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Abstract: Diazo compounds and organic azides are widely used as reagents for accessing 
valuable molecules in multiple areas of fundamental and applied chemistry. Their capacity to 10 
undergo versatile chemical transformations arises from the reactive nature of an incipient 
dinitrogen molecule at the terminal position. Herein we report synthesis and characterization of 
an N-heterocyclic carbene (NHC)-stabilized diazoborane, a boron-centered analog of organic 
azides and diazoalkanes. The diazoborane displays a strong tendency to release N2, thus serving 
as a borylene source, in analogy to organic azides and diazoalkanes serving as nitrene and 15 
carbene sources, respectively. Also reminiscent of diazoalkane and organic azide reactivity, the 
diazoborane serves as a 1,3-dipole that undergoes uncatalyzed [3 + 2] cycloaddition with an 
unactivated terminal alkyne, affording a five-membered heterocycle after a two-step 
rearrangement.  
  20 
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Main Text: Since their discovery by Griess in the mid to late 1800s, compounds with a N2 unit at 
the terminal position have become indispensable chemical reagents across industry and academic 
laboratories.(1-4) Diazo compounds (R2C=N=N) and organic azides (RN=N=N), as two classes 
of nitrogen-rich molecules, form the basis of textbook organic chemistry.(5-7) Due to their 
instability and distinct resonance contributors, these molecules mediate versatile chemical 5 
transformations, including multiple organic name reactions, such as the Wolff rearrangement,(8) 
Staudinger reaction,(9) and Curtius rearrangement.(10) They are also excellent carbene (R2C:) and 
nitrene (RN̈:) precursors. Upon N2 loss, initiated by irradiation or metal catalysts, the generated 
transient subvalent species or metal complex undergoes group transfer to organic frameworks, 
facilitating the construction of molecules with material and medicinal value.(1-3) In addition, these 10 
compounds manifest 1,3-dipoles that engage in [3+2] cycloaddition reactions with alkenes or 
alkynes, affording five-membered heterocycles. The 1,3-dipolar cycloaddition of organic azides 
with terminal alkynes catalyzed by Cu is the most classic example of “click chemistry”–the subject 
of the 2022 Nobel Prize in chemistry.(4, 11) 
 15 
Although numerous transition-metal N2 complexes have been synthesized since Allen and Senoff’s 
1965 report of the Ru-N2 complex,(12, 13) boron or heavier main-group diazo compounds have 
gone unrealized for almost two centuries (Fig. 1A). Considering that boron-containing small 
molecules continue to experience rapid development for small-molecule activation,(14) 
catalysis,(15) materials science,(16) and medicinal chemistry,(17) we postulate that a compound 20 
with a terminal N2 group linked to boron (i.e., a diazoborane) would present attractive synthetic 
utility. Indeed, borylation reactions have remained a hot topic since the discovery of hydroboration 
in 1956 and Suzuki coupling in 1979,(18-20) and we propose that diazoborane compounds 
represent excellent borylene precursors for borylating organic skeletons. Notably, Braunschweig 
and co-workers recently reported dinitrogen activation by dicoordinate borylene wherein a 25 
diazoborane species is a proposed key intermediate.(21-25) Stabilization of such a diazoborane 
and mapping its reactivity patterns has the potential to reveal a wealth of hitherto untapped 
chemical space.  
 

Efforts to synthesize diazoborane compounds and their analogues have been made by several 30 
groups,(21-28) and to date, examples of the diazoborane functional group have only been 
detected under matrix isolation conditions,(28) or as proposed transient intermediates.(23-27) 
Although the carboranyl diazonium analogues were isolated in 1982,(29-31) their electronic 
structure, properties, and reactivity differ widely from those anticipated for neutral diazoboranes. 
Herein, starting from Carpino’s hydrazine,(32) we report the successful isolation of a N-35 
heterocyclic carbene-stabilized diazoborane via a two-step synthesis. An initial reactivity survey 
illustrates that the diazoborane serves as a borylene source and 1,3-dipole, a reactivity profile 
comparable to those of organic azides and diazoalkanes. 
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Fig.1. Background and synthesis of 2.  
(A) Timeline of the discovery for terminal N2 compounds. (B) Synthesis of 1 and 2. (C) The solid-
state structure of 2. Hydrogen atoms have been omitted for clarity. Thermal ellipsoids are drawn 
at the 50% probability level. iPr, isopropyl; Mes, mesityl. 5 
 
The reaction of Carpino’s hydrazine with mesitylboron dichloride in the presence of 
diisopropylethylamine (DIPEA) resulted in the formation of an N-amino aminoborane 1 (Fig. 1B). 
DIPEA scavenges the eliminated HCl and forms the ammonium salt [iPr2EtNH]+Cl–. The use of 
an NHC to dehydrohalogenate from borylhydrazine was inspired by the work of Kong and co-10 
workers.(33) Compound 1 was separated from the salt by filtration and purified by crystallization 
from a toluene/hexanes solution in 32% yield. Treatment of 1 with 4,5-dimethyl-1,3-diisopropyl-
imidazol-2-ylidene (IiPr2, 2 equiv) resulted in an immediate color change to dark green. The proton 
NMR spectrum of the reaction mixture contained signals indicative of compound 2, free 
anthracene, and imidazolium cation [IiPr2-H]+. Compound 2 was separated from the imidazolium 15 
salt by filtration and purified by recrystallization from diethyl ether. Compound 2 co-crystallizes 
with the anthracene byproduct and was isolated as a mixture (60 to 70 w%). The anthracene was 
removed by sublimation at 30 ºC (0.04 torr) to give pure 2 in 71% yield. Compound 2 is heat-
sensitive and displays a second-order decay at 50 ºC in C6D6 (k = 0.0094 mol-1·L·min-1). 
 20 
Spectroscopic characterization. The 11B NMR spectrum of 2 displays a resonance at –11.4 ppm, 
which lies in the range of tricoordinate borylene species (commonly ca. –30-0 ppm). In 
comparison, a carbonyl borylene ArB(IMe)(CO) (Ar = 2,6-bis(2,4,6-triisopropylphenyl)phenyl, 
IMe = 1,3-dimethyl-imidazol-2-ylidene) displays an 11B NMR resonance at –22.5 ppm(34) and an 
isocyanide borylene (alkyl)B(IMe)(CNMes*) (alkyl = 2-methylpropyl, Mes* = 2,4,6-tri(tert-25 
butyl)phenyl) shows a resonance at –10.4 ppm.(35) In the 15N NMR spectrum of 15N-2, the 
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terminal nitrogen displays a doublet at 627.1 ppm (1JN-N = 15.3 Hz) and the boron-bound nitrogen 
atom displays a broad signal at 425.4 ppm (relative to liquid NH3, –380.5 ppm relative to neat 
MeNO2, 0 ppm).(36) In comparison, the terminal nitrogen and the carbon-bound nitrogen of 
diphenyldiazomethane (Ph2CN2) display 15N NMR resonances at 439 and 303 ppm, respectively 
(relative to liquid NH3).(37) 5 
 
The N-N stretching vibrations in 2 (1891 cm-1) and 15N-2 (1836 cm-1) are remarkably red-shifted 
compared to common diazo (~2000 cm-1) and azide compounds (~2100 cm-1). In order to 
understand the intrinsic N–N bond strength of 2, we calculated the relaxed force constants(38) for 
the relevant oscillators, and those of Mes2CN2 and MesN3 for comparison (Fig. S40). Intriguingly, 10 
the relaxed N–N, C–N, and B–N force constants (N, 10.2 mdyn/Å; C, 8.1 mdyn/Å; B, 5.2 mdyn/Å) 
and their corresponding terminal N=N constants (N, 18.9 mdyn/Å; C, 18.2 mdyn/Å; B, 16.9 
mdyn/Å) both follow the sequence N > C > B, indicating that the B–N bond and N=N bonds in 2 
are both weaker than the corresponding linkages in common diazo and azide compounds. 
 15 
The UV-visible spectrum of 2 in tetrahydrofuran (THF) features two broad peaks at 370 and 444 
nm (Fig. S26). Based on time-dependent density functional theory (TD-DFT) calculations, these 
peaks mainly arise from electronic transitions of the highest occupied molecular orbital 
(HOMO)→lowest unoccupied molecular orbital +2 (LUMO+2, 69%) and HOMO→LUMO+1 
(91%), respectively. 20 
 
Crystallography and electronic structure. Storage of a concentrated diethyl ether solution of 2 
afforded single crystals suitable for x-ray diffraction analysis (Fig. 1C). The B–N–N moiety 
evinces a nearly linear geometry (177.7(1) º). The N1–N2 bond length (1.147(1) Å) is slightly 
longer than a N≡N triple bond (1.10 Å) but shorter than an N=N double bond (1.25 Å).(39) The 25 
B1–N1 distance (1.406(1) Å) is consistent with that predicted for a B=N double bond (1.39 Å) and 
shorter than that of a B–N single bond (1.49 Å).(40) Therefore, the bond order for the B–N bond 
is between 1 and 2 while the N–N bond is between 2 and 3. Indeed, the calculated Wiberg bond 
order is 1.24 for the B–N bond and 2.35 for the N–N bond.  
 30 
The optimized structure of 2 (PBE0-D3BJ/def2-TZVPP level of theory) is consistent with its solid-
state structure. Analysis of the frontier molecular orbitals of 2 yields notable insights (Fig. 2A). In 
the HOMO the electron pair on the boron atom delocalizes to the adjacent N-N π* orbital, 
indicating the nucleophilic nature of the boron center and the terminal nitrogen. The LUMO 
displays dominant N-N π* orbital character and the LUMO+1 and LUMO+2 both display partial 35 
contribution from the N-N π* orbital. We also calculated the orbital-weighted dual descriptor of 2 
(Fig. 2C),(41) to more clearly depict its nucleophilic (in blue) and electrophilic sites (in green). 
 
According to natural resonance theory (NRT) analysis,(42-44) four major resonance structures are 
depicted in Fig. 2D. 35.8% of the resonance structures contain a N≡N triple bond and a B–N 40 
single bond, the predominant structural representation of the two bonds, while 20.9% of the 
resonance structures suggest a N=N double bond and a B=N double bond, a more classical way to 
represent diazo compounds. 
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Fig. 2. Theoretical analysis of 2. 
(a) Calculated HOMO, LUMO, LUMO+1, and LUMO+2 of 2. An isovalue of 0.05 (e/au3)1/2 was 
used in the isosurface contour plots. (b) Optimized structure of 2 with selected Wiberg bond orders 
and natural charges in natural population analysis (NPA). (c) Orbital-weighted dual descriptor of 5 
2. Nucleophilic sites are depicted in blue and electrophilic sites are depicted in green. An isovalue 
of 0.003 e/au3 was used in the isosurface contour plots. (d) Four resonance structures with their 
weight percentages. Different resonance structures are summarized to highlight the boron–nitrogen 
and nitrogen–nitrogen bonds with minor resonance structures omitted. *The last 6% of the 
resonance structures are a variety of very minor contributors including Mes(IiPr2)B≡N–N. 10 
 
Reactivity. We then sought to explore the reactivity of 2 (Fig. 3). In order to compare the 
propensity of the N2 fragment to dissociate from boron with reference to carbon and nitrogen, we 
tested its reactivity with diphenyldiazomethane (Ph2CN2) and phenyl azide (PhN3). Treatment of 
2 with these two reagents results in immediate violent bubbling (Explosion attention!), indicating 15 
the evolution of N2 during the reaction. The corresponding products of the reactions were identified 
by single-crystal x-ray diffraction analyses (Figs. S36 and 37). The reaction with Ph2CN2 yields a 
bora-azine 3. A 15N labeling experiment further confirmed that the “N2” unit in 3 originates from 
Ph2CN2. Interestingly, a similar reaction proceeded upon treatment of a rhodium(I)-N2 complex 
with diphenyldiazomethane,(45) showing the metallomimetic nature of borylene.(46, 47) The 20 
reaction with PhN3 affords compound 4, which contains a new BN4 five-membered ring. The 
formation of 4 is rationalized from the [3+2] cycloaddition of an NHC-coordinated iminoborane 
(Mes(IiPr2)B=NPh) with PhN3.(48-52) In contrast to the reaction with Ph2CN2, the NHC ligand 
dissociates from the boron center and is isolated as a nitrene addition adduct. Based on these 
results, diazoborane has a higher propensity to undergo N2 loss with respect to the diazo and azide 25 
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compounds. Borylene transfer to an organic skeleton occurs either with the NHC associated or 
dissociated. 
 
Although azide compounds display no reaction with terminal alkynes without a metal catalyst, and 
diazo compounds commonly require polar alkynes for the reaction to proceed without catalysts, 5 
compound 2 undergoes [3+2] dipolar cycloaddition with phenylacetylene at 25 ºC. Surprisingly, 
the formed five-membered ring undergoes further rearrangements, finally affording a 1H-5-bora-
pyrazole (Fig. S38), with the formation of an aromatic ring being the presumed driving force for 
the reaction. The position of the acidic hydrogen in 5 was located in the Fourier difference map. 
 10 
As analyzed above, the frontier molecular orbitals suggest nitrene character for the diazoborane 
terminal nitrogen atom. Treatment of 2 with an N,N′-diamidocarbene (DAC) results in the 
immediate fading of the green color.(51) Single-crystal x-ray diffraction analysis confirms the 
formation of the nitrene addition product 6 (Fig. S39).  
 15 
Dinitrogen and isocyanide are commonly regarded as isoelectronic ligands.(52) Treatment of 2 
with 2,6-dimethylphenyl isocyanide resulted in a slow color change from dark green to dark red, 
indicating isocyanide-N2 exchange in compound 2 to form 7. The central boron atom of the product 
gives a signal at –8.9 ppm in its 11B NMR spectrum, comparable to that observed for the 
aforementioned isocyanide borylene complex (alkyl)B(IMe)(CNMes*) (–10.4 ppm).(36) 20 
 
During the last two centuries, rich chemistry has been developed based on diazoalkanes and 
organic azide reagents for accessing valuable molecules. We therefore anticipate an exciting 
future for the diazoborane functional group, now that proof of its structure and accessible 
reactivity has been provided. 25 
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Fig. 3. Reactivity studies of 2. 
Compound 2 undergoes borylene transfer, dipolar [3+2] cycloaddition, terminal nitrene addition, 
and N2-isocyanide exchange. Compounds 3-6 are characterized by single-crystal X-ray diffraction 
and the data are provided in the supporting information (Figs. S36-39). 5 
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