular speeds associated with the constituents of
cells and tissues. Mitochondria, for instance, have a velocity
PDF that has a root-mean-squared value of many microns per
second, but the probability function is peaked at zero velocity
for stationary mitochondria which are the most probable. A
DLS experiment with a sampling time and an observation dur-
ation may not capture the slow changes of the slow mitochon-
dria, and the stationarymitochondria generate a constant back-
ground scattering intensity so that autocorrelation functions
asymptotically approach non-zero long-time values rather than
zero means.

The non-ergodic properties of light scattering from tis-
sue can be addressed experimentally by measuring broad-area
speckle patterns, allowing both time averages and spatial aver-
ages to be performed. This approach has been used by Pusey
et al [135, 136] to solve for the intermediate scattering func-
tion of a medium. For an ergodic system, the simple Siegert
relation holds

g(2)I (q, τ) = 1+β|f(q, τ)|2 (2.27)

where g(2)(q,t) is the normalized intensity autocorrelation
function for spatial Fourier component q and lag time τ , β
is a non-fundamental function of the optical apertures of the
apparatus (for a single spatial mode β = 1), and f (q,τ ) is the
intermediate scattering function of the electric field autocor-
relation function. However, this relationship is modified by a
non-ergodic target where the intermediate scattering function
is [135]

f(q, τ) = 1+
⟨I(q)⟩T
⟨I(q)⟩E

[√
1+ g(2)T (q, τ)− g(2)T (q,0)− 1

]
(2.28)

where the subscripts T and E are for time-average and
ensemble-average, respectively. This allows a local f (q,t) to
be derived by comparing the local time averages ⟨I(q)⟩T to
the ensemble averages over the speckle field ⟨I(q)⟩E (acting
as a normalization factor) and to the non-constant component

Figure 3. Speckle intensities for a random phase screen and
changing illumination radius w0 = 64, 32, 16 and 8 µm for
f = 1 cm and λ = 500 nm with a field-of-view of 5 mm.

of the time-averaged second-order correlation. On the other
hand, averaging equation (2.28) over the full speckle field can
retrieve the simpler relationship equation (2.27) at the loss of
local spatial variations.

2.3. Spatial coherence and speckle

The random movements of objects scattering light inside liv-
ing tissue produce not only random phases in time but also
in space. Therefore, DLS and FS are fundamentally associ-
ated with the phenomenon of coherent speckle. Examples of
Gaussian speckle are shown in figure 3 for changing illumin-
ation radius w0 = 64, 32, 16 and 8 µm for z = 1 cm and
λ = 500 nm with a field-of-view of 5 mm.

The intensity distribution of fully-developed speckle is

pI,Hom (I) =
1
⟨I⟩

exp

(
− I
⟨I⟩

)
(2.29)

with the important property σI = ⟨I⟩ where the standard devi-
ation of the intensity is equal to the mean intensity. The con-
trast of a speckle field is defined as C= σI/⟨I⟩ and hence fully
developed speckle has unity contrast.

The spatial correlations in intensity at an observation plane
define the ‘size’ of speckles. For intensity at the emission plane
given by I(x′,y′) the first-order normalized amplitude correla-
tion coefficient (in the paraxial approximation) is

g(1) (∆x,∆y) =

˜
I(x ′,y ′)e−i

2π
λz (∆xx ′+∆yy ′)dx ′dy ′˜

I(x ′,y ′)dx ′dy ′
(2.30)

where the numerator is a Fourier transform on the paraxial
phase factor. The second-order (intensity) normalized correl-
ation function is defined as

g(2) (∆x,∆y) =

˜
I(x ′,y ′) I(x ′ −∆x,y ′ −∆y)dx ′dy ′˜

I2 (x ′,y ′)dx ′dy ′
(2.31)
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Figure 4. Speckle hologram and speckle phase. (a) A coherent plane-wave reference added to fully-developed speckle with unity contrast
produces a speckle hologram. (b) The phase of the speckle varying through 2π.

which is related to the first-order correlation through the
Siegert relation [126]

g(2) (∆x,∆y) = 1+
∣∣∣g(1) (∆x,∆y)∣∣∣2 (2.32)

under the condition of full temporal coherence and Gaussian
fluctuations. A common example is a Gaussian beam with
intensity which has a lateral coherence diameter dc =
λz/2πw0 for a beam width w0 and a wavelength λ observed at
a distance z from the emission plane [113].

An alternate approach to defining spatial coherence is
through the coherence area at the observation plane

Ac =
(λz)2

A
=
λ2

Ωs
(2.33)

where A is the source emitting area, and Ωs is the solid angle
subtended by the source emitting area as seen from the obser-
vation point, if the angular spread of the light scattered from
the illumination area is very broad. Larger distances and smal-
ler pinholes produce larger coherence areas in a coherent
optical system. For a Gaussian intensity distribution at the
emission plane, the coherence area is

Ac =
1
2π

(
z
w0

)2

λ2 (2.34)

for a beam waist w0 at the emission plane.
A phase modulation must be associated with any intens-

ity modulation through the Kramers–Kronig relations [137],
with an example of a speckle hologram and its associated
phase shown in figure 4. The hologram fringes are not par-
allel because of the varying phase of the speckle field, but the
average spatial frequency is unaffected. When the hologram
is numerically reconstructed, the side-band spatial frequency

has a line shape determined by the speckle pattern. If the holo-
gram is in the Fourier domain, a Fourier transformed sideband
is in the image domain and reconstructs the image-domain
speckle.

In the speckle intensity field, there are locations where the
intensity vanishes and the phase becomes undefined. In the
neighborhood of such singular points, the phase wraps around
it with a 2π phase range, creating an optical vortex [138].
Vortices come in pairs with opposite helicity (defined by the
direction of the wrapping phase) with a line of neutral phase
between them as shown in figure 5. In dynamic speckle, vor-
tices are dynamic and move with speeds related to the under-
lying dynamics of the scattering medium [139]. Studies of sin-
gular optics [140] and structured illumination [141] create an
active field of topological optics with applications in biological
microscopy as well as material science.

2.4. Light scattering from cells and tissues

Tissue is optically thick and has a physical scale that is much
larger than the photon scattering length. Therefore, light that
penetrates to a significant depth inside tissue experiences mul-
tiple scattering. At extreme depths, the light behaves diffus-
ively, spreading as a diffusive front. However, at interme-
diate depths one can define average propagating intensities
within the tissue through the effect of scattering on energy and
momentum flux. The origin of light scattering is the optically
heterogeneous refractive index discontinuities and gradients of
the cellular, subcellular and extracellular components of tis-
sue. The local structure of tissue also contributes as is seen so
dramatically in the difference between the highly-scattering
sclera (the white of the eye) and the transparent cornea that
share the same composition of collagen, differing only in the
arrangement of their collagen fibrils [142].
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Figure 5. Optical vortex patterns. (a) Log intensity showing zeros in the intensity field where the circles highlight the intensity nulls which
are the optical vortices. (b) Associated phase with a 2π phase wrapping around each singularity. (c) Associated hologram showing
dislocations.

2.4.1. Optical properties of cells and tissues. Cells and
tissues comprise a heterogeneous mixture of constituents
having a wide range of scales ranging from molecules (at the
scale of nanometers) to layers of cells (at the scale of milli-
meters). The components have differing refractive indices that
present a spatial optical refractive landscape that scatters light
[143]. The smallest objects like organelles and vesicles cause
Rayleigh scattering, while the largest objects, like cell layers,
refract light as heterogeneous dielectric regions. In the inter-
mediate regime, at the scale of the nucleus and other large
organelles, or even the scale of single cells, the scattering is in
the Mie scattering regime with higher probability of forward
scattering but also with enhanced backscattering. One of the
strongest sources of backscatter from tissue is from the cell
scale associated with the cell membrane [144]. Even though
the cell membrane volume is very small, it provides a relatively
sharp interface between the internal cytosol and the external
matrix.

A large literature exists that has explored the refractive
indices of cellular constituents [145–151], which is partially
summarized in table 1. Refractive index values within tissue
range fromwater with n= 1.33 to dense lipids and dense RNA
with n= 1.55. However, there is a high variability in refractive
index values among cell and tissue types as well as differences
among species, hence detailed studies of refractive index pro-
files in cells using quantitative phase microscopy need to be
viewed within their own contexts [152–156]. To set an intuit-
ive scale on backscattering from a planar refractive index con-
trast, the Fresnel reflectance coefficient for an index step of
∆n = 0.08 on a background of n = 1.37 is 0.1%.

2.4.2. Light transport in tissue. In single-scattering of light,
the likelihood of scattering into an angle θ is given by the prob-
ability function p(θ) known as the phase function. The phase

function is normalized 1
4π

´
p(θ)dΩ= 1 for scattering into 4π

solid angle. A central property of light transport in tissue is
the anisotropy factor, which is the average of the cosine of the
scattering angle

g= ⟨cosθ⟩= 1
2

ˆ
p(θ)sinθ cosθdθ. (2.35)

Table 1. Refractive index of cellular and tissue components at
visible wavelengths.

Cell component Index of refraction References

Cytoplasm 1.37 [157]
Lysosomes 1.6 [158]
Mitochondrion 1.42 [159]
RNA (nucleolus) 1.55 [160]
Nucleus 1.39 [157]
Cell membrane 1.54 [144]
Collagen 1.43 [161]
Cornea 1.41 [162]
Extracellular fluid 1.35 [163]
Tissue 1.39 [164]

To obtain intensity distributions in the intermediate
regime of multiple small-angle scattering, the small-angle
approximation (SAA) is appropriate for high anisotropy factor
g in which most scattering is small-angle forward scattering,
which is the case for most translucent biological tissues. The
flux in this case is described as

dI(τ,θ)
dτ

=−I(τ,θ)+ a
4π

ˆ

4π

p(θ ′,θ) I(τ,θ ′)dΩ ′ (2.36)

where τ is the optical thickness, µt is the scattering coefficient,
and a is the albedo. The phase function is

p(θ ′,θ) =
∞∑
n=0

cnPn (cosθ)Pn (cosθ
′) (2.37)

where the Pn(cosθ) are Legendre polynomials. The intensity
for plane-wave illumination at normal incidence is

I(τ,θ) =
I0
2π

∞∑
n=0

2n+ 1
2

e−cnτPn (cosθ). (2.38)

In the SAA, diffuse angular scattering subtracts the coher-
ent component from the total intensity

Id (τ,θ) =
I0
2π

∞∑
n=0

2n+ 1
2

(
e−cnτ − e−τ

)
Pn (cosθ). (2.39)
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The fluence that penetrates ballistically into the tissue is the
total flux in the propagation direction obtained by projecting
the fluence along the propagation axis and integrating over all
angles. The result is

I(τ) = I0

π̂

0

∞∑
n=0

2n+ 1
2

e−cnτPn (cosθ)cosθ sinθdθ

= I0 exp(−(µa +µs
′)z) (2.40)

where τ = (µa +µs)z and µs
′ = µs (1− g) is called

the reduced scattering coefficient for anisotropy factor
g = <cosθ>. Living tissue has a large anisotropy factor of
g ≈ 0.9, where most photons scatter in the forward direction,
penetrating much deeper than 1/µs. OCT coherently probes
depths up to 2 mm, aided by spatial filtering.

2.4.3. Dynamic multiple light scattering. The complex field
of a single photon path consisting of Nm scattering events is

Em (t) = e−iωt
Nm∏
n=1

ane
iqnvnt

= e−iωt
Nm∏
n=1

ane
iωnt = Ce−iωt exp

(
i
Nm∑
n=1

ωnt

)
(2.41)

where the qn are no longer set exclusively by the scattering
geometry but are distributed around forward scattering for
which they take small values. When multiplied by the velocit-
ies vn these yield the individual Doppler frequency shifts ωn.
Because of the multiple product, the frequency shifts add in
the exponential. The velocities are isotopically oriented, so the
average Doppler frequency shift vanishes, and the information
on the internal speeds is contained in the fluctuations. Longer
paths and more scattering events compound the Doppler fre-
quency shifts, shifting characteristic fluctuation knee frequen-
cies to higher values for more deeply penetrating light paths.

For long coherence, the total field is the combination of all
paths E(t) =

∑
mEm. The first-order correlation function for

the field fluctuations is

g(1)m (τ) = e−iωt
〈

Nm∏
n=1

|an|2eiq̄n∆r̄n(τ)

〉
(2.42)

The cross terms in the correlation function average to zero
because scattering events are assumed to be uncorrelated. The
scattering vector qn varies with each scattering event, with a
mean value given by 〈

q̄2
〉
= 2k2

l
ℓ∗

(2.43)

where l is the scattering mean free path, and ℓ∗ is the transport
mean free path. The number of scattering events for each path
is Nm = sm/l for a total path length sm. The mth path correla-
tion function is

g(1)m (τ) = e−iωt
〈
|an|2

〉
exp
(
−k2

〈
∆r2 (τ)

〉
sm/3l

∗) (2.44)

and the combined correlation function of all paths is

g(1) =
∑
m

P(m)g(1)m (τ) (2.45)

where P(m) is the probability for the photon to experience
m scattering events. For a continuous distribution of possible
paths this is

g(1) (τ) =

∞̂

0

exp

(
−k2s

3l∗
⟨∆r2 (τ)⟩

)
ρ(s)ds (2.46)

where ρ(s) is the probability density of possible paths obtained
by solving the photon diffusion equation (DE) subject to the
boundary geometry of the sample and the intensity distribution
of the incident light [104]. The autocorrelation function can be
re-expressed as [165]

g(1) (τ) =

∞̂

0

exp

(
− τ

4τ0

s
l∗

)
ρ(s)ds (2.47)

where the argument τ
4τ0

s
l∗ of the exponential is the single-

scattering case multiplied by the quantity s/l∗, which is the
average number of scattering events along the path. Note that
longer paths lead to faster decorrelation times because more
scattering events add together to scramble the phase [166].

3. Intracellular transport: biophysical processes

Intracellular transport is dominated by persistent processes
that can be characterized in terms of speeds and persistence
times or lengths. Persistent processes differ from Brownian-
like transport because they have discrete and finite segments
along which the transport has somewhat steady speed (called
ballistic transport) as displayed in figure 6. Persistent trans-
port requires energy input which places the system out of
thermal equilibrium, although it may have steady states.
Stochastic transport processes of the larger components of the
cell execute random walks that are driven actively through
the expenditure of energetic chemical compounds like ATP,
GTP or enzymes like NADPH. Molecular motors trans-
port vesicles and organelles at speeds greater than microns
per second, while cytoskeletal restructuring and membrane
motions occur at speeds down to nanometers per second. The
non-equilibrium statistical mechanics of such energetic ‘act-
ive matter’ is a topic of current interest [167, 168] with a
direct connection to active gels [169], their relationship to
living systems [170], and active transport within living cells
[171–173].

The mechanisms of intracellular transport cross broad
scales from molecular motors that transport vesicles and
organelles to large-scale cell crawling as shown in figure 7.
Cytoskeletal restructuring, membrane dynamics and cell divi-
sion occupy intermediate length and time scales. For all these
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Figure 6. Many active transport processes are pseudo-one-dimensional, along cytoskeletal tracks or along the membrane normals, but they
are isotropically oriented.

Figure 7. General scaling of speed versus size for intracellular transport and membrane motions. The line follows an approximately inverse
power law related to modified Stokes drag for a scale-dependent viscosity (see figure 8). These speeds are rough order-of-magnitude
approximations. Because estimated speeds for stochastic processes depend on observational time scales, the nominal sampling rate for these
processes is tens of samples per second over a sampling window of 100 s.

processes, there is a rough but obvious scaling in which small
cellular constituents move at the highest speeds while large
cellular constituents move at the lowest speeds. This relation-

ship between size and speed allows these transport processes to
be separated in frequency when studied using DLS techniques
[174–181].
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Figure 8. (a) Reduced diffusion coefficient relative to saline for particles in living fibroblasts, neurons and myotubes as a function of particle
radius. (b) Speed of kinesin as a function of ATP concentration under three different loads. At low load, the speed saturates near 1 µm s−1.

3.1. The crowded cytosol

The cytoplasm of the cell contains high concentrations
of proteins and filaments [182–185] with a total protein
concentration of about 20% by weight between 200 to
300 mg ml−1, and the total nucleotide concentration in the
nucleoplasm is even higher. Actin and tubulin are the most
abundant proteins, each with total concentrations around
5 mg ml−1 where half is free and half is bound into cross-
linked cytoskeletal networks that give the cytosol elasticity.
The two rheological properties of viscosity and elasticity have
different time scales associated with different speeds of intra-
cellular constituents, where high speeds or frequencies (organ-
elle transport) tend to probe the viscous properties of the cell,
while low speeds or frequencies (cell shape changes) tend to
probe the elastic properties of cells [186–188].

The viscosity of the cytoplasm for translational diffusion is
a function of the size of the diffusing particles [185]. For small
molecules, the cytoplasm viscosity is approximately 2–3 times
larger than for saline solution (η = 1 mPa·s), but the viscosity
can be over 1000 times larger than saline when the particle size
approaches 100 nm. The filaments of the cytoskeleton create
an intertwined mesh that can act as cages for larger particles,
preventing long-range diffusion that appears as subdiffusive
behavior. Diffusion data of small vesicles from living cells is
summarized in figure 8 as a function of particle size [189–191],
showing a rapid decrease in diffusion coefficient (relative to
water) with increasing radius.

The transport of small molecules inside living cells primar-
ily is driven thermally as Brownian motion rather than through
active transport, although molecular diffusion is also typic-
ally anomalous. Molecular transport can be measured using
fluorescence correlation spectroscopy (FCS) [192, 193]. FCS
probes fluorescent molecules that diffuse into and out of a
small focal volume of an excitation laser. The residence time
for a single fluorophore is related to the mean-squared dis-
placement (MSD) of the molecule relative to the transverse
focal width. The correlation times of the detected fluorescence

intensity fluctuations are directly related to the residence
times. FCS has been used to detect molecular diffusion in the
cytoplasm [194], the nucleoplasm [195] and molecular dif-
fusion within membrane layers [196]. The diffusion is usu-
ally anomalous [197] and can elucidate possible fractal geo-
metry of intracellular structures [198]. Typical correlation
times range from 10 ms down to microseconds, relating to
characteristic frequencies of 100 Hz–MHz.

3.2. Molecular motors

Molecular motors within the cells provide the forces that cause
persistent transport. Motors come in many types [3, 199].
These include molecular motors that move on the cytoskel-
eton, such as myosin on actin [26, 27], and kinesin and dynein
on microtubules [24]. A distributed form of motor is cyto-
skeletal polymerization, as cytoskeletal filaments exert forces
through extension supported by polymerization [200, 201]. In
addition, rotary motors are anchored on the cell membrane,
including ATP synthase as well as flagellar motors [202].
Nucleic acid motors are common, involving molecules that
translate along DNA such as the RNA and DNA polymerases
[33]. In these cases, molecules carrying chemical energy, such
as ATP or GTP, as well as chemical or potential gradients, are
converted into useful and directed motion in the cell.

Examples of motors, the forces applied, distances or times
traveled, and speeds are given in table 2 for several types of
motor processes discussed in the literature. The fifth column
shows the product of Doppler frequency and persistence
time, or the product of momentum change and persistence
length. These products are equivalent and are equal to the
Doppler number associated with that transport process (see
section 4.3). Most of the motors are processive, meaning that
they persist in a direction for a number of steps before chan-
ging direction or speed. For example, after a characteristic
duration of 100 steps the kinesin motor is released from the
microtubule [5]. This represents a persistence length of 800 nm
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Table 2. Molecular motor speeds, Doppler frequencies and persistence.

Motor or polymerization Speed Doppler frequency Distance or time ωDtp or qℓp References

Kinesin 2 µm s−1 6 Hz [203]
Kinesin 1 µm s−1 3 Hz 15 [5]
Kinesin 800 nm s−1 2.7 Hz [191, 204]
Kinesin 1 µm s−1 3 Hz 10 s 200 [205]
Kinesin 1 µm 20 [206]
Kinesin 1 µm s−1 3 Hz 600 nm 10 [207]
Kinesin/Dynein 800 nm s−1 2.7 Hz 100 nm–300 nm 2–6 [208]
Dynein/Dynactin 2 µm s−1 6 Hz [203]
Myosin V 20 nm s−1 0.06 Hz 1 µm 20 [26]
Myosin V 300 nm s−1 1 Hz 1.6 µm 30 [27]
ParA/ParB 100 nm s−1 0.3 Hz 2 µm 40 [209]
Actin network polymerization 5 nm s−1 0.02 Hz [201]
Tubulin polymerization 20 nm s−1–300 nm s−1 0.07–1 Hz 300 s 15–100 [200]
Filapodia extending 40 nm s−1 0.12 Hz 130 s 100 [210]
Filapodia retracting 10 nm s−1 0.03 Hz 100 s 20 [210]
WAVE complex 70 nm s−1 30 s [211]

and a persistence time of 0.4 s at a speed around 2 µm s−1. In
every step, one ATP molecule gets hydrolyzed releasing about
20 kBT of free energy. The force that this release of energy can
exert over the 8 nm step length is about 5 pN (assuming 50%
efficiency [6]).

The most important molecular motors involved in intracel-
lular transport are the kinesin and dynein superfamily proteins
[24]. The kinesins consist of approximately 14 families of
related proteins comprising approximately 50 different kin-
esin molecules in human cells. The dyneins are divided into
two classes: cytoplasmic and axonemal. Both kinesins and
dyneins are large macromolecules with molecular weights of
400 kDa and 1.5 MDa, respectively. Kinesins move towards
the plus end of a microtubule carrying intracellular vesicles.
In contrast, dyneins are motor proteins that move toward the
minus end of a microtubule. Both execute processive motion
of approximately 8 nm steps per hydrolyzed ATP. Large
molecules synthesized in the cell body and intracellular com-
ponents such as vesicles and organelles are too large to diffuse
to their destinations through the crowded cytosol and hence
must be transported by molecular motors along the cytoskel-
eton, primarily on the microtubules. Cytoplasmic dynein helps
position the Golgi complex and other organelles in the cell,
and helps transport vesicles, endosomes, and lysosomes, as
well as themovement of chromosomes, positioning themitotic
spindles for cell division. Axonemal dynein is involved in the
motion of cilia and flagella and is found only in cells that have
those structures.

The speeds of kinesin and dynein are both in the range of
1.5 µm s−1 for single molecules at saturated ATP concen-
trations above 0.1 mM, although higher speeds are possible
when multiple motors work in concert [203]. The kinesin stall
force is weakly dependent on the ATP concentration and is
typically around 7 pN [191] with similar values for dynein
[212], although stall forces appear to be additive when mul-
tiple motors are involved [213]. Under a load of 5.6 pN, the
velocity of a single motor saturates to 400 nm s−1 at an ATP
concentration of 300 µM [191] shown in figure 8(b).

3.3. Vesicle and organelle transport

While molecular motors are too small to scatter light signific-
antly, cytoskeletal motors move organelles or vesicles that do
scatter sufficient light. The molecular motors produce speeds
in the range of microns per second for vesicle and organelle
transport. A simple application of Stoke’s drag law provides a
crude estimate for the stall force,

Fd =−6πηav. (3.1)

For an effective viscosity 300 times greater than water
η = 0.3 Pa·s, for a spherical organelle of radius a = 1 µm
and a speed of v = 1 µm s−1, the stall force would be 6 pN,
which is roughly consistent with measured values [191, 212].

Among the smallest organelles are endocytic organelles
which are also the fastest with speeds measured up to 8 µm s−1

and mean speeds in the range of 2 µm s−1 [175]. The dynam-
ics of endocytosis are complex, and the initiation is associated
with actin-mediated membrane dynamics [214, 215]. During
transport, there can be coordinatedmotion at high speeds [216,
217], or bidirectional motion caused by antagonistic ‘tug-of-
war’ mechanisms between kinesin and dynein [208, 218].
Lysosomes are a common type of intracellular vesicle with
several hundred occurring per cell and varying in size from
0.1 to 1 µm in diameter. Because of the nature of their intra-
vesicle materials, they tend to have high refractive index con-
trast relative to the cytosol and contribute significantly to light
scatter [219, 220]. Lysosome speeds are in the range of half a
micron per second and have speed PDFs that are monotonic-
ally decreasing. Motionless lysosomes are the most probable,
and the standard deviation in speed is approximately equal to
the mean speed [221], which is consistent with a decaying
exponential probability distribution.

Mitochondria are ubiquitous organelles with several thou-
sand mitochondria per cell and contribute significantly to light
scattering from cells and tissues [220, 222]. Mitochondria
move with a distribution of speeds [223]. Mean mitochondrial
speeds range from hundreds of nanometers per second down
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to tens of nanometers per second. Finite persistence times of
the mitochondrial displacements produce speed distributions
that depend on observation time, and longer observation times
generate lower mean speeds [224] because during long obser-
vation times some of the mitochondria in the initial test cohort
stop or reverse. The mean speed scales approximately with the
square root of the observation time for times around 1 s. The
speed PDFs of mitochondria are generally monotonic decreas-
ing as a function of speed with stationary mitochondria being
themost probable [225], but with relatively long tails with high
speeds up to several microns per second.

At the other end of the size scale from vesicles and mito-
chondria is the nucleus, which is one of the largest organelles
in the cell. Therefore, nuclear speeds set the low-frequency
behavior of intracellular organelle transport. As with all organ-
elles, the distribution function of nuclear speeds is broad with
the peak at zero speed, producing static light scattering as the
dominant effect of the nucleus. The highest speeds for nuc-
lei are around 300 nm s−1 which occur in bursts of several
seconds with waiting times between bursts of about a minute
[226]. The persistence length of nuclear transport is typic-
ally about one nuclear diameter, or about 5 µm [227, 228],
and the motion is driven by the cytoskeleton [227, 229, 230].
The highest speeds produce Doppler frequency shifts up to
1 Hz, but these are rare, and the majority of the Doppler fre-
quencies associatedwith nuclear transport processes are below
100 mHz [231]. The persistence lengths place the DLS firmly
in the Doppler regime for the fastest motions. In addition
to translation, nuclei also rotate with angular speeds of ten
degrees per minute [232]. Drugs that affect nuclear motions
include blebbistatin that inhibits myosin II and increases nuc-
lear speeds by approximately 60% [233], while nocodazole
inhibits microtubule polymerization and decreases nuclear
speeds by a factor of two [232].

3.4. Cytoskeletal restructuring and active matter

The cytoskeleton is a dynamic and adaptive structure whose
components—cytoskeletal elements and regulatory proteins—
are in constant flux [37]. The cytoskeleton has several func-
tions. It organizes the structure and contents of the cell, it con-
nects the cell chemically and physically to the external envir-
onment, and it drives cell shape changes and cell movement
associated with developmental biology as well as metastatic
migration. The cytoskeleton is also part of the signaling func-
tions of a cell through the process of mechano-transduction
[90] as a cell senses its force and adhesion environment, trig-
gering changes in internal signaling pathways that in turn lead
to dynamic changes in cellular processes and motions.

Microtubules grow and relax through polymerization and
depolymerization episodes known as treadmilling. Growth
speeds can be up to 45 tubulin dimers (8 nm size) per second or
up to 300 nm s−1 [234, 235]. The microtubules execute ran-
dom walks during growth with persistence lengths of about
30 µm [236] which places this process well within the Doppler
regime. The depolymerization rate can be much faster at
1000 dimers per second [234]. These speeds are in the same
range as the fastest molecular motors and their organelle

cargos. However, the microtubules are small with a 25 nm
diameter, and even long filaments produce little light scatter-
ing by themselves. The microtubules exert forces on larger
intracellular constituents that scatter light, but the load force
slows down polymerization speeds [200]. Therefore, intracel-
lular objects that move via interaction with microtubule forces
are restricted to lower speeds with maximum speeds up to
about 300 nm s−1 for a maximum Doppler frequency shift
(under the standard optical configuration) of 1 Hz.

Actin filaments similarly grow through polymerization
punctuated by shrinkage. Actin polymerization rates are typ-
ically 4 subunits per second for 370 subunits per micron [237]
under normal monomer concentrations. This is a growth speed
of about 10 nm s−1 and a Doppler frequency shift of 30 mHz.
The speed decreases under load [201]. At high monomer con-
centrations the speed can be as large as 30 subunits per second
for a speed of 80 nm s−1 and a Doppler frequency shift of
0.24 Hz. The shrinkage speeds can be much higher up to
0.6 µm s−1 and as high as 3 µm s−1, and the typical length of
actin filaments is 1.5 µm [238]. Therefore, active actin poly-
merization in cells generates motions of cellular components
with maximum speeds below 100 nm s−1 and Doppler fre-
quency shifts below 300 mHz.

Biological matter is active matter [168, 239–241] driven by
energetic processes that are far from thermal equilibrium with
a direct connection to active gels [169] and their relationship to
living systems [170]. The cell is composed of subsystems that,
though interconnected, are themselves systems of active mat-
ter. The cytoskeleton is a highly active sub-system that exper-
iences large fluctuations through polymerization and depoly-
merization driven by GTP. When combined with molecular
motors such as myosin driven by ATP, this system represents
an active gel [169] that shares similarities with liquid crystals
[242, 243]. The plasma membrane, in addition to being driven
by the cytoskeleton, also reacts to the forces of ion pumps and
behaves as an active fluid film [244–247]. Another active sub-
system is chromatin that experiences active reconfigurations
during transcription [248]. In addition to subsystems, there
are also macro-systems that behave as active matter, such as
organized tissue [169]. Force fluctuations are linked to velocity
fluctuations, which in turn are linked to MSDs. This provides
an avenue for analyzing the active processes that occur within
cells [249, 250].

Active processes and materials can have steady-state beha-
vior that represents a dynamic equilibrium that stands in for
thermal equilibrium. Some of the results of equilibrium ther-
modynamics can be applied in this case, but with a rein-
terpretation of the parameters in terms of effective prop-
erties, such as effective temperatures that have functional
dependence on characteristic scales (time scales and spatial
scales). Effective temperatures of biological processes can
be orders of magnitude larger than actual thermal temperat-
ures, leading to dynamic properties that are much larger than
thermal effects. For instance, transport by active processes
may be characterized as random walks, but with MSDs much
larger than possible with thermal Brownian motion. As an
example, the effective temperature of a normal cell, versus
one that was ATP depleted, show markedly different effective
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temperatures [251] when beads were bound to the actin cor-
tex through membrane receptors. Active actin-myosin gels
[252] driven by molecular motors and cytoskeletal filaments
violate the fluctuation-dissipation theorem. At frequencies
decreasing below 1 Hz the effective temperature increases,
corresponding to larger MSDs from slow large-scale mem-
brane and cell motions. The effective temperature increases
approximately as 1/ω2 reflecting the increase in active stress
fluctuations [252, 253].

3.5. Membrane dynamics

The dynamics of cell membranes is one of the most import-
ant contributors to DLS in living tissue. The fraction of the
cell volume made up of the lipid membrane layers is small,
but the membrane is an envelope that coordinates the motions
of all the internal constituents [144]. Motions of a region of
the cell membrane are accompanied by coordinated motions
of all the internal components near that region. Membrane
motions in living tissue are dominated by active processes
driven by the connection of the cytoskeleton to the membrane
at focal adhesions [38]. Therefore, active membrane dynam-
ics and associated speeds and persistence times are strongly
related to cytoskeletal speeds and persistence times.

Transverse spatial modulation in the membrane can be
characterized by a spatial frequency k = 2π/λ, where λ is
the characteristic length of a section of persistent curvature.
For instance, thermal excitations of passive membranes (when
there are no active processes) cause membrane modulation,
called flicker, in erythrocytes [180, 254–256]. The principle
of equipartition of thermal energy gives the thermal MSD as

⟨h(k)h∗ (k)⟩= kBT
A

(
1

γ0k2 +κbk4

)
(3.2)

where A is the membrane area, γ0 is the tension, and κb is the
membrane bending stiffness. The mean-squared membrane
displacement is proportional to the physical temperature, but
inversely proportional to the area of the membrane. The fluc-
tuations are largest for the smallest spatial frequencies, with
a long-wavelength cutoff of the spatial frequency k given by
kmin = π/d where d is the diameter of the cell. The relaxa-
tion rate for a membrane undulation with spatial frequency k
is given by [257]

1
τk

=
γ0k+κbk3

4η
(3.3)

where the viscosity η pertains to fluid redistribution within the
cell [190]. However, in the active fluctuations of membranes,
such thermal forces are dwarfed by energetic processes that
are far from thermal equilibrium [247].Membrane fluctuations
have ATP dependence [258], signifying the requirement for
energy to drive the active processes, and effective temperat-
ures related to MSDs are much larger than the temperatures of
the thermal bath [259]. Therefore, the membrane fluctuations
are dynamic processes with characteristic lengths, amplitudes
and relaxation times [260] that contribute to DLS from living
tissue.

The speeds of membrane motions are comparable to
speeds of cytoskeletal restructuring [261]. For instance,
filopodium have repetitive cycles of elongation and persistence
that depends on actin crosslinkers with characteristic
displacements of microns in minutes [210]. A displacement
of 2 µm in one minute is a speed of 30 nm s−1 which pro-
duces a Doppler frequency shift of 100 mHz in the standard
configuration.

Mitosis is a key energetic process in actively proliferating
tissue [44], as in developing embryos, in tissue culture grown
from immortalized cell lines and in natural cancer tissues.
The duration of the different phases of mitosis are approx-
imately half an hour for prophase, 2–10 min for metaphase,
2–3 min for anaphase, 3–12 min for telephase, and a fairly
long duration for reconstruction ranging up to 2 h. The entire
mitotic process can take between an hour and three hours,
depending on the cell type and conditions. Chromosome sep-
aration in preparation for cell division is relatively slow at
15 nm s−1 [262] (50 mHz in the standard configuration).
However, contractile ring speeds during cytokinesis are relat-
ively faster at around 100 nm s−1 (0.3 Hz in the standard con-
figuration) with long persistence times of hundreds of seconds
[263].

3.6. Cell crawling and metastasis

Cellular motility is a central characteristic of living mat-
ter. The motion of cells through three-dimensional tissue
supports fundamental processes such as the formation of
tissues and organs during embryonic development, wound
healing, infiltrating immune response and cancer metastasis
[264]. The central player in cell migration is the cytoskel-
eton composed of microtubules, actin filaments and inter-
mediate filaments. Actin plays a particularly active role by
using polymerization/depolymerization forces to reshape the
cell while providing traction and hydrodynamic forces [265].
The most common migratory cell types that have been stud-
ied are keratocytes (from fish scales), fibroblasts, leukocytes
(neutrophils) and metastatic cells. The maximum speeds of
these migratory cells vary over three orders of magnitude
from microns per hour to millimeters per hour, correspond-
ing to standard-configuration Doppler frequency shifts from
1 mHz to 1 Hz, respectively. For instance, keratocytes and
wound-healing cells in the cornea are among the fastest
cells crawling with speeds of tens of microns per minute
(standard-configuration Doppler shift of 1 Hz). However,
many common migratory cell types, including many cancer
cell lines, travel with maximum speeds of tens of microns
per hour (standard-configuration Doppler shift of 25 mHz)
[266].

The majority of studies of cell motion have been performed
in 2D formats [267] because of the ease of culturing and ima-
ging, but more recently the focus has shifted to imaging in
3D matrices because of its greater physiological relevance
[268]. The migration of cells in 3D can be studied using select-
ive plane illumination microscopy (SPIM) [269–271]. Speeds
through 3D matrices tend to be smaller than under equival-
ent conditions in 2D depending on the size of pores [272,
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273] in the collagen gels, the orientation of the fibrils [274],
and cellular density [275], but the motions tend to be more
persistent [276] than in 2D.

The large cross-sectional area of cells migrating through
tissues represents an extreme limit to biological motion
through constrained geometries. The forces driving the motion
can be relatively large by combining the forces from numerous
focal adhesions with persistent orientation, but the geometric
constraints produce large effective viscosity that yields very
low speeds and very low standard-configuration Doppler fre-
quencies in the range between 1 mHz and 10 mHz for many
types of migrating cells. These low frequencies are currently
at the low end of interferometric stability which is dominated
by 1/f noise. On the other hand, the high light scattering from
cell membranes and the high number density of light scatter-
ing objects in dense tissue driven by active forces of the cyto-
skeleton with high effective temperatures leads to a biological
signal at these low frequencies that can be comparable to or
larger than the 1/f noise contribution. Therefore, cell motil-
ity, including metastatic motions through tissue, can contrib-
ute to the fluctuation power spectrum measurable above the
noise floor in interferometric and holographic light scattering
apparatus [277].

4. Intracellular transport: mathematical models and
light scattering

All biological processes have stochastic contributions to their
dynamics. Intracellular thermal Brownian motion of small
molecules lies at one extreme that is ideally stochastic.
Cytokinesis lies at the other extreme in which the motion
during cell division is directed and deterministic. Most bio-
logical processes lie between these extremes having both
stochastic and deterministic contributions to motion. For
instance, vesicle and organelle transport is processivewith per-
sistent motion, as one or more molecular motors carry them
along cytoskeletal tracks. But the motors stochastically detach
and reattach, causing the objects to falter or change direc-
tion. Similarly, the active motion of the cell membrane is
driven by successive growth and collapse of cytoskeletal fila-
ments, causing persistence in the motion, but superposed with
stochastic fluctuations. The mixture of deterministic motion
with stochastic motion opens a wide variety of possible intra-
cellular transport models that attempt to capture the essential
behavior of subcellular systems.

Stochastic processes in biology draw from a broad range of
probability distributions. The chief distinction in these distri-
butions is whether they satisfy the central limit theorem with
finite moments, or if they have divergent tails that do not obey
the central limit theorem and have (some) moments that are
undefined [278]. Poissonian, Laplacian and Gaussian distribu-
tions are examples of well-behaved distributions that satisfy
the central limit theorem. Conversely, the common Cauchy
distribution (also known as the Lorentzian lineshape) has a
divergent first moment, as do other Levy-stable distributions
[278]. The power-law Pareto distribution, being self-similar,

fails to have any finite moments. Transport processes that are
governed by well-behaved probability distributions are called
regular transport, while those governed by power-law distri-
butions are among anomalous transport processes. Both types
of stochastic transport yield random walks.

4.1. Regular transport models

Regular transport is represented by conventional transport
processes such as steady motion (drift) and random-walk
motion (diffusion), with transport parameters characterized by
probability distributions with well-defined moments, such as
Gaussian or Laplacian. Regular transport processes in cellular
media provide the first level of approximation towards under-
standing experimental results, yielding estimates for charac-
teristic transport lengths and times and hence are useful for
understanding the generally anomalous scaling of length and
time in cellular processes.

Regular transport is associated with MSD that is a poly-
nomial function of time within limiting regimes of behavior.
Examples are illustrated in figure 9 for ballistic transport,
persistent walks and Brownian motion. The MSD increases
quadratically as t2 for ballistic transport and linearly as t for
Brownian motion. The intermediate regime is characterized
by a cross-over time (or cross-over length) between one limit
and the other. Whether a transport process is considered bal-
listic or diffusive depends on the observation time scale. For
instance, in the ballistic limit the persistence time is longer
than the observation lag time between measurements, while
in the Brownian limit the persistence time is much smaller
than the time lag betweenmeasurements and the transport con-
verges in the limit to a Wiener process. Hence, characterizing
transport as ballistic or diffusive is not an intrinsic behavior
but is observation time-scale dependent. If there is an addi-
tional measurement scale, such as the wavelength of light, then
ballistic or diffusive transport can be defined by the relation
between the persistence length and the wavelength. This is the
case for Doppler light scattering.

4.1.1. Brownian diffusion. Conventional Brownian diffusion
is governed by the DE for the PDF as

∂W
∂t

= D
∂2W
∂x2

(4.1)

where D is the diffusion coefficient. The PDF is

W(x, t) =
1√
4πDt

exp

(
− x2

4Dt

)
(4.2)

where W(x,t) is also called the propagator. The Fourier trans-
form of the DE is

∂W
∂t

=−q2DW(q, t) (4.3)

where the Fourier components experience simple exponential
decay
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Figure 9. Regular transport varies smoothly from the ballistic limit (with long persistence times) to the Brownian limit (with vanishing
persistence times). The mean-squared displacement (MSD) is polynomial in time. In the intermediate regime of run-and-scatter, the
mean-squared speed is v2 and the mean persistence time is tp.

W(q, t) = exp
(
−q2Dt

)
(4.4)

andW(q,t) is the time-dependent characteristic function of the
probability distribution. The temporal Fourier transform of the
characteristic function is

W(q,ω) =
q2D

(q2D)2 +ω2
(4.5)

which represents a Lorentzian line shape spectrum. In light
scattering, the characteristic function W(q,t) plays the cent-
ral role defining the light-scattering autocorrelation function,
and its temporal Fourier transform W(q,ω) plays the central
role defining the fluctuation power spectrum of a dynamic tar-
get. In many of the sections that follow, it may be conveni-
ent to describe processes either in terms of W(q,t) or W(q,ω),
and sometimes W(q,s) (a Laplace transform), depending on
the circumstances.

4.1.2. Wiener process. A Wiener process (named after
Norbert Wiener) is the limiting behavior of a random walk
as the step size decreases to zero and the number of steps
increases to infinity. A Wiener process yields a continuous
curve whose derivatives exist nowhere. Consider a random
variable that executes drift and random walk

dx= adt+ bdw. (4.6)

The differential dw is the differential of a Wiener process
and can be written explicitly as

dx= N(0,1)
√
dt (4.7)

where N(0,1) is a normal probability distribution with zero
mean and unit variance. The differential in the square

root guarantees the following time-average properties of the
Wiener differential

⟨dw(t)⟩= 0〈
dw2 (t)

〉
= dt

⟨dw(t)dw(t ′)⟩= δ (t− t ′)dtdt ′
. (4.8)

The square-root of the differential makes equation (4.7)
a stochastic differential equation (SDE). The solution of this
SDE is

x(t) = x(0)+N
(
0,b2t

)
(4.9)

where the MSD = b2t. This is the classic Brownian motion
first derived by Einstein in 1905 [279].

Einstein neglected inertia in his derivation in his stochastic
Brownian motion analysis that he expressed in terms of
stochastic displacement neglecting forces. However, there are
systems for which inertia does play a role, at least at short
times, as well as persistent systems that are not in equilibrium
and behave as if they had inertia during their runs. For these
systems, a more complete approach is that of Langevin in 1908
[280] that explicitly includes force terms in the velocity SDE.
The solution of this SDE is known as the Ornstein–Uhlenbeck
(OU) process, explored by Ornstein and Uhlenbeck in 1930
[281] who expanded on Langevin’s work. The original OU
velocity process was applied to stochastic transport in gases
under thermal equilibrium, but it also can be a mathematical
analog for active and persistent transport far from equilibrium,
as in living systems.

4.1.3. Ornstein–Uhlenbeck (OU) process. The OU pro-
cess contributes a stochastic velocity fluctuation to the usual
dampedmotion. The stochastic contribution to the velocity has
the form

dv=−γvdt+Γdw. (4.10)
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This SDE represents a decaying exponential with decay
rate γ modified by a fluctuation term with amplitude Γ. This
expression can apply to the case of viscous damping where
−γv is the drag force. The solution for the average velocity is

⟨v(t)⟩= v0e
−γt (4.11)

and the variance is [282]

∆v2 =
Γ2

2γ

(
1− e−2γt

)
. (4.12)

The speed PDF for the OU process is

W(v, t) =
1√

2π∆v2
exp

[
−(v± v0e−γt)

2

2∆v2

]
(4.13)

and this speed distribution generates the autocorrelation
function

W(q, t) = FTv (W(v, t))

= cos
(
qtv0e

−γt
)
exp

(
−q2t2∆v2

2

)
for an exponentially damped Doppler frequency shift.

The long-term limiting value for the variance is

∆v2 (∞) =
Γ2

2γ
(4.14)

which defines the parameter Γ to be

Γ2 = 2γv20. (4.15)

Equation (4.15) is analogous to the fluctuation-dissipation
expression for a system in equilibrium but expressed in terms
of the persistent speed v0 instead of temperature. As an estim-
ate of Γ, for a speed of 1 µm s−1 and a persistence time of 1 s
(appropriate for organelle transport), then Γ2 = 2 Hz·µm2 s−2.
As an alternative approach to estimatingΓ, if the transport pro-
cesses were viewed in steady state, then this long-term expres-
sion would be related to a form of the equipartition theorem
in which forces and velocities provide the underlying ener-
getics for intracellular motions and are also the source of the
fluctuations. The power provided by intracellular forces at low
Reynold’s number is

⟨P⟩=
〈
F⃗ · v⃗

〉
= 6πηa

〈
v2
〉

= 6πηa
Γ2

2γ
(4.16)

where
〈
F⃗ · v⃗

〉
is the average power provided by active trans-

port. This gives, assuming steady state holds, the relation

Γ2 =
2γ
〈
F⃗ · v⃗

〉
6πηa

(4.17)

where the average power is provided by molecular motors
driven by energetic hydrolysis of ATP for molecular motors, or

GTP for cytoskeletal restructuring. As an estimate, consider a
persistence time of 1 s and a vesicle of radius 1µmbeing trans-
ported by a single molecular motor moving at 1 µm s−1. If the
motor force is approximately 2 pN and the effective viscosity
is 1 Pa·s, this also yields a value ofΓ2 = 2Hz·µm2 s−2 compar-
able to the estimate from the fluctuation-dissipation theorem,
although the wide range of particle sizes and effective viscosit-
ies produce a similarly wide range of values for Γ for different
types of intracellular processes.

4.2. Single-scattering limit of DLS

The single-scattering limit of DLS is the limit of optically
thin, or highly dilute, samples. Although light transport in
living tissue is highly scattering, the typically large aniso-
tropy factors of g ≈ 0.9 favor small-angle forward scatter-
ing. The mean free length before large-angle scattering of
a photon is roughly 100 µm in tightly-packed cells of epi-
thelial tissue, although this is only a rough estimate and
actual numbers can vary significantly depending on the tissue
type. Therefore, shallow penetration of light into tissue up to
approximately 100 µm leads to roughly a single high-angle
scattering event. Only the large-angle events carry significant
Doppler frequency shifts, hence shallow light scattering even
up to a few hundred microns remains mainly in the single-
scattering regime. Expressions for field or intensity autocor-
relation functions are readily obtained in the single-scattering
regime because they are simple sums (or integrals) over par-
tial waves. Although the results in this section pertain to light
scattering up to about several hundred microns inside tissue,
the transition to multiple scattering keeps the same qualitat-
ive trends but with higher characteristic frequencies because
of the compounded phase excursions of multiple scattering.

For 3D diffusion from a Wiener process, the probability
functional is

PDiffus (∆xi (t)) =
1√
4πDt

exp
(
−(∆xi (t))

2
/(4Dt)

)
=

1√
2π∆x2rms

exp
(
−(∆xi (t))

2
/2
(
∆x2rms

))
(4.18)

which gives the diffusion field autocorrelation function

WE
Diffus (q, τ) = ⟨E∗ (t)E(t+ τ)⟩− I0 = NIs exp

(
−q2Dτ

)
(4.19)

and intensity autocorrelation function

WI
Diffus (q, τ) = ⟨I∗ (0) I(τ)⟩= N2I2s

[
1+ exp

(
−q22Dτ

)]
.

(4.20)

On the other hand, for a 3D Gaussian distribution of bal-
listic velocities, the probability functional is

PVel (∆xi) =
1√

2π vrms
exp
(
−v2i /2v2rms

)
=

1√
2π vrms

exp
(
−∆xi

2/2v2rmst
2
)

(4.21)
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which gives the field autocorrelation function

WE
Vel (q, τ) = NIs exp

(
−q2v2rmsτ

2/2
)

(4.22)

and the intensity autocorrelation function

WI
Vel (q, τ) = ⟨I∗ (0) I(τ)⟩= N2I2s

[
1+ exp

(
−q2v2rmsτ

2
)]
.

(4.23)

In addition, if the scattering objects experience a uniform
drift in fixed direction, the probability functional is

Pdrift (∆xi) =
1√

2π vrms
exp
(
−(vi− vdrift)

2
/2v2rms

)
(4.24)

which gives the drift autocorrelation function

WE
drift (q, τ) = NIs exp

(
−q2v2rmsτ

2/2
)
cos(qvdriftτ) (4.25)

where the cosine term is equivalent to a Doppler beat fre-
quency. The intensity autocorrelation is

WI
drift (q, τ) = ⟨I∗ (0) I(τ)⟩

= N2I2s
[
1+ exp

(
−q2v2rmsτ

2
)
cos2 (qvdriftτ)

]
.

(4.26)

As described in sections 2 and 3, persistent flights along
isotropically-oriented filaments or microtubules are driven
by molecular motors that run at approximately constant
speeds in essentially one-dimensional segments (persistence
lengths) that are isotropically oriented. Isotropically-averaged
1D transport does not yield the same autocorrelation func-
tions as 3D transport. For instance, the distribution function for
one dimensional isotropic motion is given by equation (4.18)
[283]. The associated intensity autocorrelation function when
averaged over all angles is

WI (q, t) = N2I2s

+N2I2s

(
1
4π

¨
P(∆x)exp(−iq∆xcosθ)d∆xdΩ

)2

= N2I2s +N2I2s

(
1
2

ˆ
exp
(
−q2Dtcos2θ

)
sinθdθ

)2

= N2I2s +N2I2s
π

4q2Dt
erf2

(√
q2Dt

)
. (4.27)

The intensity autocorrelation function equation (4.27) is
much different than the simple exponential of equation (4.19).
The autocorrelation function behaves as an error function
with the same characteristic time 1/q2D as 3D diffusion,
but the functional dependence is different. DLS fluctuation
spectra from 3D diffusion has a classic low-frequency plat-
eau and a knee frequency above which the spectral density
falls as 1/ω2. But applying the Wiener–Khinchine theorem to
equation (4.27) does not produce a low-frequency plateau but
yields instead a 1/ωa behavior. This makes the characteristic
knee in the spectrum less distinguishable because the spectral
power switches from one power law to another.

For long persistence times, the three-dimensional bal-
listic transport model is the same as averaging 1D transport

over all angles. For a displacement ∆r= vt, the distribution
function is

P(∆r) = δ (∆r− vt) (4.28)

and the intensity autocorrelation function is

WI (q, t) = N2I2s

+N2I2s
∑

i ̸=j

∑
j
exp(−iqvtcosθi)exp(iqvtcosθj)

= N2I2s +N2I2s

(
1
4π

ˆ
exp(−iqvtcosθ)dΩ

)2

= N2I2s +N2I2s sinc
2 (qvt) . (4.29)

The oscillatory sinc function arises from the Doppler fre-
quency. The associated homodyne spectral density is

Shom (ω) = FT
[
WI (q, t)

]
(ω)

=
√
2πN2I2s

[
δ (ω)+

1
2qv

tri

(
ω

2qv

)]
(4.30)

where tri(x) is the triangular function. The spectra from
isotropically-averaged 1D diffusion to 3D diffusion are com-
pared in figure 10 relative to the ballistic Doppler edge.

4.3. Lifetime broadened Doppler

When coherent light scatters from a uniformly moving object,
the phase of the scattered light changes linearly with time.
When this interferes with a stationary reference wave in
the interferometer, the intensity modulation is sinusoidal in
time, persisting for as long as the particle’s persistence time.
For one-dimensional motion with uniform speed, particle
motion changes through a reversal of the velocity vector,
and the detected sinusoidal intensity undergoes time reversal.
Therefore, the interferometric time series is mathematically
equivalent to an ensemble of undamped, randomly time-
reversed harmonic oscillators.

The differential change in velocity of a moving particle
under a random time reversal is

dv=−2v
dt
tp

+Γdw (4.31)

where tp is the mean persistence time, assumed to be decaying
exponentially distributed. In this case, the equation describes
an ensemble of particles, known as the persistent randomwalk
model [276]. The average velocity distribution is

⟨v⟩= v0 exp(−2t/tp) (4.32)

and variance

⟨∆v2⟩=
Γ2tp
4

(1− exp(−4t/tp)) . (4.33)

The mean speed of the randomly time-reversing ensemble
decays exponentially with a time constant τ = tp/2 which is a
dephasing time like the T2 time of photon echoes or NMR. The
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Figure 10. Spectral power density for isotropically-averaged 1D diffusion compared to 3D diffusion. Also shown is the Doppler edge for
ballistic transport. Results are averaged isotropically over all angles. A diffusion coefficient is used for the first two cases with
D = 0.01 µ2 s−1, and a uniform velocity v0 = 1 µm s−1 is applied to the ballistic case.

ensemble average is equivalent to a damped harmonic oscil-
lator with a time constant τ = 1/γ where the equivalent damp-
ing coefficient is

γ = 2/ tp. (4.34)

The homodyne spectral power density of fluctuations for a
damped harmonic oscillator is

S(ω) =
2γω2

0

π
|x0|2 =

2
π

γω2
0(

ω2
0 −ω2

)2
+ γ2ω2

. (4.35)

The interferometric detection of randomly time-reversed
steady motions differs mathematically from lifetime broaden-
ing. For a constant sinusoidal emission that experiences ran-
dom phase jumps, the subsequent phase is uncorrelated to the
preceding phase. This simplifies the mathematical descrip-
tion, and lifetime broadening leads to a classic Lorentzian
line-shape with a linewidth determined by the time-frequency
uncertainty product of Fourier analysis (analogous to the
Heisenberg uncertainty principle). The time reversal wave-
form in the time-reversed case is continuous everywhere,
while the random phase jump waveform has discontinuous
jumps. The stochastic phase jumps produce larger discontinu-
ities in the waveform, producing wider bandwidth relative to
stochastic time reversals. The asymptotic behavior of both
cases (at high and low frequencies) are the same. The one-
dimensional Doppler broadening for stochastic time reversal
is shown in figure 11 compared to random phase jumps.

The Doppler frequency shift ωD and the persistence time tp
(and equivalently the momentum transfer q and the mean free
path Lp) define a dimensionless scaling parameter called the
Doppler number, ND, given by

ND = ωDtp = qLp. (4.36)

When ND = 1, then

ND =
Lp

λred
= 1 (4.37)

sets a characteristic persistence length Lp relative to the
reduced wavelength λred. For a refractive index n≈ 1.35 and
a free-space wavelength λ0 = 840 nm

λred =
λ0

4πn
≈ 50 nm. (4.38)

From the perspective of light scattering, the dividing line
in living tissue between diffusive transport and Doppler (bal-
listic) transport occurs when the mean-free transport paths of
the intracellular process is approximately 50 nm. The con-
ditions on the Doppler number ND define different regimes
where Doppler effects dominate the light scattering when
ND is much greater than unity, and diffusive light-scattering
character (diffusive knee) occurs when ND is much smaller
than unity, with cross-over behavior between the two regimes
around ND ≈ 1. Most active transport processes in cells have
long mean-free paths that place DLS in living tissues in the
Doppler regime (see table 2). However, because of the over-
lapping of many different transport processes with different
characteristic speeds, the Doppler edges are distributed across
a broad frequency range, and the spectral power densities from
most tissues appears diffusive without distinct Doppler edges.

Examples of the Doppler spectrum for uniform velocity and
finite persistence time is shown for 1D transport in figure 12 for
the Doppler number ranging from 10 to 0.1 for a fixed Doppler
frequency fDopp = 1 Hz. In the diffusion regime (ωτ = 0.1) the
diffusion knee occurs at fDiffus = q2D/2π where the diffusion
constant is D = v02τ , and the spectral fall-off above the knee
is 1/ω2. There is a peak in the Doppler regime (ωτ = 10). The
spectral fall-off above the peak in this regime is much steeper
than the 1/ω2 slope of a diffusion lineshape, which is one sig-
nature of the Doppler regime.
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Figure 11. Comparison of time reversal events versus phase jump events in the back-scattered field. (a) Time-dependent field for time
reversal and phase jumps. (b) Resulting 1D heterodyne power spectra. The parameters are fD = 0.3 Hz, tp = 10 s and ND = 18.

Figure 12. Heterodyne Doppler spectral power densities as function
of frequency for one-dimensional motion for a Doppler frequency of
1 Hz. The ωt product ranges from 10 (Doppler regime) to 0.1
(diffusion regime).

In isotropic tissue, the one-dimensional transport is distrib-
uted uniformly with angles

P(ϕ)dϕ = sinϕdϕ. (4.39)

For constant-speed scattering objects, the contribution to
the fluctuation power spectrum is

dSE (ω) = L(ω,ϕ)P(ϕ)dϕ

=
γN
π

[
ω2
Dcos

2ϕ(
ω2
Dcos

2ϕ −ω2
)2

+ω2γ2

]
sinϕdϕ. (4.40)

In isotropic tissue, the total power spectrum is integrated
over all Doppler frequencies

SE (ω) =
γω2

DN
π

π̂

0

[
cos2ϕ(

ω2
Dcos

2ϕ −ω2
)2

+ω2γ2

]
sinϕdϕ

=
γN
πωD

ωDˆ

−ωD

[
y2

(y2 −ω2)
2
+ω2γ2

]
dy. (4.41)

Examples of isotropically-averaged 1D motion are shown
in figure 13 for Doppler numbers ND = 0.1, 1, and 10 [277].
The dashed curves are for 1Dmotion, showing a clear Doppler
peak at fD = 1 Hz for ωDtp = 10. In the case for ωDtp = 0.1,
there is a diffusion knee at fd = q2v20τ/2π ≈ 0.1 Hz. The
cross-over in behavior from a Doppler peak to a broad spec-
trum occurs around ND = ωDtp = 1. Averaging over all angles
removes the peak at the Doppler frequency, even in the case
of large ND, although there is a distinct edge at the Doppler
frequency for this case. When the Doppler number is small,
a diffusive knee structure emerges at lower frequencies, but
there is no low-frequency plateau as occurs for isotropic 3D
diffusion.

The cross-over behavior from theDoppler regime to the dif-
fusion regime is described in terms of a knee frequency, which
is a function of diffusion and ballistic frequencies and persist-
ence time through

ωknee =
ω2
D√

1/t2p +ω2
D

=
ωdiffusion√
1+ω2

Dt
2
p

. (4.42)

For long persistence times tp, the knee frequency is a
Doppler edge at the Doppler frequencyωD, while for short per-
sistence times, the knee frequency is the diffusive frequency
ωdiffusion = q2D [277].

4.4. Continuous time random walk (CTRW)

A heuristically simple model for a broad range of transport
processes, including both regular and anomalous transport, is
the CTRW [284] with constant speed [285, 286]. The original
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Figure 13. Spectral power density plotted against frequency for comparison of unidirectional (dashed) versus isotropically averaged 1D
(solid) power spectra for ND = 0.1, 1, and 10. [Reprinted/Adapted] with permission from Li et al [277] © The Optical Society.

Figure 14. Continuous-time random walk (CTRW) model with constant speed between resting times. The resting times and persistence
times are drawn as random samples from underlying probability distributions that may have finite (normal transport) or divergent
(anomalous transport) moments.

model assumed discontinuous jumps which aided theoretical
descriptions, but it is not a physically relevant model of actual
motion. The current review treats only the modified CTRW
model where the particles move with constant speed between
rests as shown in figure 14. The length of the walk between
stops is the persistence length, and because of the constant
speed between stops, the persistence length is coupled dir-
ectly to the persistence time. The persistence length is drawn
from a specified distribution that may have finite moments
(normal transport) or moments that diverge (anomalous trans-
port). The resting times at each stop also are drawn from a
specified distribution that may be different than that for the
persistence length. Therefore, this transport model is governed
by two PDFs: one for the persistence time and one for the
resting time. This type of transport model can have simple
microscopic interpretations. For instance, a transport process
may have a spatial distribution of traps that temporarily bind
a walking object. If the object is a particle, the trap may be a
local potential well with a probability per time that the particle

will escape. Or the transporting object may be an organelle
or vesicle that detaches from a molecular motor and waits for
another motor to bind it.

If both the resting times and walk lengths are drawn from
distributions that have finite first and second moments, then
normal transport occurs. However, if one of the distributions
does not obey the central limit theorem, then anomalous trans-
port is the result. The anomalous transport can be either sub-
diffusive or superdiffusive. If the walk lengths have finite
moments, but the resting times have divergent moments, then
the transport is subdiffusive. Conversely, if the resting times
have finite moments, but the walk lengths have divergent
moments, then the transport is superdiffusive. If both path
length and resting time have divergent moments, then there is a
complicated balance between superdiffusive and subdiffusive
behavior.

The CTRW transport model can be one-dimensional,
for which the direction after de-trapping can be in the
original or the opposite direction. Or the transport can
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be two-dimensional or three-dimensional as the particle
randomly chooses among orientations after de-trapping. The
selection of orientations can be isotropic or anisotropic.
Furthermore, the constant speeds can be sampled from a dis-
tribution of speeds. These different versions of the CTRW
can be invoked to model different types of biological pro-
cesses, including transporting vesicles and organelles, internal
restructuring of the cytoskeleton, motions of the cell mem-
brane, among others.

4.4.1. One-dimensional persistent walk with no resting time.
For a persistence time distribution ψ (τ), the number of sur-
viving walkers after a time t is

Ψ (t) = 1−
tˆ

0

ψ (τ)dτ. (4.43)

To couple the persistence time and persistence length, the
position-time distribution function for the finite-speed walk
has survival functions

Φ (x, τ) =
1
2
δ (|x| − vτ)Ψ (τ) (4.44)

where the delta function produces a ballistic peak in the
distribution. While the main function of interest for light-
scattering analysis is the propagator W(q,t) (the autocorrela-
tion function) and the temporal Fourier transformW(q,ω) (the
power spectrum), the most natural expression for the propag-
ator in the CTRW is through the Fourier–Laplace transform
W(q,s) because it uses the shift properties of the Laplace
and Fourier transforms. Despite this advantage, even if the
Laplace-transformed propagatorW(q,s) can be derived analyt-
ically, the inverse Laplace transform may not be available ana-
lytically, and numerical inversion of Laplace transforms can
be problematic.

The Laplace-transformed [278] no-resting-time propagator
[287] is

W(q,s) =
Ψ (s+ iqv)+Ψ (s− iqv)

2−ψ (s+ iqv)−ψ (s− iqv)
(4.45)

where the Laplace-transformed survival function is

Ψ (s+ iqv) =
1−ψ (s+ iqv)

s+ iqv
. (4.46)

If the MSD of the persistence is finite, this leads to classical
diffusion, but with a modification caused by the ballistic front
that produces a Doppler peak in the power spectrum.

As an example of normal transport, consider the case for
decaying exponentially-distributed persistence times and no
resting time. The persistence time distribution and its Laplace
transform are

ψ (t) =
1
t0

exp(−t/t0) = γe−γt

ψ (s) =
1

1+ st0
.

(4.47)

The complex expression in terms of space-time coupling of
the ballistic front is

ψ (s+ iqv) =
γ

γ+(s+ iqv)
. (4.48)

The survival fraction is

Ψ (q,s) = Re

{
1−ψ (s+ iqv)

s+ iqv

}
=

s+ γ

(s+ γ)
2
+(qv)2

(4.49)

and the inverse Laplace transform is

L−1

(
s+ γ

(s+ γ)
2
+(qv)2

)
= e−t/t0 cosqvt (4.50)

which is the decaying autocorrelation function of two delta
functions moving at speeds ±v. The Fourier transform in this
case is

FT
(
e−|t|/t0 cosqvt

)
=

γ√
2π

[
1

γ2 +(ω− qv)2

+
1

γ2 +(ω+ qv)2

]
(4.51)

which is a power spectrum with a Doppler peak at ωD = qv.
The CTRW model lends itself to straightforward numer-

ical Monte Carlo simulations. The phases of the partial waves
scattered from a collection of N particles, that are distributed
in three dimensions, depend only on the detection direction
relative to the transport direction and hence depend only on
transport in one spatial dimension. The initial phases of the
scattered fields are randomly selected, and the transport of N
one-dimensional walkers proceeds according to the probabil-
ity distributions of the CTRWmodel. The net scattered field is
a linear superposition of individual scattered fields.

Monte Carlo examples are shown in figures 15 and 16 for
1D motion and a constant speed v0 = 300 nm s−1 with decay-
ing exponentially distributed persistence times. The Doppler
numbers in the two cases shown are ND = 0.3 and ND = 3
which are in the cross-over regime between ballistic and dif-
fusive transport. The position distribution in figures 16(a) and
(b) (on log position) for the lower Doppler number ND = 0.3
broadens diffusively over time. The case for figures 16(c) and
(d) for higher Doppler number ND = 3 has a ballistic front at
early times that converts into a diffusive front at later times.
The RMS displacements as functions of lag time are shown in
figure 17(a) for the two Doppler number cases. The RMS dis-
placement is ballistic at short times and converts to diffusive
at late times. The cross-over from ballistic to diffusive trans-
port occurs later for the higher Doppler number case. The dif-
fusive 1D transport for the lower Doppler number produces a
fluctuation power spectrum that is diffusive for both the het-
erodyne and homodyne spectra, and the ballistic front for the
higher Doppler number causes a broad Doppler peak in the
power spectrum in figure 17(b). Higher Doppler numbers have
sharper peaks in the 1D transport case.
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Figure 15. Particle probability distribution function for constant 1D velocity at different times from 0.8 s to 80 s for v = 300 nm s−1. The
100 000 particles begin at t = 0 as a delta function. At early times there is a ballistic front, seen as the double peaks, and a scattered fraction
seen as the values between the peaks. The ballistic fronts decay exponentially, and at late times convert to a broad diffusive background.

Figure 16. One-dimensional Monte Carlo particle distribution functions for v = 300 nm s−1 and Doppler numbers ND = 0.3 and 3 with
decaying exponential persistence times. (a) Linear and (b) log position distribution for ND = 0.3 at successive times. (c) Linear and (d) log
position distribution for ND = 3 at successive times. The ballistic front converts over time to a diffusive profile.

The Monte Carlo simulations for 1D transport are aver-
aged isotropically to represent the situation inside isotropic
living tissue. As discussed in section 2.2, most active trans-
port inside tissue is isotropically-averaged 1D motion rather

than 3Dmotion. The distinction is important, because the fluc-
tuation power spectra for isotropically-averaged 1D transport
are not equivalent to the spectra for isotropic 3D transport.
TheMonte Carlo simulations are extended to ensembles of 1D
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Figure 17. Effect of Doppler number for decaying exponential distribution of persistence in one-dimensional Monte Carlo simulations. (a)
The RMS displacement versus time. Transport for higher Doppler number maintains ballistic behavior for longer times than for smaller
Doppler numbers before becoming diffusive. (b) Spectral power densities versus frequency for one-dimensional transport for ND = 0.3 and
3 for heterodyne and homodyne spectra.

Figure 18. Isotropic Monte Carlo angular averaging over 1D oriented transport for v = 300 nm s−1 and tp = 0.5 s. (a) The RMS
displacement as a function of lag time for 1D versus isotropically-averaged 1D transport for ND = 3. The RMS displacement after
averaging is ten times smaller than the 1D value, but the break in scaling between ballistic and diffusive transport is retained. (b) Homodyne
and heterodyne spectral power densities for 1D versus isotropically-averaged 1D transport for ND = 3. The isotropically-averaged Doppler
‘peak’ is converted to a Doppler ‘knee’.

transport oriented at different angles relative to the light backs-
cattering direction, and the power spectra are averaged. The
results of a Monte Carlo simulation of isotropically-averaged
1D transport are shown in figure 18 for the ND = 3 case. The
RMS displacement and power spectrum of the isotropically-
averaged results are compared to the 1D case. The RMS dis-
placements are reduced because of the additional degrees of
freedom, but the transition from ballistic to diffusive beha-
vior is not affected by the angular averaging. Doppler spec-
tra are shown in figure 18(b). The Doppler ‘peak’ for 1D
transport is converted by the angular averaging to a Doppler
‘edge’. Higher Doppler numbers produce sharper edges. This
Doppler edge is the dominant feature in experimental results to
be shown in section 5. The knee frequency on the homodyne

spectrum is equal to twice the knee frequency of the hetero-
dyne spectrum.

Changes in intracellular transport, for instance caused by
applied therapeutics or changing environmental conditions
such as temperature or osmolarity or pH, have the largest
effects on the edge feature in the power spectra similar to mod-
ulation spectroscopy in solid state physics [288]. An example
simulation is shown in figure 19(a) for a Doppler edge with
ND = 3 under a 30% decrease in transport speed. The differ-
ential change in figure 19(b) shows a dip at the Doppler fre-
quency for the homodyne and heterodyne spectra. Modulation
spectroscopy of the Doppler edge is an important technique in
the study of pharmaceutical effects on living tissue described
in section 5.
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Figure 19. Example of isotropically averaged Doppler-edge spectroscopy for tp = 0.5 s and ND = 3. The transport speed decreases from
300 nm s−1 to 200 nm s−1. (a) Homodyne and heterodyne power spectra. (b) Log-difference of the Doppler edge spectra for homodyne and
heterodyne.

Figure 20. Exponential persistence for v = 300 nm s−1 with persistence time tp = 0.5 s and rests for 1D transport. (a) The RMS
displacement versus lag time for one-dimensional motion for two waiting times tw = 0 and 0.5 s. (b) Homodyne and heterodyne spectral
power densities for one-dimensional motion. The extra wait time shifts the effective Doppler number to lower values, shifting the transport
from ballistic to more diffusive.

4.4.2. One-dimensional persistent walks with rests. Most
biological transport is composed of persistent walks followed
by rests. When the resting time distribution is ρ(τ) then the
number of walkers remaining at rest after a time t is

R(t) = 1−
tˆ

0

ρ(τ)dτ (4.52)

and the propagator becomes [289]

W(q,s) =
[Ψ (s+ iqv)+Ψ (s− iqv)]ρ(s)+ 2R(s)

2− ρ(s) [ψ (s+ iqv)+ψ (s− iqv)]
. (4.53)

As an example, for decaying exponential distributions of
rest times

ρ(t) =
1
τr

exp(−t/τr) , ρ(s) =
1

1+ sτr

R(t) = 1− exp(−t/τr) , R(s) =
sτr

s(1+ sτr)
. (4.54)

The propagator, even in this simple case, is not easily inver-
ted. Monte Carlo simulations are shown in figure 20 for 1D
transport and ND = 3 with a mean rest time tr = 0.5 s com-
pared to no rest time. The extra rest time slows the transport
and shifts the transport and power spectra to more diffusive
behavior. The effect is particularly dramatic in the case of
the power spectra. The 1D Doppler peak (for 1D transport)
is broadened substantially by the extra rest time. The effective
Doppler number in this case is reduced from the no-rest-time
value to

N∗
D =

qv0t0√
1+ t2r /t

2
0

. (4.55)

The results in figure 20 are for one-dimensional trans-
port. Isotropically-averaged transport further reduces the bal-
listic signatures in the power spectra into apparently diffusive
spectra.

The trend towards apparent diffusive signatures of intra-
cellular transport caused by multiple overlapping spectra
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is a common property of intracellular Doppler spectro-
scopy. Despite the relatively long persistence lengths of the
intracellular constituents, which produce bare Doppler num-
bers exceeding unity, non-uniform transport with frequent
rests produces linear MSD functions and apparent diffus-
ive spectra without strong spectral signatures at the Doppler
frequency. However, Doppler power spectra retain remnants
of the Doppler edge, and small perturbations of the prob-
ability distributions associated with intracellular transport
can produce subtle changes in the power spectra that can
be interpreted in terms of changing transport parameters.
Experimental observations of some of these effects will be dis-
cussed in section 5.

4.5. Anomalous transport

When the distribution functions Ψ(τ ) and ρ(τ ) for persist-
ent transport and rests, respectively, have finite moments,
they produce normal transport that transitions from ballistic
to diffusive as the effective Doppler number decreases from
greater than unity to less than unity. For Gaussian distribu-
tions, the MSD increases linearly with time, while in the bal-
listic case it increases as the square of time. Both of these lim-
its are considered part of normal transport with a transition
regime between the limits that is also part of normal transport.
However, if one or both of Ψ or ρ have divergent low-order
moments, then anomalous transport occurs. Anomalous trans-
port has non-polynomial MSD, usually varying as a power law
in time for short times [290–292], but extending over at least
an order of magnitude, which distinguishes such scaling beha-
vior from simple transitions between limits. The MSD in the
scaling regime is

∆x(t)2 ∼ L2
0

(
t
t0

)δ

= Kδt
δ. (4.56)

When δ > 1 the transport is called superdiffusive, and when
δ < 1 the transport is called subdiffusive.When δ= 1 the trans-
port is Brownian or diffusive. One of the simplest examples of
anomalous random walks are drawn from Lévy stable probab-
ility distributions [134, 278, 292–294].

4.5.1. Levy stable distributions. Probability distributions
can have power-law behavior at large values of the argument,
such as

P(ω)∼ 1

|ω|1+α
(4.57)

which is called a heavy tail as the probability falls more slowly
than exponentially. Heavy tails cause rare high-amplitude
events known as outliers (and sometimes as ‘black swans’).
However, these events are fundamentally part of the distribu-
tion and can have a disproportionate effect on variances or
mean values. These distributions include the so-called stable
distributions for which a sum of two independent random vari-
ables sampled from a stable distribution have the same dis-
tribution. For instance, the sum of two Gaussian-distributed
independent variables is also Gaussian distributed.

A probability distribution can be defined as the Fourier
transform

P(x) =
1
2π

∞̂

−∞

φ (k)e−ikxdk (4.58)

of a function φ (k) known as the characteristic function of the
probability distribution. The Lévy symmetric stable distribu-
tion is defined through a characteristic function as

PL (x) =
1
2π

∞̂

−∞

e−γ|q|α cos(qx)dq (4.59)

which has the parameters α and γ, and the characteristic func-
tion is a stretched decaying exponential. The Lévy distribution
has a power law tail given by equation (4.57), but has a charac-
teristic length scale set by the parameter γ. The Fourier trans-
form of the Levy distribution is simply the stretched decaying
exponential characteristic function

WL (q) = e−γ|q|α . (4.60)

This form comes in handywhen considering light scattering
from motile subcellular constituents displaying Levy distribu-
tions of mean free path.

The Levy stable distributions have several recognizable
special cases. The special case of the Lévy distribution for
α= 2 is a normal (Gaussian) distribution, and the special case
of the Lévy distribution for α = 1 is the Cauchy distribution
given by

PC (x) =
1
π

γ

γ2 + x2
. (4.61)

The Cauchy distribution has a scale set by γ, but it has
a divergent mean value, violating the central limit theorem.
When a distribution satisfies the central limit theorem, increas-
ing the number of samples from the distribution allows the
mean value to converge on a finite value. However, for
the Cauchy distribution, increasing the number of samples
increases the chances of obtaining black swan events, which
skews the mean value that diverges in the limit of an infinite
number of samples.

Stable distributions with divergent moments are suspec-
ted to play roles in biology. For instance, a random walk
with a Levy distribution of path lengths can be an effi-
cient means for an organism to search for food [295, 296].
Similarly, Levy flights can participate in intracellular transport
processes [297–299] and cell migration [300]. Resting times,
as well as persistence lengths, can have stable distributions and
may explain why anomalous transport occurs in intracellular
motion. Examples of Levy stable PDFs are shown in figure 21
for a range between α = 1 (Cauchy) and α = 2 (Gaussian).
For the case α = 1.99, which is very close to the Gaussian
distribution, the heavy tail is still apparent.

In anomalous transport, either or both distributions Ψ(τ )
and ρ(τ ) for persistence times and rest times can have Lévy
stable distributions. To distinguish between these possibilities,
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Figure 21. Levy stable probability distribution functions from α = 1 (Cauchy) to α = 2 (Gaussian) plotted against the Lévy-function
argument.

Table 3. Long-time limits of the CTRW model [301].

Length: regular Length: 1 < α < 2 Length: 0 < α < 1

Rest time: regular Brownian diffusion Superdiffusion Ballistic (Levy flight)
Rest time: 1 < β < 2 Brownian diffusion Superdiffusion Ballistic (Levy flight)
Rest time: 0 < β < 1 Subdiffusion Mixed or subdiffusion Mixed

the Lévy exponents will be represented by α and β, respect-
ively. The participation of the exponents α and β in the subdif-
fusive or superdiffusive character of the transport depends on
the range of the exponents and on their combination. The pos-
sible combinations in the long-time limit are shown in table 3
[294]. If the resting time is exponentially distributed (regu-
lar) and 1 < α < 2 then superdiffusion results. However, for
smaller values of the power 0 < α < 1 the transport becomes
ballistic in the sense that the mean persistence length, even for
finite sampling, can exceed the size of the observation volume.
Conversely, if the transport length is exponentially distributed
(regular) and the resting-time exponent has the range 1<β < 2
then the net transport remains diffusive, only becoming sub-
diffusive for much smaller powers 0 < β < 1. There is also
the possibility of mixed behavior when there is a competition
between divergent persistence lengths and divergent resting
times.

Within the cellular environment, transport cannot have
strictly divergent moments because of the finite size of the cell
and the finite size of intracellular components. In cell biology,
the heavy tails of Levy distributions within the cell are trun-
cated and the probability density vanishes above a set size.
This is known as a truncated Lévy distribution. Because of
this finite cutoff, all moments of a truncated Levy distribu-
tion are convergent, and in the long-time limit all processes
converge on Gaussian processes. A rough rule of thumb for
the maximum range is half the diameter of a cell. Typical epi-
thelial cells have diameters around 10 µm, setting the limited
range of motions to approximately Lmax = 5 µm. For intra-
cellular transport, this sets a maximum Doppler number at
NDmax = qLmax = 60 although many processes will be limited
to about a micron, such as membrane undulations or transport

inside the nucleus, limiting the maximum Doppler number for
these processes to approximately NDmax = 10. Despite this
transformation from anomalous to regular statistics with trun-
cation, the convergence is slow and is slower for heavier tails.
In the intermediate-time limit, experiments that measure trans-
port only within finite ranges often observe anomalous expo-
nents. However, in the short time limit, all actively-driven pro-
cesses, whether truncated or not, are ballistic.

4.5.2. Levy persistence-time distribution. To gain some
intuition about light scattering from Lévy walks, Monte Carlo
simulations provide an easy path to visualize distributions
of transporting particles as well as the central probability
distribution W(x,t). A Monte Carlo simulation of the one-
dimensional trajectories of 50 Levy walkers with a uniform
speed with α = 1 (Cauchy distribution) and with no rest-
ing time is shown in figure 22(a). Many walkers have per-
sistent flights within the time frame that produce a superdif-
fusive spread of positions. The distribution function W(x,t) is
shown in figure 22(b). At very short times, it is composed of
a delta function traveling at the ballistic speed of the walk-
ers. At later times, the decreasing-amplitude delta-function on
the leading edge represents the surviving fraction of ballistic
walkers, while the positions of ‘scattered’ walkers develop into
a diffusive distribution as the delta function vanishes.

The RMS displacements for 1D walks are shown in
figures 23(a) and (c). The Levy walk remains ballistic (super-
diffusive) throughout the time range. The associated homo-
dyne and heterodyne spectra from the simulations are com-
pared in figures 23(b) and (d) to regular transport (Laplacian
distributions). The Doppler number for the regular transport is
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Figure 22. Stochastic simulations of displacements for v = 1 µm s−1, α = 1, γ = 1, and tp = 0.5 s. (a) Position vs. time for 50
one-dimensional Levy walkers (no rests) that all start at the origin with the same speed. The persistence lengths are Levy distributed. (b)
The probability distribution function (PDF) for a group of walkers with a Cauchy distribution of persistence lengths for successive times.

Figure 23. Stochastic simulations of Levy walks for Cauchy (α = 1) distribution of persistence lengths with no rests for 1D transport with
v = 300 nm s−1 and tp = 0.5 s. (a) Mean-squared displacement for regular (decaying exponential) and Levy transport as a function of time.
The Levy transport remains superdiffusive through late times. (b) Power spectra (homodyne and heterodyne) for one-dimensional walkers
with regular compared with Levy persistence length distributions as a function of frequency. (c) Mean-squared displacements for
one-dimensional and isotropically averaged Levy walks. (d) Comparison of power spectra of one-dimensional and isotropically averaged
Levy walks.
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ND = 3. The persistent motion of the walkers for the Cauchy
distribution produces an effective Doppler number ND > 3
with an enhanced Doppler peak in the spectra. The isotrop-
ically averaged case is shown in figures 23(b) and (d) showing
the Doppler peak converted to a Doppler edge in the spectra.
The power-law slope of the spectral density above the edge
is steeper than −2, which is a signature of the Doppler effect
from the transport. Experimental studies of light scattering that
display steep slopes above the edge are one direct indication
of persistent transport in the sample.

Uniform velocities are not observed in living systemswhich
are governed by probability distributions. For instance, the
maximum speed for organelle transport by a single motor pro-
tein sets an upper bound for the speed, but variable local envir-
onments reduce individual organelle speeds to a range of lower
values. Figure 24 shows 1D transport for a Levy persistence
length and no resting for three speed distributions: uniform
speed (a delta function speed distribution at 300 nm s−1), a
uniform distribution between zero and the maximum speed of
300 nm s−1, and an isotropic average of the uniform speed
distribution. The uniform speed distribution produces the same
spectrum as the 1D isotropically averaged case in figure 23(d),
because the average speeds for isotropic averaging is form-
ally equivalent to uniformly distributed speeds. The maximum
speed still produces a sharp Doppler edge. When the uni-
form speed is isotropically averaged, the heterodyne spectrum
retains a Doppler edge, but in the homodyne spectrum the
Doppler edge is significantly softened. This is the general trend
for Doppler light scattering in living tissue. Although indi-
vidual persistence lengths may yield Doppler numbers well
into the Doppler regime, broad speed distributions and iso-
tropic averages convert Doppler edges to spectral shapes that
may be difficult to distinguish from diffusive spectra.

4.5.3. Levy resting-time distribution: subdiffusion limit. In
the long-time limit, a simple analytical model of subdiffusion
is obtained from the CTRW model with exponentially distrib-
uted (regular) persistence lengths and Levy-distributed (anom-
alous) resting times. The PDF in the long-time limit is [302]

W(x, t) =
1√

4Kβ tβ

∞∑
n=0

(−1)n

n!Γ(1− (n+ 1)β/2)

(
x2

Kβ tβ

)n/2

(4.62)
for 0 < β < 1. The MSD for Levy resting times is

〈
x2 (t)

〉
=

2Kβ

Γ(1+β)
tβ (4.63)

where β = 1 is the Brownian diffusion limit. As β decreases
from unity the transport becomes more subdiffusive. The
probability distribution function is shown in figure 25 for
β = 0.5 (subdiffusive) compared to β = 1 (Brownian). The
Levy waiting-time distribution creates sharper features and
narrower distributions.

The modes for different wavenumbers q in the distribution
functionW(q,t) decay as Mittag–Leffler functions that replace

Figure 24. Stochastic simulations of Levy distribution of
persistence lengths (no rests) for 1D transport, 1D uniform speed
distribution, and isotropically-averaged uniform speed distribution
for heterodyne and homodyne detection with v = 300 nm s−1,
α = 1, tp = 0.5 s. The uniform distribution of speeds in 1D give the
same results as the isotropically-averaged constant-speed case of
figure 23(d), but isotropic averaging of the uniform distribution
further softens the Doppler edge.

the simple exponential decay of Brownian diffusion with the
decay function

W(q, t) = Eβ

(
−q2Kβ t

β
)

(4.64)

where the Mittag–Leffler function is

Eβ (−z) =
∞∑
n=0

(−1)nzn

Γ(βn+ 1)
. (4.65)

The time dependences of the decay of W(q,t) for a given
q and a range of values for β are shown in figure 26(a). The
temporal Fourier transformsW(q,ω) are shown in figure 26(b).
The Cauchy distribution of resting times for β = 1, though
having a divergent mean, produces a conventional diffusion
spectrum. As the exponent decreases below unity, the Doppler
edge converts to a 1/f spectrum.

The asymptotic short-time behavior of W(q,t) is

W(q, t)≈ 1
1+ q2Kβ tβ/Γ(1+β)

(4.66)

and the asymptotic long-time behavior is

W(q, t)≈ 1
1+ q2Kβ tβΓ(1−β)

. (4.67)

The long-time behavior is also expressed as an infinite
series

W(q, t) =
∞∑
n=0

(−1)n
q2Kβ t−β(n+1)

Γ(1−β (n+ 1))
. (4.68)
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Figure 25. Probability distribution functionW(x,t) for the Levy resting-time model for (a) β = 0.5 and (b) the Brownian distribution β = 1.

Figure 26. (a) Mittag–Leffler functions versus time extending from the exponential (β = 1 dashed) to the extreme tail regime. (b) Fourier
transforms of Mittag–Leffler functions versus frequency from the Cauchy limit to the subdiffusive regime.

Monte Carlo simulations of fluctuation spectra for one-
dimensional transport with Laplacian persistence distribution
and Lévy resting times are shown in figure 27 forND = 3 com-
pared to exponential resting times. The subdiffusive charac-
ter of the heavy-tail resting times produces an rms displace-
ment that scales with time with a reduced exponent. It also
reduces the effective Doppler number and produces a diffuse
knee. A new feature appears in the homodyne spectrum in the
case of Levy resting times. The Doppler peak in the homo-
dyne spectrum occurs at the Doppler frequency rather than at
twice the Doppler frequency, which was the usual situation for
all previous cases studied above. This effect is caused by ‘self
heterodyning’. The divergent resting times produce a substan-
tial population of stationary scatterers that scatter light with
no Doppler shift, acting as ‘internal’ local oscillators. These
local-oscillator partial waves beat against the Doppler-shifted
frequency of the moving population, producing a pseudo-
heterodyne spectrum even in the case of no external reference
wave.

4.5.4. Levy persistence and resting-time distributions: mixed
case. When both the persistence lengths and the resting
times have Lévy stable distributions, a mixture of behavior

results. An example is shown in figure 28 that compares
normal transport having ND = 3 to the mixed case with α = 1
and β = 1 (Cauchy) and tp = 0.5 s and tw = 0.5 s. In the
normal transport case, the RMS displacement starts ballistic-
ally and transitions to diffusive at long times. The mixed Lévy
case starts with super-ballistic displacements and transitions
to ballistic at long times. The corresponding fluctuation power
spectra in figure 28(b)) show the clear Doppler peak (for one-
dimensional transport) caused by the Lévy tail on the persist-
ence length despite the heavy tail on resting times. The self-
heterodyne peak in the homodyne spectrum is much more dis-
tinct in this case.

4.5.5. Fractional Brownian motion (fBm). Fractional
Brownian motion (fBm) is an alternative approach to anomal-
ous transport that connects with Levy statistics in some limits
[303]. The trajectories generated by fBm statistics have self-
similar structures related to Hurst exponents [304] and arise
in many transport systems such as finance and turbulence
[292, 294, 305]. In the context of biological transport, fBm
can yield a continuous range of behavior from subdiffusion,
through conventional diffusion, to superdiffusion without the
divergent moments associated with the heavy tails of the Levy
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Figure 27. Stochastic simulations of displacements and power spectra for 1D (not isotropically averaged) Laplacian persistence lengths
with Lévy resting times and uniform speed of 300 nm s−1. The characteristic values are tp = 0.5 s and tw = 0.5 s with α = 1 and β = 0.5.
(a) RMS displacement versus lag time. (b) Power spectra versus frequency. The double peaks in the homodyne spectra are the result of
self-heterodyne of moving walkers against stationary ones.

Figure 28. Stochastic simulations for one-dimensional motion with v = 300 nm s−1 and ND = 3 for regular (exponential tp = 0.5 s) and
Levy persistence and waiting times (tp = 0.5 s and tw = 0.5 s with α = 1 and β = 1). (a) RMS displacements versus lag time. (b) Power
spectra versus frequency for 1D (not isotropically averaged) mixed Lévy transport (Levy persistence and rests) compared to normal
transport (decaying exponential persistence and rests). Compare (b) to figures 21(b) and 25(b).

distributions. Fractional Brownian walks are non-Markovian,
and superdiffusion is caused by correlations among suc-
cessive steps rather than by large excursions in single steps.
Subdiffusion is caused by anticorrelations among successive
steps.

Simulations of fractional Brownian statistics can be imple-
mented through Monte Carlo simulations using Cholesky
decomposition. A discrete matrix is constructed through

Γ(t,s) =
1
2

(
s2H+ t2H−

∣∣t− s2H
∣∣) (4.69)

for integers t, s= 0:N + 1 to describe a walk of N steps where
H is the Hurst exponent. This matrix is decomposed into the
square root matrixΣ such thatΣ2 =Γ through Cholesky spec-
tral decomposition. If the eigenvalues and eigenvectors of Γ
are λi and |vi⟩, then the matrix Σ is given by

Σ̂ =
N+1∑
i=1

λ
1/2
i |vi⟩⟨vi| . (4.70)

To generate awalk ofN steps, construct a sampling ofN+ 1
values |ui⟩ from the normal distribution, then construct the
fractional random walk by the matrix product

|fi⟩= Σ̂ |ui⟩ . (4.71)

The N individual steps of the walk are the differences
∆fi = fi+1 − fi. For H = 0.5 this yields the conventional ran-
domwalk. For 0<H < 0.5 this produces subdiffusion, and for
0.5 < H < 1 this produces superdiffusion. Examples of frac-
tional Brownian walks are shown in figure 29 for H = 0.15,
H = 0.5 andH = 0.85. The persistence and correlated motions
for the highHurst exponent produce smoother trajectories with
larger MSDs than for normal diffusion. The anticorrelations
for theHurst exponent less than 0.5 produce rapidly fluctuating
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Figure 29. Fractional Brownian walks for H = 0.15, 0.5 and 0.85 plotting displacement versus time. The conventional random walk occurs
for H = 0.5, and subdiffusion and superdiffusion occur for H = 0.15 and H = 0.85, respectively.

Figure 30. Fractional Brownian motion with superdiffusive and subdiffusive behavior for H = 0.85 and H = 0.15, respectively. The speed
is v = 300 nm s−1 with tp = 0.5 s. (a) RMS displacement versus lag time. (b) Power spectrum versus frequency.

trajectories with smallerMSDs. TheMSD and the power spec-
tra for 1D motion are shown in figure 30 forH = 0.15, 0.5 and
0.85.

4.5.6. Aging in anomalous transport. Aging in transport is
a form of non-stationary behavior for which particles that
initially diffuse (or walk) freely are ultimately constrained by
their environment [133]. For instance, this is a well-established
model for molecular diffusion within cell membranes [306] in
which themembrane is composed of compartments which cor-
ral molecules within so-called picket fences. Organelle trans-
port also clearly has this limited transport when the organelle
displacement exceeds the persistence length of cytoskeletal
elements, and cell membrane motions are limited when they
approach the scale of the cell. These simple size-limit con-
straints enter anomalous transport as an aging process in which
the effective diffusion coefficient is time dependent (the coef-
ficient ‘ages’) and vanishes for times longer than the dif-
fusion time to reach the compartment limits. This kind of
aging causes subdiffusive behavior. It is also possible to have
diffusion coefficients that increase with time, for instance
through directed transport, leading to superdiffusive behavior.

A model that captures these behaviors is scaled
Brownian motion with a time-dependent diffusion coefficient
given by

D(t) = ηKηt
η−1 (4.72)

leading to transport that is subdiffusive for 0 < η < 1 and
superdiffusive for η > 1, with normal diffusion for η = 1. This
form of aging has been incorporated into CTRW simulations
and compared with analytical results in [307]. Several non-
intuitive trends emerge from analysis of the MSD under con-
ditions of aging, such as a shorter ballistic regime under super-
diffusion and a longer ballistic regime under subdiffusion.

The MSD for an aging process is calculated after an aging
time ta, for which the MSD is [307]

⟨x2a (t)⟩= 2

tη+tˆ

tη

dt1

tη+tˆ

t1

⟨v(t1)v(t2)⟩dt2 (4.73)

which integrates the two-time velocity correlation function.
In the CTRW model, when the aging time is the longest
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Figure 31. Effect of aging on one-dimensional CTRW simulations comparing normal to aged transport processes with v = 300 nm s−1,
tp = 0.5 s and for an aging parameter η = 0.5. (a) MSD versus lag time for normal and aged transport. (b) Spectral density for normal and
aged transport. Both are ballistic at early times, but the decreasing diffusion coefficient for the aged process produces sub-diffusive behavior.

time scale in the problem, the long-time behavior is nor-
mal diffusion independent of η. However, when the observa-
tion time exceeds the aging time, then anomalous transport is
observed with characteristic power law dependence on η.

A comparison of normal transport to aged transport with
η = 0.5 is given in figure 31 showing the spectral density
and MSD. The aging causes decreasing displacements with
increasing time, leading to a spread ofDoppler frequencies and
a loss of the Doppler peak (for one-dimensional non-angle-
averaged motion). The MSD is ballistic at short times in both
cases but becomes sub-diffusive at long times for the aged
case. Aging in the transport properties produces spectra that
are broadened and have no distinct Doppler edge. TheWiener–
Khinchine theorem breaks down for aging transport so that the
power spectrum is no longer the same as the Fourier transform
of the autocorrelation function. However, even in this case for
η = 0.5, the Wiener–Khinchine theorem still holds approx-
imately because the diffusion coefficient is changing slowly
relative to the sampling rate.

4.5.7. Summary of anomalous transport. Transport within
the intracellular environment is extremely complex, with act-
ive processes that tend to produce superdiffusive motion bal-
anced by a crowded cytosol and by intermittent processes
that tend to produce subdiffusive motion. Anomalous trans-
port is prevalent on both sides of this balance for all intracellu-
lar super-molecular structures. Smaller molecules may exper-
ience thermal diffusion within the cytosol, as observed using
FCS [192, 194], but even these processes can have anomalous
transport [197].

The CTRW model is a particularly relevant computational
tool for exploring the effects of different types of anomalous
transport on the Doppler light scattering spectra that might
be detected in an experiment. CTRW easily incorporates per-
sistent motion punctuated by durations of rest, and it easily
incorporates Levy stable persistence and resting times. The
Levy stable distributions are more general and powerful for

exploring intracellular transport than normal probability dis-
tributions. As the characteristic exponents of the Levy pro-
cesses change, it is possible to recover regular transport for
some ranges of exponent values, while for other ranges of
values, anomalous transport emerges naturally, either super-
diffusive or subdiffusive. Of particular interest is a balance
between divergent persistence times and divergent resting
times, where the superdiffusive effects are compensated by
the subdiffusive effects. In addition, the coexistence of diver-
gent persistence and rests produces interesting changes in
the Doppler fluctuation spectra, in particular the possibility
of ‘self-heterodyning’ of light scattered from moving objects
against light scattered from momentarily stationary objects.
The self-heterodyne situation under homodyne scattering con-
ditions (without an external referencewave) creates homodyne
Doppler peaks or edges at the characteristic Doppler frequency
rather than at twice the frequency. Such signatures, if they
could be detected using local light-scattering probes, would
lend insight into the competition between superdiffusion and
subdiffusion in intracellular transport.

Despite the competition between superdiffusion and sub-
diffusion, and the prevalence of directed active motion within
the cytosol (that might seem to favor superdiffusive behavior),
intracellular transport falls intrinsically in the sub-diffusion
regime for long-time correlations. This is because the length
scales involved with all intracellular transport are limited by
the size of the cell or by the size of compartments within the
cell, and all intracellular motion is spatially limited. This is
particularly important for processes that may have Levy beha-
vior for short runs, but all spatial Levy distributions must be
truncated. This immediately allows moments of the distribu-
tion of persistence lengths to converge to finite values. The
absence of heavy-tail outliers reduces otherwise superdiffus-
ive signatures back to normal signatures. On the other hand,
heavy tails in the rest-time distribution are not limited by spa-
tial sizes and may still diverge, inducing subdiffusive signa-
tures. Therefore, superdiffusion at long correlation times is not
a characteristic of living tissue, although either subdiffusion
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or superdiffusion or a mixture may be observed at short time
scales.

5. Detection of cellular motion and intracellular
transport using coherent light scattering

DLS dates back to the work of Smolokowski and Einstein on
light scattering from thermal fluctuations of liquids [308, 309].
The advent of the laser opened the field to coherent light scat-
tering studies through the Doppler effect [310, 311]. Many of
the early studies usingDLSwere on dilute systems such as col-
loidal solutions [312, 313] and motile bacterial populations in
liquids [314, 315] where the small Doppler shifts were detec-
ted using optical mixing. The shape of the Doppler spectrum
could be used to extract important physical properties of the
dynamic motions within these systems such as diffusion con-
stants and drift speeds [117].

DLS from living tissue shares similarities with the fluctu-
ation spectra observed from diffusion in colloidal solutions.
These similarities are superficial, because (as discussed in
section 3) transport in living tissue is highly active, far from
equilibrium, and is not diffusive, being composed of random
sets of persistent piece-wise constant drifts. DLS then becomes
an important tool for extracting the active transport processes
of living cells and tissues. Conventional techniques in this
area include quasi-elastic light scattering (QELS), diffuse-
correlation spectroscopy (DCS), DWS, and the coherence-
gated techniques of dynamic-contrast OCT, tissue-dynamics
spectroscopy (TDS) and differential dynamic microscopy
(DDM). Direct imaging of intracellular dynamics inside liv-
ing tissue is also becoming possible with the advent of super-
resolution microscopy [108], but this does not rely on coherent
light scattering and will not be part of this review.

5.1. Quasi-elastic light scattering (QELS)

QELS relates to the scattering of light by temporal fluctu-
ations of spatial refractive index inhomogeneities. The term
quasi-elastic specifically describes the small frequencies asso-
ciated with modulations of the incident light frequency. Center
frequencies in the visible are around 1014 Hz, while the fre-
quencies associated with index fluctuations are typically in
the range from sub-Hz to hundreds of Hz. The term quasi-
elastic also implies single-scattering or minimal multiple scat-
tering that may include multiple small-angle forward scatter-
ing plus a single large-angle scattering event. The term gen-
erally excludes high-multiplicity multiple scattering that is
more generally treated by DWS and diffuse correlation spec-
troscopy, discussed in later sections.

As described extensively in earlier sections of this review,
there are two limiting behaviors for DLS: the diffusive limit
and the Doppler limit. When transport lengths are much
shorter than the reduced wavelength, for instance in the case
of thermal Brownian motion of macromolecules, then there
is no Doppler effect and the fluctuations are purely diffusive.
In the other limit, when the transport lengths are much longer
than the reduced wavelength, even if the average motion of an

ensemble is isotropic, then the light scattering is in the Doppler
limit, and the fluctuation frequencies are directly related to the
mean speeds involved in the transport. In living tissue, trans-
port is mainly isotropic when averaged over sufficiently many
cells, and the Doppler behavior is observed in the side-band
spectrum even when the average Doppler frequency vanishes.

The earliest work on QELS began shortly after the inven-
tion of the laser in 1960. Dynamic laser speckle was recog-
nized early as a consequence of the internal dynamics of light-
scattering systems [312, 313, 316–318]. Interest expanded
from studies of macromolecules and small particles to include
the motions of larger-scale systems such as membranes and
gels [319–321] and systems in thermal non-equilibrium [322].
These studies soon included light scattering from living cells,
especially erythrocytes [256, 323] and active bacteria motions
[324, 325], and intracellular dynamics [326, 327] that resolved
speeds down to 100 nm s−1. The general field of dynamic
speckle fluctuations expanded rapidly to become a major ana-
lytical tool in biology and chemistry [118, 328–330]. Recent
directions of QELS research includes biomedical studies of
tissue and cartilage [331] and opthamology [332].

5.2. Dynamic-contrast optical coherence tomography (OCT)

Long-coherence light scattered from translucent volumetric
heterogeneous targets, such as medical biopsies, produces par-
tial waves from all depths, generating speckle that has little
or no depth discrimination. To localize the regions in a scat-
tering volume from which dynamic speckle is generated it is
necessary to introduce depth discrimination into the speckle
detection mechanism. This can be accomplished through OCT
[106, 333–337]. There are three distinct classes of OCT:
(1) coherence-domain; (2) Fourier-domain; and (3) image-
domain. These use different detection mechanisms.

Coherence-domain OCT was the original class of OCT
that was developed by Fujimoto et al at MIT [333, 338–343].
It uses coherence-domain laser ranging [344] with low-
coherence laser sources for which partial waves interfere only
when they share the same optical path length. In a heterodyne
situation with a low-coherence reference matched to the object
wave, the light can be localized to an effective optical section
inside a tissue target by matching the optical path length of the
scattered waves to the reference waves. Scattering from suc-
cessive depths is acquired by scanning a delay line in the ref-
erence arm of an interferometer to generate what is called an
A-scan. Translating an A-scan in a transverse spatial direction
across a sample generates a B-scan. The reliance on dual scan-
ning (depth and one transverse dimension) makes this form of
OCT slow to collect volumetric information.

An alternative to mechanical scanning in depth is through
the use of spectral interferometry [345] which is the basis
of Fourier-domain OCT [346–348]. Spectral interferometry
encodes depth information in spectrally dispersed interfero-
grams, allowing A-scan depths to be reconstructed through a
Fourier transform of interference fringes in a spectrogram, and
no scanning is required in the case of a fixed spectrum light
source. Alternatively, a swept-frequency narrow-band light
source can be used to generate the spectral interferograms. The
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sweep frequencies of these sources can be high, in the range of
100 000 A-scans per second, making the depth scanning much
faster than for coherence-domain OCT, but transverse mech-
anical scanning is still required to generate volumetric repres-
entations of the target sample.

Instead of scanning in depth as the fundamental signal
acquisition, image-domain OCT (also known as en face OCT
or full-frame OCT) [349–356] selects a fixed depth inside
the scattering volume by setting a delay on a reference wave
using a low-coherence light source and generates an instantan-
eous two-dimensional image for two transverse spatial dimen-
sions. The coherence gate to capture the image can be through
holography [349] or direct imaging in a microscope [351].
The simultaneous illumination of multiple spatial channels
in image-domain OCT creates a higher speckle background
through what is called channel crosstalk. This can be sup-
pressed by using broader-band light sources, or can be util-
ized to enhance speckle, for instance for DLS and FS. At a
fixed depth, image-domain OCT is the fastest form of OCT
for generating time-resolved speckle patterns.

In coherence-domain and image-domain OCT, the detec-
tion uses a low-coherence continuous source, such as a super-
luminescent diode, for which light sharing the same optical
path length as the reference produces interference fringes. The
spatial path-bandwidth product of a continuous-wave source
with a Gaussian spectrum is ∆z∆q= 8ln2. In a backscatter
geometry the momentum change is q = 2k, giving

∆z=
8ln2

∆
(
4π
λ

) = (2ln2
π

)
λ2

∆λ
(5.1)

as the depth resolution for coherence-gated backscatter ima-
ging. This longitudinal resolution is half of the coherence
length of the light source because of the backscatter configur-
ation. As an example, a light source centered on 840 nm with
a bandwidth of 50 nm has a lower bound on longitudinal res-
olution of 6 µm.

Multiple scattering and optical aberrations of light
propagating through tissue broadens the resolution as a func-
tion of the depth inside the tissue at which the coherence
gate is set. For instance, in the above example, at a coherence
depth set at d = 500 µm inside a tissue sample, the longit-
udinal resolution, in the absence of confocal spatial filtering,
is broadened to roughly ∆zbroad ≈ gd = 50 µm, where g is
the anisotropy factor of tissue. This is the typical longitudinal
resolution of full-field optical-coherence imaging (OCI) at
nominal half-millimeter depths. On the other hand, conven-
tional OCT is typically performed with high-NA optics which
introduces a confocal spatial filter that restricts the broadening
to values closer to the theoretical limit. Adaptive optics also
can be used to remove the optical aberrations to retain values
closer to the ideal limit set by the coherence of the source
[357].

The ubiquitous phenomenon caused by coherent light scat-
tering from living tissue is a speckle field that changes in
time, i.e., dynamic speckle. As discussed extensively in the
earlier sections of this review, the dynamics are caused bymul-
tiple light scattering from intracellular motions from the cells

Figure 32. Dynamic OCT speckle contrast images of a living
800 µm diameter tumor spheroid at depths (from top left to bottom
right) 60, 120, 190, 250, 330, 390, 460, 530, and 600 µm. The scale
bar is 100 µm and the color scale is from 40% to 100% speckle
contrast. The cellular motility (normalized standard deviation) at
selected depths shows the proliferating shell surround the hypoxic
and necrotic core. [Reprinted/Adapted] with permission from Jeong
et al [360] © The Optical Society.

inside the living tissue. Because there is a wide range of intra-
cellular components as well as sizes and speeds, the speckle
can be highly active with significant temporal fluctuations
that can be used to generate speckle contrast for imaging.
When combined with low-coherence interferometry to gate
light scattered from selected depths, coherence-gated speckle
contrast imagingwas the first form of dynamicOCT developed
to interrogate multicellular tumor spheroids [358] and tissue
culture [359].

The first three-dimensional en faceOCT imaging of living-
tissue speckle contrast imaging was performed on multicel-
lular tumor spheroids grown to a large size of about 1 mm
diameter in a bioreactor [360]. The speckle contrast images
are shown in figure 32 at successive coherence-gated depths.
The images are color coded for speckle temporal contrast
through normalized standard deviation. The outer shell of the
tumor spheroid consists of proliferating cells that are metabol-
ically highly active, producing high temporal contrast (reds
and oranges). Deeper inside the spheroid, the nutrients and
oxygen are depleted beyond approximately 200 µm from the
spheroid surface, leading to a hypoxic core with reducedmeta-
bolic activity (greens and blues). Because the tumor spher-
oid growth in the bioreactor takes weeks, the extended hyp-
oxic conditions in the core also produce necrotic regions that
are essentially static. However, multiple forward scattering
from the overlying layers produces a ‘shimmering shower-
glass’ effect that superposes a weak temporal speckle contrast
on the necrotic core. The dynamic range in speckle dynamic
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Figure 33. The early development of dynamic optical coherence tomography for intracellular dynamics. (a) Coherence-gated speckle
decorrelation times for healthy and poisoned tissue culture. Reproduced from Yu et al [358]. CC BY 4.0. (b) Dynamic OCT of speckle
contrast inside large tumor spheroid showing the hypoxic core surrounded by the proliferating shell. Reproduced from Jeong et al [360].
CC BY 4.0. (c) Mean-squared displacement versus time in OCT speckle images of diffusion and flow. Reproduced from Joo et al [362].
CC BY 4.0. (d) Tissue dynamics spectroscopy performed using dynamic OCT. Jeong et al [399]. CC BY 4.0.

contrast between the proliferating shell and inactive core indic-
ates that the shimmering shower-glass is no larger than about
40% and may be smaller because of residual activity inside the
core.

The interferometric detection principle behind OCT
enables the reconstruction of complex scattered amplitudes
in field-based OCT to study DLS to track diffusive particle
dynamics [361], to distinguish directional from diffusional
transport [362–365], and to differentiate stromal and epi-
thelial layers [366]. There is significant interest in flow in the
medical context of tissue perfusion, and DLS OCT provides
a transport tool [365, 367] that is complementary to Doppler-
based OCT [368–370]. Dynamic OCT initially expanded
into studies of apoptosis [105, 371, 372], chemosensitiv-
ity of tissues to chemotherapies [360, 373, 374], viability
of oocytes and embryos [375], and to improve image con-
trast in OCT [376]. Applications of dynamic OCT include
subcellular metabolic activity [105, 377–380], extracellular
matrix remodeling [381], and drug response of tissues [360,
374, 382–384]. It has also been applied to studies of plasma

flow [385, 386], dermatology [387], eye drainage [388], and
embryology [389–391]. For potential use for drug develop-
ment and diagnostics, dynamic OCT has been used to charac-
terize three-dimensional tissue culture [383, 392, 393], and for
testing chemotherapy cancer drug efficacy in animal preclin-
ical trials [394, 395] and in human clinical trials [396, 397].
Some of these applications are highlighted in figure 33.

5.3. Tissue dynamics spectroscopy (TDS)

The central analysis tool used in dynamic OCT is FS to
obtain the frequency-dependent spectral power density of tis-
sue dynamics. TDS combines the FS of DLS [118, 398] with
OCT to extract changes in the Doppler spectra of intracellu-
lar dynamics, for instance when living tissue is challenged by
environmental or exogenous agents [105, 399]. The Doppler
spectra of active transport in living tissue is broadband, ran-
ging from 10 mHz (or lower) up to tens of Hz. The transport
is generally isotropic and contains contributions from a wide
range of processes with widely different characteristic speeds.
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Figure 34. Intracellular Doppler spectrum of a healthy A2730
multicellular tumor spheroid on a log–log scale. The primary
features of the spectrum are the low-frequency plateau, the knee
frequency, the slope, and the Nyquist floor. The dynamic range
depends on the other feature values. This typical spectrum spans
three orders of magnitude in frequency and almost three orders of
magnitude in vertical dynamic range. The log–log slope is typically
between −1.5 and −1.7 for many tissue types. These data were
acquired at 25 fps for 80 s with an exposure time per frame of 10 ms.

These factors yield Doppler spectra that are broadband and
have only a few quantifiable features. These features include:
(1) an edge (or knee) frequency associated with the average
speed of intracellular transport, (2) a slope parameter that char-
acterizes the rate of decrease of spectral power with increasing
frequency above the knee frequency, (3) a Nyquist floor near
the Nyquist sampling frequency, and (4) a low-frequency plat-
eau. These features are illustrated in figure 34.

A differential approach is used in which a baseline spec-
trum is established to which spectral density changes are ref-
erenced after the application of a perturbation. The relative
change in spectral density is captured through the log differ-
ence of the spectrum at times after the perturbation is applied
relative to the baseline before the perturbation through

D(ν, t) = logS(ν, t)− logS(ν, t0) (5.2)

where t0 is the baseline time and ν is the frequency. The
time-frequency representation of the log difference is the drug-
response spectrogram. An example is shown in figure 35 for
the reference drug colchicine applied to a DLD-1 tumor spher-
oid. The baseline spectrum and the final spectrum are shown in
figure 35(a) and the time-frequency spectrogram is shown in
figure 35(b) for data acquired during 9 h after the application of
the drug. Colchicine inhibits tubulin polymerization, degrad-
ing the microtubule cytoskeleton. The action of colchicine on
the DLD tissue dynamics induces increased spectral density
at the Nyquist floor associated with increased organelle activ-
ity, increased spectral density at the low frequencies associated

with membrane and cell shape changes, and inhibition in spec-
tral content in themid frequencies associatedwith the knee and
power-law slope.

The differential format of TDS captures subtle changes
in intracellular motion caused by exogenous agents or envir-
onmental changes, and TDS presents a form of phenotypic
profiling for potential drug screening applications [400] that
seek to identify physiological responses of tissue to drug leads
early in the drug-development pipeline. For instance, a study
of several different reference drugs found significant differ-
ences among classes of drugs with different mechanisms of
action (MoA) [401]. A subsequent study of Raf inhibitors
on two different tissue types that contain wild-type versus
mutated BRAF receptors found differing efficacies for these
potential anti-cancer drugs in the two tissue types [374]. High-
throughput drug screening relies on three-dimensional tissue
culture that can be grown in different formats, such as hanging-
drop [402], U-bottom plate and bioreactor growth approaches.
Tissue dynamic screens of common drugs on tissues grown
using the different formats show different spectral responses
to the same drug [392], highlighting the importance of the con-
text of the three-dimensional environment for potential drug
screening applications that may depend on the role played by
cellular adhesions [403]. Biodynamic imaging and TDS have
also been used to monitor the metabolic activity of oocytes and
embryos for potential IVF applications [375, 390, 391].

Typical sample sizes for TDS range from 100 µm diameter
to 1 mm diameter. For the larger sample sizes, the fluctuation
spectra can be averaged over the entire sample to yield high
signal-to-noise performance. However, it is well known that
cancer tissue is highly heterogeneous with pronounced spa-
tial and genetic variability. Therefore, tissue dynamics spec-
troscopic imaging (TDSI) creates tissue-scale spatial maps
of the different changes in spectral content over a sample
optical section. The drug-response spectrograms can be con-
verted to features by time-frequency filters to isolate specific
spectral changes such as red- or blue-shifts or second-order
effects. The output values from these filters represent quantit-
ative spectral features that can be measured across a sample.
An example is shown in figure 36 that tracks red- and blue-
shifts along one color axis and broadband inhibition/excit-
ation across another color band in a four-color merge. The
resulting sample TDSI map of the drug response is shown
in figure 36(b) compared to optical maps and histology in
figures 36(c) and (d), respectively [404]. Further examples of
the four-color merged TDSI maps are shown in figure 37 for
esophageal cancer pinch biopsies, displaying the wide range
of spectral shifts that occur within relatively small samples of
only about 1mm3. This heterogeneity can provide insights into
the complexity of the cancer for individual patients and may
help guide personalized medical interventions.

Phase-sensitive TDS is an extension of TDS that uses com-
plex amplitudes reconstructed by digital holography [405]. In
addition to direct Doppler peaks that can be resolved spectro-
scopically for directed motion, it makes it possible to construct
phase PDFs. One example is shown in figure 38 for a healthy
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Figure 35. Spectra and spectrogram for colchicine applied to a DLD tumor spheroid at 25 fps for 80 s and 10 ms exposure. (a) The baseline
spectrum and the final spectrum as functions of frequency after application of 25 µM Colchicine. (b) The differential drug-response
spectrogram displaying the change in spectral content as a function of time (vertical axis) and average intracellular speed (horizontal axis)
where the Doppler frequency shift is converted to intracellular speed for the backscatter configuration at a wavelength of 840 nm. The drug
is applied at t = 0, and the spectral changes are relative to the baseline spectrum prior to the application of the drug.

Figure 36. Tissue dynamics spectroscopic imaging (TDSI) of a human esophageal pinch biopsy sample [404]. (a) Bivariate colormap
representing broadband inhibition and blue shift. (b) Bivariate TDSI map of human esophageal biopsy responding to 5-fluorouracil (5-fu).
(c) An iSPIM image with DRAQ 5 (blue) and Eosin (pink) for the same sample in (a), and (d) histology image. Reproduced from Li et al
[404]. CC BY 4.0.

DLD-1 tumor spheroid. The PDF is relatively flat up to phase
fluctuations of 0.1 rad, after which the probability falls off in
a power law. The sampling rate for these data is 25 frames
per second. To avoid the phase-wrapping problem, the phase
displacements are acquired between consecutive reconstruc-
ted holograms. Gaussian and Cauchy distributions are shown
for comparison to the best fit to the data by a Levy stable dis-
tribution with α = 1.6. The Gaussian (α = 2) and the Cauchy
(α = 1) distributions are limiting cases of Levy distributions
that are characterized by ‘heavy tails’ of probability. Levy
phase distributions from light scattering may arise from Levy
flights by subcellular components of the living tissue [297].

Related phase-sensitive techniques that are used for
optically-thin quasi-2D samples include quantitative phase
imaging (QPI) [152, 156] and quantitative phase digital
holography [153, 154, 406, 407]. These techniques perform
phase unwrapping [408–410] to recover the optical thickness
of cell and tissue samples. This approach can be used in live-
cell imaging to track dynamic changes in two-dimensional

cells and tissue culture [411–414]. However, quantitative
phase techniques generally break down in optically thick tis-
sue samples that have multiple scattering, although recent
approaches have been proposed to extend QPI into thicker
samples [415–417].

An emerging application for biodynamic imaging and TDS
is chemoresistance testing on cancer biopsy samples to predict
whether patients will respond to their chemotherapy. A pre-
clinical trial of 19 dogs with B-cell lymphoma was performed
to test the in vitro response of the lymphoma biopsies to CHOP
therapy that is a combination of doxorubicin, prednisolone,
vincristine and cyclophosphamide [395]. The same therapy is
used to treat human B-cell lymphoma. The dogs either respon-
ded well to the treatment and had a progression-free survival
time greater than 100 d (sensitive cohort), or they relapsed
quickly (resistant cohort). The average drug-response spec-
trograms are shown in figure 39 for the combination therapy
as well as the mono-therapies, divided into the sensitive and
the resistant cohort in figures 39(a) and (b), respectively. The
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Figure 37. Examples of merged four-color TDS images of human esophageal biopsies showing sample-to-sample variability in drug
responses. The color scheme uses contrasting colors for positive and negative values of the spectral signatures. The spectral signatures FL,
FM, and FH represent low, mid and high frequency, respectively, and G0, G1 and G2 represent broadband response, red/blue shift, and
central-frequency shifts, respectively. Lower right corners designate drug treatments. Drug abbreviations: DMSO, 0.1% DMSO in growth
medium (used as a negative control); cisp, 25 µM cisplatin; 5fu: 25 µM fluorouracil; tax, 5 µM paclitaxel; carbo, 25 µM carboplatin. ‘+’
indicates a combination of two drugs. Reproduced from Li et al [404]. CC BY 4.0.

Figure 38. Phase probability distribution function (PDF) for
phase-sensitive detection of intracellular motion in DLD-1 tumor
spheroids. The best fit to the data is a Levy stable distribution with
α = 1.6.

differences in the spectral responses are shown in figure 39(c).
The resistant phenotype is dominated by a mid-frequency
enhancement, while the sensitive dogs were more likely to
display a mid-frequency suppression with enhance organelle
and membrane activities that are representative of apoptosis

[401]. A similar study was completed for human ovarian can-
cer patients [396] and human bladder cancer patients [397]. In
both studies, TDS signatures were found to be correlated with
patient outcomes.

Bacterial infections and antibiotic resistance have already
become a serious health problem. The World Health
Organization reports 11 million deaths per year, and bac-
terial resistance is predicted to become a pressing problem by
2050 when more deaths may occur from bacterial sepsis than
from cancer. Bacterial infection of tissue culture is amenable
to study using TDS because of the strong motions of bacteria
driven by flagellar motors or by actin polymerization. An ini-
tial study of bacterial infection of DLD-1 tissues using TDS
found distinct spectral signatures for Escherichia coli (E. coli)
relative to Listeria monocytogenes (L. mono) and Salmonella
[418]. The baseline and mid- and long-term spectra for infec-
tion by E. coli and L. mono are shown in figure 40. The E. coli
infection (this strain was non-pathogenic) competes for nutri-
ents and suppresses the metabolism of the tissue culture host.
However, for L. mono infection, the listeria enters the cyto-
plasm of the host cells and co-opts the actin polymerization,
generating fast motions that are detected as high-frequency
enhancements in the spectra, as seen in figure 40(b). Antibiotic
drugs were applied to strains that were sensitive or resistant to
the drug, and strong responses of the bacteria to the drugs were
observed, suggesting a method for testing antibiotic efficacy
on a personalized-medicine basis in the case of patient sepsis
screening.
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Figure 39. Drug-response spectrograms (frequency 10 mHz to 10 Hz on horizontal axis and time −4 h to 12 h on vertical axis) of canine
B-cell lymphoma biopsies divided into sensitive and resistant cohorts for the combination therapy (CHOP) in addition to the individual
mono-therapies.

Figure 40. Experimental dynamic spectra of DLD-1 tissue culture during infection by bacteria plotting spectral density against frequency.
(a) Infection by E. coli reduces the metabolic activity of the host tissue. (b) Infection by pathogenic L. mono creates strong enhancement in
the organelle spectral band above 1 Hz. From [418].

5.4. Differential dynamic microscopy (DDM)

DDM is an optical microscopy technique that uses stacks of
images acquired at a set frame rate, combined with Fourier
transforms, to mimic DLS. Its advantages over conventional
DLS include higher signal-to-noise and ease of setup (simple
microscopy) [419]. The central operation is a difference
between two images ∆I(r, τ) separated by a time τ that
removes static features while highlighting variable features

that change between the two image acquisitions.When the dif-
ference images, selected by the time delay between frames, is
subjected to a two-dimensional spatial Fourier transform and
averaged over the time stack, the functionW(k,τ ) emerges as

W(k, τ) = ⟨FTk ◦∆I(r, τ)⟩ , (5.3)

which is similar to the functionW(q,τ ) at the core of DLS dis-
cussed in section 2.2. The difference arises between q and k,
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where q is the photon momentum transfer in DLS, while k is
the transverse momentum of the particles in the DDM images.
Complementary aspects of DLS and DDM include the use
of coherent versus low-coherence light sources, and longitud-
inal versus transverse displacements, respectively. Therefore,
the two techniques share much in common in analysis but are
complementary in terms of transport properties for which they
are respectively most sensitive. The coherent detection in DLS
is sensitive to nanometer scale longitudinal motions (Doppler
shifts), while the differential imaging in DDM is sensitive
to sub-micron-scale transverse motions. In consequence, the
characteristic times for a given transport process are much
shorter for DLS than for DDM. This gives DDM an advantage
when studying fast motions such as bacterial motility [420].
An additional advantage of the DDM image analysis is that
the momentum k is obtained as a vector quantity rather than a
single q value for a fixed scattering angle.

The physical principle of DDM is based on the stroboscopic
effect with two characteristic time scales. One is the shut-
ter speed, or exposure time, that freezes motion to within the
time duration of the exposure. The other characteristic time is
the time delay between subsequent acquisitions. If the change
in pixel intensity occurs faster than the exposure time, then
the effect is averaged out and no pixel intensity contrast is
observed. If the change in pixel intensity occurs slower than
the exposure time, then the motion is ‘frozen’ by the fast shut-
ter speed. During the time between image acquisitions, if the
change in pixel intensity is faster than the delay time, then the
two frames contain different intensities and have finite differ-
ences. But if the change in pixel intensity is slower than the
delay time, no difference is measured. Therefore, the rate of
pixel intensity change must be faster than the slowest frame
rate, but slower than the inverse exposure time (also known
as the detection bandwidth). The slowest response rate is the
inverse of the total time for acquiring all frames.

DDM is versatile because of its simplicity and has been
adopted for a wide range of applications [421–423]. It is used
primarily on optically thin 2D samples for which microscopy
retains its transverse resolution. For instance, in optically thin
biological samples, such as an oocyte, DDM has been used
to measure intracellular motions within the cells [424]. DDM
is making inroads into samples in the intermediate range of
optical thickness because the limitation to quasi-2D samples
can be partially overcome by confocal microscopy [425] and
light-sheet microscopy [426].

5.5. Diffusing wave spectroscopy (DWS) and
diffuse-correlation spectroscopy (DCS)

When light scatters multiple times in a dynamic medium, the
phase shifts accumulated from each of the scattering events
creates a multiple-scattering boost to the rate of the fluctu-
ations. Light scattering in tissue is highly anisotropic, with typ-
ical anisotropy factors of g = < cosθ> ≈ 0.9, where g is the
average of the cosine of the scattering angle θ, and most scat-
tering events are small-angle forward scattering which accu-
mulate only minimal phase shifts. This leads to a conceptual

model in the moderate-scattering regime of photons that for-
ward scatter into the tissue until they experience a high-angle
back-scattering event, after which the photon again forward
scatters until it leaves the medium. In this model, the majority
of the accumulated phase shift is caused by the (approxim-
ately) single high-angle scattering event. Scattering lengths in
translucent living tissue are typically on the order of 10 µm
(about the diameter of a single cell), and the high anisotropy
factor favors an extended transport length of approximately
100 µm before a high-angle scattering even occurs. Therefore,
light that penetrates several hundred microns into tissue is
in the moderate-scattering regime. However, light that penet-
rates a fraction of a millimeter or deeper into tissue is in the
strong scattering regime. In this case, the light acquires a high-
angle phase shift approximately every tenth of a millimeter.
Light with a total propagation length of 1 mm will experi-
ence approximately 10 high-angle events, increasing the fluc-
tuation rates by about half an order of magnitude over single-
scattering rates.

In the presence of multiple scattering, DLS information can
be extracted [165, 427] using DWS [166, 428–431]. The trans-
ition frommoderate to deep scattering is a topic that has attrac-
ted significant effort [432–435] as well as scattering in aniso-
tropic media [436]. Many applications of DWS involve rhe-
ology of complex media [188], as in actin filament networks
[107], motor-driven dynamics in actin-myosin networks [437],
and cross-linked polyacrylamide networks [438]. In biological
applications, DWS has been used to assess brain activity [439,
440], to monitor blood flow [441] and the visual cortex [442]
and cerebral blood flows [443]. Diffusing-wave spectroscopy
can be performed with interferometric detection using long
coherence [444, 445] or short coherence to resolve optical path
length [434, 446–449] as well as with swept-source for coher-
ence control [450] and with holographic detection [399, 451].

A closely related formalism for extracting dynamic inform-
ation from inelastic scattering deep in tissue is DCS [104,
452–454]. Although DWS and DCS share a common phys-
ical basis, they emerged from different contexts. DCS was
developed in the context of diffuse optical tomography (DOT)
[455–457] that uses light scattering in the diffusion limit to
perform tomographic imaging many centimeters inside tissue,
while DWS is a multiple-scattering extension of QELS and
often is used only up to millimeters inside tissue. In the case
of DCS, the same differential equation that described the dif-
fusive transport of spatial information in DOT also describes
the transport of temporal correlations inside tissue [104]. In
biological applications, DCS has been used to study tissue
response to burns [458] and to monitor tissue structure [459].
It is also useful for studying blood perfusion and flow in
tissues [457, 460–463]. As with interferometric DWS, DCS
can be performed interferometrically [464] to measure field
correlations.

5.6. Laser speckle contrast imaging (LSCI)

The dynamic imaging techniques discussed in this review
have focused on in vitro or ex vivo samples in the context of
biological science or diagnostics. However, a closely related
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Figure 41. Laser speckle contrast imaging of the vasculature under the thinned skull of a rat. (a) A single speckle image. (b) Speckle
contrast image. Reproduced from Boas et al [465]. CC BY 4.0.

light scattering technique in a clinical context is LSCI applied
primarily in vivo for imaging vasculature and blood perfusion.
Moving blood cells are highly dynamic targets for coherent
light scattering, generating rapidly varying laser speckle in dir-
ect imaging. Bymeasuring temporal speckle contrast in broad-
area images, it is possible to create detailed maps of blood ves-
sels in tissues.

The detection principle of LSCI is complementary to
dynamic OCT and DDM. Whereas the latter two techniques
rely on a short exposure time to act as a strobe, freezing the
high-contrast speckle pattern within a camera frame, LSCI
uses a long exposure time to average time-varying speckle to
partially wash out the speckle contrast. The temporal speckle
contrast is

K=
σ

⟨I⟩
. (5.4)

For an exposure time T and a decorrelation time τ c, the
speckle contrast is [465]

K2 = β

[
τc
T
+

τ 2c
2T2

(
exp

(
−2T
τc

)
− 1

)]
, (5.5)

where β is the instrumental contrast factor of the Siegert rela-
tion. An example of LSCI imaging vasculature is shown in
figure 41. In a single speckle frame shown in figure 41(a),
only slight changes in speckle contrast are observed, but in
figure 41(b) the temporal speckle contrast K shows high-
contrast images of vasculature under the thinned skull of a
rat. Blood speeds vary by orders of magnitude from a meter
per second when leaving the heart to centimeters per second
in small vessels in skin to millimeters per second in capillar-
ies. The Doppler frequency shifts (in backscatter) for these
speeds range fromMHz to kHz. In a transverse light-scattering
geometry relevant for imaging, speckle varies over time when
scatterers enter or exit a resolution volume. Assuming a resol-
ution of 20 µm, the speckle variation rates for the same speeds
are simply the inverse transit times, ranging from 50 kHz to
50 Hz. Therefore, typical exposure times to maximize the con-
trast in equation (5.5) for blood flow imaging is in the range
of a few to tens of milliseconds.

Speckle contrast imaging was first demonstrated in the
1980s but only became practical as a real-time imaging tech-
nique in the 1990s after the introduction of digital cameras
to capture the dynamic speckle [330, 466–468]. Speckle con-
trast imaging was demonstrated in the study of cerebral blood
flow in animal studies on rats [469]. The first clinical applica-
tion was in ophthalmology measuring retinal microcirculation
[470] followed by clinical applications in dermatology [471]
for the study of burns and laser therapy of birth marks [472].
The first clinical application of speckle contrast imaging in
the human brain was performed for intraoperative imaging of
blood flow [473]. The technique has also been used to mon-
itor onset of sclerosis [474] among a broadening array of fur-
ther applications [475]. LSCI can be combined with DCS to
perform speckle contrast optical spectroscopy [476, 477], and
with OCT for depth-resolved imaging of vasculature [478,
479]. Extensive reviews are available on broad applications of
speckle contrast imaging [465, 480, 481].

6. Conclusion

Macroscopic intracellular structures are driven by energetic
processes that are far from thermal equilibrium, and many
experience directed motion that is locally one dimensional,
whether they are organelles moved by molecular motors along
one-dimensional cytoskeletal tracks, or the membrane undu-
lating primarily through local normally-directed motions. The
persistence times and mean-free path lengths of these motions
tend to place them within the Doppler regime for which the
mean-free path length is larger than the reduced wavelength
in the tissue, and the persistence times are longer than the
inverse Doppler frequency shift. The Doppler spectral peaks
that would result from the one-dimensional motion are not
observed in light scattering experiments on tissue because the
motions are isotropically oriented. Even for a single transport
mechanism with a well-defined uniform speed, the projection
of the motion onto the direction of the photon momentum
change produces a distribution of Doppler frequency shifts
with zero mean and a Doppler ‘edge’, also known as the knee
frequency.
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The Doppler edge in the side-band fluctuation power spec-
trum is further broadened by the distribution of speeds asso-
ciated with most transport processes. Although molecular
motors carrying loads canmovewith relatively uniform speeds
under some conditions, the loads experience varying local vis-
cosities or other impediments, and themotors canmomentarily
detach during a rest in motion that reduces the effective speed.
Therefore, the fluctuation power spectrum is broadband and
featureless and qualitatively has the diffusive form of conven-
tional DLS. Nonetheless, remnant spectral signatures of the
underlying transport processes can still be observed in the fluc-
tuation spectra. For instance, the slope parameter for frequen-
cies above the knee frequency depends on anomalous transport
that occurs within the tissue. Ballistic or superdiffusive trans-
port produce steeper spectral slopes, and slope exponents near
or above 2 are indications of ballistic transport and the Doppler
edge.

Underlying transport processes can be uncovered through
perturbations of the underlying physical system. These per-
turbations can be from changes in the steady-state conditions
of the tissue such as temperature, nutrients, osmolarity and pH.
More mechanistic perturbations can use reference drugs that
affect specific processes in the tissue, such as molecular motor
poisons or cytoskeletal drugs that either stabilize the cytoskel-
eton against depolymerization or that inhibit polymerization.
For instance, the cytochalasins inhibit the polymerization of
actin filaments and degrade the cell cortex, lowering the bend-
ing stiffness of the cell membrane. The knee frequency itself
is particularly susceptible to changes in cellular metabolism
that can be affected by drugs that modify cellular energy pro-
duction, such as mitochondrial uncouplers or drugs that inhibit
respiration or glycolysis.

Another direction of attack to uncover underlying transport
processes takes advantage of the very broad-band nature of the
fluctuation spectra. Macroscopic transport processes within
the cell span a dynamic range of approximately three orders
of magnitude. Through a general trend imposed by the Stokes
drag equation, the motions of small structures are separated
in frequency from the motions of large structures, i.e. small
structures move quickly, and large structure move slowly.
This separates large-scale motion from small-scale motion and
large-scale function from small-scale function. This separa-
tion is demonstrated in the downstream effects of some drugs,
such as the induction of apoptosis by drugs that inhibit DNA
synthesis. Apoptosis is a particularly energetic process with
enhanced organelle transport as the cells disassemble them-
selves. Apoptosis also has dramatic membrane-based pro-
cesses as apoptotic bodies shed off the cell. Therefore, the
spectral signature of apoptosis is dominated by enhanced high-
frequency spectral density (enhanced organelle transport) and
by enhanced low-frequency spectral density (enhanced mem-
brane processes) while mid frequencies are suppressed [401].

There are many outstanding problems and directions for
future research exploring intracellular transport in living tis-
sues using DLS. Continuing to connect spectral changes
to direct physiological processes associated with discernible
motions of subcellular constituents is an important goal of this

research. Further use of reference drugs, especially that affect
the mechanical properties of cells, will be useful. Cytoskeletal
drugs and molecular motor drugs are among the most effect-
ive for disentangling different contributions to the fluctuation
spectra. An open question is whether there are specificDoppler
spectral fingerprints associated with distinct MoA. If multiple
drugs with the same MoA exhibit the same or similar Doppler
spectral changes, this would allow Doppler spectral measure-
ments to rapidly and inexpensively identify new drug leads for
the drug-development pipeline by classifying new compounds
by their Doppler-associated MoA.

One of the biggest outstanding challenges is to connect
spectral changes to alterations in the underlying intracellular
signaling pathways. Genetic profiling methods such as RNA
sequencing will be an important future tool to achieve this
goal. Drugs that affect signaling pathways modify the expres-
sion of relevant RNA that can be sampled from tissues that
have been interrogated using Doppler FS. This would allow
modified spectral changes to be connected with modified pro-
tein expression. Once these connections are established and
calibrated, it could allowDLS to stand in, when appropriate, as
a low-cost surrogate for RNA-seq methods currently in use for
drug screening and drug development. This also can helpmove
Doppler spectroscopy into personalized cancer care. When a
drug fails to affect the targeted signally pathway, verified by
RNA-seq, there may be an associated Doppler drug-response
signature. In this case, subsets of a patient cohort who are
resistant to a prescribed therapy may be identified rapidly by
Doppler profiling, as a chemoresistance test, and directed to
more effective therapy.

Within chemoresistance testing using Doppler profiling, an
important question is whether there are ‘universal’ Doppler
signatures across multiple diseases, multiple tissue types and
multiple drugs. Currently, every new cancer indication and
treatment option requires a separate pilot clinical trial to estab-
lish the Doppler drug-response profiles against which future
patients are classified. Clinical trials are lengthy and expens-
ive. If universal Doppler profiles emerge along the lines of
common MoA for a range of different drugs on different can-
cers and tissue types, then expanding the use of Doppler profil-
ing to new diseases and new drugs (with knownMoA)may not
require separate clinical trials, but trial results could be pooled
across diseases and drug MoAs, accelerating the adoption of
Doppler profiling for personalized therapy selection.

More and larger clinical trials of Doppler profiling are
still be needed to better understand the origins and role of
biological variability and the effect on individual and aver-
aged Doppler profiles. Clinical biopsy specimens tend to have
highly heterogeneous structure and tissue constituents such as
stromal tissue and fat mixed in with epithelial tissues and can-
cerous tissues. This mixture of tissue types within a single
interrogated specimen presents a challenge to interpretation
because different tissue constituents may respond differently
to applied drugs. TDS imaging (as discussed in section 5.4)
may help disentangle signatures, but in addition to the spa-
tial heterogeneity, there is also the genetic heterogeneity of
cancer biopsies. The varying genotypes within an interrogated
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sample may yield varying phenotypes. The effects of such
intra-specimen phenotypic variability on patient chemosensit-
ivity classification must be explored further. On the other
hand, this very heterogeneity may be exploited using neural
networks such as deep encoders to improve prediction of
patient chemosensitivity. For instance, the heterogeneous sig-
natures from a single patient may have nonlinear or lin-
early non-separable relationships to the patient’s response to
a selected therapy. Retaining the heterogeneity in the Doppler
drug responses, rather than averaging over the varying sig-
natures, may provide important signal channels for deep
encoder approaches that reduce the dimensionality of the pre-
diction problem to predict patient likelihood of responding to
a treatment.

From an optical development perspective, there are chal-
lenges in the design and construction of apparatus to extract
the Doppler drug profiles. Some of the current dynamic OCT
systems rely on on-axis or off-axis digital holography in
Mach–Zehnder or Michelson configurations that are sensit-
ive to mechanical disturbances. Common-path interferometer
systems are much less susceptible to mechanical disturbances
[482], but many common-path interferometer designs are not
compatible with low-coherence light sources. Combining low-
coherence with common-path designs is an open design prob-
lem that may have many possible solutions, leading to stable
and compact interferometric systems that can be used at the
point-of-care. There is also a potential role for adaptive optics
to enable deeper penetration of light into the highly-scattering
tissue samples while also achieving improved spatial resolu-
tion. Of particular importance is the potential to compensate
for the ‘shimmering shower glass’ effect where overlying lay-
ers of dynamical motions affect the spectra of underlying lay-
ers that are captured within the coherence gate. Additional
challenges remain in the extraction of dynamical contrast from
OCT systems. Current approaches to OCT emphasize spatial
resolution of structure that is incompatible with strong speckle
needed for speckle FS. Either a balance must be set between
structural resolution and spectral dynamic range, or the cur-
rent trade-off must be broken by a new design principle that
would allow high-dynamic-range spectra to be superposed on
high-spatial-resolution images.

Because life and motion are so intimately connected—
life is literally animated—experimental techniques that access
and differentiate the wide diversity of intracellular and tissue
motions would have significant impact on the growing under-
standing of life and disease. Light is an ideal probe to use for
this challenge by providing a means to convert motion into
optical signals. Optical interferometry of partially coherent
light, even within the highly scattering context of living tissue,
is sensitive to a wide dynamic range of motion from the nano-
scale to the micro-scale. Interferometric imaging is also com-
patible with large field of view, retaining its sensitivity down
to nano-scale motion while interrogating millimeter-scale spe-
cimens of living tissue. The nano-scale sensitivity, combined
with high dynamic range and wide field of view, holds promise
for expanded uses of light scattering from intracellular trans-
port in living tissues.
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