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Abstract: Artificial Intelligence (AI) hardware accelerators have seen tremendous developments in
recent years due to the rapid growth of AI in multiple fields. Many such accelerators comprise a
Systolic Multiply–Accumulate Array (SMA) as its computational brain. In this paper, we investigate
the faulty output characterization of an SMA in a real silicon FPGA board. Experiments were run on
a single Zybo Z7-20 board to control for process variation at nominal voltage and in small batches to
control for temperature. The FPGA is rated up to 800 MHz in the data sheet due to the max frequency
of the PLL, but the design is written using Verilog for the FPGA and C++ for the processor and
synthesized with a chosen constraint of a 125 MHz clock. We then operate the system at a frequency
range of 125 MHz to 450 MHz for the FPGA and the nominal 667 MHz for the processor core to
produce timing errors in the FPGA without affecting the processor. Our extensive experimental
platform with a hardware–software ecosystem provides a methodological pathway that reveals
fascinating characteristics of SMA behavior under an overclocked environment. While one may
intuitively expect that timing errors resulting from overclocked hardware may produce a wide
variation in output values, our post-silicon evaluation reveals a lack of variation in erroneous output
values. We found an intriguing pattern where error output values are stable for a given input across
a range of operating frequencies far exceeding the rated frequency of the FPGA.

Keywords: AI hardware accelerator; timing errors; FPGA; tensor flow

1. Introduction

Artificial Intelligence (AI) hardware accelerators have seen tremendous developments
in recent years due to the rapid growth of AI in multiple fields, including image pro-
cessing [1], medical diagnosis [2], and speech recognition [3], among others. Many of
these accelerators contain a customized Systolic Multiply–Accumulate Array (SMA) as its
computing brain, where most of the actual data manipulation takes place. Consequently,
functionally correct execution through these SMAs dictates application-level execution
quality, such as inference accuracy or training efficiency.

The operating frequency and supply voltage of these AI hardware accelerators have a
major role in both their functional correctness and energy efficiency. Timing errors occur
when the SMA is undervolted or overclocked to the point that the circuit is no longer
able to complete its computation in time, resulting in wrong computational data. Broadly,
there are two distinct methodologies used for studying timing errors or faults in digital
circuits: simulation and hardware implementation. Simulation techniques have been used
extensively in processors [4,5], GPUs [6], ASICs [7], as well as FPGAs [8]. Simulation
techniques are software-intensive and often used to evaluate new ideas and architectures.
On the other hand, hardware implementation techniques require substantial engineering
efforts and are specific to vendors and devices. Hardware implementations in research
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are closer to integrated circuits that would be deployed in real-world scenarios when
compared to software simulation techniques. Low-power hardware implementation works
exist in CPUs [9], GPUs [10], ASICs [11], and memories [12,13]. However, to the best
of our knowledge, timing errors have not been well investigated for DNN hardware
accelerators based on FPGAs. There are several works that attempt to study undervolting
in FPGAs [14,15] but use non-scalable ad hoc techniques to account for process variation
effects. Our work takes a step toward addressing this critical gap.

In this paper, we look further into the faulty output characterization of a representative
SMA building block in a real silicon overclocked environment. Specifically, the three major
goals of this study are: (i) identify the nature of faulty output alteration from a standard
SMA block for a holistic circuit–architectural understanding of the application-level error
behavior; (ii) substantially improve SMA fault tolerant design by understanding how errors
from overclocked hardware are far from a random distribution—a common assumption in
a large body of software-based fault simulation works [16–19]; and (iii) use our extensive
SMA timing error characterization to spawn a new class of predictive techniques to sustain
application-level goals (e.g., high inference accuracy), while still operating at a lower
voltage or higher clock speed. Many recent works that aim to predict timing errors in a
processor or SMA pipeline are usually limited to speculating an error event rather than the
erroneous output [20,21]. Our findings, as detailed next, can make significant progress in
fault-tolerant hardware design by identifying certain properties of the erroneous outputs
that have not been demonstrated before.

We make the following contributions in this paper:

• We uncover fascinating error characteristics in an SMA building block implemented
using an FPGA (Section 2). While intuitively, one may expect that timing errors
resulting from overclocked hardware may produce a wide variation in output values,
our integrated hardware–software experimental platform reveals a lack of variation in
erroneous output values.

• Based on our intriguing findings, we identify a set of four representative input patterns
for an SMA building block. These four patterns are based on their distinct circuit-level
activity through the SMA building block and are referred to as Identity Activation,
Diagonal Activation, Hamming Activation, and Prime Activation (Section 3).

• We establish a rigorous experimental platform using a software–hardware co-simulation
and execution. Our results are obtained in a comprehensive FPGA environment, where
an SMA building block is running a specific input pattern under a range of frequencies
that rise beyond the rated frequency upper bound of execution of that block (Section 4).

• Our comprehensive experiments and analysis reveal several fascinating characteristics
of erroneous outputs produced from the SMA building block under an overclocked
environment (Section 5). First, we notice that the hamming distance between the
correct output and erroneous output is often stable across input patterns and frequen-
cies. Second, different input patterns show a variation in the total number of distinct
erroneous output values seen. For example, Identity Activation shows at most two
distinct erroneous output matrices, while Prime Activation shows up to eight different
output values across a wide range of frequencies that vary between 1× and 3.5×
relative to the rated frequency of the hardware design.

• Our paper presents a methodological pathway to characterize an SMA block imple-
mented in an FPGA platform. It is likely that a different board from the same vendor or
competing vendor shows different timing error characteristics. However, we believe
that our process of such characterization laid out in this work will still be applicable
across various boards and vendors.

2. Motivation

In this section, we demonstrate a slew of fascinating error behaviors of a fundamental
building block of an SMA under overclocked operating conditions. We begin by providing
a short background of the dataflow through such a building block (Section 2.1) and our
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justification for overclocking (Section 2.2), followed by an outline of our experimental setup
(Section 2.3). We discuss our empirical error data in Section 2.4 and conclude with the
significance of our observation in Section 2.5.

2.1. Dataflow in an SMA Building Block

Figure 1 shows the cycle-by-cycle dataflow through a 2 × 2 SMA architecture. We can
observe several key characteristics of this unique dataflow. First, we observe that activation
vectors are streamed from the left to right MACs, while partial sums flow from the top to
bottom MACs. Second, we notice that different MACs are active in different cycles. For
example, MAC1 is active in cycles one and two but inactive in the remaining cycles. Third,
we notice that output elements from the entire building block appear at different cycles,
similar to the sporadic activity seen in the MAC units. For example, output1 appears in
cycle 2 while output4 appears in cycle 4. Recognizing this particular temporal sequence of
output elements is critical for an accurate analysis of data in our experiments, as described
in Section 2.3.

Figure 1. Cycle-by-cycle dataflow through an SMA building block.

2.2. Why Overclocking is Chosen for This Work

Any hardware logic circuit block is designed to perform at a rated voltage and fre-
quency range. Essentially, when the logic block operates in the error zone, the long delay
paths in the circuits start failing due to delay or timing errors. The two orthogonal ways to
bring a real silicon block to the error zone are: (1) undervolting to a voltage substantially
lower than the nominal voltage, slowing the delays of the devices; or (2) operating the
silicon logic block at the nominal voltage while speeding up the clock to a point where
errors start happening. In this work, we have chosen to study the error zone by choosing
higher FPGA frequencies where errors start to occur while operating the processor at an
error-free frequency. Our detailed choice of frequency spectrum discussed in Section 2.3
does not put the FPGA device in a stress zone or close to failure. Instead, we carefully control
the temperature and voltage to keep our FPGA board very safe while obtaining a rich
playground to study the properties of timing errors/faults in real silicon. Our findings from
this work will be relevant for low power fault characterization, as some similar failures will
be seen while studying error characterization due to undervolting.

2.3. Experimental Design

We designed our experimental setup using the Diligent Zybo Z7-20 development
board featuring the Zynq 7020-1 SoC. The SoC includes both a Processing System (PS)
and a Programmable Logic (PL) (see Section 4 for more details). The PS features dual-
core ARM Cortex-A9 processors at 667 MHz. The PL is Artix-7 FPGA equivalent with
85,000 logic cells and 220 DSP slices, though the DSP slices are unused for this experiment.
To observe the error behaviors from an SMA building block, we designed a 2 × 2 SMA using
Verilog and configured it on the FPGA with activation and weight matrices to generate an
expected–correct–output matrix, as defined in the equation below.[

7 11
13 23

]
×

[
5 53

17 19

]
=

[
222 580
456 1126

]
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Operations were written using standard operators, such as + or ∗, and then the
synthesis tool was allowed to choose for itself how to conduct the entire MAC. DSP slices
were disabled, and total DSP utilization was checked to ensure no DSP slices were used
by synthesis. The Vivado version is 2022.1. Our hardware setup is rated to work correctly
at 125 MHz, though the FPGA fabric can run as high as 800 MHz [22], due to the max
frequency of the PLL. To observe its behavior under an overclocked environment, we
ran the SMA building block over a large span of frequencies, ranging from 125 MHz to
450 MHz in 5 MHz increments. At each frequency, we ran our initial experiment 4000 times
to stabilize experimental data. Later experiments were run 110 times each, which was
found to be a representative sample. We recorded the corresponding output matrices and
compared them with the correct result. As we overclocked the SMA hardware, timing
errors were incurred in its pipeline, resulting in erroneous outputs.

Temperature was measured during all experiments. The average operating temper-
ature was 46 ◦C, with a total temperature range of ±1.5 ◦C Table 1. No correlation was
found between temperature and the output of the system for this experiment because 46 ◦C
with a variation of 1.5 ◦C is well within the nominal temperature ranges for the system [22].
In fact, ±1.5 ◦C is within the expected noise of the temperature sensor itself. Though real
overclocked environments are known to consume excess power and produce excess heat,
this experiment operates within normal boundaries of the hardware platform to emphasize
the effects of timing errors caused purely by an increase in clock frequency.

Table 1. Study temperatures.

Temperature Degrees C

Study Min Avr. Max

Identity 44.5◦ 45.8◦ 47.1◦

Hamming 44.7◦ 45.8◦ 47.0◦

Diagonal 44.5◦ 45.8◦ 46.9◦

Prime 44.7◦ 45.8◦ 47.1◦

It is well known that voltage and process variation also play important roles in error
characteristics. For this experiment, we control both those two factors by performing all
experiments at the nominal voltage and using a single board and bit stream.

One key research question is: how different are these erroneous outputs from their
expected counterparts? Furthermore, as each experiment is repeated at a given frequency,
we may intuitively expect a wide variance in outputs from run to run. We carefully analyze
both these aspects of error behaviors next.

2.4. Empirical Results

We employ two main analysis techniques to interpret the collected data, as follows.

2.4.1. Hamming Distance Analysis

The first analysis involves calculating the Hamming distance between the elements of
the generated output matrix and the expected output matrix for each clock frequency. This
measure quantifies the number of altered bits due to timing errors at different frequencies
across all positions of the output.

Figure 2 depicts the outcomes of the Hamming distance analysis. The findings show
that experiments conducted with frequencies below 315 MHz exhibited no disparity be-
tween the generated output and the expected output. Conversely, outputs generated
at frequencies of 315 MHz and above displayed varying degrees of deviation from the
expected output. Specifically, at 315 MHz, one bit in the generated output was altered,
whereas at 420 MHz, 12, 13, or 14 bits in the generated output were altered. These results
demonstrate a discernible trend, suggesting that tighter timing constraints, as indicated by
higher clock frequencies, result in a greater number of altered bits in the output matrix.
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Figure 2. Hamming distance between correct and erroneous outputs across all positions of the output.
The region shaded in red shows outputs in the error zone.

2.4.2. Error Diversity Analysis

The second analysis investigates the total number of erroneous output values seen across
all experimental runs at a given frequency. We show these data for each matrix output
element in Table 2. We make two key observations from these data. First, we find that in a
majority of cases, a given output element only exhibits one or two erroneous output values
across a range of frequencies. For example, the matrix element at the top left shows one or
two erroneous outputs across all frequencies except at 415 MHz and 420 MHz, where it
shows five and three different error values, respectively. Second, we observe a maximum
of seven different erroneous outputs for a given output element for a given frequency
(bottom right at 400 MHz). Given the data width in our experiments being two 8-bit
multiplications added together, we can theoretically find 28∗2+1 − 1 = 217 − 1 = 131, 071
different error values! However, we notice a remarkable lack of diversity in specific erroneous
outputs from real silicon operating in an overclocked environment. Thus, given a matrix
element in the output, despite incurring a varying degree of timing errors at different
operating frequencies, the actual erroneous output tends to vary between a small number
of distinct values.

Table 2. Error diversity analysis table.

Error Diversity Analysis

Frequency (MHz) Top Left Top Right Bottom Left Bottom Right

125–310 0 0 0 0

315–320 0 1 0 0

325 0 2 0 0

330–340 0 1 1 0

345 0 2 2 0

350 1 1 1 0

355 2 1 1 4

360 1 1 2 2

365 2 1 1 2

370 1 0 1 1

375 3 0 1 1
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Table 2. Cont.

Error Diversity Analysis

Frequency (MHz) Top Left Top Right Bottom Left Bottom Right

380 2 0 1 2

385 1 0 1 3

390 2 0 1 4

395 1 0 2 4

400 2 1 3 7

405 1 1 1 2

410 1 2 1 2

415 5 3 2 1

420 3 2 1 2

425 2 2 3 1

430 2 2 3 2

435 1 2 1 2

440–445 2 2 1 4

450 1 2 1 2

2.5. Significance

Combining the implications derived from these two analysis methods, we conclude
that as the frequency increases, the number of altered bits also increases. However, the
specific bits affected remain consistent based on the inputs and environmental factors. This
suggests that a defined set of errors can be observed for a given set of inputs and environ-
mental conditions, exhibiting two fascinating characteristics: discrete and deterministic. A
key research question is whether these characteristics of errors will prevail for varying
inputs. Given these findings, we now embark on a series of experiments across many
representative input patterns to study the variance in error characteristics. The next section
describes our detailed platform and case studies to answer this question.

3. Representative Input Patterns for an SMA Building Block

In this section, we outline a set of representative input patterns for an SMA building
block. Depending on the bit-width of each input, one can realize a very large set of possible
inputs. Thus, collecting and analyzing the entire set of possible inputs is computationally
prohibitive. However, we want to cover several cases that collectively offer us useful insight
into the behavior of an SMA building block hardware under an overclocked environment.
In this pursuit, we identify four cases and study them in detail: (i) Identity Activation
(Section 3.1); (ii) Diagonal Activation (Section 3.2); (iii) Hamming Activation (Section 3.3);
and (iv) Prime Activation (Section 3.4). A detailed description of our experimental
methodology is presented in Section 4.

3.1. Case Study 1: Identity Activation

The first case study involves the identity matrix for the activation and any four values
for the weight matrix. For example,[

1 0
0 1

]
×

[
3 3
7 7

]
=

[
3 3
7 7

]
The purpose of this study is to isolate the effects of transitioning between a zero

activation and a non-zero activation. This type of transition is important because it is often
seen in sparse DNN applications [23]. The expected output of a zero activation is obviously
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zero. However, if any erroneous non-zero value is produced due to overclocking, then the
final answer can be changed dramatically [24]. Furthermore, a zero activation leaves all
paths in the multiplier unsensitized, allowing for predictable sensitized paths when the
non-zero activation follows it. Overall, the identity matrix simplifies the computation and
allows us to emphasize the failure points of some of the shorter paths in the multipliers.

3.2. Case Study 2: Diagonal Activation

The second case study is for diagonal activation matrices with all values in each row
of the weight matrix being the same. For example,[

3 0
0 7

]
×

[
3 3
7 7

]
=

[
9 9
49 49

]
This case study helps us examine the effects of overclocking on the individual multi-

pliers in each MAC rather than the effects on the total matrix operation. Thus, the study
can be presented as two smaller independent studies, one on each row of the weight matrix.
The purpose of this study is to isolate and check if different multipliers in the SMA building
block behave differently under faults. Such differences can offer useful insight into possible
manufacturing process variation that affects modern chips.

3.3. Case Study 3: Hamming Activation

The third case study is a glimpse into the idea of hamming distance. The matrices are
formed such that any two elements that are multiplied together have a specific hamming
distance. For example, the following activation and weight matrices all have a hamming
distance of 2 between all values:[

1 1
7 7

]
×

[
3 3
7 7

]
=

[
10 10
70 70

]
This case study is chosen as an example of some of the more advanced analyses that

can be considered when looking at timing errors. By holding a consistent hamming distance
between data sets, it is possible to draw conclusions about the difficulty of the operation
based on the characteristics between inputs. In the example provided, it is important to
note that the same operation is performed in both columns; thus, we obtain two runs of
the experiment for each run of the matrix operations. However, runtime differences can
occur between these two columns due to process variation, as explained in the previous
case study.

3.4. Case Study 4: Prime Activation

The fourth case study involves prime activation and weight matrices, meaning all
values in both matrices are prime. For example,[

23 23
31 31

]
×

[
3 3
7 7

]
=

[
230 230
310 310

]
Two prime numbers multiplied together produce a unique result, thus making it

easier to identify the effects of timing errors on the output of the system. We also observe
that since the product of two prime numbers is, by definition, uniquely obtained by the
given factors, prime numbers may be more likely to demonstrate fringe behaviors when
exposed to overclocking, otherwise rarely seen in other input patterns. When the result of
multiplying two prime numbers produces an unexpected result, it is possible to examine
the nearest factors to the original primes that could have produced the error. Such insight
could be helpful in fields such as encryption or approximate computing.

4. Methodology

In this section, we provide an overview of our FPGA-based hardware execution
methodology. Figure 3 illustrates a high-level representation of our platform implemented
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on a Xilinx 28 nm 7-series FPGA. This platform comprises three major components: (i) Zynq-
7000 Series ARM Processor (PS), (ii) custom-designed AXI-to-SMA wrapper, and (iii) re-
configurable SMA block implemented in the FPGA fabric (PL). The Zynq processor is the
AXI master, which essentially commands and communicates with the SMA block (e.g.,
feeds input, as well as extracts the output from the FPGA block). We next provide a very
detailed overview of this complex evaluation platform in the following sections: (i) hard-
ware/software used in our experiments (Section 4.1); (ii) SMA building block configuration
in FPGA (Section 4.2); (iii) embedded software interface (Section 4.3); and (iv) data capture
challenge and mitigation (Section 4.4).

Figure 3. Our FPGA-based hardware evaluation platform.

4.1. Hardware and Software Used

All tests were run using the Digilent Zybo Z7-20 development board featuring the
Zynq 7020-1 SoC. The SoC includes both a processing system (PS) and a programmable
logic (PL). The PS features dual-core ARM Cortex-A9 processors at 667 MHz. The PL is
an Artix-7 FPGA equivalent with 85,000 logic cells and 220 DSP slices. Programming and
logic design was completed using Xilinx Vivado and Vitis 2022.2 software tools.

4.2. FPGA Design for the SMA Building Block

To create the SMA and the necessary variable clock speed running environment on
our FPGA platform, we implemented several RTL components using Verilog HDL. Each
component was designed to be scalable, meaning the size of the SMA and the width of each
data bus were configurable. For ease of result analysis and implementation, we decided to
simplify our test conditions by creating a 2 × 2 SMA with an 8-bit input. We created the
testing environment using 3 main components: the multiply–accumulate or MAC unit, the
SMA generator unit, and the SMA wrapper unit, which are detailed next.

4.2.1. MAC Unit

The MAC unit is the base component of our design. Its main purpose is to multiply
the activation weight pair and add that result to the upstream MAC output in the SMA
dataflow. It accepts a data input that will be either an activation or a weight based on
a control signal. It also sends a data output that will be either the activation or weight
stored based on the same control signal. This allows us to set the activations and weights
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of each individual MAC using the same data bus, which takes more time but allows for
easier scalability in the future. The MAC also accepts a running sum input that it adds its
multiplication result to and outputs the updated running sum. These MAC unit blocks are
combined to create an SMA, which is discussed next.

4.2.2. SMA Generator

The SMA generator unit is the next component of our design (NXN SMA in Figure 3).
Its purpose is to create an array of MAC units, with the size of that array being variable. It
connects the running sum inputs of a row of MAC units to the running sum outputs of the
previous row of MAC units. It also connects the data inputs of a column of MAC units to
the data outputs of the previous column. The running sum inputs of the first row of MAC
units are set to logic 0s and not used for the purpose of our experiments. The data inputs of
the first column are the data inputs of the SMA and are controlled by the SMA wrapper
unit. The running sum output of the final row outputs the results of the activation weight
matrix multiplication. The SMA generator unit hardly implements any logic and is mainly
controlled by the SMA wrapper unit, which is discussed next.

4.2.3. SMA Wrapper

The SMA wrapper unit is the final component of our design. This component serves
two main purposes. The first purpose of the SMA wrapper unit is to provide the logic for
performing an activation weight matrix multiplication operation. It first handles the logic
to input the weight matrix into the SMA column-by-column. Then, it handles the logic used
to input the activation matrix in a systolic manner. Finally, it handles the logic used to save
the outputs of the operation based on the SMA dataflow. The second purpose of the SMA
wrapper unit is to provide a clock boundary between the FPGA testing environment and
other functions running on the Zybo Z7 board. This is important to ensure that the control
logic implemented with the embedded software runs properly while the timing errors in
the FPGA test environment increase. The clock boundary is established with the use of a
set of FIFOs that feed in input data and a set of FIFOs that return the results. The logic of
the SMA wrapper is controlled by our embedded software that provides the activation and
weight matrices and a few control signals.

4.2.4. Critical Path Analysis

The static critical path of our SMA circuit is between weight bit 2 and output bit 16 of
the bottom left MAC with a slack of 0.588 ns. Thus, our maximal frequency is technically

1
8−0.588 ns = 135 MHz. However, we do not sensitize this path during our case studies, so
we do not expect to see errors until some greater frequency. Checking the timing report for
output bit 7 (the first bit to present an error in our studies) and the activation register reveals
the least slack to be between activation bit 2 and output bit 7, with a value of 2.046 ns. Thus,
we might expect to see errors as soon as 168 MHz in our case studies. Our data emphasize
the fact that this timing analysis, though accurate, does not always determine the exact
point or type of error in the system. This is due, in part, to the fact that frequencies such as
this are calculated with maximal allowable temperature and minimal power supply voltage
in mind. Since our experiments are performed at nominal temperatures and voltages, we
do not expect to see errors until much higher frequencies.

4.3. Embedded Software

The embedded software application was run on one of the Arm Cortex A9 processor
cores of the FPGA board. It was responsible for sending activation and weight matrices to
the SMA implementation via the AXI interconnect. Outputs were then received from the
SMA via the AXI, sent to the host computer over UART, and collected by the Vitis serial
terminal. To avoid timing errors from corrupting the state of the SMA, we programmed the
software to trigger a reset of the SMA between each calculation.
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4.4. Data Capture Challenges

A key design challenge in this extensive evaluation platform was ensuring the data
were captured correctly during each run. Clock Domain Crossing (CDC) was difficult
because the FPGA’s clock domain is overclocked at multiple different frequencies in our
experiments. The system would corrupt if the FPGA were not in a stable state when the
PLL—phase-locked loop—frequency was updated. We corrected this error by triggering a
reset with each change of the PLL. This enables us to make multiple runs back-to-back.

In addition to clock boundary crossing, other issues arose with the UART—universal
asynchronous receiver transmitter—communication. Due to some problems in our initial
setup, it became impossible to pin down an exact COM port for clean UART communication.
Although we were able to receive data from the FPGA, it was impossible to send data to
the FPGA. Thus, we opted to create C switch statements in the embedded program to select
our input weights and activations for each experiment. On occasion, the listening portion
of the UART communication would fail, with the Python UART script terminating early,
causing a run of the experiment to be lost. We carefully identified these cases and reran
our experiments to ensure sufficient samples were collected. Thus, the quality of our data
collected is no longer affected by the UART sending issue.

4.5. Methodology Conclusion

In this paper, we have created a controlled, reliable, and repeatable method to collect
large amounts of data from a real silicon SMA in an FPGA platform for a diverse range of
activations, weight matrices, and a wide range of overclocked frequencies.

5. Experimental Results

In this section, we present key empirical results from the SMA timing error case
studies performed on the FPGA platform. We present three key aspects of error behaviors
we have observed in our experiments: (a) error output analysis using hamming distance
(Section 5.1); (b) error diversity analysis (Section 5.2); and (c) Bit-level error susceptibility
(Section 5.3).

5.1. Error Analysis Using Hamming Distance

This section analyzes the Hamming error of the calculations. The Hamming error has
been defined as the hamming distance between the correct and observed outputs. The
hamming error for each of the four case studies is shown in Figure 4.

300 320 340 360 380 400 420 440
Frequency (MHz)

0
2
4
6
8

10
12

Ha
m
m
in
g 
Er
ro
r Identity Activation

Hamming Activation
Diagonal Activation
Prime Activation

Figure 4. Hamming error: the Hamming distance between correct and erroneous outputs.

The hamming distance of the identity and diagonal case studies exhibit stable behav-
ior across several ranges of frequencies: identity activation shows one, while diagonal
activation shows three such regions of stability.
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The hamming error of the hamming and prime case studies exhibit much more erratic
behavior across the frequency sweep. It is notable that the hamming error from these two
case studies still exhibits an initial error frequency range with a hamming error of one.
This single bit-flip error behavior is sometimes used to simulate near-threshold arithmetic
errors [15]; however, this method does not accurately model the behavior of hardware, as
shown next.

At 400 MHz, both the diagonal and hamming case studies exhibited single bit-flip
errors. At this same frequency, the identity case study consistently exhibited no errors,
while the prime case study exhibited a hamming error of seven. This result shows that the
error behavior at a given frequency is highly dependent on the inputs.

A clear positive relationship exists between operating frequency and the hamming
error value. This matches expectations that the more the system is overlocked, the erroneous
outputs tend to deviate further from their corresponding correct values. Though the
severity of errors increased, we observed stable trends in the variety of errors produced, as
discussed next.

5.2. Error Diversity Analysis: How Many Erroneous Values Do We Observe?

Figures 5 and 6 illustrate how many distinct erroneous outputs are observed in our
experiments at two different granularities: the entire output matrix and at any of the four
locations in the output matrix, respectively. Thus, the height of each bar in Figure 5 shows
how many different incorrect output matrices are observed at different frequencies. On the
other hand, Figure 6 focuses on such distinct error output at the element level. For example,
Figure 6 shows that at 340 MHz, the prime activation input exhibits a single error output at
any (one or more) of the four elements in the output matrix. We show these results for all
four of our case studies. When no errors are observed for a given case study for a given
frequency (e.g., identity activation at frequencies from 300 to 410 MHz), its corresponding
bar is absent in the figures.

300 320 340 360 380 400 420 440
Frequency (MHz)

0

1

2

3

4

5

6

7

8

Di
st

in
ct

 O
ut

pu
t M

at
ric

es

Identity Activation
Hamming Activation
Diagonal Activation
Prime Activation

Figure 5. Number of distinct erroneous output matrices by frequency. A value of zero indicates no
errors generated.

300 320 340 360 380 400 420 440
Frequency (MHz)

0

1

2

3

M
ax

 N
um

be
r o

f D
ist

in
ct

 E
le

m
en

ts Identity Activation
Hamming Activation
Diagonal Activation
Prime Activation

Figure 6. Max number of distinct erroneous element values in output matrices by frequency.
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We found it surprising to see a non-linear trend appear in these graphs, as we expected
a growing number of distinct error patterns with increasing frequency. A closer examination
of the output data reveals an interesting trend. As frequency increased, we found that
errors fell into groups. Two neighboring frequencies often produced the exact same error
values. At certain points, as clearly seen at frequencies 350, 365, 385, and 395 MHz for
prime activations in Figures 5 and 6, the error state would be unstable, producing new
error values. Eventually, as seen at frequencies 355, 370, 390, and 400 MHz, the system
would return to a new steady state of errors, often with the same new output values seen
during the transition.

5.2.1. Case Study 1: Identity Activation

Figure 6 shows that for the identity activation, only one error value is seen from
frequency 415 MHz and above. Essentially, throughout all of the tests, the actual erroneous
value was highly consistent even as frequency increased. Furthermore, because this case
study is less complex computationally, the number of distinct output matrices shown in
Figure 5 matches exactly because only one element at any given frequency had a unique
recurring error value.

5.2.2. Case Study 2: Diagonal Activation

As seen in Figure 6, the maximum number of distinct error values for any given
element in the output matrix was two at 435 MHz and 450 MHz, respectively. Because
this case is more complex than the identity activation case, erroneous outputs occurred
at 395 MHz and above. This means that all output values were highly consistent, even
with timing errors occurring. The diagonal activation case study, when run at 435 MHz,
generated two matrix elements with erroneous values. However, from the entire output
matrix granularity, we only observed three erroneous output matrices, as illustrated in
Figure 5 (435 MHz).

5.2.3. Case Study 3: Hamming Activation

Figure 6 shows that the maximum number of distinct error values for any given
element in the output matrix was two at frequencies between 410 MHz and 435 MHz
and three at 425 MHz. For this input, we observed erroneous outputs from 390 MHz and
beyond. Much like the diagonal activation case, there were a maximum of three distinct
error matrices, as shown in Figure 5.

5.2.4. Case Study 4: Prime Activation

Figure 6 illustrates that the maximum number of distinct error values for any given
element in the output matrix was two for some frequencies, such as 365 MHz and from
415 MHz to 450 MHz, and three for 395 MHz and 435 MHz. Because the prime activation
case causes much more complex circuit-level gate operations, the erroneous outputs oc-
curred at 325 MHz and above. We also noticed that 2 out of 26 erroneous frequency runs
contained a maximum of 3 incorrect values for any matrix elements. As many of the four
elements see error outputs, they mutually combine into several unique erroneous output
matrices. Figure 5 shows that eight erroneous output matrices were actually observed in
our experiments at 425 MHz.

These results suggest that even when timing errors occur, the number of potential out-
comes is a discrete set with certain probabilistic qualities. For a given environment (voltage
and frequency) and a given activation weight pair, matrix element values can be predicted.
Furthermore, certain permutations of potential matrix element values have a higher chance
of occurring and, therefore, show new opportunities for prediction techniques.

Figure 7 shows how many unique error values were seen at all four locations in the
output matrix. Surprisingly, we notice that certain locations do not even witness any error
across all frequencies. For example, location (0,1) never sees an incorrect result in diagonal
activation, whereas location (1,0) and (1,1) do not exhibit any incorrect values for identity
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activation. Thus, we are able to observe an intriguing correlation between input patterns
and resulting error locations in our experiments with the overclocked SMA hardware.
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Figure 7. Different incorrect outputs by position across all frequencies.

5.3. Bit-Level Error Susceptibility

The four tables below (Figures 8–11) summarize the results comparing all bits of the
matrix outputs across all frequencies starting from 300 MHz and representing bit positions
8 down to 0. All frequencies and bits not shown were found to be correct 100% of the time
and are thus excluded. Each individual table examines a single case study across all four
positions of the output matrix. Thus, each table can be called a probability table of errors
by bit position and frequency for the given case study.

Insight is best drawn from these tables when examined in conjunction with the pre-
vious figures in this paper. One interesting observation that re-enforces the information
presented thus far is that as frequency increases, the chance of an error appearing in a
specific bit also trends upward. Some bits appear more resistant to errors than others,
though additional runs of unique matrices would need to be performed to determine an
overall trend. For the selected calculations performed in these case studies, the lowest
significant bits never generated an error.

In the prime frequency table (Figure 11), an interesting row to understand is the row
for 380 MHz. At this point, the probability of bit 7 flipping drops from 50% down to 38% at
the same time that bit 6 rises from 0% to 25%. This marks the threshold when bit 6 starts to
miss timing in this calculation. Thus, the distinct error values change and bit 7 is allowed
to temporarily recover. Bit 4 in the hamming table (Figure 9), at frequency 425 MHz, also
displays an interesting behavior where a previously common error seems to disappear for
only that frequency.

Another interesting observation is that, in general, more significant bits produce errors
at lower frequencies than less significant bits. The bit that appears to be the largest exception
to this pattern is bit 5, which for the prime and hamming cases does not display errors
until after bit 4, but for the other cases, bit 5 produces errors without bit 4 producing any.
Though some of these patterns may be due to the values chosen for our case studies, future
research may investigate why some bits produce stable error patterns while others are
more sporadic. Nevertheless, we found the number of unique error values produced to
be discrete and much smaller than the data in just these error tables would suggest. For
example, the prime matrix operating at 425 MHz, with 6 erroneous bits can theoretically produce at
most 26 unique error outputs. However, extensive experiments on real silicon only observed three
unique error output elements in Figure 6, an exceptionally small and discrete error generation.
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8 7 6 5 4 3 2 1 0
300 0% 0% 0% 0% 0% 0% 0% 0% 0%
305 0% 0% 0% 0% 0% 0% 0% 0% 0%
310 0% 0% 0% 0% 0% 0% 0% 0% 0%
315 0% 0% 0% 0% 0% 0% 0% 0% 0%
320 0% 0% 0% 0% 0% 0% 0% 0% 0%
325 0% 0% 0% 0% 0% 0% 0% 0% 0%
330 0% 0% 0% 0% 0% 0% 0% 0% 0%
335 0% 0% 0% 0% 0% 0% 0% 0% 0%
340 0% 0% 0% 0% 0% 0% 0% 0% 0%
345 0% 0% 0% 0% 0% 0% 0% 0% 0%
350 0% 0% 0% 0% 0% 0% 0% 0% 0%
355 0% 0% 0% 0% 0% 0% 0% 0% 0%
360 0% 0% 0% 0% 0% 0% 0% 0% 0%
365 0% 0% 0% 0% 0% 0% 0% 0% 0%
370 0% 0% 0% 0% 0% 0% 0% 0% 0%
375 0% 0% 0% 0% 0% 0% 0% 0% 0%
380 0% 0% 0% 0% 0% 0% 0% 0% 0%
385 0% 0% 0% 0% 0% 0% 0% 0% 0%
390 0% 0% 0% 0% 0% 0% 0% 0% 0%
395 0% 0% 0% 0% 0% 0% 0% 0% 0%
400 0% 0% 0% 0% 0% 0% 0% 0% 0%
405 0% 0% 0% 0% 0% 0% 0% 0% 0%
410 0% 0% 0% 0% 0% 0% 0% 0% 0%
415 0% 0% 0% 7% 0% 0% 0% 0% 0%
420 0% 0% 0% 25% 0% 0% 0% 0% 0%
425 0% 0% 0% 25% 0% 0% 0% 0% 0%
430 0% 0% 0% 25% 0% 0% 0% 0% 0%
435 0% 0% 0% 25% 0% 0% 0% 0% 0%
440 0% 0% 0% 25% 0% 0% 0% 0% 0%
445 0% 0% 0% 25% 0% 0% 0% 0% 0%
450 0% 0% 0% 25% 0% 1% 0% 0% 0%

Identity Frequency Error

Frequency
Bit Position
(MSB-LSB)

Figure 8. Identity matrix: errors by bit position and frequency.

8 7 6 5 4 3 2 1 0
300 0% 0% 0% 0% 0% 0% 0% 0% 0%
305 0% 0% 0% 0% 0% 0% 0% 0% 0%
310 0% 0% 0% 0% 0% 0% 0% 0% 0%
315 0% 0% 0% 0% 0% 0% 0% 0% 0%
320 0% 0% 0% 0% 0% 0% 0% 0% 0%
325 0% 0% 0% 0% 0% 0% 0% 0% 0%
330 0% 0% 0% 0% 0% 0% 0% 0% 0%
335 0% 0% 0% 0% 0% 0% 0% 0% 0%
340 0% 0% 0% 0% 0% 0% 0% 0% 0%
345 0% 0% 0% 0% 0% 0% 0% 0% 0%
350 0% 0% 0% 0% 0% 0% 0% 0% 0%
355 0% 0% 0% 0% 0% 0% 0% 0% 0%
360 0% 0% 0% 0% 0% 0% 0% 0% 0%
365 0% 0% 0% 0% 0% 0% 0% 0% 0%
370 0% 0% 0% 0% 0% 0% 0% 0% 0%
375 0% 0% 0% 0% 0% 0% 0% 0% 0%
380 0% 0% 0% 0% 0% 0% 0% 0% 0%
385 0% 0% 0% 0% 0% 0% 0% 0% 0%
390 0% 0% 14% 0% 0% 0% 0% 0% 0%
395 0% 0% 25% 0% 0% 0% 0% 0% 0%
400 0% 0% 25% 0% 2% 0% 0% 0% 0%
405 0% 0% 37% 0% 25% 0% 0% 0% 0%
410 0% 0% 50% 0% 25% 0% 0% 0% 0%
415 0% 0% 50% 25% 25% 6% 0% 0% 0%
420 0% 0% 50% 50% 22% 25% 0% 0% 0%
425 0% 0% 50% 50% 1% 26% 0% 0% 0%
430 0% 0% 50% 51% 25% 50% 0% 0% 0%
435 0% 0% 50% 68% 25% 50% 0% 0% 0%
440 0% 0% 75% 75% 25% 50% 0% 0% 0%
445 0% 0% 75% 75% 25% 50% 0% 0% 0%
450 0% 0% 75% 75% 25% 50% 0% 0% 0%

Hamming Frequency Error

Frequency
Bit Position
(MSB-LSB)

Figure 9. Hamming matrix: errors by bit position and frequency.
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8 7 6 5 4 3 2 1 0
300 0% 0% 0% 0% 0% 0% 0% 0% 0%
305 0% 0% 0% 0% 0% 0% 0% 0% 0%
310 0% 0% 0% 0% 0% 0% 0% 0% 0%
315 0% 0% 0% 0% 0% 0% 0% 0% 0%
320 0% 0% 0% 0% 0% 0% 0% 0% 0%
325 0% 0% 0% 0% 0% 0% 0% 0% 0%
330 0% 0% 0% 0% 0% 0% 0% 0% 0%
335 0% 0% 0% 0% 0% 0% 0% 0% 0%
340 0% 0% 0% 0% 0% 0% 0% 0% 0%
345 0% 0% 0% 0% 0% 0% 0% 0% 0%
350 0% 0% 0% 0% 0% 0% 0% 0% 0%
355 0% 0% 0% 0% 0% 0% 0% 0% 0%
360 0% 0% 0% 0% 0% 0% 0% 0% 0%
365 0% 0% 0% 0% 0% 0% 0% 0% 0%
370 0% 0% 0% 0% 0% 0% 0% 0% 0%
375 0% 0% 0% 0% 0% 0% 0% 0% 0%
380 0% 0% 0% 0% 0% 0% 0% 0% 0%
385 0% 0% 0% 0% 0% 0% 0% 0% 0%
390 0% 0% 0% 0% 0% 0% 0% 0% 0%
395 0% 0% 0% 25% 0% 0% 0% 0% 0%
400 0% 0% 0% 25% 0% 0% 0% 0% 0%
405 0% 0% 0% 25% 0% 0% 0% 0% 0%
410 0% 0% 0% 25% 0% 0% 0% 0% 0%
415 0% 0% 0% 25% 0% 0% 0% 0% 0%
420 0% 0% 0% 50% 0% 0% 0% 0% 0%
425 0% 0% 0% 50% 0% 0% 0% 0% 0%
430 0% 0% 0% 50% 0% 0% 0% 0% 0%
435 0% 0% 0% 50% 0% 6% 0% 0% 0%
440 0% 0% 0% 50% 0% 50% 0% 0% 0%
445 0% 0% 0% 50% 0% 50% 0% 0% 0%
450 0% 0% 0% 56% 0% 50% 0% 0% 0%

Diagonal Frequency Error

Frequency
Bit Position
(MSB-LSB)

Figure 10. Diagonal matrix: errors by bit position and frequency.

8 7 6 5 4 3 2 1 0
300 0% 0% 0% 0% 0% 0% 0% 0% 0%
305 0% 0% 0% 0% 0% 0% 0% 0% 0%
310 0% 0% 0% 0% 0% 0% 0% 0% 0%
315 0% 0% 0% 0% 0% 0% 0% 0% 0%
320 0% 0% 0% 0% 0% 0% 0% 0% 0%
325 0% 20% 0% 0% 0% 0% 0% 0% 0%
330 0% 25% 0% 0% 0% 0% 0% 0% 0%
335 0% 25% 0% 0% 0% 0% 0% 0% 0%
340 0% 25% 0% 0% 0% 0% 0% 0% 0%
345 0% 25% 0% 0% 0% 0% 0% 0% 0%
350 25% 25% 0% 0% 0% 0% 0% 0% 0%
355 25% 25% 0% 0% 0% 0% 0% 0% 0%
360 25% 25% 0% 0% 0% 0% 0% 0% 0%
365 25% 25% 0% 0% 0% 0% 0% 0% 0%
370 25% 50% 0% 0% 0% 0% 0% 0% 0%
375 25% 50% 0% 0% 0% 0% 0% 0% 0%
380 25% 38% 25% 0% 0% 0% 0% 0% 0%
385 25% 30% 41% 0% 0% 0% 0% 0% 0%
390 25% 50% 50% 0% 0% 0% 0% 0% 0%
395 25% 49% 74% 0% 21% 0% 0% 0% 0%
400 25% 50% 75% 0% 25% 0% 0% 0% 0%
405 25% 50% 75% 0% 25% 0% 0% 0% 0%
410 25% 49% 75% 0% 25% 0% 0% 0% 0%
415 25% 48% 75% 8% 25% 0% 0% 0% 0%
420 25% 47% 77% 25% 25% 0% 0% 0% 0%
425 25% 48% 76% 25% 38% 17% 0% 0% 0%
430 25% 67% 77% 25% 50% 25% 0% 0% 0%
435 25% 74% 77% 25% 50% 25% 0% 0% 0%
440 50% 100% 77% 25% 50% 25% 0% 0% 0%
445 50% 100% 72% 25% 50% 25% 0% 0% 0%
450 50% 100% 51% 25% 50% 25% 0% 0% 0%

Prime Frequency Error

Frequency
Bit Position
(MSB-LSB)

Figure 11. Prime matrix: errors by bit position and frequency.
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6. Related Work

Overclocking is often used to increase the computational throughput of digital logic.
Due to the aggressive timing speculation of overclocking, hardware timing errors are
encountered. Shi et al. [25] have implemented a ripple-carry adder and constant-coefficient
multiplier in an FPGA fabric and analyzed the probabilistic error behavior when operating
within the frequency guard-band. This work has demonstrated that infrequent timing
violations cause less output noise than quantization errors due to truncating data paths
and reducing precision. Similarly, other research has been carried out to analyze the effect
of input variation on hardware error generation. Wang et al. [26] observed the variation
in the input workloads and proposed an all-clock-frequency error-estimation method to
identify the largest error-prone outputs for given inputs with low hardware overhead. Our
work dives deeper into hardware errors by providing a quantitative and detailed analysis
of characteristics, such as the Hamming error, error diversity, and bit-level error locations.

Overclocking to higher frequencies leads to increased temperature over time, thus
further increasing the probability of timing errors. Paim et al. [27] have demonstrated the
impact of increased hardware temperature on the behavior of block-matching algorithms.
The work proposed a framework that investigates temperature-induced timing error effects
across the transistor and algorithm levels. Majumdar et al. [15] described the vulnerability
of DNNs to adversarial attacks implemented by subtly changing input images to produce an
incorrect inference. A controlled undervolting technique is proposed for DNN accelerators
to reduce the number of incorrect inferences. Marty et al. [28] proposed combining timing
speculation with algorithm-level error detection and have developed an online lightweight
error detection scheme augmented with the accelerator with low hardware overhead. On
the other hand, Jiang et al. [29] focused on the limitations of algorithm-based fault tolerance
and timing error measurement-based methods and proposed an automated overclocking
system, which can overcome those limitations. Jiao et al. [30] have built a method to
extract circuit-level timing errors generated due to voltage and temperature variation and
then inject this information back into higher-level neural network algorithms to evaluate
inference accuracy. Our work collects information on timing errors occurring in physical
hardware. This information could augment or sometimes replace simulation-based timing
error analysis.

Recently, many DNN accelerator hardware architectures have been proposed that are
designed to operate at near-threshold voltage, thus improving power efficiency [31,32].
Additionally, undervolting techniques have been demonstrated in order to save energy in
ASIC-based DNNs such as Thundervolt [7] and YodaNN [33]. However, all of these studies
are mostly conducted on simulation frameworks, and few have actually implemented their
proposed design on real hardware platforms. Salami et al. [34] have proposed an FPGA-
based DNN accelerator that explores the aggressive undervolting technique for improving
energy efficiency without compromising the DNN inference accuracy and performance.
Our work contributes a powerful and flexible emulation platform to test the functionality
and performance of these designs in physical silicon.

7. Conclusions

We present a methodological pathway to characterize timing error characteristics seen
in an SMA building block from a real silicon FPGA board. One of the key findings of our
study shows that specific output values from an SMA building block under substantial
overclocking show minimal variance. We believe that our observations can help develop
future techniques that can exploit these behaviors from real silicon through undervolting.
Our findings will also spawn future techniques on dynamic timing error corrections and
boost the efficiency of AI hardware designs.
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