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Abstract. We introduce a polynomial invariant V; € Z[H{(M)/torsion] associated to a veering
triangulation 7 of a 3-manifold M. In the special case where the triangulation is layered, i.e. comes
from a fibration, V7 recovers the Teichmiiller polynomial of the fibered face canonically associated
to t. Via Dehn filling, this gives a combinatorial description of the Teichmiiller polynomial for any
hyperbolic fibered 3-manifold.

For a general veering triangulation t, we show that the surfaces carried by t determine a cone
in homology that is dual to its cone of positive closed transversals. Moreover, we prove that this is
equal to the cone over a (generally non-fibered) face of the Thurston norm ball, and that t computes
the norm on this cone in a precise sense. We also give a combinatorial description of V7 in terms of
the flow graph for t and its Perron polynomial. This perspective allows us to characterize when a
veering triangulation comes from a fibration, and more generally to compute the face of the Thurston
norm ball determined by t.
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1. Introduction

Veering triangulations of cusped oriented hyperbolic 3-manifolds were introduced by
Agol as a means to canonically triangulate certain pseudo-Anosov mapping tori [2]. In
particular, Agol showed that for any pseudo-Anosov homeomorphism f on a surface S,
the surface S may be punctured along the (invariant) singularities of f so that the result-
ing mapping torus M of the punctured surface admits a particular type of layered ideal
triangulation t, called the veering triangulation. This triangulation is layered in the sense
that it is built by layering tetrahedra on an ideal triangulation of the punctured surface.
The triangulation t of M is in fact not only an invariant of the monodromy f, but also an
invariant of the fibered face of the Thurston norm ball that it determines.

Among all layered triangulations of hyperbolic 3-manifolds, Agol characterized the
veering triangulation 7 in terms of a combinatorial condition which can be interpreted
as a bicoloring of the edges of 7. Answering a question of Agol, Hodgson—Rubinstein—
Segerman—Tillmann [26] showed that this combinatorial condition can be satisfied by
nonlayered triangulations and the resulting class of ideal triangulations is now referred
to as veering. Veering triangulations have since emerged as an important object in sev-
eral areas of low-dimension geometry and have attracted much attention. In particular,
they have connections to hyperbolic geometry [20,24,26] (although they are usually not
geometric [21]), are used to study algorithmic problems in the mapping class group [7],
encode the hierarchy of subsurface projections associated to their monodromies [36], and,
most important for this paper, directly correspond to certain flows on the manifold M
[16,28,29].

In this paper, we introduce a polynomial invariant of veering triangulations that gen-
eralizes McMullen’s Teichmiiller polynomial from the fibered setting [34]. We remark
that although veering triangulations occur only on manifolds with cusps, our construction
recovers the Teichmiiller polynomial in general via Dehn filling. Before giving the details,
let us informally summarize what we see as the central points of our construction.

e First, in that it recovers the Teichmiiller polynomial when the veering triangulation is
layered, our construction gives a general, straightforward procedure to compute the Teich-
miiller polynomial directly from the data of the veering triangulation. Moreover, this data
is readily available through either Mark Bell’s program flipper [6], which computes
the veering triangulation in the fibered setting, or the veering census of Giannopoulos,
Schleimer, and Segerman [22]. In fact such an algorithm has already been devised by
Parlak [41], and implemented by Parlak, Schleimer, and Segerman (see [22]).

e Second, we show that any veering triangulation 7 is naturally associated to a face F;
of the Thurston norm ball of M. Indeed, an integral homology class is contained in the
cone over F if and only if it is represented by a surface carried by the underlying branched
surface of . Moreover, the face F; is fibered exactly when t is layered; so in particular
the surfaces carried by a nonlayered veering triangulation determine a non-fibered face
of the Thurston norm ball. In this sense, our polynomial invariant provides a general-
ization of the Teichmiiller polynomial as requested by both McMullen [34] and Calegari
[10, Question 3.2]. In general, the polynomial is a quotient of the Perron polynomial of a
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certain directed graph (the flow graph ®.) associated to 7. As in Fried’s theory of homol-
ogy directions [18], the cone of directed cycles of this graph is dual to F, and therefore
F; can also be directly computed from the Perron polynomial of ®.

o Third is the connection to certain flows, which we investigate in a sequel paper [31].
Following unpublished work of Agol-Guéritaud and work-in-progress of Schleimer—
Segerman ([16] and a forthcoming sequel), veering triangulations of hyperbolic manifolds
precisely correspond to pseudo-Anosov flows without perfect fits as introduced and stud-
ied by Fenley [13, Definition 4.2]. These form an important class of flows on 3-manifolds
that generalize the suspension flow of a pseudo-Anosov homeomorphism on its mapping
torus. When our veering triangulation comes from such a flow ¢, we will show that

o the (combinatorially defined) flow graph &, codes ¢’s orbits, in a manner similar to a
Markov partition for ¢,

o the Perron polynomial of @, packages growth rates of closed orbits of ¢, after cutting
M along certain surfaces transverse to the flow.

‘We next turn to giving a more formal explanation of our results.

1.1. The veering and taut polynomials

Let M be a 3-manifold with veering triangulation 7, and let G = H;(M)/torsion. In
Section 3, we define the veering polynomial V; which is an invariant of t contained in the
group ring Z[G]. Essentially by its construction, V; comes with a canonical factor @,
defined up to multiplication by a unit +g € Z[G], which we call the taut polynomial.
These polynomials are invariants of modules defined by relations among the edges of
the veering triangulation on the universal free abelian cover of M, which are determined
by the tetrahedra and faces of 7, respectively. Informally, the tetrahedron relations for
the veering polynomial impose conditions modeled on a train track fold, while the face
relations for the taut polynomial impose conditions modeled on the switch conditions of
a train track.

One main result, which in particular is needed for the explicit connection to the
Teichmiiller polynomial in the fibered setting (see Theorem B), is the precise relation
between these polynomials. For its statement, we note that there is a canonical collection
of directed cycles ¢y, ..., c, in M, which we call AB-cycles, whose homology classes
are denoted by g; = [¢;] € H1(M). See Section 1.3 for more on their significance.

Theorem A (Factorization). Suppose rank(H(M)) > 1. Then up to multiplication by a
unit £g € Z[G],

n
Vi =0, 1_[(1 + gi)-
i=1
We note the possibility that some A B-cycles may be trivial in Hy(M) and refer the
reader to Theorem 6.1 for a more precise formulation, including an explicit recipe for the
signs in the factorization formula.
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Since V7 is always computed as a determinant of a square matrix, we will see that
Theorem A can be interpreted as an extension of McMullen’s determinant formula for the
Teichmiiller polynomial (see Section 7).

1.2. Connection to the Teichmiiller polynomial

Next suppose that 7 is layered. In this case, it corresponds to a fibered face F = F; of the
Thurston norm ball and has an associate Teichmiiller polynomial @ € Z[G], defined up
to a unit. In Section 7, we prove

Theorem B (Teichmiiller = taut). The Teichmiiller polynomial Og agrees with the taut
polynomial ®:
Op = O, uptoaunittg € Z[G].

Moreover, if N is any hyperbolic 3-manifold with fibered face ¥ and M is obtained
by puncturing N along the singular orbits of its suspension flow, then

®FN = i*(®r)»

where iy is induced by the inclusion i: M — N and 7 is the veering triangulation asso-
ciated to M.

The above statement combines Theorem 7.1 and Proposition 7.2. Note that Theo-
rem B, together with Theorem A, gives a way to compute the Teichmiiller polynomial for
any fibered hyperbolic 3-manifold by first puncturing along singular orbits. In the layered
(i.e. fibered) setting, no A B-cycle can be trivial by Theorem E below.

In fact, using our work Parlak [41] describes an algorithm to compute the veering
and taut polynomials given a (possibly nonlayered) veering triangulation. In separate
work [42], she also relates the taut polynomial defined here to the Alexander polyno-
mial, thereby generalizing a result of McMullen for the Teichmiiller polynomial [34] via
Theorem B.

We conclude by noting that there has been recent interest in developing algorithms to
compute the Teichmiiller polynomial and several special cases were previously considered
in [5,8,32].

1.3. Faces of the Thurston norm ball

Moving beyond the fibered setting, we obtain results for general veering triangulations,
which we show determine (generally nonfibered) faces of the Thurston norm ball.

For this, we first describe an alternative construction of V;. In Section 4.3, we define
a graph ® = &, in M associated to 7, which we call the flow graph. Let Py € Z[H;(D)]
be the Perron polynomial of ®; which is defined as Py = det(/ — Ag), where Ag is an
“adjacency matrix” for ® (see Section 4.3). In Theorem 4.8, we show
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Theorem C (From flow graph to veering polynomial). Let iy: Z[H{(®)] — Z[G] be
induced by the inclusion i: ®; — M. Then

Vi = ix(Pop).

Next, we recall that the 2-skeleton @ ofrisa transversely oriented branched surface
which can carry surfaces similar to the way a train track on a surface can carry curves (see
Section 2.1). We let cone, (7) be the closed cone in H,(M, dM ) positively generated by
classes that are represented by the surfaces that t carries. We call cone, (t) the cone of
carried classes and note that it can be explicitly computed as the homology classes of
nonnegative solutions to the switch conditions for t®.

We show that cone,(7) is dual to the cone in H;{(M) generated by closed positive
transversals to (2 in M, which we call the cone of homology directions (see Section 5.1).
The cone of homology directions is in turn generated by the support of Pg (see Theo-
rem 5.1 and Lemma 5.14):

Theorem D (Duality of cones). For o € Hy(M, dM), the following are equivalent:
(1) a € coney(1),
(2) (y,a) = 0 for all closed positive transversals y to t,
(3) (i(c),a) = 0 foreach c € Hi(®;) in the support of Pe.
For the connection to faces of the Thurston norm ball, let x denote the Thurston norm

on Hy(M,0M) and let By (M) be its unit ball. In Section 5.2, we associate to T a combi-
natorial Euler class e; € H?>(M, dM), one definition of which is

1 n
e = = ([Tenr) € #2000,
i=1
where g1, ..., g, are classes represented by the AB-cycles as in Theorem A. (This is
related to the class [G] from [27, Sec. 3] by a multiple of —%). In Theorem 5.15, we prove

Theorem E (7 determines a face). The cone of carried classes cone,(t) is equal to the
cone over a (possibly empty) face ¥, of the Thurston norm ball Bx(M). This cone is
characterized by the property that it is the subset of Hy(M, M) on which —e; = x.
Furthermore, the following are equivalent:

(i) ix(supp(Ps,)) lies in an open half-space of Hi(M ; R),

(i) there exists n € HY(M) with n([y]) > 0 for each closed t-transversal y,
(iil) t is layered,
@iv) F; is a fibered face.

We emphasize that Theorem E also gives a characterization of layeredness of v (and
fiberedness of F;) in terms of a cohomological positivity condition. This makes it a com-
binatorial analog of Fried’s criterion [18, Theorem D] for a flow to be circular, i.e. admit
a cross section.
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As a last remark, we note that by [30] if M is a closed manifold obtained from M by
Dehn filling along slopes intersecting the ladderpoles (see Section 2.1.2) of dM enough
times, the image of t® under the inclusion i: M < M determines a face F of the
Thurston norm ball. Thus i, (V%) is an object associated to F generalizing the Teichmiiller
polynomial. Moreover, F is fibered exactly when the image of supp(Pg, ) lies in an open
half-space of H;(M;R).

1.4. Sequel paper: Flows, growth rates, and the veering polynomial

In a followup [31] to the current paper, we develop the connection between the combi-
natorial approach to the veering polynomial developed here and the pseudo-Anosov flow
associated to the veering triangulation. Since this is relevant for motivating our construc-
tions, we briefly summarize the main points of [31].

Suppose that ¢ is a pseudo-Anosov flow without perfect fits on a closed manifold M.
Then unpublished work of Agol-Guéritaud produces a veering triangulation v on the
manifold M obtained by puncturing M along the singular orbits of .

First, the flow graph @, codes the orbits of ¢ in the following precise sense. There
is a map from directed cycles of &, to closed orbits of ¢ so that each directed cycle is
homotopic to its image. This map is uniformly bounded-to-one and for any closed orbit y,
either y or y? is in its image. These properties are similar to those of a Markov partition
for ¢, but we emphasize that @, is combinatorially defined (Section 4.3) and canonically
associated to 7.

Second, from the connection between orbits of the flow and directed cycles of &,
we use Py to compute the growth rates of orbits of ¢. If S is a fiber surface carried by
a layered triangulation t, this recovers well-known properties that McMullen established
for the Teichmiiller polynomial (using Theorems A and B). If S is a transverse surface
carried by a (possibly nonlayered) veering triangulation T which is nor a fiber in R4 F,
then S necessarily misses closed orbits of the flow by Fried’s criterion, and so the usual
counting results are not possible.

However, we can consider the manifold M |S obtained by cutting M along S and
ask whether there is a class £ € H1(M|S) that is positive on the surviving closed orbits.
In this case, we show how the growth rate of closed orbits in M |S with respect to £ is
recorded by the flow graph ®, and its Perron polynomial Pg. This analysis includes the
special case where S is in the boundary of a fibered cone R F;, and our results are new
even in this setting.

2. Background

Here we record some background that we will need throughout the paper. In what follows,
all 3-manifolds are assumed to be connected and oriented.
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2.1. Veering triangulations

We begin by defining a taut ideal triangulation following Lackenby [27] (see also [26]).
Such triangulations are also called transverse taut by e.g. [20].

A taut ideal tetrahedron is an ideal tetrahedron (i.e. a tetrahedron minus its vertices)
along with a coorientation on each face such that two of its faces point into the tetrahedron
and two of its faces point out of the tetrahedron. The inward pointing faces are called
its bottom faces and the outward faces are called its fop faces. Each of its edges is then
assigned angle & or 0 depending on whether the coorientations on the adjacent faces agree
or disagree, respectively. See Figure 1.

Fig. 1. A (truncated) taut tetrahedron with its face coorientations and angles.

An ideal triangulation of M is raut if each of its faces has been cooriented so that each
ideal tetrahedron is taut and the angle sum around each edge is 2x. The local structure
around each edge e is as follows: e includes as a w-edge in two tetrahedra. For the other
tetrahedra meeting e, e includes as a 0-edge and these tetrahedra form the fan of e. We
observe that the fan of e has two sides each of which is linearly ordered by the coorienta-
tion on faces. See, for example, Figure 3, where the coorientation points upwards.

A veering triangulation v of M 1is a taut ideal triangulation of M in which each edge
has a consistent veer; that is, each edge is labeled to be either right or left veering such
that each tetrahedron of t admits an orientation preserving isomorphism to the model
veering tetrahedron pictured in Figure 2, in which the veers of the 0-edges are specified:
right veering edges have positive slope and left veering edges have negative slope. The
m-edges can veer either way, as long as adjacent tetrahedra satisfy the same rule. In other
words (cf. [24]), each oriented taut tetrahedron ¢ of T can be realized as a thickened
rhombus in R? x R with angle 7 at its diagonal edges and angle 0 at its side edges such
that its vertical diagonal lies above its horizontal diagonal and its right/left veering side
edges have positive/negative slope, respectively.

Note that these conditions imply that the 0-edges around a tetrahedron ¢ have alternat-
ing veers, and that each face has edges that veer in both directions. From our definition it
also follows that for each edge e of 7, each side of e is nonempty (i.e. contains a tetrahe-
dron). This was observed in [26, Lemma 2.3] and is also part of Agol’s original definition
[2, Definition 4.1]. To prove it, note that along a bottom face of a tetrahedron we encounter
the w-edge followed by the left veering followed by the right veering edge in the counter-
clockwise order, using the coorientation on faces. However, along a top face we encounter
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1

Fig. 2. On the left is a model veering tetrahedron: right veering edges are red, left veering edges
are blue. If this tetrahedron appears in a veering triangulation, then the veers of the top and bottom
(r-) edges are determined by adjacent tetrahedra. In the center is an upward flat triangle, and on the
right is a downward flat triangle.

the m-edge followed by the right veering followed by the left veering edge, and so two
tetrahedra cannot be glued along faces so that their r-edges are identified.

A veering (or taut) triangulation is said to be layered if it can be built by stacking
tetrahedra onto a triangulated surface and quotienting by a homeomorphism of the sur-
face (for another, more formal definition, we refer the reader to [16, Definition 2.15]).
Finally, we recall that the constructions of layered veering triangulations of Agol [2] and
Guéritaud [24] start with a pseudo-Anosov homeomorphism f of a surface S and pro-
duces a veering triangulation T on the mapping torus M of f:S ~ {singularities} —
S ~ {singularities}.

Remark 2.1 (Veering definitions). For us, a veering triangulation of M is a taut ideal
triangulation such that each edge has a consistent veer. Elsewhere in the literature, this is
known as a transverse veering triangulation [16,20,26]. A slightly more general definition
can be given where the taut structure is replaced by a taut angle structure, which does not
impose a coorientation on faces. The two conditions, however, are equivalent up to a
double cover [20, Lemma 5.4] and agree for layered veering triangulations, which was
the setting of Agol’s original definition [2].

2.1.1. The 2-skeleton t® as a branched surface. As observed by Lackenby [27], the taut
structure of 7 naturally gives its 2-skeleton 7 the structure of a transversely oriented
branched surface in M. (See [15, 40] for general facts about branched surfaces). The
smooth structure on 7® can be obtained by, within each tetrahedron, smoothing along
the wr-edges and pinching along the 0-edges, thus giving t® a well-defined tangent plane
field at each of its points. See Figure 3.

With this structure, the branching locus of 73 is the disjoint union of edges of 7, and
the sectors (i.e. the complementary components of the branching locus) are the faces of 7.

The branched surface t has a branched surface fibered neighborhood N = N(¢®)
foliated by intervals such that collapsing N along its I -fibers recovers (). The transverse
orientation on the faces of t consistently orients the fibers of N, and a properly embedded
oriented surface S in M is carried by t*? if it is contained in N where it is positively
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Fig. 3. The branched surface 7@ near an edge of 7.

transverse to its /-fibers. We also say that S is carried by t. Note that up to isotopy a
surface may be carried by 7 in different ways.

A carried surface S embedded in N transverse to the fibers defines a nonnegative
integral weight on each face of t given by the number of times the /-fibers over that face
intersect S. These weights satisfy the matching (or switch) conditions stating that the sum
of weights on one side of an edge match the sum of weights on the other side. Conversely,
a collection of nonnegative integral weights satisfying the matching conditions gives rise
to a surface embedded in N transverse to the fibers in the usual way.

More generally, any collection of nonnegative weights on faces of 7 satisfying
the matching conditions defines a nonnegative relative cycle giving an element of
Hy(M, dM ;R) and we say that a class is carried by t® if it can be realized by such
a nonnegative cycle. Just as with surfaces, a carried class can be represented by more than
one nonnegative cycle on faces.

We conclude by observing the following:

Lemma 2.2. Ifa € Hy(M,0M;Z) is carried by t®, then it is realized by a nonnegative
integral cycle on ©® and hence an embedded surface carried by ©®.

In fact, the lemma holds for any transversely oriented branched surface.

Proof. Let W = R¥ be the weight space of 7® and let Z C W be the subspace of relative
2-cycles, i.e. weights satisfying the branching conditions. Let A: Z — H,(M,dM ;R) be
the map to relative homology. We can choose rational bases for Z and H, so that A is
represented by an integer matrix.

Let P C Z be the set of solutions to Ax = «. Because « is carried by 73, P contains
a point m lying in the nonnegative orthant REO. Let O denote the face of the nonnegative
orthant containing m in its relative interior. Since P N Q is nonempty and cut out by
integer equations, there is a rational point w € P N Q. (Here we are using the fact that
for any rational linear map L: R"” — R"™ and rational w € R™, if the equation Lx = w
has solutions then rational solutions exist and are dense among all solutions.)
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Clearing denominators, there is an integer n > 0 such that n« is represented by the
integral cycle nw, giving rise to an embedded surface S. By [45, Lemma 1], S is a union
of n surfaces, each representing o and carried by t(®. |

2.1.2. The veering triangulation as seen from OM . If we truncate the tips of the tetrahedra
of 7, as in Figure 1, we obtain a compact manifold whose boundary components are tori.
For details, see [26,27]. We denote this manifold ]\04 and continue to use 7 to refer to the
modified veering structure.

In what follows, we will often write dM to mean 9M and (M, M) to mean (Asl , M ).
This simplifies our notation and should cause no confusion.

The intersection 37 = 7® N dM is a cooriented train track with each complementary
component a flat triangle (i.e. a bigon with three branches of d7 in its boundary) that
corresponds to the tip of truncated taut tetrahedron. See the right-hand side of Figure 2.
The veering structure of t determines (and is determined by) the structure of these induced
train tracks. We will recall some facts here that are needed for Section 5.1.1, but we refer
the reader to [20,30] for a more detailed analysis.

Each flat triangle 7' on dM complementary to the track d7 has two vertices at cusps,
corresponding to 0-edges of the associated tetrahedron, and one smooth vertex, corre-
sponding to the w-edge. If the coorientation at the smooth vertex points out of 7', then T’
is called an upward triangle, and otherwise it is called downward. Note that the veer of
the t-edges corresponding to the O-vertices (i.e. cusps) of T are determined by whether
T is upward or downward, as in Figure 2.

The flat triangles of IM are organized into upward and downward ladders as follows
(see [20, Observation 2.8]): For each component of dM, the union of all upward flat
triangles is a disjoint collection of annuli such that each annulus A in the collection,
called an upward ladder, has 0A carried by dt and all other branches of dt meeting A
(called rungs) join its two boundary components. We define a downward ladder similarly,
and observe that each component of dM is an alternating union of upward and downward
ladders meeting along their common boundary (called ladder poles). See Figure 4.

Fig. 4. The tessellation of dM by flat triangles organized into upward and downward ladders, col-
ored green and cyan respectively for compatibility with Figure 1.
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2.2. Thurston norm

Suppose that M is a finite volume hyperbolic manifold. Then the Thurston norm x is a
norm on the vector space H, (M, dM ; R) which extends the formula

x () = min{—y(S)},

where o € Hy(M, dM ; Z) and the minimum is over all properly embedded surfaces rep-
resenting o without sphere or disk components [45]. At times it will be convenient to
identify H,(M, dM ;R) with H'(M;R) via Lefschetz duality.

The unit ball By = B, (M) in Hy(M, dM ; R) with respect to x is called the Thurston
norm ball and it is a rational finite-sided polyhedron. There is a (possibly empty) collec-
tion of top dimension faces of By, called fibered faces, such that

e every class « representing a fiber S in a fibration of M over S! is contained in the
interior of the cone R F over a fibered face F of By,

e every primitive integral class « in the interior of the cone over a fibered face represents
a fiber in a fibration of M over S! [45].

According to [3] and [36, Proposition 2.7], the Agol-Guéritaud construction applied
to any fiber in a fixed fibered face F produces the same veering triangulation t. In partic-
ular, a layered veering triangulation t of M is canonically associated to a fibered face F,
of Bx(M).

In general, we say that a properly embedded surface S is taut if no component of S is
nullhomologous and S is Thurston norm minimizing, i.e. —y(S) = x([S]). For example,
fibers are necessarily taut.

Returning to the situation of interest, Lackenby [27, Theorem 3] proved that for any
taut ideal triangulation, the underlying branched surface is taut in the sense that every
surface it carries is taut.

2.3. Polynomials and specialization

Fix a finitely generated free abelian group G and denote its group ring with integer coef-
ficients by Z[G]. Recall that Z[G] is a UFD.

Let P € Z[G] and write P = ), ag - g- The support of P is

supp(P) ={g € G 1 ay # 0}.
For P € Z|G] with P = deG ag - g and o € Hom(G, R) the specialization of P at

« is the single variable expression

Pu®) = Z ag - u*® e Zu" . r e R].
geG

If G has rank n and is written multiplicatively, we can identify Z[G] with Z[¢iF!,. .., £51].
Making this identification, specialization is the image of P under the homomorphism
a Z[tEY, . tE ] — Z[u" : r € R] obtained by replacing #; with u®%@).
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3. The veering and taut polynomials

Let M be a 3-manifold with a veering triangulation t. Denote the sets of edges, faces,
and tetrahedra of t by E, F, and T, respectively. Since y(M) = 0, we see that |E| =
|T| = %|F |. Each tetrahedron has a unique bottom edge and this induces a bijection from
tetrahedra to edges that we will use throughout. If e is the bottom of the tetrahedron ¢,
then we also say that ¢ lies above e.

As 1 is veering, each of its edges is labeled to be either right or left veering. See
Section 2.1 and Figure 2. Each abstract veering tetrahedron ¢ gives a relation among its
edges. Let b and t denote the bottom and top edges of ¢, respectively. Among the four side
edges of ¢, let s; and s, be those which have the opposite veer from t. Then we have the
tetrahedron relation

b=t+4+s; +s;, (1

associated to t. We also say that this tetrahedron relation is associated to the bottom edge b
of ¢. Informally, this relation mimics the map on a measured train track induced by a fold.
See Figure 5.

Let G = Hom(H (M), Z) be the first homology of M modulo torsion and let M®
be the associated covering space. This is the universal free abelian cover of M, and its
deck group is G. Let T be the preimage of 7. Note that edges, faces, and tetrahedra of 7
are in bijective correspondence with £ x G, F x G, and T x G. The correspondence is
determined by any choice of lifts of simplices from 7.

We define the edge module &(7) to be the free Z-module on the edges of T modulo
the relations from equation (1) for each tetrahedron of 7. The action of G on M by
deck transformations makes &(7) into a module over the group ring Z[G] and we will
henceforth consider &(7) as a Z[G]-module. Now choose a lift of each edge of t to T.
Since the free Z-module on the edges of T is isomorphic to Z[G]% as a Z[G]-module,
&(7) has the presentation

ZIG1E 5 7[GF — &%) — o, )

where L maps b to b — (t + s; + s). That is, the image of each edge is determined by
the tetrahedron relation for the tetrahedron lying above that edge.
We define the veering polynomial of t to be the element

V =V, =det(L) € Z[G].

We remark that the map L can be written in the form L = I — A, where [ is the
identity matrix and A is a matrix with coefficients in G. In Section 4, we will see that
A can be interpreted as the adjacency matrix for a directed graph (the flow graph of
Section 4.3) associated to t.

The following lemma shows that 1 is well-defined:

Lemma 3.1. The veering polynomial V; = det(L) € Z|G] depends only on t and not on
the choice of lifts of edges to T.
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Proof. If e is an edge of t and ¢ is the chosen lift in T, then the effect of replacing ¢ with
g - € amounts to conjugating the matrix L by the | E| x | E| matrix which is obtained from
the identity matrix by replacing the 1 in the diagonal entry corresponding to e with g.
This does not affect the determinant. |

3.1. The face module and ®,

Our construction of the veering polynomial V; makes explicit use of the veering structure
of 7. Here, we define a closely related polynomial, which we call the taut polynomial
of t, whose construction uses only the taut structure of t (see Section 2.1). Although we
begin to describe the connection between the two polynomials in this section, their precise
relationship will be fully explained in Section 6. In Section 7 we will show that when t
is layered, its taut polynomial is equal to the Teichmiiller polynomial of the associated
fibered face of the Thurston norm ball. Taken together, these results will give the explicit
connection between V; and the Teichmiiller polynomial.

Any face f of the veering triangulation lies at the bottom of a unique tetrahedron ¢
and has a distinguished edge b which is the bottom edge of . We often call b the bottom
edge of f. Letx and y be the other edges of f. Then the face relation associated to f is

b=x+y. 3)

Since there are two faces lying at the bottom of tetrahedron, ¢ has two associated face
relations.

Again, identifying Z[G]¥ with the free module of edges of 7, we quotient by the
relations given in equation (3) for each face of 7 to obtain the face module &% (7). We
have the presentation

Z[6)F L5 2161E > €4(3) - o, @)

where L2 is determined by mapping a face f to its associated relation b — (x + y).

The module & (%) has a well-defined Fitting ideal /® C Z[G] generated by deter-
minants of | E| x | E| submatrices of L% (see, for example, [39, Theorem 1]). The taut
polynomial ©, € Z[G] is defined to be the greatest common divisor of the elements of 72.
Note that this only determines ®, up to multiplication by a unit +g € Z[G].

‘We next observe the following immediate consequence of our definitions and use it to
relate the two polynomials.

Lemma 3.2. For each bottom face | of a tetrahedron t, there is a unique top face [’ of t
such that the sum of the face relations for f and f' is equal to the tetrahedron relation
fort.

Further, ' is characterized by the property that it meets f within t along the edge
that has the same veer as the top edge of t.

Proof. Consider the face relation (3) for f. Recall that the tetrahedron relation for 7 is
b =t + s; + sy, where t is the top edge of ¢ and s;, s, are the side edges which have



M. P. Landry, Y. N. Minsky, S. J. Taylor 744

opposite veer from that of t. Let ry, rp be the other two edges of ¢ labeled so that b, s;, r;
give the bottom faces of t fori = 1, 2.

After possibly swapping indices, we may suppose that b, s1, r span the face f and
sob — (s; + r;) = 0 is the face relation for f. By construction, r; has the same veer as t
and so the edges t,ry, s, span a top face of ¢. Indeed, since the third edge in the face with
t and r; must have opposite veer, this leaves only s; and s, as possibilities and b, s1, 1}
is already a face on the bottom of 7. Hence, we see that t, ry, s, span a face f” at the top
of t.

From this we can see that the tetrahedron glued to ¢ along f” has ry as its bottom edge.
Otherwise, the bottom edge would be either t or s,. However, in the first case t would have
an empty side of its fan and in the second case the new tetrahedron would have four side
edges all the same veer (that of t), either giving a contradiction. We conclude that the face
relation for f’isr; — (t +s3) = 0.

Finally, summing the face relations for the bottom face f and top face f’ gives b —
(t + s; + s2) = 0, which is the tetrahedron relation for . This completes the proof. =

We record the following observation made in the proof of Lemma 3.2.

Fact 3.3. Let e be an edge of T and let t be a tetrahedron in the fan of e. Then the top
edge of t has the same veer as e if and only if t is topmost in its side of e.

Since the faces relations determine the tetrahedra relations, we have
Corollary 3.4. There is a surjective Z[G-module homomorphism
E[@) —» E2(F) — 0,
and so O divides V.
Proof. The surjection is immediately given by Lemma 3.2 along with the definitions
of the modules. This implies that 72 contains the Fitting ideal for &(%) (see e.g. [33,

Appendix] or [39, Chapter 3]), which is principally generated by V7. This completes the
proof. ]

In fact, the quotient polynomial V;/®; can be easily described as a product of poly-
nomials of the form 1 & g for g € G (Theorem 6.1). The proof, howeyver, is quite involved
and postponed until Section 6.

4. The flow graph and its Perron polynomial

In this section, we reinterpret our construction in terms of the flow graph (Section 4.3)
associated to the veering triangulation. This will have implications for identifying the
cone of classes carried by the veering triangulation in Section 5.

For a directed graph D with n vertices, let A denote the matrix with entries

A=) e (5)

de=b—a
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where the sum is over all edges e from the vertex a to the vertex b. This is similar to a
standard adjacency matrix for a directed graph, but note that A lives in the matrix ring
My xn (Z[C1(D)]), where C1(D) is the group of simplicial 1-chains in D. We call A the
adjacency matrix for D. The Perron polynomial of D is defined to be Pp = det( — A).

Following McMullen [35], we define the cycle complex €(D) of D to be the graph
whose vertices are directed simple cycles of D and whose edges correspond to disjoint
cycles. We recall that Pp equals the cligue polynomial of € (D), which in particular shows
that Pp € Z[H(D)] (see [35, Theorem 1.4 and Section 3]). Here, the clique polynomial
associated to €(D) is

Pp =1+ (-1)/€IC e Z[H\(D)]. (©6)
C

where the sum is over nonempty cliques C of the graph € (D) and |C| is the number of
vertices of C. One proves the above formula by writing the determinant as a sum over
elements of the symmetric group S, and relating the sign of a permutation to the number
of cycles in its cycle decomposition.

We begin by introducing an alternative construction of (a variant of) the Perron poly-
nomial which mimics the construction of the veering polynomial.

4.1. Vertex modules of labeled graphs

Let D be an arbitrary directed graph with vertex set V, and let a: H;(D) — G be a
surjective group homomorphism. As before, we also use « to denote the induced ring
homomorphism «: Z[Hy(D)] — Z[G]. We think of « as labeling the cycles of D, and
hence labeling each clique in € (D) by the product in G of its constituent cycles.

Let Dy be the cover of D corresponding to ker(a o ab: 71 (D) — G) with deck
group G. For example, if « is the identity homomorphism then Dy, is the universal free
abelian cover of D. Note that by making a choice of lift for each vertex of D and letting
G act by deck transformations, we obtain a bijection between the vertex set of Dg and
V x G, and similarly for the edges.

Define the a-labeled vertex module V(Dy) of D to be the Z[G]-module obtained by
taking the free module on the vertices of Dy modulo the following relations: for each
vertex v of 5(, ifey,...,ex are the edges of 5a with initial vertex v and terminal vertices
wi, ..., Wy, respectively, then

V=wi+ -+ Wy

This gives a presentation

Lpg ~

z[G)” == Z[G]” — V(Da) — 0, ™

where Lp g is a square matrix determined by Lp(v) = v — (w1 + -+ + wy). We

set Ppo = det(Lpq) € Z[G]. The following lemma is proven in the same manner as
Lemma 3.1.
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Lemma 4.1. The polynomial Pp g depends only on D and «, and not on the choice of
lifts of vertices to D.

The key technical result of this section is the following:
Proposition 4.2. With notation as above, Pp o = a(Pp) € Z[G].

In words, the polynomial Pp 4 is obtained by replacing the terms of the Perron poly-
nomial with their images under «.

Proof. Choose a maximal tree 7" C D, and label each edge of T with the trivial element
of G. For each directed edge e outside of T, there is a unique (not necessarily directed)
cycle in T U {e} traversing e in the positive direction. Label e with the image of this loop
under «. The corresponding labeling of the vertices of € (D) (obtained via concatenation
of edges) is given by the homomorphism «. This labeling gives D the structure of a
G-labeled directed graph DS . Tt has an adjacency matrix A with entries in the group
ring Z[G], given by replacing the edges in the entries of A in (5) with their G-labels. A
proof entirely similar to that of (6) gives det(] — A%) = «(Pp) (cf. [4, Theorem 2.14]).
Hence it suffices to show that det(/ — A®) = Pp 4.

Lift T toatree T in 5a, which we note contains an orbit representative of each vertex.
By Lemma 4.1, we are free to choose our lifts of vertices to be the vertices of T. We claim
that for this choice, I — A% = Lp 4. For simplicity we reuse the symbol v to denote the
vertex of T lying above v. We can write Lp qv; = v; — (gi,1V1 + -+ + &i.mVUm), Where
gi,j € G and each g; jv; corresponds to a unique edge ¢; ; from v; to v;. Note that
gi,j = 1 = idg if and only if ¢; ; lies in T.1f e;,j lies outside of T, then gi,j 1s the a-
image of the loop in T' corresponding to e; ;. This is exactly the description of the matrix
I —AS%,s01 — A% = Lp 4. In conclusion,

Ppo = det(Lp o) = det(I — A%) = a(Pp). "

We next turn to applying these results to a particular directed graph associated to a
veering triangulation.

4.2. The stable branched surface B* and the dual graph T';

Here we define the stable branched surface B® in M associated to the veering triangula-
tion . It will play an important role in this section and the next. The branched surface B*
also appears in [16], where it is called the upper branched surface in dual position.

Topologically, B? is the 2-skeleton of the dual complex of  in M. For each tetrahe-
dron ¢ we define a smooth structure on By = B* N ¢ as follows: if the top edge of 7 is
left veering, then we smooth according to the left-hand side of Figure 5 and otherwise
we smooth according the right-hand side. It remains to show that this defines a smooth
structure globally, i.e. it agrees across the faces of 7. Note that for a face f of ¢, f N B}
is a train track with three branches and a single interior switch. So f N B has a single
large branch.
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L R

Fig. 5. The stable branched surface B® in a tetrahedron ¢ depending on whether the top edge of 7 is
left or right veering. The tetrahedron is a rotated version of the usual veering tetrahedron of Figure 2
in order to make the picture easier to draw.

Lemma 4.3. Let [ be a face of t and let e be its bottom edge. For either of the two
tetrahedra t containing f, f N B} has its large branch meeting e. Hence B* has a well-
defined smooth structure making it a branched surface.

We note that the smooth structure on B¥ is characterized by its intersection with each
face, as given in the first sentence of the lemma.

Proof. We argue within a single tetrahedron 7.

If f is a bottom face of ¢, then this is immediate from Figure 5. If f is a top face of ¢,
then we also see from the figure that the large branch of f N B} meets the edge of f with
the same veer as the top edge of . Hence, it remains to observe that the bottom edge of the
tetrahedron ¢’ glued to ¢ along f has the same veer as the top of . This was established
in the proof of Lemma 3.2 (cf. Fact 3.3). [

We note that since it is topologically a spine for the ideal triangulation t, B® is a
deformation retract of M. This can be seen directly in Figure 5.

The 1-skeleton of B¥ is the graph I'; dual to T whose edges are directed by the coori-
entation on the faces of r. We call I'; (or simply I') the dual graph. Alternatively, I" can
be described as the graph with a vertex interior to each tetrahedron and a directed edge
crossing each cooriented face from the vertex in the tetrahedron below the face to the
vertex in the tetrahedron above the face. We will always view " as embedded in M.

Note that since I" is the 1-skeleton of B onto which M deformation retracts, the map
m1(T) — 7 (M) is surjective.

4.3. The flow graph ®,

For a veering triangulation t, its flow graph is a directed graph denoted by ®, (or sim-
ply @ if there is no chance of confusion) and defined as follows: the vertices of ® are
in correspondence with t-edges, and for each tetrahedron ¢ with relation (1), there are
directed edges from b to each of t, s, and s,. That is, there are ®-edges from the bot-
tom t-edge of each tetrahedron to its top 7-edge and the two side r-edges whose veer is
opposite that of the top r-edge. Let e be a 7-edge with corresponding ®-vertex v. Then v
has outgoing valence 3 and it is a consequence of the lemmas to follow that the incoming
valence of v is n — 3, where n is the degree of e. The name “flow graph” is motivated by
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Fig. 6. On the left is a local picture of ® (green) in standard position; P-edges are oriented out of
the vertex lying in the tetrahedron’s bottom r-edge. On the right we have isotoped ® upwards to
lie in dual position; the vertex which used to lie on the bottom t-edge is now equal to the I'-vertex
interior to the tetrahedron.

results in [31] showing that in the presence of a certain flow related to 7, directed cycles
in ®; correspond in a uniform way to closed orbits of the flow.

There is an embedding i : & < M which maps each vertex of @ into its corresponding
7-edge, and maps each ®-edge into either a t-face or a segment connecting the top and
bottom t-edges of a tetrahedron. This can be done in such a way that the interior of each
edge is smoothly embedded in B*, as depicted on the left-hand side of Figure 6. We call
this the standard position for ®. This embedding induces a homomorphism i,: H;(®) —
G = Hy(M)/torsion and hence a ring homomorphism i.: Z[H1(®)] — Z[G]. The fol-
lowing lemma shows that these homomorphisms are surjective.

Lemma 4.4. The inclusion i: ® — M induces a surjection
Le: (D) = 1 (M).

Before proving Lemma 4.4 we develop the combinatorics of B® and its branch
locus T, and discuss their interactions with ®. We recall that I is the directed graph
dual to 7.

A line segment, closed curve, or ray which is smoothly immersed in the branch locus
of B? is called a branch segment, loop, or ray respectively. A branch loop will also be
called a branch cycle when we wish to think of it as a directed cycle of I'. Let p =
(e1,e2,e3,...) be a directed path in I', and let v; be the terminal vertex of e¢;. We say
v; is a branching turn of p if the concatenation e; * e;4+; is a branch segment, and an
anti-branching turn otherwise.

Anti-branching turns will play an important role in Section 6, and they can be combi-
natorially distinguished from branching turns in the following way.

Lemma 4.5 (Veering characterization of branching and anti-branching turns). Let t be a
tetrahedron containing a T'-vertex v. Let f1 be a bottom face and let f, be a top face of t,
and let ey, e; be the corresponding T'-edges. Let s be the unique t-edge with the property
that f1 and f> are incident to s on the same side, with f lying immediately above f.
Then v is a branching turn of (e, e2) if and only if s and the top edge of t have opposite
veer. In this case, when @ is in standard position, there is a ®-edge lying in f1 from the
bottom t-edge of t to s.
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The proof of Lemma 4.5 follows from inspecting the two cases pictured in Figure 5.

Each sector A of B is a topological disk pierced by a single 7-edge, as in Figure 7.
The T"-edges bounding A are oriented so that exactly one vertex is a source, which we
call the bottom of A, and one is a sink, which we call the fop of A. The top and bottom
divide the boundary of A into two oriented I"-paths called sides. Each side has at least two
I'-edges because the t-edge piercing A has a nonempty fan on each side. The following
lemma says that if you remove the last edge in any side of any sector of B, the resulting
path is a branch segment, and that the entire side is never a branch segment.

Lemma 4.6 (Sectors and turns). Let A be a sector of BS and let p be a side of A con-
sidered as a directed path in T from the bottom to the top of A. The last turn of p is
anti-branching, and all other turns are branching.

Proof. Let e be the t-edge piercing A. The side p corresponds to a side of a fan of e,
and each turn of p lies interior to one of the corresponding tetrahedra. As we observed in
Fact 3.3, the top 7-edge of one of these tetrahedra will have the same veer as e if and only
if it is topmost in the side of the fan. By Lemma 4.5, the lemma is proved. |

By isotoping ® upward from standard position we can arrange for the vertex sets of I
and & to coincide, and for P to still lie in B® with the interior of each ®-edge smoothly
embedded. This isotopy pushes a ®-vertex in a 7-edge e onto the I'-vertex interior to the
tetrahedron above e. See the right-hand side of Figure 6. We call this the dual position
for ®. Note that in dual position, the interior of each ®-edge is disjoint from I' and
positively transverse to t?). From this point forward we assume ® is in dual position
unless otherwise stated. Since the two inclusions of @ are homotopic, this will have no
effect on results that do not explicitly deal with the position of ® in relation to other
objects in M, for example Lemma 4.4.

The following lemma describes the intersection of ® with a sector of B*.

Lemma 4.7 (Sectors and ©). Let A and p be as in Lemma 4.6. Then if e is a I'-edge in p,
then the bottom vertex of e is connected by a ®-edge in A to the top of A if and only if e
is not topmost in A.

Proof. 1t is clear that there is a ®-edge running from the bottom to the top of A. Further,
Lemma 4.5 tells us that there will be a ®-edge in A from a turn of p to the top of A if and
only if the turn is branching. Applying Lemma 4.6 finishes the proof. ]

The picture described by Lemma 4.7 is shown in Figure 7. Note that some sectors
may have sides with two edges. However, we see in the following argument that for every
I'-edge e, there is a sector A of B* such that e lies in a side of A with at least three edges.

Proof of Lemma 4.4. Let e be a I'-edge with terminal point v. We claim there is a sec-
tor S, and a side p of S, such that e lies in p and neither endpoint of e is the last turn
of p. This can be seen by considering the branching around v: of the (locally) six sec-
tors meeting at v, the sector S, is determined uniquely by the property that its boundary
contains both e and the next edge in the branch cycle containing e (the reader may find
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Fig. 7. A sector of B with ® in dual position. The intersection with @ is shown in gray and
d-edges are green.

it helpful to consult Figure 5). Since v is thus a branching turn for a side of S, we have
proved our claim by Lemma 4.6. It follows from Lemma 4.7 that each I'-edge cobounds
a disk in B® with two ®-edges. Since 1 (I') surjects 7r1 (M), this proves the lemma. m

Theorem 4.8. Let (M, 1) be a veering triangulation and - its flow graph. Then

Vi =ix(Pe) =1 + Z(_l)lo‘i*(g),

where Pg is the Perron polynomial of ®-.

In other words, the veering polynomial is obtained from the Perron polynomial of
its flow graph by replacing its directed cycles with the corresponding homology classes
in M. We warn the reader that some of these classes may be trivial, as is the case when ©
represents a top-dimensional face that is not fibered. This is discussed in Section 5.3.

Proof. Let M*® — M be the universal free abelian cover of M, which has deck group G,
and let ® be the preimage of ®. Since ® — M is mq-surjective by Lemma 4.4, the restric-
tion ® — @ is the covering map associated to ker(ix o ab: 71 (®) — G).

Choose a lift of each ®-vertex to M, determining a presentation for V(Ef),-*) and thus
a matrix L ;, as in (7). By Proposition 4.2, i4(Pg) is equal to Py ;, = det(Lg,,). By
the correspondence between ®-vertices and t-edges, the chosen lifts of ®-vertices give a
family of lifted t-edges and thus a presentation for &(7) with an associated matrix L as
in (2). For our choices of generators, the definition of ® gives that these two presentation
matrices are equal. Thus

Ve = det(L) = det(Lo.,) = ix(Po).

completing the proof. ]
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5. Carried classes, homology directions, and the Thurston norm

Fix a veering triangulation 7 of M, let I' = T"; be its dual graph, and let ® = @, denote
its flow graph. In this section, we first show that various cones in H; (M ; R) naturally
associated to these directed graphs are equal (Theorem 5.1). Then we show that the dual
of these cones in H'(M;R) = H(M, dM;R) is precisely the cone over a face of the
Thurston norm unit ball (Theorem 5.12) and describe a connection to the veering polyno-
mial (Theorem 5.15).

5.1. Homology directions and carried classes

Let V be a finite-dimensional real vector space and let C C V be a convex polyhedral
cone, which by definition is the nonnegative span of finitely many vectors in V. The
dimension of C is the dimension of the subspace generated by C. The dual cone to C is

CV={ueV*:ul)>0forallveC}cCV*.

One sees that (CY)Y = C. Let d(C) be the dimension of the largest linear subspace
contained in C. Then the dimension of CY is dim(V) — d(C). If d(C) = 0, we say C is
strongly convex. Thus if C is a top-dimensional strongly convex cone (e.g. a cone over a
fibered face of By(M)), then C"V is also a top-dimensional strongly convex cone. For a
reference on convex polyhedral cones see [19, Section 1.2].

Let D be a directed graph embedded in M. Define cone, (D) C Hi{(M;R) to be
the nonnegative span of the images of directed cycles in D under inclusion. We will
write coney (D) := (cone;(D))". For the dual graph I', we call cone; (") the cone of
homology directions of t. Note that any directed cycle in ' gives a closed curve in M
which is positively transverse to 7, and conversely any closed curve transverse to v?
is homotopic to a directed cycle in I". Hence the cone of homology directions of t is equal
to the cone generated by all closed curves which are positively transverse to 7 at each
point of intersection.

We define the cone of carried classes of t, denoted cone,(t) C Hy(M,dM;R), to be
the cone of classes carried by the branched surface t(.

The first goal of this section is to prove the following theorem relating the above
cones.

Theorem 5.1 (Cones). For any veering triangulation t of M with dual graph T and flow
graph ®, we have coneq (I') = coneq (®). Moreover,

cone, (t) = coney (I') = coney (D),
where we have identified H' (M ;R) = H(M, dM ; R) via Lefschetz duality.

We now turn to the combinatorial definitions and observations we need to prove The-
orem 5.1.
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5.1.1. Relating T', ®, and B®. An oriented path, ray, or cycle in the dual graph I is called
a dual path, ray, or cycle, respectively. Similarly, we call an oriented path, ray, or cycle in
the flow graph ® a flow path, ray, or cycle.

As a first step of the proof of Theorem 5.1, we will prove Proposition 5.7 which asserts
that the dual cycles and flow cycles generate the same cone in H; (M ;R), i.e. cone; (I') =
cone; (). While it is clear from the transversality of ® and t(® that each flow cycle is
homotopic to a dual cycle, the converse is not necessarily true; it may be necessary to
square a dual cycle before it is homotopic to a flow cycle. This is not apparent from
the picture we have developed so far of the relationship between I' and ® (Lemmas 4.6
and 4.7) which has been purely local in nature. Hence we continue our discussion from
Section 4.3 of the interplay between B®, I", and ®, broadening our scope beyond a single
sector. It will be convenient to work in the universal cover M of M. Let Ef>, I~‘, and BS
denote the lifts to M of ®, I, and B® respectively.

Since B* is topologically the dual 2-complex to t, each component U of M ~ B is
homeomorphic to Ty x [0, 1), where Ty is the component of M contained in U. We call
U a tube of B*. Let U denote a single lift of U to M, which we also call a tube of B*.
There is a collection of branch lines which are entirely contained in 30U which we call
the branch lines of U. Each connected component of (3U N B*) ~ {branch lines of U}
is called a band of U. The i image of a band of U under the covering projection is an
immersed annulus in M which we call a band of U.

Lemma 5.2 (t@ inside a tube). Ler U be a tube of B* covering a tube U of B®. Let T be
the boundary component of M contained in U, and let T be the lift of T contained in U.
The intersection T® N cl(U) can be identified with (® N T) x [0, 1] under the hom-
eomorphism cl(lj ) = T x [0, 1]. This gives an identification of the tesselation T® N U
with the boundary tesselation of T.

Proof. This is a consequence of the duality of 7® and B®. The identification of the two
tesselations can be visualized as in Figure 8. |

We will now use the structure of this tesselation on 90U to reconstruct the intersec-
tions of T and ® with 90U . In summary, this can be done as follows: ' N a0 is the dual
graph to the tesselation 7 N 90, and each complementary component of Frnolisa
sector of B*. Thus the data of which I turns are branching/anti-branching is determined

Fig. 8. Each tip of a tetrahedron is a flat triangle that determines a cell of the tesselation of the
corresponding tube’s boundary. We show the picture for a downward (left) and upward (right) flat
triangles.
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by Lemma 4.6, and the combinatorics of ® N U are determined by Lemma 4.7. The
complete picture is shown in Figure 9; we emphasize that each individual sector in the
picture is exactly as in Figure 7. We justify this picture and add more detail in the lemmas
to follow.

Fig. 9. Part of the boundary of a tube in M and its intersection with 97(®) (gray), [ (red), and @
(green). One band has been shaded light blue.

Taking advantage of the identification between the two tesselations as in Lemma 5.2,
we will speak of ladders, ladderpoles, and flat triangles on the boundaries of tubes in M.

Lemma 5.3 (I" on boundary of tube). Let U ,U, 7~" T be as above. Then

(i) T NaU is topologically the dual graph to T® N dU, and the edge orientations of
the former agree with the coorientations of the latter,

(i) each component of dU ~ T is a sector of B*,

(iii) the top of each of these sectors lies in a downward triangle, the bottom of each sector
lies in an upward triangle,

(iv) each branch line of U bisects an upward ladder, and each upward ladder is bisected
by a single branch line.

Proof. Statement (i) is a direct consequence of B® being the 2-complex dual to ? and I’
being its 1-skeleton. Statement (ii) follows immediately from the fact that [ is the branch-
ing locus of B*. Each sector contains exactly one vertex of the tesselation (corresponding
to the edge dual to that sector) and the top of each sector lies in the flat triangle lying atop
that vertex. This flat triangle must be downward, giving (iii).

Let A be an upward ladder in a0 . Since A comprises a biinfinite sequence of flat
triangles such that each flat triangle shares a unique edge with its successor, (i) implies
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that there is a unique biinfinite f-path contained in A. Because any two consecutive flat
triangles visited by y share a vertex in the tesselation of a0, any two consecutive edges
e, f of y lie in the boundary of some B*-sector s. By (iii), neither e nor f is topmost in
a side of s, so they define a branching turn by Lemma 4.6. Therefore each upward ladder
contains a branch line of U

It remains to show that no other biinfinite T’ -path is a branch line. Since any two
branch lines must be disjoint, it suffices to show that a downward ladder A in aU does
not define a branch line. Let ¢ be a flat triangle in A’ and let v be the cusp of ¢ such that
the two sides of t meeting v are rungs of A’. Further suppose that ¢ is the last triangle in in
the fan of v that is contained in A’. Then the triangle in A’ directly above ¢ is a downward
triangle having v at its bottom. Hence, ¢ is the topmost flat triangle in its side of the fan
for v. If ' is the T"-path determined by A’, then we note that y’ crosses every rung of A’.
By Lemma 4.6, the turn of )’ at the vertex in ¢ is anti-branching. This completes the
proof. ]

Thus each band b of U contains two halves of upward ladders meeting db, and one
downward ladder interior to b.

Since @ is in dual position, the vertex sets of ® and T are the same. The intersection
of ® with U is therefore a directed graph whose vertices correspond to the flat triangles
of the tessellation. We describe its edges in the following lemma.

Lemma 5.4 (® on boundary of tube). Fix U, U T, T as above. Identifying the vertices
of ® N AU with the flat triangles in the tessellation of AU, the edges of ® N AU have the
following properties:

(1) Each downward triangle t has a single outgoing edge to a triangle t' which is down-
ward, lies in the same ladder as t, and is the endpoint of a I-path starting at t.

(i1) Each upward triangle has two outgoing edges, which have endpoints in different
downward ladders.

Proof. Lett be adownward flat triangle in 30U . Then 1 is topmost in the fan corresponding
to exactly one of its O-vertices (see Fact 3.3 or consider e.g. Figure 8). Let v be the 0-vertex
of ¢ such that ¢ is nor topmost in the fan corresponding to v, and let ¢ be the downward
flat triangle having v as a 0-vertex. Lemma 4.7 and the picture we have developed in
Lemmas 5.2 and 5.3 gives that 7 has a single outgoing edge, and its endpoint is in #’.
Now let ¢ be an upward flat triangle in AU . 1t again follows from Lemmas 4.7, 5.2,
and 5.3 that ¢ has two outgoing edges and that they connect to the downward triangle
sharing m-vertex with with 7, and to the downward triangle whose m-vertex is the O-
vertex of ¢ for which 7 is not topmost in the corresponding fan. One sees that these two
downward flat triangles lie in separate upward ladders. ]

For a visual summary of Lemmas 5.3 and 5.4, see Figure 9. As previously remarked,
one can recover the picture from only the tesselation on the boundary of a tube by drawing
the directed graph dual to the tesselation and applying Lemmas 4.6 and 4.7.
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If £ is a branch line containing points p and g, then we say q lies below p if there is
an oriented branch segment in £ from ¢ to p, where we include the empty segment (so p
lies below itself).

Lemma 5.5 (@ in a band). The restriction of ® to a band b in B* has the following
properties:

(1) For every ®-vertex q lying in b, there is a unique E)—ray pp(q) in &)|b with q as its
initial vertex.

(ii) For each T -vertex p interior to b, the union of the portions of the two branch lines
through p lying below p and in b divide b into two components, b; and b, .

(iii) Ifq lies in b, on a branch line of db, the ray py(q) intersects a branch segment in b
containing p at a point below or equal to p.

A diagram of the situation in Lemma 5.5 is shown in Figure 10.

Fig. 10. An illustration of Lemma 5.5.

Proof. Statement (i) follows from Lemma 5.4. Statement (ii) follows from Lemma 5.3
and our understanding of which turns in the boundary of a sector are branching from
Lemma 4.6. Statement (iii) follows from (i) and (ii): the ray pp(¢q) eventually must cross
from b, to b;r, and it must do so at a ['-vertex lying below p. |

5.1.2. Dual cycles, flow cycles, and carried classes. Any dual cycle ¢ in ' has a decom-
position into branch segments meeting at anti-branching (A B-) turns. The following lem-
ma shows that the parity of the number of anti-branching segments composing the cycle
is an invariant of its homotopy class.

Lemma 5.6. If dual cycles ¢y and ¢, in I" are homotopic in M, then the number of AB-
turns in ¢q has the same parity as the number of AB-turns in c;.

Proof. Since M deformation retracts to B* and I' is the 1-skeleton of B¥, it suffices to
build a homomorphism Z: 1 (B*) — 7Z/2 such that if ¢ is a dual cycle, then Z(c) is the
number of A B turns mod 2.
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The branched surface B® is the base space of a vector bundle £ — B*® defined by
taking the tangent plane at each point of B*®. For any loop y in B?, this pulls back to
a plane bundle over a circle. If the pullback bundle is orientable, set Z(c) = 0, and set
Z(c) = 1 otherwise. It is a standard fact that Z defines a homomorphism. In fact, Z is
equal to the map 71 (B*) — Z/2 induced by the first Stiefel-Whitney class of £ — B*;
see e.g. [25, Chapter 3].

Now let ¢ be a dual cycle. We will show that

Z(c) = #{AB-turns of ¢} (mod 2).

Fig. 11. When a dual cycle makes an anti-branching turn, we can homotope it to lie in a strip like
the green one shown above. The blue strip corresponds to a branching turn.

For this, observe that each time ¢ passes through a tetrahedron it makes either a
branching or an anti-branching turn, and this portion of ¢ can be homotoped to lie in
one of the two strips shown in Figure 11. From the picture we see that these strips glue
together to give an annulus if and only if the number of anti-branching turns is even.
Indeed, at any point along the path in the branch locus, a local orientation of the plane
field is obtained from the direction of the path and the rule that the branching is “on the
left.” Now the AB path in Figure 11 enters the tetrahedron where the branching is on
one side and exits the tetrahedron where the branching is on the other side. Hence the
orientation of the plane flips, which is to say it disagrees with the orientation carried con-
tinuously from the entry point. Since the opposite is true for the branching turn, this gives
the desired parity property for the loop. ]

The next proposition establishes half of Theorem 5.1. Although our emphasis here
is on the equality of the cones, the stronger fact that for any positive transversal of 7(?
either it or its square is homotopic to a flow cycle will be central in [31].

Proposition 5.7. For each dual cycle ¢ of T, there is a flow cycle f of ® such that f
is homotopic to ¢! fori = 1,2. Moreover, if ¢ is composed of an even number of branch
segments, then f is homotopic to c.

Hence the flow graph and the dual graph determine the same cones in Hy(M ;R):

conep (I') = coneq (D).

Proof. We first explain that every branch curve is homotopic to a flow cycle. Let y be a
branch curve in B®. Then y determines a tube T, of M ~ B®. Let b be a band of T},. The
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core curve of b is homotopic to y. By Lemma 5.5, there is a ®-ray lying exclusively in b,
and it must be eventually periodic. Hence there is a ®-cycle ¢ in b, which must then be
homotopic to y’ for i > 1. The fact that i = 1 is a consequence of the uniqueness part of
Lemma 5.5 (i).

Next, let ¢ be a dual cycle which is not a branch curve, and let ¢ be a lift to M. Let
g € m1(M) be the deck transformation that generates the cyclic subgroup stabilizing c.
Further suppose that g translates ¢ in its positive direction. Express ¢ as a concatenation
of f-edges (-..,e—2,e_1,€9,€1,€2,...) and let p; be the terminal point of e;.

We build a CB-ray inductively. There are exactly two branch lines through py. Let g¢
be any point on either of these branch lines below pgy. Suppose ¢; is on a branch line
below p;. If p;4+1 lies on the same branch line containing ¢; and p; (including the case
where ¢; = p;), let¢;+1 = ¢;. If p;4+1 does not lie in the same branch line as p; and g;, let
b be the band containing the branch line through p; and ¢; in its boundary and with p;4
in its interior. Then ¢; € by, 42 S0 as in Lemma 5.5 the (unique) ray pp(g;) intersects a
branch line containing p;4+; at a point g;+1 below or equal to p;4+. Let f; be the ®-
segment from ¢g; to g; 1 traversed by pp(g;). (These two cases are depicted in the first
two images in Figure 12, where the points ¢;, g; 41 can be ignored for now.) We will show

that the concatenation ]7 = (f1, f2, f3,- . .) of these segments form a preperiodic ray in P.

Fig. 12. Cases (i)—(iii) (ordered left to right) proving that f is to the left of ]7 ’. In the first case, it
is possible that qlf = p;. In the second and third cases, it is possible that ¢; 41 = p;41. In the third
case, it is possible that ¢; = p;. The ®-segments f; and f;.’ are drawn in green.

Let ¢; be the branch line containing e;, and let b; be the band of B determined by
the property that it contains ¢; in its boundary and contains the first edge of ¢ after e; not
lying in £;. As a comprehension check, we note that if e; and e; are contained in the same
branch line, then b; = b;.

Fix some j > O such that £; # £; . Consider p;, which as a reminder is the terminal
point of e; and the initial point of e; ;1. By construction, g; lies below p; on £; or £; 1.

o First, suppose that g; lies below p; on £; 4 (this includes the case where ¢; = p;). Let
ek be the last edge of ¢ contained in £;. Then ¢; = gj4+1 = -+ = ¢k, and g1 is equal
to either py 1 or one of finitely many points below pg 4 on a branch segment in by.

o Next, suppose that g; lies below p; on £;. Then g; 4+ lies in b; and is equal to either
Dj+1 or one of finitely many points below p;1 on a branch segment in b;.
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Recall that the deck transformation g stabilizes ¢. The discussion above shows that
there are finitely many vertices rq, . . ., I such that, for each i > 0, f must pass through
one of g (ry), ..., g" (rm). Moreover, since the construction shows that each subray of f
is determined by any initial vertex, it follows that the projection f of f to M is eventually
periodic, giving a ®-cycle that is homotoplc to a positive 1nteger multiple of c.

By truncating an initial segment of f we can assume f is periodic under some power
of g. More precisely, there exist k, £ such that g% (go) = g¢- By construction, f is deter-
mined by any of its vertices and so for any i € Z, either f has no common vertices with
g ]7 ), or the two are equal. To bound the period of f we first need to discuss some extra
structure associated to the branch lines through .

First, label each £; with either an L or R such that if £; and £;; are adjacent (i.e.
intersecting and not equal) branch lines along ¢, as in the above construction, then they
receive opposite labels. Such a labeling is uniquely determined by giving £, the branch
line containing the edge ey, the label L. Note that this labeling is well-defined: if ¢ leaves
a branch line and then returns to it, it does so only after an even number of anti-branching
turns by Lemma 5.6.

If p is a vertex of ¢ and £~ and £R are the branch lines through p with indicated labels,
we define an order on the vertices lying below p on £% and ¢L. If ¢, g, are vertices on
these lines which lie below p, then we say that g, is fo the left of g (at p) if any of the
following hold:

e ¢ lies in £~ and g lies in £R,
e ¢ and g, lie in £F and g lies below g, or
e g1 and g5 lie in £R and g, lies below ¢;.

Now if ¢ is composed of an even number of branch segments (i.e. ¢ has an even
number of anti-branching turns), then g preserves the L/R labeling on the branch lines
through ¢, and therefore preserves the order relation defined above. For the remainder of
the argument, we assume this to be the case. Otherwise, after replacing ¢ (and g) by its
square, the same argument applies.

Let p be any vertex of ¢ and let ¢ be a vertex of f such that g lies below p in a branch
line £, as in the construction of f . (If ¢ = p, then take £ to be the branch line containing
the edge of ¢ with initial vertex p. Suppose that £ is labeled by L. Set f T=g7I( f ). If
f = f ’, then the proof is complete. So assume that ]7 #* f " and so these flow lines have
no vertices in common.

By construction, there is also a vertex ¢’ of f’ such that ¢’ lies below p on some
branch line. Since ¢ and ¢’ are not equal, one lies strictly to the left of the other. For the
sake of argument, suppose ¢ lies strictly to the left of ¢’. We claim that this implies that
for any other vertex x of ¢, the vertex of ]7 below x on some branch lines lies strictly to
the left of the vertex of ]7 below x on some branch line. (As shorthand, we say that ]7 lies
to the left of f "at x.) It suffices to prove the claim for vertices after p along ¢ and we do
so by induction.

Suppose that ]7 is to the left of f at the vertex p; along ¢. Let éiL and EiR be the left
and right branch lines through p;, respectively, and let g;, g; be the vertices of ]7 , ]7 ’,
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respectively, that lie below p; on either ZiL or EiR. Let us suppose that p;4+; (the next
vertex along ¢) also lies on ZiL ; the proof in the opposite case is symmetric. We have the
following cases (see Figure 12):

(i) If g; and ¢/ are on £F, then ¢; 41 = ¢; and di+, = q;- Hence, g1 is to the left of
q1{+1 at pi+1.

(i) If ¢; and g} are on £X (and g; # p;), then both f; and f/ (the segments of £ f
joining ¢;,q; to qi+1.q; ., respectively) are contained in the same band b. Since
k= ZiL_H, we see that ¢;+1, ;. are both contained in ZiRH. As f and f' are
assumed to be distinct, the segments f;, fi’ do not intersect in b and so their terminal

vertices are ordered along KZR_H in the same manner as they were ordered along EiR.
Hence, g+ is to the left of qlfﬂ at pi41.

(iii) If g; and g are on different branch lines, then it must be that g; is on EiL and ¢] is
on ZiR. In this case, ¢;+1 = ¢; and ‘11{+1 lies in KI.RH (where ‘11{+1 = pi+1 is possible).
Hence, g;+1 is to the left of g; | at p; 4.

We have shown that f lies to the left of /7 = g~!(f) at g’ (p) for each i € Z. By
(g)-equivariance, this implies that g*+1( f ) lies strictly to the left of g’ ( f ) at p for every
i > 0. This, however, contradicts that f is periodic under some power of g. Hence, we
must have f = g(f) and so f is homotopic in M to c. |

For the other half of Theorem 5.1, we need two more lemmas.
Recall that a directed graph is strongly connected if for any two of its vertices u and v,
there is a directed path from u to v.

Lemma 5.8. The dual graph T is strongly connected. Moreover, any cycle in T, not
necessarily directed, is homologous to a linear combination of dual cycles.
Hence, the dual cycles generate Hy (M ; Z).

Proof. We first show that I is strongly connected. Consider a tetrahedron 7', and let S(7T')
be the union of all tetrahedra accessible from 7" via a directed path in I'. It is immediate
that S(7°) has no top faces on its boundary. Since the tetrahedra composing S(7') have an
equal number of top and bottom faces, and each top face is glued to a bottom face, S(7")
has no bottom faces in its boundary. Hence S(7") = M, proving strong connectivity.

Now, let x be a cycle in I'. We can break x into a concatenation of segments which are
maximal with respect to the property that they either completely agree or disagree with
the edge orientations of I'. We write x = ( f1, b1, ..., fu,bn), where f and b are chosen
to evoke “forward” and “backward”. Denote the initial vertex of f; by p;, the terminal
vertex by g;, and observe that this dictates that b; travels from ¢; to p;41, where indices
are taken modulo n.

Let o; be a directed path from ¢; to p;, which exists by the strong connectivity of I".
Let A; be the directed cycle ( f;,;), and let B be the directed cycle (b;1 Oy, .. ,bl_1 ,a1).
Then x is homologous to A; + --- + A, — B. Since 1 (I") — m1(M) is surjective, this
completes the proof. ]
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Recall that if A is a convex set in R?, a supporting hyperplane for A is a hyperplane H
such that H N dA # @ and A is contained in one of the two closed half-spaces determined
by H. We will use the following finite-dimensional version of the Hahn—-Banach Theo-
rem:

Lemma 5.9 (Hahn-Banach). Let C be a strongly convex polyhedral cone in a finite-
dimensional vector space V. If K is a subspace of V with K Nint(C) = @, then K can
be extended to a supporting hyperplane H for C. If K N C = {0}, we can choose H such
that H N C = {0}.

Proof. Apply the separating hyperplane theorem (see, for example, [9, Section 2.5]), to K
and int(C) for the first statement. For the second, slightly enlarge C to C’ so that C’ is still
strongly convex with K N int(C’) = @& and apply the same theorem to K and int(C’). =

The following is a strengthening of [37, Proposition 2.12]. The appeal to Hahn—
Banach comes from [44, Theorem 1.7] and is made explicit in [35, Theorem 5.1], where
the second statement of the lemma is proven.

Lemma 5.10. Suppose that D is a finite directed graph and n € H'(D;R) is nonnegative
on all directed cycles. Then there is a nonnegative cocycle m: E(D) — Rx represent-
ing n.

If n is positive on all directed cycles, then m can be taken to be positive on all directed
edges of D.

Proof. We assume 7 is not identically 0, since in that case the statement is clearly true.
First suppose that D is strongly connected. Let E = E(D), let Z; C RE be the sub-
space of cycles in D, and let Rf and ]Rgo be the open positive orthant and its closure,
respectively.

Note that Z; N ]RE is nonempty by strong connectivity, and that 7 is strictly positive
on this set since n # 0. By Lemma 5.9, ker(n) can be extended to a supporting hyper-
plane H for Rgo. Let V be the span of a vector in Z; N Rf, and choose a decomposition
H = ker(n) @ W for some subspace W. Then R® = V @ ker(n7) @ W, because neither
ker(n) nor W intersect ]Rf. Thus we can define a linear functional m: RZ — R which
extends n by requiring m|w = 0. Note that m is a nonnegative cocycle representing 7.
If 7 is strictly positive on cycles in D, then we can choose H so that H N Rx¢ = {0},
guaranteeing that m is a positive cocycle. The same argument shows that the result holds
when D is a union of strongly connected components.

Now suppose that D is arbitrary. Let R be the union of recurrent components of D,
i.e. the union of all maximal strongly connected subgraphs. Let A be the complementary
subgraph of R in D. Let ¢ be a cocycle representing 7, and write ¢ = cr + c4, where cg
and ¢4 are supported on R and A. By the case above, cg can be written as ¢4 + §h for
some 0-cochain %, where c4 is either positive or nonnegative depending on whether 7 is
positive or nonnegative on directed cycles.

Consider the quotient D g obtained by collapsing each component of R to a vertex.
Note that D contains no directed cycles, so the edge orientations induce a partial order
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on its vertices and there is a function f: V(Dg) — R compatible with this partial order.
We may lift f to a function F on D which is constant on each component of R. Then
8F is a coboundary which is 0 on E(R) and positive on E(A). By replacing F with a
sufficiently large multiple of itself, we can guarantee that for each edge a of A, §F(a) >
|c4(a)]. Then ¢4+ + c4 + SF is the desired cocycle. L]

Proposition 5.11. There is an equality of cones
coney (I') = cone, (7).

That is, the classes carried by T are precisely those whose algebraic intersection with
any closed positive transversal to T® is nonnegative.

Moreover, any integral class o € coneY (I') N H'(M ; Z) is represented by a surface S
carried by .

Proof. Since elements of cone;(I") are nonnegative combinations of directed cycles
which intersect the faces of ¢ positively, it is clear that cone, () C cone (I").

Now let 0 # 1 € coney (T") and leti*n € H'(T) be its pullback to I'. By Lemma 5.10
we can represent i *1) by a nonnegative cocycle m: E(I') — R on the edges of I". Using
the identification between directed edges of I" and cooriented faces of t, the cocycle m
gives a 2-chain m;: {r-faces} — R.

From the duality between I" and t, it follows that m, is a cycle rel boundary and thus
defines a class in Hy (M, dM ). More explicitly, for a t-edge e, let o, denote the B®-sector
pierced by e. Let £ and r be the two sides of o,. To check that m, is indeed a relative
cycle, we need only check that m(£) = m(r). Since the loop i(/ - r) is trivial in M,

m(l-F)=i*n(-F)=n@i-F)) =0,

and m({) = m(r) as required. Hence m, determines a carried class & € cone,(7) whose
algebraic intersection with any dual cycle ¢ is equal to 7(c). Since the dual cycles generate
H{(M), h is the Lefschetz dual of 7.

The “moreover” statement now follows from Lemma 2.2. ]

5.2. Faces of the Thurston norm ball

Here we show that the veering triangulation always determines an entire face of the
Thurston norm ball, generalizing what was known for the layered case. We use this to
give a criterion (Theorem 5.15) to detect fiberedness, which can be thought of as a com-
binatorial version of Fried’s condition for a flow to be circular [18, Theorem D].

From its definition, we see that the dual graph I' = I'; is acycle in M and so represents
a homology class [I'] € H;(M). Further, for any surface ¥ carried by ?, we see that
x(X) = —% ([T'],[X]), where (-, -) is algebraic intersection. This is because the intersection
of the carried surface with [I"] equals the number of ideal triangles in an ideal triangulation
of the surface.
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With this in mind, we define the combinatorial Euler class of t to be

er = —3([T].").

We have e, € H?>(M, 3M). Recall from Section 2.2 that t® is a taut branched surface.
Hence, if X is carried by ® then —e,([X]) = x([Z]), where x(-) is the Thurston norm.

Theorem 5.12 (The whole face and nothing but the face). The subset of Hy(M, M) on
which the Thurston norm x is equal to —e is exactly cone, (t). Hence, cone,(7) is equal
to the cone over a face ¥, of Bx(M).

We say that T determines the face F.. Here we note that, as in work of Mosher [38],
the empty face is allowed. The proof of Theorem 5.12 will require additional terminology
that we now turn to explain.

5.2.1. The unstable branched surface B*. Recall that in Section 4.2 we introduced the
stable branched surface B as a particular smoothing of the 2-complex of M dual to .
According to Lemma 4.3, this smoothing is characterized by the condition that for each
face f of t, f N Bf is the train track whose large branch meets the bottom edge of f.

In an analogous way, we define the unstable branched surface B* to be the branched
surface with the same underlying 2-complex such that for each face f of z, f N B¥ is the
train track whose large branch meets the top edge of f. Here, the top edge of a face f is
the unique top edge of the tetrahedron ¢ that contains f as a top face. The intersection of
B* with a tetrahedron is shown in Figure 13. Just as with the stable branched surface, the
branch locus of B¥ can be naturally identified with the dual graph I". We fix the position
of both B¥ and B* in M, but make no assumption about how they sit with respect to each
other.

Fig. 13. The unstable branched surface B* in a tetrahedron ¢ depending on whether the bottom
edge of 7 is left or right veering.

Exactly as in Section 4.3, we can define unstable branch loops as smoothly immersed
closed curves in the branch locus of B¥.

We note that if S is an embedded surface in M transverse to B¥ and B, then the
intersections S N B* and S N B* are train tracks on the surface S, and we refer to the
complementary regions as patches. (Here, we make no assumption on the Euler charac-
teristic of a patch.) If S is oriented, then each intersection with I" has a sign, and since
these intersections are in bijection with the cusps of S N B* (and S N BY), each cusp of
these tracks is either positive or negative accordingly.
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5.2.2. Partial branched surfaces and a result of Landry. To apply results from [30] we
replace M with the corresponding compact manifold as follows: First, let M be the mani-
fold obtained by truncating the cusps of the tetrahedra of t, as in Section 2.1. We continue
to use 7 to denote the corresponding branched surface with boundary in M. Now let
M be the homeomorphic manifold obtained by attaching a thickened torus 72 x [0, 1] to
each boundary component of M.

In the terminology of [30], ©® is a partial branched surface of M with respect to
U=M ~ 1nt(M ). A properly embedded surface S C M is carried by the partial branched
surface 7@ C M if S has no components completely contained in U, S ~ int(U) C M
is carried by ®, and each component of S N U is a properly embedded 71 -injective
annulus in U with either one or both boundary components on IM.

The following theorem [30, Theorem 8.1] is a key ingredient for Theorem 5.12:

Theorem 5.13 (Landry). Let S be an incompressible, boundary incompressible surface
in M. Further suppose that S has the property that for any surface S’ isotopic to S that
is transverse to B¥ and B?, either

e oneof S’ N B* or 8’ N B® has a nullgon or monogon patch, or
e for both tracks S’ N B* and S’ N B*, each negative cusp belongs to a bigon patch.

Then S is isotopic to a surface carried by the partial branched surface T® N M.

We remark that it is observed in [30] that the tracks S N BY/S never have monogon
patches.

5.2.3. The proof of Theorem 5.12. Before beginning the proof, we recall a formula for
computing the Euler characteristic of surfaces using train tracks (see e.g. [11]). For a
surface C with finitely many punctures and cusped boundary, we can define

index(C) = 2x(C) — (no. of boundary cusps).
If ¢ is a train track on a surface S of finite genus with finitely many punctures, then

2)(S) = index(C).
C

where the sum is taken over all patches of S with respect to . Note that if y(S) < 0, then
the only patches with positive index are nullgons and monogons.

Proof of Theorem 5.12. Let W C H,(M, 0M) be the cone on which —e; = x. Any class
contained in cone,(7) is represented by a surface carried by t® by Lemma 2.2. As dis-
cussed at the beginning of this section, such a surface ¥ is taut and has —e; ([Z]) = x([X]).
This yields the containment cone,(t) C W.

To show the reverse containment it suffices to produce, for any integral class « € W,
a surface representing o and carried by t®.

Let S, be any taut surface representing «. We will use Theorem 5.13 to prove that S,
is isotopic to a surface carried by the partial branched surface 7? N M. For this, suppose
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that S is a surface transverse to the branched surfaces B* and B® and isotopic to Sy. Let
t* =S N Bfand t* = S N B* be the corresponding train tracks on S. By Theorem 5.13
it suffices to assume that neither of these tracks has a nullgon or monogon patch and to
show that every negative cusp belongs to a bigon patch. The arguments for ¢* and ¥ are
identical, so we work with 1 = ¢¥.

Recall that there is a bijection between intersections S N I" and cusps of 7, and that
each cusp of ¢ is the cusp of exactly one patch D C S. (Since S misses the vertices of I',
the track ¢ is generic.) Also recall that the sign of a cusp is the sign of the corresponding
intersection point of I and §.

It is clear that the smooth annular patches (i.e. topological annuli without cusps) do not
contribute to the signed number of cusps, and we claim the same is true for the patches
that are topological disks (i.e. unpunctured n-gons). Indeed, suppose that D is a patch
which is a topological disk contained in a tube V' of B¥, defined as in Section 5.1.1. Since
D is a disk in V' which is unpunctured, dD is a trivial curve in dV. Hence, 0D meets
each unstable branch curve of dV (i.e. the intersection of the cusps of B* with V') with
algebraic intersection number 0. Since this intersection number is also the signed number
of cusps in D, we see that the signed number of cusps for any disk is also 0.

Partition the set of patches on S into the set of topological disks and smooth annuli
DA and the rest ndD A. Note that each patch in nD A has both negative index and non-
positive Euler characteristic.

The quantity ([S], [[']) can be computed as the signed number of intersections between
S and T, or alternatively as the signed count of cusps over all patches of S with respect
tot = S N BY. Since the signed number of cusps of annuli and disks is 0, we have

2%(S) = —([S].[T]) = ) —algcusps(D),
ndDA

where algcusps(D) denotes the signed number of cusps in dD and the sum is over patches
that are not topological disks or smooth annuli. Subtracting this expression for 2 y(S) from
the expression in terms of the indices of patches provided above gives

0= Zindex(C) + Z (index(D) + algcusps(D)) .
DA nDA

We claim that each term of the above sum is nonpositive. First, each term of the
first sum is nonpositive, since each patch has nonpositive index following our assumption
that there are no patches which are nullgons or monogons. For the second sum, the term
for DinnDAisequalto2y(D) + (algcusps(D) — cusps(D)), which is nonpositive since
x(D) < 0and algcusps(D) < cusps(D). Hence, each term of the sums is nonpositive and
so it must be that each term is actually 0. We conclude that each patch in O A4 is an annulus
or a bigon with cusps whose signs cancel, and that each patch in nd A is a once-punctured
disk with only positive cusps.

The same argument applies to * = S N B*, and so by Theorem 5.13 we conclude
that, after an isotopy, S is carried by the partial branched surface t® N M. In partic-
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ular, S N M is carried by 7 and under the canonical isomorphism H, (1131 , M ) =
H,(M,0M), it represents the class «. Hence, @ € cone,(7) and the proof is complete. =

5.3. Dimension and fiberedness of cones via the veering polynomial

We begin with the following lemma showing that P¢ determines the cone of homology
directions of 7.

Lemma 5.14. For a veering triangulation t, the cone of homology directions coney (L") is
generated by i, (supp(Pg)), where iy: Hi (P;R) — H{(M;R) is induced by the inclusion
of the flow graph into M.

Proof. By Theorem 5.1, coneq (I') = cone; (®). Since an arbitrary directed cycle in ® is a
sum of simple directed cycles, it suffices to know that the homology class of every simple
directed cycles of @ appears in the support of the Perron polynomial Pg. But this follows
immediately from equation (6). ]

The following theorem summarizes the main results of this section and gives a char-
acterization of fibered faces in the spirit of Fried’s criterion.

Theorem 5.15. Let t be a veering triangulation. Then cone,(t) is equal to the subset
of Hy(M, dM) on which x = —ey, which is the cone over a face ¥ of Bx(M). The
codimension of R4 F; is equal to the dimension of the largest linear subspace contained
in coney ().

Furthermore, the following are equivalent:

(i) ix(supp(Ps,)) lies in an open half-space of Hi(M ; R),

(ii) there exists n € HY (M) with n([y]) > 0 for each closed t-transversal y,
(iii) t is layered,
@iv) F; is a fibered face.

Proof. Theorem 5.12 gives that cone;, () equals the cone over a face F; of B, (M). The
statement about its codimension follows from the discussion at the beginning of Sec-
tion 5.1 (or see [19, Section 1.2, Fact 10]) after we recall that the dual cone of cone;(7)
equals coneq (I') by Proposition 5.11.

It remains to show the equivalence of the conditions.

For (i) < (ii), since i« (supp(Ps,)) lies in an open half-space of H;(M;R), there
is an n € H(M) that is positive on all directed cycles in i,(supp(Po,)). In partic-
ular, no such directed cycle is 0 in H;(M; R). Hence, if y is a closed t-transversal,
then [y] € Hi(M;R) is in the positive span of directed cycles in ix(supp(Ps,)) by
Lemma 5.14 and so n([y]) > 0. For the converse, if 7 is positive on closed transver-
sals, then it is positive on i« (supp(Pg, )). This implies that i, (supp(Ps, )) lies in an open
half-space.

The implication (iii) = (ii) is immediate because a fiber of a layered veering triangu-
lation positively intersects every closed transversal.



M. P. Landry, Y. N. Minsky, S. J. Taylor 766

Next we turn to (ii) = (iii). Let 7 € H (M) be positive on closed transversals of 7.
Then its pullback to the dual graph I is positive on directed cycles and so by Lemma 5.10
it is represented by a positive cocycle m on the edges of I". After perturbing slightly, we
can assume that m: E(I") — Q4 and so for some n > 0, n - m assigns a positive integer
to each edge of I". As in the proof of Proposition 5.11, this implies that n - 1 is presented
by a surface S fully carried by ®, meaning that S traverses each face of . From this, it
follows that the components of M ~ S are I-bundles and that 7 is a layered triangulation
on any component of S

Finally, (iii) = (iv) is clear because a “layer’” of a layered triangulation is a fiber
of M. The reverse implication is more difficult and reserved for Proposition 5.16. ]

The following proposition completes the proof of Theorem 5.15. In short, it states
that the only veering triangulations that carry fibers are layered. It can be thought of as a
combinatorial version of [14, Proposition 4.5].

Proposition 5.16. Let t be a veering triangulation of M whose associated face F; C
B (M) is fibered. Then t is layered.

The proof is inspired by Agol’s proof of virtual fibering [1]. Recall that G = 71 (M) is
virtually special by Wise [46, Theorem 17.14] (see also Cooper—Futer [12, Theorem 1.4]
and Groves—Manning [23, Theorem A]) and so it is virtually RFRS by Agol [1, Corollary
2.3]. This means that there exists a finite index subgroup Go < G and subgroups Gy D
G1 D --- such that

(1) ﬂi Gi =1,
(2) G; is anormal, finite index subgroup of Gy,
(3) for each i, the map G; — G; /Gy factors through G; — H1(G;;7Z)/torsion.

Such a chain of subgroups is called an RFRS tower.

Proof of Proposition 5.16. LetG = w1 (M) andlet G > Gy D G; D --- be an RFRS tower
for the finite index subgroup Gy. For each i, let M; be the corresponding cover of M.

Since fibers are the unique taut surfaces in their homology class, t carries all the fibers
in the cone R4 F; by Theorem 5.12. Let 7; be the lifted veering triangulation of M;. Since
7; carries the lifted fibers from 7, we see that each cone R F; := R F is fibered and
hence top-dimensional.

Suppose that 7 is not layered; hence, no surface is fully carried by t®. We choose a
(multiple of a) fiber S that is maximal with respect to the weights placed on faces of 7.
That is, S is carried by t and traverses every face that is traversed by any carried surface.
Such a surface can be constructed by summing weights of finitely many fibers that traverse
the faces traversed by some carried surface. Of course, the complete preimage S; of S in
Mi is a (multiple of a) fiber carried by 7; whose weights on faces are lifted from those
of S. We claim that S; also has the weight maximality property for 7;:

Claim 1. The carried surface S; traverses every face of T; that is traversed by any carried
surface. In particular, each T; is also not layered for i > 0.
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Proof of Claim 1. Suppose that Z is a carried surface that traverses a face not traversed
by S;. Then the system of weights on faces of 7; corresponding to Z pushes down to t
to give a system of weights (satisfying the matching conditions) and determines a surface
carried by 7 that traverses faces not traversed by S, a contradiction. |

Since 7; is not layered, it has dual cycles that do not intersect §,-; see (i) = (iii) in
the proof of Theorem 5.15. (Here, we set 1\71_1 =M,7T_1 =r1,and §_1 = §.) These dual
cycles lie in the “guts” of S; defined as follows: Let §(§i) be the open region obtained by
taking the open tetrahedra of 7; together with the open faces of "fi(z) that are not traversed
by S;. Any dual cycle not crossing S; lives in ﬁ(gi) by construction.

Claim 2. The image ole(]\7Ii) — HY(§ (§i)) is trivial fori > —1.

Proof of Claim 2. Suppose that some nontrivial « is in the image of the map. Since R F;
is top-dimensional in H 1(]\Zi) = Hz(ﬂi, 81171,-), i.e. it has nonempty interior, there is
a f € R4F; such that « 4+ B € R.F;. But then @ + § is represented by a surface Z
carried by 7; that has nonzero intersection number with an oriented loop in §(§,~). This
contradicts Claim 1, which implies that Z is disjoint from § (§,~). ]

Now by Claim 2, each component of £ (So) lifts homeomorphically to M;. Indeed,
this amounts to the claim that any loop in § (So) is trivial under the homomorphism Gy —
H, (1\710)/t0rsion By definition of S;, all the lifts of ‘§(§O) to M; live in G(S;). Then
again applylng Claim 2, we see that §(Sp) lifts to M. Contlnulng in this way, we find
that ﬁ(So) lifts to each M; and hence for each component C of ‘5(50) m1(C) C (); Gi.
Hence, each component of § (So) has trivial fundamental group. This however contradicts
the fact that if ¢ (and hence 7p) is not layered, then §(§0) contains dual cycles, which are
homotopically essential by a combinatorial version of a theorem of Novikov; see [43,
Theorem 3.2] or the references found therein. The proof of Proposition 5.16 is complete.

(]

6. Relating the polynomials V; and O,

In this section, we establish a precise version of the identity

Ve=0.-](1 £

where the g; € G are represented by certain directed cycles in the dual graph I' = T';.
We will see in Section 7 that this is a generalization of McMullen’s Determinant Formula
from the fibered setting.

After some definitions we will state Theorem 6.1, which is the main result of this
section.

6.1. The AB-polynomial

As before, we let M denote the universal free abelian cover of M.



M. P. Landry, Y. N. Minsky, S. J. Taylor 768

Recall the definitions of L: Z[G]® — Z[G]F and L*:Z[G]¥ — Z[G]¥ and their
respective cokernels, &(7) and &2 (T) (equations (2) and (4)). To relate the two we recall
from Lemma 3.2 the fact that, if f is a bottom face of a tetrahedron ¢ and e its bottom
edge, then there is a unique top face f’ of ¢ such that L2(f) + L2(f’) = L(e). This
face f” is characterized by the fact that the turn in the dual graph I' at ¢ given by the pair
(f. f) is anti-branching (see Lemma 4.5).

The correspondence f + f’ defines a map A: F — F, which after lifting to M
induces a Z[G]-module homomorphism A4: Z[G]F — Z[G]¥ . The correspondence f > e
sending a face to its bottom edge gives a 2-1 map &: F — E, which also extends to
e:Z[G)F — Z|G]¥ . Defining L*® = I + A, we can express the above identity as

Lo L = Loe. ()

Now define the A B-module 4B (7) as the cokernel of L*8 that is, via

Z[G|F LN Z[G]F - AB(%) — 0. )

As L*8 is a square matrix, its fitting ideal is principally generated by det(L*®) and we
define the A B-polynomial of T by

VA = A8 — det(L*®) € Z[G].

We will see in Lemma 6.2 that V% has the form [1(1 £ g;) over certain g; € G. Our
main result will then be:

Theorem 6.1. Suppose that rank(H(M)) > 1. Then
V. =V*8.0,
up to multiplication by a unit in Z[G).

When the rank of homology is 1, the conclusion holds up to multiplying by 1 =+ ¢,
where ¢ generates G. See Remark 6.18.

Let us give a short sketch of the proof.

We first introduce A B-cycles, which are just the cycles of the permutation A, and give
in Lemma 6.2 a factorization formula for V4%,

Proposition 6.6 gives the “easy” direction of the theorem, namely V | (V4% . ©,),
which follows from standard facts about Fitting ideals (but we supply an explicit proof).

In Lemma 6.8 we give an alternative presentation of &2 that allows us to express O
as the ged of minors of a matrix involving L and selected columns of L2,

Lemma 6.9, the A B-cycle equation, is an identity combining L, L2 and the AB-
cycles. In Proposition 6.12 we use this equation to enable column operations that express
V: as one of the minors of the matrix in Lemma 6.8. This gives us, in Corollary 6.13, a

result of the form
(o TTa 2 e0) |7,

where the product is over a restricted collection of cycles called a reducing family.
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We then introduce A B-chains which are cycles formed of segments of A B-cycles in
a restricted manner. We find in Lemma 6.14 and Corollary 6.15 that

(VA%.0.) (1 £2)V;,

where z is the image in G of such a cycle.

In Lemma 6.16 we show that the homology classes of AB-chains and A B-cycles
suffice to generate G and use this to show that, by applying Corollaries 6.13 and 6.15
over all AB-cycles and A B-chains, we can establish

(VAR 0y |V,

which completes the proof.

6.2. Cycles and the factorization of V%

The map A: F — F is a permutation and we call its cycles the A B-cycles of 7. Recall that
dual cycles and dual paths are directed cycles and paths respectively in the dual graph I'.
Each AB-cycle ¢ determines a unique dual path whose I'-edges correspond to the t-
faces in c. We will often speak of these two objects interchangeably. In this language, an
AB-cycle is a directed cycle in I" that makes only anti-branching turns in the sense of
Section 4.3.

A t-face f € F is dual to a I'-edge pointing into the tetrahedron for which f is
a bottom face, and we can label this tetrahedron (which is dual to a I'-vertex) by its
bottom t-edge which is exactly e( f). We say that an A B-cycle passes through the faces
f. Af. A% f. ... and, with a slight abuse of notation, encounters the t-edges (A’ f).

Note that a 7-face f belongs to a unique A B-cycle, while each t-edge is encountered
twice by AB-cycles (possibly the same one). This corresponds to the fact that the dual
graph I' is 4-valent.

Each A B-cycle ¢ determines a homology class in M and hence an image g = [c] € G.
Let k = k(c) denote the length of the cycle, or the number of f € F which it passes
through. This structure allows us to compute V*%:

Lemma 6.2. Let ¢y, ..., c, denote the AB-cycles of t, k; their lengths, and g; = |[c;]
their images in G. Then we may identify

— T Z[G]
AB(T) = P 0T Chftigy’

i=1

where the map from the ith copy of Z|G] into AB(T) maps 1 to any (fixed) face in ¢;. In
particular,

n
vA% =TT+ (-Dkitg)
i=1

up to a unit factor in Z[G].
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Remark 6.3. We will often write the expression 1 + (—1)ki+1g; as 1 £ g;, for brevity.

Proof of Lemma 6.2. In this proof we abbreviate AB := AB(T). Fix a face f; for each
cycle ¢; and define a map
y:Z[G]" — Z[G]F

as in the statement, taking the generator of the i-th copy of Z[G] to f;. Let y denote y
composed with the surjection Z[G]F — AB. The map J is surjective because, in 4.8,
the identity f = —Af holds (since L*B(f) = f + Af is a relation), so one face from
each cycle suffices to generate the rest.

Lifting the permutation A to the faces in the universal cover, it acts as a translation
on the lift of each cycle. Thus if we denote the distinguished lift of f; by f; again, we
have the A-orbit f; — Af; — --- — Ai f;, where A% f; is just g; - f;, the translate of
the lift f; by the element of the deck group associated to the cycle.

Since in 4B we have A/ f; = —A/*! f;, we obtain the relation g; - f; = (—1)¥i f;.
Hence 7 factors through the quotient @}_; Z[G]/(1 % g;). An inverse map is easily
constructed by appealing to the same relations, and so we obtain the desired description
of AB.

This gives us a new presentation of A8, namely Z[G]" — Z[G]" — ASB, where
the matrix is diagonal with 1 £ g; along the diagonals. Since the Fitting ideal of ASB is
independent of presentation, the expression for VV*% follows. ]

6.3. Diagrams and presentations
It is helpful to organize our maps in the following commutative diagram:

Proposition 6.4. We have the following commutative diagram with exact rows and
columns: .
Z[G)f —— Z[G]F —— 0

L] L]

Z[G|F BN Z[GIE —— 827 —— 0

| l |

ABE) — €3 — 65(3F) —— 0
0 0

Proof. Surjectivity of ¢ is immediate from the definition, and commutativity of the top
square is equation (8).

Exactness of the middle row is the definition of €2, and exactness of the first two
columns is the definition of A3 and &. L

Commutativity of the bottom left square is the definition of L2,
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The definition of the arrow &(7) — &2 (%), and exactness of the bottom row, follow
from a short diagram chase. ]

6.3.1. Presenting &. We can now consider an alternative presentation of & = &(7):
Proposition 6.5. Consider the module homomorphism
£:2[G1F @ 2[G)F — Z[G)F & Z[G|E
given in block form by the (F + E) x (2F) matrix
o |: LAB IA i| |
0 L
Then &(T) is isomorphic to the cokernel of £.

Proof. Denote the cokernel of £ by &’ and note &’ is the free module Z[G]F & Z[G]*®
modulo two relations for each face f:

LY (fy=f+[f'=0. f+L%f)=0.
Hence, if e = ¢(f), then

L(e) = L2(f) + LA(f)
= (f+ LA+ (f + LAf) — LB (f) e Im(2L).

and so the factor inclusion Z[G]®¥ — Z[G]F @ Z[G]¥ descends to a module homomor-
phism & — &’.

An inverse homomorphism is induced by first defining a homomorphism Z[G]F @
Z[G]E — Z[G]® by

(fe) > e=LA(f).

Since this maps the first relation on &’ to a tetrahedron relation of & and the second
relation on €’ to 0, it induces a map & — &. This is easily seen to be the inverse of the
one defined above. ]

From this we obtain one direction of our main theorem:

Proposition 6.6.
Ve[ (V42 - ©0n).

Proof. The Fitting ideal (V;) of & is independent of the presentation of &. Hence, we
know that (V7) is also the ideal generated by the minors of £ of size |F| 4+ |E|. In par-
ticular, V; divides the product of det(L*®) with each minor of L% of size |E|. Hence
Vz | (VA:B : ®r)- u

Remark 6.7. This is actually a general fact: If P — Q — R — 0 is an exact sequence
of finitely generated modules then Fitt(P) - Fitt(R) C Fitt(Q). For example, this can be
derived from [39, Chapter 3, Exercise 2]. We can apply this to the sequence AB — & —
€% — 0 from Proposition 6.4. We chose to give an explicit proof for completeness.
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6.3.2. Presenting &®. The following presentation of &% (%) gives us a new description
of ;.

Lemma 6.8. Let cq, ..., c, be the collection of all AB-cycles and let f; be a face of c;.
Then &2 () is presented by the |E| x (n + |E|) matrix

(LA |- [LA(fw) [ L]
Hence, O is the gcd of the |E| X | E| minors of this matrix.

Here we have used the following notation: If A and B are matrices with the same
number of rows, then [A|B] denotes the matrix whose columns are the columns of A
followed by the columns of B. If A or B is a vector, then we interpret it as a column
vector.

Proof of Lemma 6.8. This matrix defines a map M: Z[G]'E1+" — Z[G]¥ and it suffices
to show that its image equals the image of L2,

Returning to the diagram of Proposition 6.4, since ¢ is surjective, the image of L must
be contained in the image of L#. Thus Im(M) C Im(L%).

Now forany f € F we have L®(f + Af) = L(e(f)). Hence L?(Af) is contained
in the span of Im(L) and L?(f). Repeating inductively, the entire cycle of f; has L%-
image in the span of Im(L) and L ( f1). Applying this to all the cycles we see that the
image of L2 is contained in the image of M.

The statement about ® follows again from the fact that the Fitting ideal is indepen-
dent of presentation. ]

6.4. Factoring V-

We next turn to describing our primary means of factoring the veering polynomial.

6.4.1. The AB-cycle equation. The cycle structure of the permutation A gives rise to a
useful identity relating L and L% . This uses a combination of the discussion in the proof
of Lemma 6.2 and the identity (8).

Lemma 6.9 (A B-cycle equation). Let ¢ be an AB-cycle, e(c) the set of t-edges encoun-
tered by c, f one of the T-faces of ¢, and g the class [c] in G. Then the following identity
holds:

> 0w Lle) = (1£g)-LA(f). (10)

ece(c)
where a, is a unit in Z[G] if e appears once along ¢, and a sum of two units if e appears

twice.

Proof. We identify f with its selected lift in M*®, and enumerate a lift of the cycle as
fi=A'f,i=0,...,k, where k is the period of c, so that fy = A f = gf. Then
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each T-edge &( f;) can be written as a;e;, where ¢; is one of the elements of e(c) (again
identified with its selected lift in M) and a; € G. The identity Log = L% o (I 4+ A)
gives us

aiL(ei) = L*(fi) + L®(fi+1).

If we combine these in an alternating sum, we therefore obtain, after cancellations,

k—1

> (=DiaiL(e;) = L2(fo) + (=DF LA (fo).

i=0
Now since fi = gf, the right-hand side is (1 & g)L2(f). On the left side, if e appears
once as e; then we have a term of the form +a; L(e), and if it appears twice as e; and e;
we combine two terms to get (+a; & a;)L(e). This gives the desired statement. |

As an immediate corollary we have:

Corollary 6.10. Let ¢ be an AB-cycle and e an edge appearing exactly once in c. Then

L)y =u(l£g)-L*(f)+ Y, B L), (1)

e’ee(c)~{e}

where g = [c] € G, f is aface of ¢, u is a unit in Z|G), and each B is a sum of at most
two units in Z[G].

6.4.2. Factoring with reducing families of cycles. A collection € of A B-cycles forms a
reducing family of cycles if it can be ordered € = {cy,...,ct} sothatforeach 1 <i <k,
there is a t-edge e; through which ¢; passes exactly once and which is not visited by
any ¢; for j > i. Such an ordering is not necessarily unique. However, given such an
ordering, we call it the preferred order. We call the t-edges e; the distinguished edges
of the cycles in the family (these too may not be unique, but we can make an arbitrary
choice). In the results and proofs to follow, given a reducing family {cy, ..., cx} we will
often write g; = [¢;] € G.
We first show that reducing families are not hard to find:

Lemma 6.11 (Finding families). Any proper subset of AB-cycles is a reducing family.

Proof. For the argument, we think of A B-cycles as directed cycles in the dual graph T,
so that t-edges of a cycle correspond to I'-vertices.

A collection of directed cycles in I' that crosses every vertex either zero or two times
must in fact cross every vertex, since I' is strongly connected by Lemma 5.8. Thus, a
proper subset € of AB-cycles must cross some vertex vy of I' exactly once. Let ¢y be
the cycle that contains v;. Now apply the same argument to € ~ {c¢;} and continue induc-
tively. ]

Reducing families provide factorizations of V; of the following type:
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Proposition 6.12. For any reducing family of cycles €, we have the factorization (up to
a unit +h € Z[G))

Ve=(TT0£80)-dedL(A) |- LA,
c; €€
where f; is the (unique) face in the cycle c¢; € € such that e(f;) is the distinguished
edge e; and L' is the matrix obtained from L by removing the columns corresponding to
the distinguished edges of €.

Proof. Let € ={cq,...c,} be written in preferred order, and reorder the columns of L so
that the ith column (for i <i < r) corresponds to the distinguished edge e¢; of c;. Since
e1 appears exactly once in ¢y, Corollary 6.10 of the A B-cycle equation implies that we
can perform a column replacement on the first column of L to obtain (up to units)

Ve = det([L(er) | L}]) = det([(1 £ g)LA(f) | L}])
= (1 £ g1) - det([L2(f) | L},

where L denotes L with its first column removed.

Now since € is a reducing family, the cycle ¢, does not encounter e;. This is to say
that equation (10) for the cycle ¢, does not involve L(e;). Hence, again using that e,
appears exactly once in ¢,, we can apply a column replacement on the second column of
[L2(f1) | L] to obtain

Ve = (14 g)(1 £ g2)-det(IL*(f1) | L2(f1) | LY 5]

where L , is obtained by removing the first two columns from L. Continuing in this
manner proves the proposition. ]

The proposition along with Lemma 6.8 gives the following:

Corollary 6.13. For each reducing family of cycles €,

(0c- [T £80) | Ve
c; €€
Proof. By Proposition 6.12, V' = V;/[],ee(1 % gi) defines an element of Z[G] up to
a unit, and it suffices to show @ | V. For this, note that the expression for V' given by
Proposition 6.12 is a minor appearing in the definition of ®; from Lemma 6.8. ]

6.4.3. Factoring with AB-chains. We now consider a class of dual cycles which will be
useful for factoring V7.

First, define the A B-length of a dual cycle c¢ to be its number of branching turns. For
any dual cycle ¢ of positive A B-length there is a decomposition of ¢ as a concatenation of
dual paths ¢ = (p1, .. ., px) such that each anti-branching turn of c¢ is interior to some p;,
and where k is the A B-length of c. This decomposition is unique up to cyclic permutation
and we call it the A B-decomposition of c. We say such a c is an A B-chain if it has the
following two properties with respect to its A B-decomposition ¢ = (pq, ..., pk):
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(1) (AB-simple) Each p; is a proper subpath of some 4 B-cycle ¢; such that ¢; # ¢; for

i #j.

(2) (Endpoint simple) Each endpoint of each p; is visited exactly once by c.

Note that if ¢ is a simple (i.e. embedded) dual cycle with A B-length k > 0 then c is
automatically endpoint simple, although we allow nonsimple A B-chains. The endpoints
of the paths py, ..., pr in the A B-decomposition correspond to the branching turns of c,
and we call the corresponding edges of t the branching t-edges of c. If ¢; is the AB-cycle
containing p;, we say ¢ uses the AB-cycles ¢y, ..., ck.

Note that an A B-cycle has A B-length 0 and so the above definitions do not apply.

Lemma 6.16 below will furnish many useful A B-chains, but for now let us explain
how these objects can be used to factor (a multiple of) V.

Lemma 6.14. Suppose that ¢ is an AB-chain which has branching t-edges ey, ..., ek
and which uses distinct AB-cycles c1, ..., ck. Let f; be the face in ¢ with e(f;) = e;.
Then, up to a unit in Z[G],

(£2)Ve= ([T (A en)-dedLA(A) |-+ [LA(fi) | L),

1<i<k

where z = [c], gi = [c¢i], and L., is the matrix obtained from L by removing the columns
corresponding to ey, ..., €k.

Proof. Let (p1, ..., px) be the AB-decomposition of ¢. We label t-edges so that p;
is an oriented path from e; to e; 1 with indices taken mod k. (Here, we are using the
correspondence between vertices of " and edges of 7.)

Lift ¢ to M so that it begins with a fixed lift of e; which we also denote e;. Then
each p; lifts to a path from a;e; to a;4+1e;+1, where a; denotes the group element trans-
lating a fixed lift of e; to the one encountered by our lift of ¢. Thus a; = 1 and the last
T-edge is ag+1€1, where ay 41 is exactly z = [c].

First suppose that k > 2. (The case of k = 1 is easier and handled later.) Note that
because ¢ is AB-simple and k > 2, each e; is encountered by two distinct A B-cycles
¢i, ci+1 and therefore no single A B-cycle encounters e; twice. Hence applying the AB-
cycle equation (Lemma 6.9) to ¢; we obtain

+a;L(e;) + aiy1Lei1) + Y e L(e)) = hi(1 £ g) LA (f), (12)

e/

where h; € G corrects for the difference between our lift of p; here and the lift of ¢;
from Lemma 6.9. In equation (12) above, the sum on the left-hand side is over all ¢’ in
e(ci) ~{ei, ei+1}, where e(c;) is the set of 7-edges encountered by c; and each o, is
a sum of at most two units in Z[G]. For the last segment pj the left-hand side becomes
tarL(ex) £ zL(e1) + Y, aerL(€)).

We claim that no edge encountered by ¢; other than {e;, e;+1} is a branching edge
of ¢. In other words, for each 1 < i < k and for each ¢’ € e(c;) ~ {e;,ei+1}, L(e’) is a
column of L/.. Otherwise we would have ¢’ = ¢; for some j € {1,... .k} ~{i,i + 1}.
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This would force ¢; to be part of distinct A B-cycles c;, ¢j_1, ¢j, which is impossible as
each t-edge is encountered by at most two A B-cycles.

This enables us to make the following computation, in which the equalities are taken
up to multiplication by units +4:

(TT a%g0)-detlLi(A)| -+ |LACf) | L]
1<i<k
=det[(1 £ g1)L2(fi) | -+ | (1 £ ge) L2 (fi) | Le
=det[£L(e1) £ azL(e2)| -+ [ +agL(ex) £ zL(er) | L.
In the last equality we use the substitution of equation (12) in each column and then use
the columns of L/, to remove all the terms that do involve the branching r-edges e;.
Now adding (or subtracting) the ith column to (from) the (i + 1)st column, starting

ati = 1, the columns are replaced by +=L(e1) £ aj+1L(ej+1) fori =1,...,k — 1, and
+L(e1) & zL(ey) for the kth column. Thus we have

det[£L(e1) £azL(ez) | -+ [£L(er) £ zL(er) | L]
= det[+L(e;) £ axL(ez)| -+ | £(1 £2z)-L(er)| L]
— (1+2)-detl+L(er) £ asL(es) | -+ | Ler) | L]
= (1 £z)-det[fazL(e2) | --- | L(e1) | L¢]
=1=xz)-V;.
In the penultimate line we used the kth column to remove the L(e;) terms from the
previous columns. In the last line we note that the determinant is, up to unit multiples,
equal to the determinant of L, or V7.
Finally, when k = 1 we have that p; is a proper subpath of ¢; which starts and ends

at e; and forms the directed cycle c. In particular, ¢; encounters e twice and so in place
of equation (12) we have

+L(er) £ zL(er) + ) aerL(e)) = hi(1 £ g1)LA(f1), (13)

e

where notation is as before. Then proceeding exactly as above, we have

(1£g1)-det{LA(f1) | LL] = det[(1 £ g1)LA(f1) | LL] = det[£L(e1) + zL(e1) | L]
=(1+2z2)-V,

and the proof is complete. ]
As a corollary we obtain the following factorization:
Corollary 6.15. For each AB-chain ¢ with z = [c],
(V4B 0| (1£2)- V.

Proof. Let €. be the collection of AB-cycles not used by c. Since A B-chains are non-
empty by definition, €, is a proper collection and hence a reducing family by Lemma 6.11.
Note that €, may be empty if ¢ uses all of the AB-cyclesin I'.
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Each branching t-edge of ¢ is contained in two A B-cycles used by c. Since a t-edge
is encountered by at most two A B-cycles, the branching r-edges are not encountered by
any of the A B-cycles of €.

Enumerate the branching t-edges of ¢ by ey, ..., ex as above, and let ex 1, ..., e,
denote the distinguished 7-edges of the cycles of €,. Let f; be the associated t-faces as
before.

Let L” be the matrix obtained from L by removing the columns corresponding to
e1,...,e,. We see that

(£2) V= ([T (£ g0)-dedLA(f)| -+ [LA(fe) L] (by Lemma 6.14)

1<i<k
=([Ta=e) ( [T (*en)-detdLi(f)l - |LAf) L]
1<i<k k+1<j<n

= VAB . det[LA(fi) | -+ | LA(f) | L"),

The second equality above follows from techniques in the proof of Proposition 6.12. More
specifically, we repeatedly apply Corollary 6.10 using the facts that €, is a reducing fam-
ily and that no A B-cycle in €, encounters any of eq, .. ., €.

As in the proof of Corollary 6.13,

[LACf)| - [LA(fw) | L]

is a minor of the presentation matrix for &2 (%) from Lemma 6.8. It follows that O,
divides its determinant. ]

6.5. AB-chains and homology

Until now we have not proved the existence of any A B-chains, but in fact there are enough
of them to generate the homology of I':

Lemma 6.16. The AB-chains and AB-cycles together generate Hy(I").

Proof. We first show that any dual cycle ¢ is homologous to an integer linear combination
of AB-cycles and A B-simple dual cycles. For this, we induct on the 4 B-length of ¢. If ¢
has A B-length O then ¢ is an A B-cycle; also, if ¢ has AB-length 1 then c is easily seen
to be an A B-chain, so is A B-simple.

Now suppose ¢ has A B-length k > 1 with A B-decomposition ¢ = (p1,..., pr), and
suppose pp and p; are part of the same A B-cycle g. Now:

e Let g; be the directed subpath of g from the initial point of p; to the terminal point
of p;j. Note that this includes the edges p; and p;.

e Let g, be the directed subpath of g from the initial point of p; to the terminal point
of p;.

o Let Gy = (81, Pj+1s- -+ Pk)-

e Let GZ = (g29 P2, pj—l)'
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Fig. 14. Decomposing the dual cycle ¢ as ¢ = G1 + G2 — g as in the proof of Lemma 6.16, where
we have drawn the cycles so that orientations are clockwise in the page.

Then ¢ = Gy 4+ G, — g in H{(T") (see Figure 14). Note that G, G, both have smaller A B-
length than c, as does g whose A B-length is 0. By induction, G and G, are each homol-
ogous to a Z-linear combination of A B-cycles and A B-simple dual cycles, whereby c is
as well.

We next claim that any A B-simple dual cycle is also endpoint simple unless it is the
concatenation of two AB-cycles. Combined with the discussion above, this will show
that each directed cycle is an integer linear combination of A B-chains and A B-cycles,
proving the lemma by Lemma 5.8.

For this, suppose that ¢ is an A B-simple dual cycle. We may assume that the A B-
length of ¢ is greater than 1 since otherwise c is an A B-chain or A B-cycle. As before, let
¢ = (p1,..., pr) be the AB-decomposition of c¢. Let ¢; be the AB-cycle containing p;.
By A B-simplicity, each ¢; is distinct.

By symmetry it suffices to show that the terminal vertex v of p; appears exactly once
in ¢ unless c¢ is the concatenation of two dual cycles. Suppose v appears again in the
directed cycle c. We split the possibilities into four cases.

Case 1: v belongs to pj for j # 1,2. In this case v is contained in the A B-cycle c;
and by AB-simplicity c1, ¢z, ¢; are all distinct. This is impossible since any I"-vertex is
contained in at most two distinct A B-cycles.

Case 2: v is an interior vertex of either p1 or p,. In this case either ¢; or ¢, must
meet the vertex v twice, which is impossible since v meets ¢; and ¢, once each and so
meets neither twice.

Case 3: v is the initial vertex of p;. This implies v is the terminal vertex of pg, so v
belongs to the A B-cycles ¢, ¢1, ¢2. We conclude that k = 2 so ¢ = (p1, p2) and each of
p1 and p, is an A B-cycle as claimed.

Case 4: v is the terminal vertex of p>. A symmetric argument to Case 3 shows that
in this case c is also a concatenation of two A B-cycles.

This proves our claim that every A B-simple dual cycle is either endpoint simple or
the concatenation of two A B-cycles, completing the proof of the lemma. ]

In the proof of Theorem 6.1 we will also need this short lemma about relatively prime
elements in Z[G]:
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Lemma 6.17. In the group ring Z|G], 1 £ g and 1 £ h are relatively prime if (g,h) <G
has rank 2.

Proof. Since 1 — g% = (1 + g)(1 — g), it suffices to prove that 1 — g and 1 — / are
relatively prime. Let n be the rank of G, and write G = (u) @ (t) @ Z"~2, where g = u®
and h = ubt¢ fora,c > 1 and b > 0. Begin by factoring

l—-g=1-—u" =1_[Cl>d(u),
dla

where ®;(u) is the dth cyclotomic polynomial in the variable u. Note that each & is
irreducible in Z[G] since Ry = Z[G]/(®y) = Z[G/{u)][wq] is a domain. Here w, is a
primitive dth root of unity.

Since Z[G] is a UFD, it suffices to show that ®4 (1) does not divide 1 — 4 for any d.
If it did, then 1 — & would be zero in the ring R;. But by further quotienting R; —
Z|G/{u)], we have

I—h=1-1°=]]®a(®) inZ[G/u)].

dlc

which is clearly nonzero since ¢ is primitive in G/{u). |

6.6. Completing the proof

We can now assemble the proof of this section’s main theorem on factoring V;.

Proof of Theorem 6.1. For any AB-cycle ¢ with homology class g, Let €, be the set of
cycles other than ¢, which by Lemma 6.11 is a reducing family. Corollary 6.13 gives us

(0c- TT (£e0)|ve,
ci €€,
and multiplying by 1 £ g gives
(VA% 00) (1 £ g) Vi
This, together with Corollary 6.15, implies that
(VA% 0| p- Vi, (14)

where p is the ged of all polynomials of the form 1 + g for g the homology class of an
AB-cycle and 1 + z for z the homology class of an A B-chain. Since rank(H;(M)) > 1,
Lemma 6.16 implies there are such homology classes that are independent in H; (M) (i.e.
do not generate a rank 1 subgroup). By Lemma 6.17, the corresponding polynomials are
relatively prime and so p is a unit in Z[G]. Combining this with Proposition 6.6 completes
the proof. ]
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Remark 6.18. If rank(H;(M)) = 1, so that G = (¢}, the conclusion of Theorem 6.1 still
holds after possibly multiplying V7 by 1 % 7. To see this, first note that Proposition 6.6 is
unaffected by the rank assumption. Second, as in the proof of Theorem 6.1, equation (14)
holds where p is the ged of polynomials of the form 1 + ¢%i with each t¥i corresponding
to an A B-chain or AB-cycle. The homology classes of AB-chains and A B-cycles still
generate H (M) by Lemma 6.16, so the gcd of the k; is 1. Factoring 1 — tXi and 1 + r%i
into cyclotomics, we see that the only possible divisors of all the 1 & i are &y = 1 —¢
and ®, = 1 + . However, at most one of ®;, ®, is a common divisor of the 1 + % since
l1—t41+ckiand 141 41—tk fork; odd.

7. The fibered case and the Teichmiiller polynomial

In this section, we examine the veering polynomial V; in the case of a layered triangu-
lation 7, when 7 is canonically associated to a fibered face F. of the Thurston norm ball
(as in Theorem 5.15). Ultimately, we demonstrate the connection between the veering
polynomial and McMullen’s Teichmiiller polynomial. We first do this for the manifolds
admitting veering triangulations (Theorem 7.1) and then derive the general case (Proposi-
tion 7.2) using the fact that any hyperbolic fibered manifold admits a veering triangulation
after puncturing along the singular orbits of its associated suspension flow. We conclude
by showing how these results combine with those of the previous section to give a “deter-
minant formula” for computing the Teichmiiller polynomial using only the veering data
(Corollary 7.3).
Throughout this section, all veering triangulations are layered.

7.1. Teichmiiller polynomials from veering triangulations

Fix a layered veering triangulation t of a manifold M and denote its associated fibered
face by F = F,. Since our goal is to introduce a veering interpretation of the Teichmiiller
polynomial, we closely follow McMullen’s paper [34] and refer the reader there for the
complete construction.

Let &£ be the two-dimensional expanding lamination of M associated to F, and £ its
lift to M, the free abelian cover of M with deck group G. We recall that up to isotopy
&£ is obtained by suspending the expanding lamination of the monodromy for any fiber
in R4 F [34, Corollary 3.2]. To orient the reader, in this article we mainly use the terms
unstable/stable rather than expanding/contracting, respectively, although their meanings
are the same.

Associated to £ and its G action is a module of transversals T(f), which like the
modules of Section 3 is a Z[G]-module. We will not require its precise definition here
but instead rely on several of its properties that will be recalled below. Let O be the
Teichmiiller polynomial associated to F. By definition, Oy is the gcd of the elements of
the Fitting ideal for T(f) and is hence well-defined up to a unit £g € Z[G].

We will show in Theorem 7.1 that O = ®; up to a unit, where ®; is the taut poly-
nomial for t defined in Section 3.1.
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Before stating Theorem 7.1, we address two technical issues arising from the different
conventions used to define Teichmiiller and taut polynomials. First, our definition of the
face module &2 (7) from Section 3.1 is most naturally related to the module of transver-
sals for the contracting lamination dual to £. To remedy this, we define a Z[G]-module
&V (7) that is a variation on the definition of the face module. For this, we note that each
face f lies at the top of a unique tetrahedron and we refer to the edge t at the top of this
tetrahedron as the fop edge of f. The Z[G]-module &V (T) is defined exactly as &2 (T)
but with the following modification: for each face f with top edge t, instead of the relation
from equation (3) we use the relation

t=w+z, (15)

where w, z are the other two edges of f. As shown by Parlak [41], the Z[G]-modules
€2(7) and €V (7) are isomorphic. Indeed, an isomorphism is induced by the map
Z|G)E — Z[G]® which sends an edge e to itself if it is right veering and to —e if it
is left veering. For each face f, this map exchanges the relation from equation (3) with
the relation from (15). This follows easily from two facts: (1) every face f of T has edges
of each veer, and (2) the bottom and top edges of f have the same veer. The first fact is
immediate from the veering definition and the second follows from Fact 3.3. Thus we get
a Z[G]-module homomorphism which is easily seen to be invertible.

Second, to define his module T(f), McMullen uses the action of G on transversals
by taking preimages under deck transformations, whereas our action of G on the edges
of T (which form a special class of transversals) is by taking images. To deal with this
discrepancy, we introduce the group isomorphism inv: G — G defined by inv(g) = g~ !.
We extend this to a ring isomorphism inv: Z[G] — Z[G] and use it to define a Z[G]-
module €2 (7) which as a Z-module is equal to the face module &% (t) from Section 3.1
and whose Z[G]-module structure is determined by

g-x =inv(g)x,

where g € G and x € &2 (t). In words, we are simply replacing the action of an element
by its inverse. We define &, (7) similarly.

From the definitions, it is clear that the gcd of the elements of the Fitting ideal
of 82(%) (and of & (7) by the discussion above) is equal to inv(©®.). In what follows,
we will use the symmetry of the Teichmiiller polynomial [34, Corollary 4.3] which states
that @ = inv(®p), up to a unit +g € Z[G].

Theorem 7.1. Let t be a layered veering triangulation of M representing a fibered
face F. The module of transversals T (&) is isomorphic as a Z[G]-module to & (T) and
hence to 82 (T). In particular,

®, = Op up toaunitin Z[G].

Before the proof we need some additional preliminaries. Let S be a fiber of M rep-
resenting a class in the cone over F. Let ¢: S — S be the corresponding monodromy so
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that M can be recovered as the mapping torus of ¥:

S x[0,1]
T (. D)~ (¥(5).0)

We denote ¥’s expanding lamination by A so that the suspension of A is isotopic to &£.
Either directly from Agol’s construction [2], from [36, Lemma 3.2], or from Theorem 5.15
above, the fiber S is carried by 7 up to isotopy. We fix any carrying map of S into t?).
Then if we pull back edges and faces we obtain an ideal triangulation 7 of S and a
simplicial map S — M. Such a map is called a section in the terminology of [36]. The
ideal triangulation 7 of S is dual to a train track 'V on S which is obtained by pulling
back the intersection of S with the unstable branched surface B*. We observe that with
our setup, the track 'V carries A and is an invariant track for ¥ in the sense that ¥ (V) is
carried by V. This can be seen by noting that the sequence of upward diagonal exchanges
from T to itself in T corresponds to a sequence of diagonal exchanges from ¥ (T) to T
on S, and this sequence is dual to a folding sequence from (V) to 'V (see e.g. Figure 13.)

Next we follow a modified version of the discussion in [34, Section 3]. An elevation S
of S to M is the cover of S corresponding to the kernel of the homomorphlsm 71(S) —
H;(S) — G, whose image we denote by H. Fix a lift 1,// S — § and, using that M is
the mapping torus of ¥, split G = H @ Zu. Here, u acts on M®™ = § x R as the deck
transformation W mapping (s,t) — (1//(s) a(s,t)), where a(-, ) is real-valued function
such that for each s € S and 7 € R, a(yP(s),t) <al(s,t). (Since the fixed section S — M
may not be an embedding, we cannot necessarily make the conventional choice a(s,t) =
t—1.)

Slmﬂarly, McMullen shows [34, Theorem 3.5] that if 7 denotes the lift of A to S and
T(}) is the Z[H]-module of transversals for A, then £ = A x R and T(£) = T(}) as
Z[H]-modules. Then by considering the action of u on T()L) McMullen establishes that

T(£) ~ M’
im(ul —y*)

as Z[H][u] = Z[G]-modules. Here ¥* is the action of ¥ on T(z) defined by taking
preimages of transversals.

To connect the discussion back to the veering triangulation t, we recall a consequence
of Guéritaud’s construction [24] of T in the layered setting. We refer the reader to [36] for
additional details. Fix a y-invariant quadratic differential g on S and let g be its lift to S.
Then there is a projection IT: M® — § that maps edges of T to saddle connections of g.
More precisely, IT induces a bijection between edges of T and saddle connections of ¢ that
span singularity-free, immersed euclidean rectangles whose vertical/horizontal sides are
segments of the vertical/horizontal foliations of g. The projection IT is also equivariant
in the sense that [1(¥(2)) = ¥ (T1(2)). In particular, I1(2) can be naturally regarded as a
transversal of I, which is the lamination associated to the horizontal foliation of g. See
Figure 15.

We now turn to the proof of Theorem 7.1.
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Fig. 15. A face f with top edge t. Each edge of f is dual to a branch of the intersection f N BY
(left) and is a transversal to the expanding lamination (right).

Proof of Theorem 7.1. Let SZ (7) denote the Z[H]-module obtained from the Z[G]-
module &, (7) by restricting scalars. For each edge € of T, TI(2) is a transversal of X
and this induces a homomorphism from the free module on edges of 7 to the free mod-
ule on transversals. This is a Z[H ]-module homomorphism because the action on each is
given by pullback under deck transformations. Moreover, this homomorphism descends
to a Z[H]-module homomorphism IT,: SZ 7)) — T(X). Indeed, it is easily checked that
relations among edges of T from (15) are satisfied in T(X); see Figure 15. In fact, we
have:

Claim 3. I1,: 8; 7) —> T(X) is an isomorphism of Z[H ]-modules.

Proof of claim. The prelmage of Vin Sisa 1// -invariant train track 'V which is dual to the
ideal triangulation 7 of S induced by the simplicial map S — M#® . Mapping each branch
of V to its dual edge of T, regarded as an edge of T, induces a Z[H ]-module homomor-
phism D: T(V) — 8v(r) Here T(V) is the Z[H]-module generated by the edges of v
modulo relations imposed by the switch conditions—these relations are mapped by D to
the relations from (15) used to define 813 (7). See the left-hand side of Figure 15.

The composition [Ty o D: T("ﬁ) — T(X) can alternatively be described as follows:
If f: X — Vis the carrying map, then the branch b is mapped to f~!(x), where x is
any point in the interior of b. Hence, [34, Theorem 2.5] proves that the composition
Il o D: T('G) — T(I) is an isomorphism of Z[H ]-modules. This immediately gives
that IT. is surjective. Injectivity will follow from the fact that D is surjective.

To prove that D is surjective, we show the more general statement that for any ideal
trlangulatlon T of § corresponding to a simplicial map S — M= 11ft1ng asection S - M,
the edges of 7 generate &€ 5 Y (%). This follows from two facts. First, if T — T'isa diagonal
exchange correspondlng to pushing through a smgle tetrahedron ¢ of 7, then the new
edge of 7 7 is a sum or difference of two edges of T that belong to ¢ (depending on
whether the tetrahedron lies above or below 7). Second, for any edge € of T there is
trlangulatlon of § containing ¢ and a finite sequence T =T7.....7, = 7 so that
each 7; — J;4 corresponds to simultaneously pushing through an H -orbit of tetrahedra
of T [36, Lemma 3.2 and Proposition 3.3]. These two facts show that every edge of T is a
linear combination of edges of 7,50 D is surjective as desired. |
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Returning to the proof of the theorem, we note that since II(U~1(2)) = ¥*(I1(2)),

the isomorphism IT, takes the action of U~! on 813 (7) to the action of ¥* on T'(A).
Hence, it extends to an isomorphism of Z[H]| ® Z[u] = Z[G]-modules:

&5 () ® Z[u] LT ® 2]

imul — U= im(ul — §*)

where the second module is T(f), as explained above. Since the first module simply
reintroduces the action of u, it is isomorphic to &y (7). Hence, &, (7) is isomorphic to
T(f) as a Z[G]-module.

Using the remarks preceding the theorem, we also find that §2 () is isomorphic to
T(f) as a Z[G]-module and we conclude that inv(©;) = O = inv(Oy) and so ®,; = O,
up to a unit. This completes the proof of Theorem 7.1. ]

7.2. The general case via puncturing

On its face Theorem 7.1 applies only when starting with a fibered face associated to a
veering triangulation. However, the following proposition shows that the constructions
are compatible with puncturing along orbits of the associated suspension flow.

Let N be any hyperbolic 3-manifold with fibered face Fy. There is a flow ¢ such
that each fibration associated to R4 Fy may be isotoped so that the first return map to a
fiber is pseudo-Anosov and that, up to reparametrization, ¢ is the associated suspension
flow [17, Theorem 14.11]. The orbits of the pseudo-Anosov’s singularities are called the
singular orbits of ¢.

Now let M be the result of puncturing N along the singular orbits of ¢ and let t be the
associated veering triangulation of M (see Section 2.2). Leti: M < N be the inclusion
map. Then i*: H'(N) — H'(M) maps the cone over Fy into the cone over a fibered
face Fpy := F, of M.

The first statement of the next proposition is observed by McMullen to prove [34,
equation 6.1]. We provide some details using results from [34, Section 4].

Proposition 7.2. With the setup as above, O, = i+(®F,,) up to a unit. Hence, if T is
the layered veering triangulation on M associated to the fibered face Fyy, then

Opy = ix(0r) uptoaunit £g € Z[G].

Proof. The second claim follows immediately from the first and Theorem 7.1.
We recall that if ® is the Teichmiiller polynomial associated to a fibered face F, then
there is a unique g € supp(®) such that for all & in the interior of R4 F,

a(g) > a(h) forall h € supp(®) ~ {g}.

This follows from the proof of [34, Theorem 6.1]; see also item 5 in the subsection “Infor-
mation packaged in ®¢” of [34, Section 1]. Hence, we can normalize ® by multiplying
by the unit £ g so that for any « as above, ©(u%) has a positive constant term and all other
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terms have negative exponent (here we are thinking of « as a first cohomology class). We
perform this normalization on both ®f,, and OF,, .

As in the proof of [34, Corollary 4.3], to show that Op, = i«(Op,,) it suffices to
show that for each integral @ = [S] € R1Fy, there is the equality of specializations
Ory (u*) = ix(OF,,)(u®). This is because R Fy is open and so one can find such an o
so that the values «(g) are distinct for all g € supp(Or,, ) U supp(ix(Op,,)).

Next we note that i+ (Of,, ) (u*) = Of,, (u'"®). The pullback i *« is dual to the class
[So ], where S is obtained from S by puncturing at the singularities of its monodromy .
Hence, by [34, Theorem 4.2], up to units +u*, O ~ (u%) is equal to the characteris-
tic polynomial of ¥ and Og,, (u'"®) is equal to the characteristic polynomial of 1/3, the
induced monodromy of § (unless the two-dimensional lamination £ is orientable, in
which case we multiply first by ¥ — 1 in both cases). However, the characteristic poly-
nomial from [34] is defined solely in terms of ¥’s action on its expanding lamination A,
and since we have punctured S at an ¥ -invariant set in the complement of A, A is also the
expanding lamination of IZ Hence, the maps y: A — A and yZ: A — A are equal. (This can
also be seen by considering the intersection of £ with S and SinN .) We conclude that
their characteristic polynomials are equal and therefore O, (u*) = Of,, @ ) uptoa
unit +u*. However, it is clear from our normalizations that this unit must be the identity,
and the proof is complete. ]

7.3. Computing Oy via V;

Here we state an analog of McMullen’s determinant formula which follows immediately
from Theorems 7.1 and 6.1. By further applying Proposition 7.2, we obtain a general
method to compute the Teichmiiller polynomial from the veering triangulation on the
associated fully punctured manifold.

Corollary 7.3. Let (M, ) be a layered veering triangulation associated to a fibered face
F and suppose that rank(H(M)) > 1. Then
Vi det L

@ = — = 5
7 VAB T et LAB

where L is as in Section 3 and L48 is as in Section 6.

Note that in this case (i.e. when 7 is layered), VrAB

dual cycle) can be trivial in H; by Theorem 5.15.

# 0 since no A B-cycle (nor any

Remark 7.4. Some care is required to compare Corollary 7.3 with McMullen’s determi-
nant formula [34, Theorem 3.6]. For this we first define, given a veering triangulation t,
its negative —t to be the veering triangulation obtained by reversing the coorientation on
faces. With this definition, we have &V (7) = &2 (=7).

If the train track V from above is used in McMullen’s construction, then his determi-

nant formula states that
_ det(ul — Pg)

oF = det(ul — Py)’
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where Pg and Py are the matrices with entries in Z[G] that represent the action of the
lifted monodromy on the branches and switches of the lifted track v, respectively, as
defined in [34, Section 3]. One can directly show that V_, = det(u/ — Pg) up to a unit
in Z[G]. One would then expect that VA8 = det(ul — Py) up to a unit. However, this
is the case only if the implied definition of Py in McMullen’s paper is interpreted with
signs chosen according to whether the train track carrying map associated to the mon-
odromy preserves or reverses the implicit orientation at switches. With these signs taken
appropriately, McMullen’s equation 3.4 commutes as claimed.
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