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Stable cubulations, bicombings, and barycenters

MATTHEW G DURHAM
YAIR N MINSKY
ALESSANDRO SISTO

We prove that the hierarchical hulls of finite sets of points in mapping class groups and
Teichmiiller spaces are stably approximated by CAT(0) cube complexes, strengthening
a result of Behrstock, Hagen and Sisto. As applications, we prove that mapping
class groups are semihyperbolic and Teichmiiller spaces are coarsely equivariantly
bicombable, and both admit stable coarse barycenters. Our results apply to the broader
class of “colorable” hierarchically hyperbolic spaces and groups.

20F65, 57K20

1 Introduction

Much of the coarse structure of mapping class groups has the flavor of CAT(0) geometry,
in spite of the fact that mapping class groups have no geometric actions on CAT(0)
spaces; see Bridson [17]. Manifestations of this include the weakly relatively hyperbolic
structure associated to curve complexes — see Masur and Minsky [42] —and the
equivariant embedding into finite products of quasitrees found by Bestvina, Bromberg
and Fujiwara [13].

A notion of “hulls” of finite sets in mapping class groups was introduced by Behrstock,
Kleiner, Minsky and Mosher in [9], and these were more recently shown by Behrstock,
Hagen and Sisto [8] to be approximated in a uniform way by finite CAT(0) cube
complexes — see also the alternative proof given by Bowditch in [16]. Our goal in this
paper is to refine this construction to make it stable, in the sense that perturbation of the
input data gives rise to bounded change in the cubical structure. As initial applications,
we give a construction for equivariant barycenters and a proof that mapping class groups
are bicombable.
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As in [8], the proof works in a more general context of hierarchically hyperbolic groups,
a class of groups (and spaces) introduced by Behrstock, Hagen and Sisto [6; 7] which
are endowed with a structure similar to the hierarchical family of curve complexes
associated to a surface; see Masur and Minsky [43]. See Section 2.2 for the definition
of a hierarchically hyperbolic space (HHS).

Our main result, stated informally, is the following:

Theorem A In a colorable HHS (X, &), the coarse hull Hg(F') of any finite set F can
be approximated in a coarsely equivariant way by a finite CAT(0) cube complex whose
dimension is bounded by the complexity of (X, &), in such a way that a bounded
change in F corresponds to a change of the cubical structure by a bounded number of
hyperplane deletions and insertions.

The colorability assumption — see Definition 2.8 — in Theorem A is apparently quite
weak and excludes none of the key examples of HHSs, though there are noncolorable
HHGs; see Hagen [36].

For the general context of this result, see the discussion in Section 1.2, where we also
give a more precise statement in Theorem 1.4. See Theorem 4.1 for the strongest
version. Besides mapping class groups, there are several other classes of spaces and
groups that are colorably hierarchically hyperbolic, including

e many cubical groups, including all right-angled Artin and Coxeter groups; see
[6] and Hagen and Susse [38];

e Teichmiiller spaces with either the Teichmiiller or the Weil-Petersson metric;
see Durham [27], Eskin, Masur and Rafi [32], and Rafi [48];

e fundamental groups of closed 3—manifolds without Nil or Sol summands [7];

e groups resulting from various combination and small-cancellation-type theorems;
see Behrstock, Hagen and Sisto [5; 7], Berlai and Robbio [11], and Robbio and
Spriano [51; 56];

¢ quotients of mapping class groups by suitable large powers of Dehn twists, and
other related quotients; see Behrstock, Hagen, Martin and Sisto [4];

¢ extensions of lattice Veech subgroups of mapping class groups; see Dowdall,

Durham, Leininger and Sisto [25; 26];

¢ extensions of multicurve stabilizer subgroups of mapping class groups; see
Russell [52];
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¢ the genus-2 handlebody group; see Chesser [23];

¢ Artin groups of extra large type; see Hagen, Martin and Sisto [37, Remark 6.16].

With the exception of any hyperbolic and cubical examples from above, our main
results and its applications are novel for this wide class of objects.

1.1 Applications

We now discuss our two main applications of Theorem A, namely that mapping
class groups and Teichmiiller spaces are bicombable (Corollary D) and admit stable
barycenters (Corollary F).

Bicombings and semihyperbolicity In CAT(0) spaces, geodesics are unique. In geo-
desic Gromov hyperbolic spaces, all geodesics between any pair of points fellow-travel.
In fact, in both of these classes of spaces geodesics are stable under perturbation of their
endpoints in the following sense: given points x, x’, y and y’ with d(x, y), d(x’, y') <1,
all geodesics from x to y fellow-travel those from x’ to y’.

The notion of a bicombing of a metric space X, introduced by Thurston, generalizes
this stability property. Roughly speaking, a bicombing is a transitive family of uniform
quasigeodesics with the above parametrized fellow-traveling property under perturbation
of endpoints. See Section 6.2 for a precise definition.

Bicombability is a quasi-isometry invariant which imposes strong constraints on groups,
such as property FP,, a quadratic isoperimetric inequality, and the Novikov conjecture;
see Alonso and Bridson [1], Baumslag, Gersten, Shapiro and Short [2], Epstein, Cannon,
Holt, Levy, Paterson and Thurston [31], Gersten and Short [33], and Storm [57].
Moreover, bicombings are the key geometric feature of biautomatic structures on
groups (where one requires that the bicombing is constructible by a finite state au-
tomaton), thereby playing an important role in computational group theory. It is worth
noting that bicombability is decidedly a feature of nonpositive curvature, with the
3—dimensional Heisenberg group not being bicombable because it does not satisfy a
quadratic isoperimetric inequality [31].

The power of our stable cubical models is that they allow us to stably and hierar-
chically import geometric features of cube complexes into HHSs. In particular, £1—
geodesics in the cubical models map to hierarchy paths (Definition 6.5), which are
quasigeodesics that are finely attuned to the HHS structure, in that they project to
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uniform, unparametrized quasigeodesics in every hyperbolic space in the hierarchical
structure. The stability property of the cubulation then implies that carefully chosen
¢!'—geodesics give a bicombing:

Theorem B Any colorable HHS (X, S) admits a coarsely Aut(X, &)—equivariant,
discrete, bounded, quasigeodesic bicombing by hierarchy paths with uniform constants.

If the action by automorphisms is free, then coarse equivariance can be upgraded to
equivariance. By the definition of semihyperbolicity [1], we obtain:

Corollary C Colorable hierarchically hyperbolic groups are semihyperbolic.

Note that semihyperbolicity has several novel consequences for HHGs. Besides novel
consequences of bicombability, these include solvability of the conjugacy problem and
the fact that abelian subgroups are undistorted [1].

While many HHSs were known to be bicombable for other reasons, eg many are
CAT(0), this produces bicombings for many new examples, such as extensions of Veech
subgroups of mapping class groups.

Our main application is:

Corollary D For any finite type surface X, its mapping class group MCG(X) is
semihyperbolic and its Teichmiiller space Teich(X) with either the Teichmiiller metric or
the Weil-Petersson metric is coarsely MCG(X)—equivariantly bicombable by hierarchy
paths with uniform constants.

Note that the HHS notion of hierarchy path that we are using here is more general
than the hierarchy paths produced in [27; 43], which are explicitly constructed from
hierarchies of tight geodesics in curve graphs.

We remark that semihyperbolicity of MCG(X) follows from work in a preprint of
Hamenstédt [40]. The result for 7 (%) is new, though we were informed by M Kapovich
and K Rafi that they know of a different construction for bicombing 7 (X). Note that
T (%) with the Weil-Petersson metric is bicombable since its completion is CAT(0) —
see Bridson and Haefliger [18], Tromba [59], and Wolpert [60] — though we note that
it is unknown whether Weil-Petersson geodesics are hierarchy paths. Combability of
MCG(X) follows from work of Mosher [45].
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Notably, our bicombing construction applies to both mapping class groups and Teich-
miiller spaces simultaneously. Moreover, our bicombings are relatively straightforward
applications of our more powerful stable cubulation construction. See Section 1.4 for a
discussion.

Stable barycenters Another key feature of nonpositively curved spaces is that bounded
sets admit (coarse) barycenters. Here, we think of barycenters simply as maps assigning
a point to any finite subset. Some more properties are required to make this notion
meaningful, such as stability, which requires the barycenter to vary a bounded amount
when the finite set varies a bounded amount, and coarse equivariance when a group
action is present; see Section 6.1.

In CAT(0) spaces there are a number of useful notions of barycenter which are equi-
variant and stable, for example center-of-mass constructions and circumcenters. Coarse
barycenters are useful in the context of groups for understanding centralizers and
solving the conjugacy problem for torsion elements and subgroups. Notably, Gromov
hyperbolic spaces admit (coarse) barycenters: a coarse barycenter of a finite set /' in a
hyperbolic space X can be taken to be one of the standard CAT(0) barycenters in the
CAT(0) space which models the hull of F in X, ie a simplicial tree. See Section 1.2
for a discussion of these ideas in the context of the this paper.

We should mention that coarse barycenters for triples of points are used to define coarse
medians in the sense of Bowditch [15]; thus playing a central role in the theory of
coarse median spaces and its many applications. However it is unclear how to construct
barycenters even for pairs of points in a coarse median space, and stability properties
appear just as difficult to obtain.

Barycenters in CAT(0) spaces are not in general well behaved under quasi-isometries.
Using Theorem A and a construction reminiscent of Niblo and Reeves’ normal paths [46],
we are able to prove that most HHSs admit equivariant coarse barycenters, which are
coarsely invariant under HHS automorphisms:

Theorem E Let (X, S) be a colorable HHS. Then X admits coarsely Aut(X, S)—
equivariant stable barycenters for k points, for any k > 1.

We remark that the coarse barycenter we produce for a set F is contained in the hull
of F.

As with Theorem B, Theorem E can be applied to mapping class groups and Teichmiiller
spaces:
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Corollary F For any finite type surface X, its mapping class group MCG(X) and
Teichmiiller space T (X) admit coarsely MCG(X)—equivariant stable barycenters for k
points, for any k > 1.

Corollary F is new for arbitrary finite sets of points in MCG(X) and 7 (X) with the
Teichmiiller metric, even without the stability property. The corresponding statement
for 7(X) with the Weil-Petersson metric is an easy consequence of the fact that its
completion is CAT(0). Corollary F, without the stability property, was proven for triples
of points in MCG(X) by Behrstock and Minsky [10], for orbits of finite order elements
of MCG(X) in MCG(X) by Tao [58], and more generally for orbits of finite subgroups
of MCG(ZX) in both MCG(X) and 7 (X) with the Teichmiiller metric by Durham [28].

In work that appeared simultaneously to ours, Haettel, Hoda and Petyt [35] proved
that HHSs are coarse Helly spaces, in the sense of Chalopin, Chepoi, Genevois, Hirai
and Osajda [20]. This property has a number of strong consequences, many of which
overlap with the results in this paper. In particular, they obtain versions of Theorems B
and E along with their corollaries, without the colorability assumption and the hierarchy
path conclusion.

Their approach and constructions are very different from ours, using results from the
theory of coarse Helly and injective metric spaces, whereas our work relies mostly on
hyperbolic and cubical geometry.

1.2 Coarse hulls and their models

Given the technical nature of many of the proofs in this paper, we include here an
extended but simplified discussion of the ideas that go into our constructions. The
propositions stated in this section will not, however, be used elsewhere in the paper.

Consider first the notion of a convex hull in a CAT(0) space. The convex hull of a
finite set F has the following nice property: the map F + hull(F') is 1-Lipschitz with
respect to the Hausdorff metric on sets. We are interested in generalizing this notion to
more coarse hulls (which we will just denote by hull(F) in each case) in more general
spaces.

As a first motivating example, consider the Euclidean plane, X = R? with the £2 metric.
The convex hull of two points, hull({x, y}), is just the unique geodesic between them.
If, on the other hand, we endow R? with the ¢! metric then the convex hull is the
axis-parallel rectangle spanned by x and y. Note that (R?, £!) is not CAT(0) but is a
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RZ

hull 2 {x, y}
hull,1 {x, y}

X

Figure 1: A cartoon of the ¢2~hull (red) and ¢'-hull (blue) of two points
in R2. The £!-hull reflects the intrinsic product structure of the space.

product of CAT(0) spaces, and this hull is a product of hulls in the CAT(0) factors. See
Figure 1. This simple idea is a model for a useful construction in the HHS context.

We can think of an HHS as (coarsely) embedded in a product of hyperbolic spaces, in
such a way that it is composed of products of certain factors, intersecting and nesting in a
complicated fashion. The reader familiar with the foundational example, namely Masur
and Minsky’s hierarchy of curve graphs for mapping class groups [42; 43], will lose
nothing by keeping it in mind during the ensuing discussion. In that setting, Behrstock,
Kleiner, Minsky and Mosher [9] introduced a notion of hull which is essentially a coarse
pullback of convex hulls in each hyperbolic factor; see Section 2.2. Behrstock, Hagen
and Sisto [8] proved, in the general HHS setting, that these hulls are quasi-isometrically
modeled by finite CAT(0) cubical complexes.

Their result is a partial generalization of the situation in Gromov hyperbolic spaces,
where Gromov proved that hulls of finite sets of points are quasi-isometrically modeled
by finite simplicial trees [34]. However, in the setting of hyperbolic spaces, the modeling
trees satisfy additional strong stability properties under perturbation of the set of input
points; see Proposition 1.3 below.

Our main theorem — in increasing specificity, Theorems A, 1.4 and 4.1 —endows the
modeling cube complexes from [8] with a generalization of the stability properties that
Gromov’s modeling trees enjoy.

Before giving a full account of our results and an overview of their proofs, it will be
beneficial to discuss the situation in hyperbolic spaces and cubical complexes. We will
see that our results are a common generalization of the situations from these motivating
examples.

Geometry & Topology, Volume 27 (2023)
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hull(F)
hull(F")
hull(F) N hull(F’)

Figure 2: Stability of hulls in a tree: the intersection of hull(F) (red) and
hull(F’) (blue) subtrees is a (green) subtree which can be obtained by deleting
the boundedly many complementary red and blue subtrees.

Hulls in trees and cube complexes Let X be a simplicial tree. Then the convex hull
of any finite set of vertices F C X© is the subtree T of X spanned by F. Moreover,
the subtree TF is stable under small perturbations of F, in the following sense; see
Figure 2:

Proposition 1.1 Let X be a simplicial tree. If F, F’ C X© satisfy #F' = #F =k
and dyaus(F, F') < 1, then the intersection of their hulls, To = Tr N T, is itself a
subtree with both Tr \ To and T/ \ Ty a union of at most k subtrees each of diameter
at most 1.

We will not use this fact, so we leave its proof to the interested reader.

This situation generalizes to when X is a CAT(0) cube complex endowed with the
£ metric; see Section 2.1 for the relevant definitions. Recall that the £! metric on X is
completely determined by a special collection Hy of codimension-1 subspaces called
hyperplanes (Section 2.1), in the sense that X is precisely the dual cube complex
arising from Sageev’s cubulation construction [54] applied to Hy as a wallspace; see
Section 2.1.1.

In the cubical context, the £! convex hull of any finite set of vertices F C X is the
cubical subcomplex Qfr C X realized as the dual to the hyperplanes ‘Hr separating
the points in F. In addition, these cubical hulls satisfy the following strong stability
property; see Figure 3:

Geometry & Topology, Volume 27 (2023)
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hull(F)
hull(F")
hull(F) N hull(F")

Figure 3: Stability of hulls in the universal cover of S! Vv T2: the subcomplex
dual to all hyperplanes common to both hull(F) (red) and hull(F”) (blue) is
here realized as the intersection (green) of the £!-hulls.

Proposition 1.2 Let X be a CAT(0) cube complex endowed with the ¢ metric. If
F,F’ C XO satisfy #F,#F' < k and dya.s(F, F') < 1, then there are convex subcom-
plexes Xr € QF and X/ C QF/, both dual to the hyperplanes in Ho = Hr N HF,
such that dya.s(XF, XFr) < 1. Moreover, both Hp \ Ho and H s\ Ho contain at most
k hyperplanes.

Again, we will not use this proposition, so we omit its proof.

In the cubical structure on a simplicial tree, the hyperplanes correspond to midpoints of
edges. Hence Proposition 1.2 generalizes Proposition 1.1. Note that now the diameters
of O \ Xr and Qf/ \ Xp- can be arbitrarily large. However, since the £! metric
on X is completely determined by its defining hyperplanes, Proposition 1.2 says that
QF and QF- are metrically and combinatorially related, depending only on k and X —
and not on diam(F). In particular, one can delete boundedly many hyperplanes from
the collections Hr and Hf to generate a common model; see Section 2.1.2 for a
discussion on hyperplane deletions.

Modeling hulls in hyperbolic spaces In coarse geometry, eg when X is the Cayley
graph of a finitely generated group, the notion of geodesic is often wobbly, and so our
notion of hull needs to be more flexible. Moreover, it will often be more fruitful to
construct quasi-isometric models of hulls, which we should think of as nice combi-
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Tr
Ib hull(F)

— E—
Y
I
Ty

Figure 4: Stability of hulls in a hyperbolic space: top, the modeling tree (red)
for the coarse hull (green) of a finite set F'; bottom, the modeling trees Tr
and Tg+ for hull(F) and hull(F’) are (1, K)—quasi-isometric after deleting
small subtrees (purple).

natorial objects which coarsely encode the key geometric features of hulls into their
combinatorial structure. The main motivating examples here are hyperbolic spaces,
where hulls are modeled by finite simplicial trees.

When X is 6—hyperbolic and F C X with #F = k, the right notion of hull(F) is the
weak hull, namely the set of all geodesics between points in F. Notice then that the
tripod-like §—slim-triangles condition generalizes to a tree-like slimness for hull(F).
The following proposition is an easy consequence of Gromov’s original arguments [34];
see Figure 4:

Proposition 1.3 For any k € N and § > 0, there exists L. = L(k,§) > 0 such that the
following holds.

Let X be §—hyperbolic and F C X with#F = k. Then there is a simplicial tree Tr and
a (1, L)—quasi-isometric embedding ¢ : Tr — X with dyays(¢pF (TF), hull(F)) < L.

Moreover, if F' C X with#F' <k and dy,s(F, F') < 1, then there exists a simplicial
tree Ty and a (1, L)—quasi-isometric embedding ¢o: To — X such that the diagram

Tr

hFi \mj
(1-1) To —25 x

wl
TE
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commutes up to error at most L., where hr and hp are quotient maps which collapse
at most L subtrees each of diameter at most L.

Observe that Proposition 1.3 is a generalization of Proposition 1.1, where X is a tree
and we can take the trees Tr, TF/, and Ty as before and the maps ¢, ¢/, and ¢g
to be inclusions. The main difference here is that a general hyperbolic space is stably
locally tree-like, and not a tree itself. Hence the need for a model for the hulls.

Our main theorem is a common generalization of the stability properties in Propositions
1.2 and 1.3.

1.3 Stable cubical models for hulls in HHSs

We will deal with colorable hierarchically hyperbolic spaces (X, &), which means,
for the reader familiar with HHSs, that there exists a decomposition of & into finitely
many families &; such that each &; is pairwise transverse. Colorable HHSs include
mapping class groups and Teichmiiller spaces of finite-type surfaces.

In fact, colorability is a rather mild condition which is satisfied by all of the main
motivating examples. Its definition is inspired by Bestvina, Bromberg and Fujiwara’s
proof that curve graphs are finitely colorable [12]; see Section 2.2 for a discussion.

Given a finite set of points F C X in an HHS, the standard notions of a hull for F
are very difficult to analyze. For example, while little is known about geodesics in
the mapping class group, Rafi and Verberne [50] proved that geodesics do not always
interact well with the curve graph machinery. In Teichmiiller space with the Teichmiiller
metric, geodesics are unique, but it is an open question of Masur whether the classical
convex hull of a set of three points can be the whole space. Moreover, it is a result of
Rafi that hulls of two points, ie geodesics, do not behave stably under perturbation [49,
Theorem D]. These complications motivate a more flexible definition of hull in this
setting.

The hierarchical hull of a finite set F C X, which we also denote by hull(F), was
introduced in [9] to study subspaces of the asymptotic cones of the mapping class group,
on the way to proving that these groups are quasi-isometrically rigid. In hyperbolic
spaces and cube complexes, the hierarchical hull coincides with the notions of hull
discussed above. In the hierarchical setting, one instead has a notion of projecting F'
to a family of hyperbolic spaces (eg curve graphs of subsurfaces). In each of these
hyperbolic spaces, one then takes the weak hull of the projection — which is coarsely
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a tree, as above — and the uses certain hierarchical consistency conditions [7; 9] to
fashion these weak hulls in the various spaces into a hull in the ambient HHS which
satisfies certain convexity properties [7; 9]. In particular, the hierarchical hull of F is
hierarchically quasiconvex [7] and contains all of the hierarchy paths between points
in F [9].

In [8], Behrstock, Hagen and Sisto proved that the hierarchical hull of a finite set of
points is quasi-isometric to a finite CAT(0) cube complex. Their main observation was
that the hierarchical consistency conditions are closely related to the consistency condi-
tions on a wallspace from Sageev’s construction of cubical complexes (Section 2.1.1).
Their idea was to look at points on the modeling trees in the hyperbolic spaces which are
unseen by the other projection data. The preimages of these points under the projection
maps turn out to behave like walls in the hull. See Section 1.4 for a sketch of these
ideas, and Section 4.2 for a full discussion.

Our main theorem stabilizes their construction, simultaneously generalizing the stability
properties from Proposition 1.3 for any hyperbolic space and Proposition 1.2 for cube
complexes admitting an HHS structure. The following is a more detailed version of
Theorem A.

Theorem 1.4 Let (X, S) be a colorable HHS. Then for each k there exist K and N
with the following properties. For any F C X with #F < k, there exists a finite
CAT(0) cube complex QF and a K—quasimedian, (K, K)—quasi-isometric embedding
®r: QF — X with dyaus(Pr(QF), hull(F)) < K.

Moreover, if F' C X is another subset with #F' < k and dyas(F, F') < 1, there
is a finite CAT(0) cube complex Qo and a K—quasimedian, (K, K)—quasi-isometric
embedding ®¢: Qo9 — X such that the diagram

OF

PING

(1-2) Qo — 205 x

nF/T /QF/

QF/

commutes up to error at most K, where ng and ng/ are hyperplane deletion maps
which delete at most N hyperplanes.

See Theorem 4.1 for the full version of the theorem, the details of which are necessary
for our applications.

Geometry & Topology, Volume 27 (2023)
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We note that CAT(0) cubical complexes are median spaces and HHSs are coarse
median [7] in the sense of Bowditch [15]. As with the cubical models in [8], our stable
cubical models also coarsely preserve the medians, meaning that the maps ®r do (as
stated in Theorem 4.1). It is worth noting that in view of Russell, Spriano and Tran [53,
Corollary 5.12], our cube complexes also approximate coarse median hulls.

1.4 Sketch of proofs

The proof of Theorem 4.1, of which Theorem A is an informal version, is contained in
Section 4 and depends crucially on our work in Section 3. Theorems B and E are a
consequence of Theorem A and our work in Section 5. We now explain the various
parts and how they fit together.

In what follows, we will keep our discussion within the context of mapping class groups
and hierarchies of curve graphs [42; 43], though we work in the more general context
of HHSs.

Let F C MCG(X) be a finite subset and consider essential subsurfaces V' C X which
are not 3—holed spheres. Roughly, the hierarchical hull of F, hull(F), is the set of
points of MCG(X) whose subsurface projections in each curve graph C(1) lie close to
the weak hull of the subsurface projection 7y (F) of F.

In the cubulation construction of [8], the authors build a wallspace for hull(F).

To do this, they first consider the collection Uf of relevant subsurfaces V' C X for
which diamy 7y (F) > K for some fixed threshold K > 0. In each of these subsurfaces,
they take a tree Tlff which coarsely models the hull of 7y (F) in C(V'), as discussed
in Section 1.2. For each such V' € UF, they then consider the collection of relative
projections pgl of W e UF to C(V'), which correspond to the projection of W to C(V')
and thus are nonempty if V' is neither disjoint from nor contained in W. The bounded
geodesic image theorem [43] and certain consistency properties of projections — see
Behrstock [3] and [9] —imply that each pE’ for such W lies uniformly close to the
tree TIL/ .

vV

They then consider, roughly, the complement Py in T}/ of a regular neighborhood of

these projections, which consists of a number of subtrees of TII,/ which are “unseen”
by the other subsurfaces in /g which interact with V. Any point in T}/ \ PII,/ cuts
T}/ into two subtrees. The partitions of hull(F) that define the wallspace on hull(F')
come from these subdivision points in the 7Y , namely one considers the subspaces of

hull( F) whose subsurface projections to C(V') lie close to either of the subtrees.

Geometry & Topology, Volume 27 (2023)
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While this construction is useful for studying top-dimensional quasiflats, it is unstable
under perturbation of F, in that given some other F’ with dy,us(F, F’) < 1, then the
cubical models Qf and Qs might differ by a number of hyperplanes on the order of
diam(F), which is not bounded.

The proof of Theorem A involves stabilizing this process in a number of places. The first
step is to robustly stabilize the collection of relevant subsurfaces U/ (Proposition 2.14),
eg so that [/ A UF/| is bounded in terms of the topology of the surface S. We do
this by applying work of Bestvina, Bromberg, Fujiwara and Sisto [14], which allows
us to stabilize subsurface projections (Theorem 2.9), and then use standard projection
complex type arguments.

In Section 3, we stabilize the modeling trees T}/ for each V € Uf. Unlike before, it
will not do to simply take any Gromov modeling tree, since unboundedly many pieces
of it might change in the transition from F to F’ when we cut it up using the relative
projection data (the P II,/ above). Instead, we use the newly stabilized relative projection
data to build a new stable tree. We do this by taking a regular neighborhood of the
relative projections, which then group into connected components we call clusters. As
before, these clusters lie close to any Gromov modeling tree, but we cannot use these
trees. Instead, we define a separation graph for these clusters (Definition 3.5), and
then prove that the combinatorics of this graph encode how these domain clusters are
arranged on any Gromov modeling tree. We then construct our stable tree by connecting
clusters both internally and externally via minimal spanning networks in C(V'). The
stability of the cluster data then is converted into stability of the tree construction in
Theorem 3.3, which, in particular, says that the set of long edges of two related trees
are in bijection and within bounded Hausdorff distance, with most long edges exactly
the same. See Figures 5 and 9 below.

In Section 4, we then plug these stable trees into the cubulation machine from [8]. We
must be mindful of how subdivision points change when transitioning from F to F’. In
particular, we construct a common refinement of the sets of subdvision points for our two
sets F and F’ (Proposition 4.12), with the delicate nature of this process necessitating
the intricacies in the statement and proof of the stable tree theorem (Theorem 3.3).
With this in hand, we prove that this common refinement induces an isomorphism
between the resulting cubical models for the hulls of both sets (Proposition 4.13); see
Figure 18. This isomorphism depends on a careful hierarchical analysis of when two
halfspaces corresponding to two subdivision points intersect (Lemma 4.10). The full
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version of the stable cubulation theorem is achieved in Theorem 4.1, which says that
the two modeling cube complexes Qf and QFs become isomorphic when we delete
a bounded number of hyperplanes from each, with the bound depending only on | F|
and |F’|.

In Section 5, we adapt the normal path construction of Niblo and Reeves [46] and
analyze how it changes under hyperplane deletion. In particular, for any finite CAT(0)
cube complex Q, we develop a sequence of contractions which take the extremal
vertices of Q (ie its corners) into a “barycentric” cube at the “center” of Q, and
we prove that this contraction sequence is only boundedly perturbed by hyperplane
deletions (Theorem 5.1).

Stability of the cubical model and the contraction sequence easily give the barycenter
theorem (Theorem E). In the context of a bicombing (Theorem B) when F = {x, y}, we
take the bicombing path from x to y to be the image in MCG(X) of the path obtained
by following the contraction sequence of x to the barycentric cube, and then traversing
the contraction sequence from the barycentric cube to y in reverse order. Once again,
stability of the contraction sequence and the cubical models implies that these are
uniform quasigeodesics which fellow-travel in a parametrized fashion; see Figure 25.
Theorems B and E are proved in Section 6.

1.5 Outline

In Section 2 we collect some background material.

Section 3 takes place entirely in a fixed hyperbolic space, using methods from coarse
hyperbolic geometry but with HHS ends in mind. The main result there is Theorem 3.3,
and no other result from that section will be used elsewhere.

In Section 4, we prove the precise version of Theorem A, which is Theorem 4.1. Again,
no other statement from this section will be used elsewhere. In this section, we use the
combinatorial geometry of HHSs.

Section 5 uses the tools of cubical geometry, and it is independent from the previous
sections. Its main result is Theorem 5.1, which once again is the only result from here
needed in the rest of the paper.

Finally, in Section 6 we put all the pieces together, and we prove Theorems B and E.
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2 Background

In this section, we will collect and record the various facts about cube complexes and
hierarchically hyperbolic spaces that we need.

2.1 CAT(0) cube complexes

We will briefly discuss some basic aspects of CAT(0) cubical geometry. We direct the
reader to Sageev’s lecture notes [55] for details.

A cube complex is a simplicial complex X obtained from a disjoint collection of Eu-
clidean cubes which are glued along their faces by a collection of Euclidean isometries.
A cube complex is nonpositively curved (NPC) if its vertex links are simplicial flag
complexes. An NPC cube complex is CAT(0) if it is a 1-connected NPC complex.

A midcube of an n—cube C C X is an (n—1)—dimensional cube H’ C C running
through the barycenter of C and parallel to one of the faces of C. A hyperplane H C X
is a connected subspace of X such that for all closed cubes C, the intersection H NC is
either empty or a midcube of C. The carrier of H is the union of all of the cubes in X
whose intersection with H is a midcube, and it is naturally isomorphic to H x [0, 1].

Equivalently, there is a natural equivalence relation on the set of edges in the 1—skeleton
of X generated by relating two edges if they are opposite edges of some square in X.
Any hyperplane can be obtained as the collection of midcubes which intersect the edges
in a given equivalence class.

In this paper, we will be considering finite cube complexes, namely those with finitely
many cubes.
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Metrics on cube complexes There are many interesting metrics one can put on a
CAT(0) cube complex X. We will be interested in both

e the £! or combinatorial metric, dy, which is generated by the £! norm in each
cube of X, and can be equivalently defined on the 1-skeleton X (M) a5 the path
metric thereon;

e the cubical sup metric, d«, which is the metric generated by the £°° or sup norm
in each cube in X.

The following is an easy consequence of the observation that, given 7, the £! and £*°
norm on an n—cube are bi-Lipschitz equivalent.

Lemma 2.1 For any n > 0, there exists K = K(n) > 0 such that if X is an n—
dimensional cube complex, then the identity id: (X, d1) — (X, dxo) is a (K, K)—quasi-
isometry.

The differences between these metrics will come up in Sections 5 and 6. See [44] for a
detailed discussion of these metrics.

2.1.1 Wallspaces and Sageev’s construction In Section 4, we will adopt the per-
spective of obtaining cube complexes as duals to wallspaces. Wallspaces were first
defined by Haglund and Paulin [39]; see Hruska and Wise [41] for a broader discussion.

Let Y be a nonempty set. A wall in Y is a pair of subsets W = {ffl_/, W)} where
~— = R —
Y =W U W. In this case, W and W are called halfspaces.

Two points x, y € Y are separated by a wall W if x is contained in a different halfspace
from y.

A wallspace is a set Y with a collection of walls YW on Y such that the number of walls
separating any pair of points is finite.

An orientation on a wallspace (Y, W) is an assignment ¢ such that, for each W € W,
we have o(W) € {W, ﬁ/)}. The orientation o is called coherent if, for all W, W' e W,
we have o(W) No(W') # &. We call o canonical if there exists x € X such that
x € o (W) for all but finitely many W € W.

Given a wallspace (Y, W), we can consider the cube complex X (Y, W) constructed as
follows. The O—cubes of X (Y, W) are coherent, canonical orientations of (¥, W). Two
O-simplices are connected by a 1—cube if, seen as orientations, they differ on only one
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wall. Finally, all subcomplexes of the 1-skeleton isomorphic to the 1-skeleton of an
n—cube cube get filled by an n—cube.

Work of Chatterji and Niblo [21], Chepoi [22], and Nica [47] — building off of work
of Sageev [54] — gives that X (Y, W) is a CAT(0) cube complex. We call X(Y, W) the
dual cube complex associated to the wallspace (Y, W).

2.1.2 Hyperplane deletions In Section 5, we will be interested in understanding how
cube complexes change under deletions of hyperplanes, so we will use the alternative
perspective of obtaining cube complexes from sets of hyperplanes. We briefly explain
how this works.

Let X be a CAT(0) cube complex and Hy its (finite) set of hyperplanes. Then we can
identify each hyperplane H € Hx with the two halfspaces into which it partitions X o
As such, we can and will think of (X (O), Hyx) as a wallspace, and one can show that X
is the dual cube complex associated to (X, Hy).

Given any subset H C Hy of hyperplanes in a cube complex X, there is a natural
cube complex X(#) defined as the dual cube complex associated to the wallspace
defined by A in X. In particular, each point in X(7{) is a choice of coherent, canonical
orientations of the half-spaces defined by .

With this notation, we can now define hyperplane deletions:

Definition 2.2 Let X be a CAT(0) cube complex obtained with hyperplanes Hy . For
a finite collection of hyperplanes G C Hy, the hyperplane deletion map for H is the
map

Resy\g: X = X(Hx \ §)

obtained by restriction of orientations, where X(Hx \ G) is the dual cube complex
associated to the wallspace (X, Hx \ G).

Equivalently, the map Resy,,\g is the quotient map which collapses the [0, 1] factor of
each of the carriers of the hyperplanes in G (recall that the carrier of the hyperplane H
is naturally isomorphic to H x [0, 1]). We note that these maps appear elsewhere in the
literature, eg [19].

We also record the following fact, which indicates that the isomorphism type of the
cube complex coming from a wallspace is determined by the intersection pattern of
halfspaces. The proof is elementary.
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Lemma 2.3 Let W and W be wallspaces, and let .: Hyy — Hy» be a bijection of
their halfspaces which preserves complements and disjointness.

Denote by j the induced map on walls
{H,H} > {u(H),.((H)}

and by h(x) = tox o j~! the induced map on orientations. Then h, viewed as a map on
O—cubes, induces an isomorphism h: Y\, — W between the corresponding CAT(0)
cube complexes.

2.2 HHS axioms

We recall from [7] the definition of a hierarchically hyperbolic space.

Definition 2.4 (HHS) The g—quasigeodesic space (X, disty) is a hierarchically
hyperbolic space if there exists § > 0, an index set G, and a set {CW | W € &} of
d—hyperbolic spaces (CU, disty ), such that the following conditions are satisfied.

(1) Projections There is a set {mry : X —2°W | W € &} of projections sending points
in X to sets of diameter bounded by some &€ > 0 in the various CW € &. Moreover, there
exists K such that, for all W € &, the coarse map my is (K, K)—coarsely Lipschitz
and 7w (X) is K—quasiconvex in CW.

(2) Nesting G is equipped with a partial order C, and either S = & or & contains a
unique C—maximal element; when V C W, we say V is nested in W. (We emphasize
that W — W for all W € G&.) For each W € G, we denote by Gy the setof V € G
such that V — W. Moreover, for all V, W € & with V & W, there is a specified subset
p%,/V C CW with diamCW(pg,) < &. There is also a projection ,og/: CW —2€V . (The
similarity in notation is justified by viewing p%,/V as a coarsely constant map CV — 2€%))
(3) Orthogonality & has a symmetric and antireflexive relation called orthogonality,
and we write V L W when V and W are orthogonal. Also, whenever V C W and
W L U, we require that V' L U. We require that for each T € G and each U € G for
which{V e &7 |V LU} # @, there exists W € &1 \ {T'} such that, whenever V' L U
and V C T, we have V _ W. Finally, if V L W, then V and W are not _—comparable.

(4) Transversality and consistency If V, W € G are not orthogonal and neither is
nested in the other, then we say V and W are transverse, denoted by V t W. There
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exists kg > 0 such that if V M W, then there are sets pﬁ, CCW and plly C CV, each
of diameter at most £ and satisfying

2-1) min{disty (xw (x), pyy), disty (v (x), py )} < ko

forall x € X.

For V, W e G satisfying V — W and for all x € X,

(2-2)  min{distw (rw (x). ). diamey Gry () U plf (ew (x)))} < ko.
The preceding two inequalities are the consistency inequalities for points in X.

Finally, if U C V, then disty (pI[,JV, pg,) < ko whenever W € G satisfies either V &= W
or VAWand W Y U.

(5) Finite complexity There exists n > 0, the complexity of X (with respect to G),
such that any set of pairwise [_—comparable elements has cardinality at most 7.

(6) Largelinks There exist A > 1 and £ > max{§, ko} such that the following holds.
Let W € & and let x,x" € X. Let N = Adist,, (mw(x), 7w (x’)) + A. Then there
exists {7;};i—1,.., .n] S Gw \ {W} such that for all T € Gy \ {W}, either T € &,
for some i, or disty (7 (x), 7 (x’)) < E. Also, disty (7w (x), pz,;ﬁ) < N foreachi.

.....

(7) Bounded geodesic image There exists ko > 0 such that for all W € G, all
V e 6w \ {W}, and all geodesics y of CW, either

diamey (o) (¥)) <ko o ¥ NNio(ply) # 2.

(8) Partial realization There exists a constant & with the following property. Let
{Vj} be a family of pairwise orthogonal elements of &, and let p; € 7y, (X) CCV;.
Then there exists x € X’ such that

. disth (x,pj) <aforall j;
e for each j and each V' € & with V; C V, we have disty (x, pgj) <a; and

o if W V; for some j, then disty (x, pgf) <a.

(9) Uniqueness For each « > 0, there exists 6, = 0,,(x) such that if x, y € X and
disty(x, y) > 6y, then there exists V € & such that disty (x, y) > k.

We often refer to &, together with the nesting and orthogonality relations, and the
projections as a hierarchically hyperbolic structure for the space X.
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Where it will not cause confusion, given U € &, we will often suppress the projection
map wy when writing distances in CU; ie given x,y € X and p € CU, we write

disty (x, y) for diamey (ry (x) Uy (y)) and disty (x, p) for diamey (ry (x) U {p}).
Given A C X and U € G we let nyy (A) denote |, 4 v (@).

There is a natural notion of automorphism of an HHS, which we now briefly explain.
These were originally defined in [7], but we give a more restrictive definition which
is essentially equivalent, as explained in [30, Section 2.1]. An automorphism g of
an HHS (X, ) is an isometry of X together with a bijection & — &, also denoted
by U +— gU, which preserves nesting and orthogonality, and isometries between
corresponding hyperbolic spaces, again still denoted by g: C(U) — C(gU). We require
that gy (x) = ey (gx) forall x € ¥ and U € &, and gpg = pgg foral U,V € G
where this is defined.

We let Aut(X, &) denote the group of HHS automorphisms of (X, &).

We say that a group G is a hierarchically hyperbolic group if it acts properly and
coboundedly by HHS automorphisms on some HHS (X, G).

2.2.1 Some useful facts We now recall results from [7] that will be useful later on.

Definition 2.5 Let« > 0 and let b € [Tyes 2€Y be a tuple such that for each U € &,

-

the U—coordinate by has diameter < k. Then b is k—consistent if forall V,W € S,
min{disty (by . p}/ ). distw (bw . pjy)} < &
whenever V h W and

min{disty (x, pz/), diamy (by U P{Iy)} =K

whenever V & W,
The following is [7, Theorem 4.5].

Theorem 2.6 (distance formula) Let (X, &) be a hierarchically hyperbolic space.
Then there exists sy such that for all s > s¢, there exist C and K such that for all
X,y EX,

dist(x, y) <x,c Y {disty (x. y)}s.
Ues

where { A} p denotes the quantity which is A if A > B and 0 otherwise.
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We recall the notion of a hierarchical hull, which originates in [9] for the setting of
mapping class groups, and extends to the HHS setting in [7]. Given a constant 6, for
any F' C X we define

(2-3) Hg(F) ={x e X | VYV €6, my(x) € Ny (hull(ry (F)))},

where hull(A) denotes the union of all geodesics connecting points of A. In words, Hy
is the set of points whose projections in every hyperbolic factor space land in a specified
neighborhood of the hull of the image of F. That this is sufficiently nonvacuous is
indicated by the following result which, as we will see, is an easy consequence of [7,
Theorem 4.4].

Theorem 2.7 Let (X, S) be a hierarchically hyperbolic space. Given k, there exist
0 and k such that, if F C X is a set of cardinality k then for every V € & the image
wy (Hg(F)) and the hull of wy (F) lie within Hausdorff distance k of each other.

Proof By definition, my (Hg(F')) lies in a controlled neighborhood of hull(zry (F)),
so we are left to show that any point on a geodesic connecting points of wy (F) lies
close to wy (Hg(F)). This follows from [7, Theorem 4.4], which says that any two
points of F are connected by a hierarchy path (with uniform constant). These are
defined in Definition 6.5 below, but here we only need that said path has projection to
any given C(W') which, as a set, uniformly coarsely coincides with a geodesic between
the projections of the endpoints. In particular, for any 6 large enough, the path will be
contained in Hy(F). m]

2.3 Refined projections and stable subsurface collections
We will be working in a broad but restricted class of HHSs:

Definition 2.8 Let (X, &) be an HHS and let G < Aut(&). We say that (X, ©) is
G—colorable if there exists a decomposition of & into finitely many families &; such

that each G; is pairwise transverse and G acts on {&; }; by permutations. We say that
(X, ©) is colorable if it is Aut(&)—colorable.

The notion of colorability is inspired by Bestvina, Bromberg and Fujiwara [12], who,
essentially, proved that MCG(X) and 7 (X) are finitely MCG(X)—colorable HHSs; we
now explain how their work proves this fact. First of all, the standard HHS structures
of MCG(X) and 7 (X) both have as index set & the set of all essential subsurfaces
(including the disconnected ones) that do not have pairs of pants as connected com-
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ponents. Except for allowing disconnected subsurfaces, this is the same as the set Y
considered in [12, Proposition 5.8]. The proposition yields a certain decomposition
Y =Y!'u-.-uY¥, and from an inspection of the first paragraph of the proof one sees
that the Y/ are the orbits of a certain finite-index subgroup G of MCG(X). We can
define our G; to be the orbits in & (rather than Y') of this same finite-index subgroup.
The fact that distinct elements of each Y’ have intersecting boundaries —as given
by [12, Proposition 5.8] —implies that for any two distinct subsurfaces in the same
G; have connected components with intersecting boundaries. Since transversality in
MCG(X) and 7 (X) is defined via intersecting boundaries, we are done.

We sometimes refer to the G; as BBF families.

For A, B CC(Y), we define dy (A, B) := diam¢(y)(AU B).

Theorem 2.9 [14] Let (X, &) be a G—colorable HHS for G < Aut(&) with standard
projections — and p_. There exist 8 > 0 and refined projections 7— and p_ with the
same domains and ranges, respectively, such that:

(1) If X and Y lie in different &;, and ,6})5 is defined, then ,o)),( = /6%( .
(2) If X,Y € &; are distinct, then the Hausdorff distance between p3 and p% is at
most 0.

(3) Ifx € X and Y € G, then the Hausdorff distance between my (x) and 7y (x) is
at most 6.
4) If X,Y,Z € &, for some j are pairwise distinct and dy (pg,(, p}Z,) > 0, then
X _ Y
Pz =Pz
(5) LetxeX,and Y, Z € &; for some j be pairwise distinct. If dy (mry (x), p%) >0
then w7z (x) = pg.

Moreover, (X, &) equipped with m— and pZ is an HHS, G < Aut(S), and it is G—
colorable.

Proof The idea is to apply the construction from [14] to the standard projections 77—
and 0~ and distances d_ for the sets &; U X for each i, where we think of X as a
collection of single point spaces x = {x} for each x € X.

Given a point x € X, we define projections p, from domains in &; and & to x as
the constant map p,, = x. It is easily checked that &; U X, once equipped with the
original projections 77— and 6_ and these additional projections, satisfies the projection
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axioms from [12]. The existence of projections and distances 7w—, p_ and d—, and that
all properties hold for them, is then an immediate consequence of [14, Theorem 4.1].

Finally, the fact that (X', &) equipped with these projections is an HHS follows from
the fact that the new projections are bounded distance away from the old ones, by items
(D), (2) and (3).

The fact that G still acts by automorphisms on the new structure follows from equivari-
ance of the construction of the new projections, meaning [14, Theorem 4.1(3)]. O

Definition 2.10 We say that a G—colorable HHS (X, &) with G < Aut(&) has stable
projections if it is equipped with the projections provided by Theorem 2.9.

For the rest of this section, fix a G—colorable HHS (X, &) with G < Aut(&) and with
stable projections. In particular, we assume that the standard projections for (X, &)
satisfy the stability properties in Theorem 2.9.

As usual, dy (x1, x2) denotes diam¢(y) (A1 U Az), where
o A =mny(x;)if x; € X,
o A; = pf," if x;, e G andeitherx; =Y orx; MY.

For any pair of points x, y € X’ and constant K > 0, we let Relg (x, y) C G denote the
collection of Y € & such that dy (x, y) > K; we also set Relk(x, y)=Relg(x,y)NG;.

Let 0 satisfy Theorem 2.9(5). Following eg [9; 12; 24], we now consider a relation
on Relg (x, y) —the properties claimed below follow from [7, Proposition 2.8] and
Definition 2.4(4). For any K > 106, Relg (x, y) is a partially ordered set with order <
such that X <Y whenever X th Y and one of the following equivalent conditions hold:

dy(x,p¥) <0, dx(px,y) <0, dy(py.y)=K—0, dx(x,px)>=K—0.
When restricted to Rel% (x, y), the relation < becomes a total order.
For a finite set F' C X, we define

Relg (F) = U Relg(x,y) and Rel%(F)=RelK(F)ﬂ(‘5,~.
x,yeF

The following stability lemma follows directly from the construction in [14].

Lemma 2.11 There exists K > 20 such that if x, y, y' € X satisfy dx(y,y’) <1,

then for each i,
IRel (x, y) A Reli (x, y)| < 2.
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Proof By contradiction, suppose we have distinct elements
Yo,Y1, Y2 € Rel%(x, y) \Rel%(x, ")

with Yo < Y1 < Y. If K > 100, applying the definition of < and Theorem 2.9(5),
we see that 7y, (x) = 'O§(1) and 7y, (y) = p;f Also, since ny,(y) and my,(y’) are
uniformly close to each other, if K is sufficiently large then we have dy, (Y1,y) > 6
and hence, one again, ny, (y') = p%,’f But then dy (x,y’) = dy(x,y) > K, which
contradicts Y7 ¢ Relk (x, y'). O
Proposition 2.12 Let K > 260 and F C X be any finite set. There exists
M= MK.&,|F|])>0
such that, for any F' C X with dyas(F, F') <1 and |F'| <|F|,

IRelg (F) A Relg (F')| < M.

Proof Assume throughout the proof that K is sufficiently large.

Since there are finitely many colors, it suffices to prove the analogous statement for
Rely (F) A Reli (F’) for any given i.

Applying Lemma 2.11 twice, we see that if dy(x,x’),dx(y,y’) <1, then
IRelk (x, y) \ Reli (x', y')| < 4.

For each of the | F|? pairs x, y € F, we can pick any x’, ¥’ with dx (x, x'), dx(y.y") <1
such that there are at most 4| F|? elements of Rel%(F ) = Ux.yer Rel% (x, y) that
are not in Reli (F'); ie [Relk (F) \ Reli(F')| < 4|F|?. Symmetrically, we have
IRel% (F') \ Reli (F)| < 4|F'|?, and since |F’| < |F| by assumption, we finally get
IRel% (F) A Reli (F')| < 8| F|?, as required. o

2.4 Bounding involved domains

Let (X, ©) be a G—colorable HHS with stable projections for G < Aut(&), as provided
by Theorem 2.9.

Let F, F' C X with |F|,|F’| <k and dyas(F, F’) < 1. We will now prove some
stronger stability results about how the set of relevant domains (and their subdomains)
changes between F and F’.
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For any K >> 20 as above, let U (F) =Relg (F) and U(F’) =Relg (F'). Given V € &,
let UV (F) ={W €U(F) | W = V} and define ¥ (F') similarly.

In many of our stability results, we will need to know how domains in &/ (F') may differ
from those in U (F’). We call such domains involved, and they come in two flavors:

Definition 2.13 We say that V € U(F) UU(F") is involved in the transition between
F and F’ if

(1) my(F)#may(F'), or
2) UV(F)#U" ().

Proposition 2.14 If K is sufficiently large then the following holds. Given k > 0
there exists Ny = Ny(k, &) > 0 such that, if |F|,|F’| < k and dyqas(F, F') < 1, then
there are at most N1 domains V € U(F) UU(F’) involved in the transition between F
and F’.

Proof By Proposition 2.12, it suffices to bound the number of involved domains in
U(F) NU(F’). However, we will still have to bound the number of involved domains
of type (1) in U(F) UU(F’). We note that, since F and F’ lie within Hausdorff
distance 1, up to increasing K we can assume that for each V € U(F) we have
diamey (y (F')) > K /2, and similarly for V € U(F’).

Involved of type (1) Let x € F. We say that V € U(F) UU(F’) is exposed to x if
7y (x) is not contained in wy (F’). We define exposure for x € F’ similarly (with
an abuse, here we are considering F and F’ as disjoint, so we should actually define
exposure for x € F U F').

Observe that V € U(F) UU(F’) satisfies wy (F) # my (F') if and only if V' is exposed
to some x in either F or F’. Hence it suffices to bound the number of exposed domains.

Since |F|,|F’| < k, we may fix a point x € F and consider domains V which are
exposed to x. The case of domains exposed to points in F’ follows from a symmetric
argument.

Given x and V as above, there is a y € F such that dy (x, y) > K /4 (this is because
diame(yy (wy (F)) > K/2). Since F has at most k elements, we can further fix y with
said property.

Suppose for a contradiction that there exist domains V1, V5, V3 € (U(F)UU(F)NGS;
which are exposed to x, where &; is the i™ BBF family, making the V; necessarily
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pairwise transverse (this suffices since there are finitely many BBF families). Up to
reordering, we have V1 < V2 < V3 in Relg /2 (x, y).

Since F and F’ lie at Hausdorff distance at most 1, there is a pair x5, yo € F’ such
that d(x, x2),d(y, y2) < 1, and necessarily we have my, (x) # 7y, (x2) (as we cannot
have the containment “C”).

Since d(x, x2),d(y, y2) < 1, by taking K >> 26 sufficiently large, we can ensure that
dy,(x2,y2) > 20 fori = 1,2,3. Since V1 < V3 < V3 € Relg/»(x, y), we also must
have the same order Vi < V5 < V3 in Relyg(x2, y2).

Thus by Theorem 2.9, it follows that my, (x2) = ,012 However, Theorem 2.9 also
implies that my, (x) = ,012 This contradicts the fact that y, (x) # my,(x2), and
completes the proof that there is a bound on domains of type (1).

Involved of type (2) Notice that if W € U(F) NU(F') is of type (2), then there
necessarily exists an exposed domain V € U(F) UU(F’) of type (1) with V C W
(by a C—minimality argument: there must exist some V &= W with wy (F) # my (F'),
by virtue of V lying in the symmetric difference of ¢/(F) and U(F"’), and hence a
C—minimal such V exists by Definition 2.4(5)). We therefore bound the number of
such containers W for a fixed exposed domain V', of which there is a bounded number
by the first part of the proof.

Since |F|,|F’| < k, it suffices to fix x, y € F and provide a bound on the number of
elements W € Relg (x, y) which contain a fixed domain V.

In fact, we can conclude with an argument that does not rely on colorability, which we
record here as a separate lemma since it might be of independent interest.

Lemma 2.15 Let (X, &) be an HHS. Then there exists N such that for any sufficiently
large K the following holds. Let x,y € X and V € G. Then there are at most N
elements W € G with V & W such that W € Relg (x, y).

Proof We fix K large enough that Relg (x, y) is partially ordered for all x, y € X,
and larger than 10« for k¢ as in Definition 2.4(4).

First of all, there is a bound on the maximal number of pairwise _—comparable domains
by Definition 2.4(5), and similarly there is a bound on the maximal number of pairwise
orthogonal domains by [29, Lemma 1.4]. Hence, in view of Ramsey’s theorem, there
exists N such that any collection of more than N domains contains three pairwise
transverse elements.

Geometry & Topology, Volume 27 (2023)



2410 Matthew G Durham, Yair N Minsky and Alessandro Sisto

Suppose, by way of contradiction, that there exist more than N domains W as in the
statement, for given x, y and V, and consider W; < W, < W3 in Relg(x, y). By
Definition 2.4(4), we have that dw, (7w, (x), pg,/;) < ko and dw, (Tw, (), pKV/; ) < Ko.
However, since V T W; for each i = 1,2,3, we have sz(p%,pK,z) < ko and
dw, (p%; ,05,2) < ko, and so dyw, (,ogi, pgg) < 2kq by the triangle inequality. But
since dw, (x,y) > dw, (p%,pl‘%) —2Kko > K —2k¢ > 2K¢ by assumption, this is a
contradiction. O

As explained above, the lemma concludes the proof of the proposition. O

Remark 2.16 While not strictly necessary, we can simplify the setup that we deal with
in Section 3 thanks to the following: Given an HHS, we can Aut(X', &)—equivariantly
change the structure in a way that all 7y (x) and pg for U = V are points, rather than
bounded sets, and that moreover the new structure has stable projections if the old one
did. This can be achieved, for example, by replacing each C(}') by the nerve of the
covering given by subsets of sufficiently large diameter — which is quasi-isometric
to C(V). In particular, the vertices of the new C(V') are labeled by bounded sets, and
we can redefine wy (x) to be the vertex labeled by 7y (x), and similarly for pg; all
properties required are straightforward to check.

In Section 3, we will deal with finite subsets of a hyperbolic space. If in Section 4
we did not modify the HHS structure as outlined above, we would instead have to
deal with finite collections of bounded subsets. This is possible, but would make the
arguments more opaque.

3 Stable trees

In this section we will consider the geometry of trees in a §—hyperbolic space, in
preparation for arguments that will take place in the individual hyperbolic spaces of our
hierarchical structure. Our main result will be Theorem 3.3, stated below after some
preliminary definitions. This is the only result from this section that will get used later
(namely, in Section 4).

Fix a geodesic §—hyperbolic space Z. For a finite subset F' C Z let hull(F) C Z be
the set of geodesics connecting points of F. Hyperbolicity tells us that hull(F) can be
approximated by a finite tree with accuracy depending only on é and the cardinality #F'.
To systematize this for the purposes of this section, we make the following definitions.
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Let us fix a function A which assigns, to any finite subset F of Z, a minimal network
spanning F. That is, A(F) is a 1-complex embedded in Z with the property that
A(F) U F is connected, and has minimal length among all such 1-complexes (where
the length of a 1-complex embedded in Z is the sum of the lengths of all edges).
Minimality implies A(F) is a tree. Let us similarly define A which assigns, to any
finite collection Ay, ..., A of subsets of Z, a minimal network that spans them. That
is, A'(A1,..., Ar) is a I-complex in Z of minimal length with the property that the
quotient of A’ U A7 U---U Ay obtained by collapsing each A; to a point is connected.
Minimality again implies that this collapsed graph is a tree. For convenience we assume

that A({x1,...,xx}) = A ({x1}, ..., {xk}).

The following lemma illustrates a basic property of hyperbolic spaces, and we omit its
proof.

Lemma 3.1 Let Z be a geodesic §—hyperbolic space and A a minimal network function
as above. Then there exists €y = €o(k, §) such that, for all € > €, there exists €’ > €
such that it F C Z has cardinality k then

e there is a (1, €/2)—quasi-isometry A(F) — hull(F') which is € /2—far from the
identity;
o for any two points x, y € N¢(A(F)), any geodesic joining them is in N/ (A(F)).

In the rest of this section we consider the following situation. Let a (large but) finite
set ) C Ng/2(hull(F)) be given (see Section 4 for what ) will be in our setting).
It is possible to divide A(F) up into a union of subtrees some of which are close
approximations to “clusters” in ) and the rest interconnect the clusters, but such a
construction is not unique, depending on many choices (including the choice of A(F)
itself). Our goal in this section is to describe a version of this which is stable, in the
sense that small changes in the sets F' and ) only alter the tree and its subtrees in a
controlled way — independently of the diameter of F or the cardinality of ).

Remark 3.2 For convenience in our discussion we allow ourselves to assume that the
points of F are all leaves of A(F'). This can be arranged by a slight perturbation, or by
considering each point of F as the endpoint of an additional edge of length 0.

Given E > €, let CE (Y U F) be the graph whose edges connect points of Y U F that
are at most £ apart. Vertex sets of connected components of Cg are called clusters.
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We will choose E to be a suitably large multiple of €/. We note that the relation of E
to €’ and € is the one sensitive part of the argument, and elsewhere we can be content
with order-of-magnitude arguments.

For a simplicial tree T, let d(v) be the valence of each vertex v and let k(7T') be the
number of leaves, ie vertices of valence 1. We have ) dw)>2(d(v)—=2) =k(T) -2, for
example by an Euler characteristic argument. We call this quantity the fotal branching
of T.

The following theorem is the main result of this section.

Theorem 3.3 Givenk, N, 8, and € > €o(k,§) as in Lemma 3.1 there exists K > 0
such that the following holds. Let Z be a geodesic —hyperbolic space and let F,) C Z
be finite subsets, where |F| < k and J C N/, (hull(F)).

There exists a metric tree T =T (F, )) with a decomposition into two forests T =T,UT,
intersecting along a finite set of points and amap & = Ef y: T(F,Y) — Z such that:

(a) The total branching of T is bounded by 2k — 4.

(b) E is a (K, K)—quasi-isometric embedding with image K—-Hausdorff close to
hull(F).
(¢) For each component t of T, we have that E|,; is a (1, K)—quasi-isometric

embedding, and an isometry onto E (t) endowed with its path metric.

(d) There is a bijection b between components of T, and clusters in Cg (YU F) such
that E(t) is K—Hausdorff close to b(t) for each component t of T.

Furthermore, if F',)’ C Z and g € Isom(Z) are such that |F’'| < k, )’ is finite,
dyaus(gF, F') <1, and |gY AY'| < N, then there exists a constant L = L(N,k,§) >0
and subsets Ts C Te(F,Y) and T C T(F’,)'’) such that, identifying components of
T.(F,Y) and T,(F’,Y') with their images in Z, we have:

(1) The components of Ty and Ty are contained in the edges of T,(F,Y) and
T.(F',)'), respectively.

(2) The complements Te(F,Y)\ Ts and T,(F’, ")\ T, have at most L components,
each of diameter at most L.

(3) There is a bijective correspondence between the sets of the components of g T
and T.

Geometry & Topology, Volume 27 (2023)



Stable cubulations, bicombings, and barycenters 2413

L

e — 0 —e
oF
y
— T,
— T.

Figure 5: An example of the stable tree T = T, U T, provided by Theorem 3.3.

(4) Under this correspondence, all but L components are exactly the same, and
the identical components of Ts and T, come from the identical components of
To(F,Y) and T.(F',)').

(5) The remaining L components of gT are each at Hausdortf distance L to the
corresponding component in T

We call the trees T'(F, ) stable trees.

Remark 3.4 (coarse equivariance and its proof) The “furthermore” part of Theorem
3.3 can be interpreted as simultaneously stating two facts. For g the identity, it says
that the trees are stable under perturbations of F and ). Alternatively, for F' = gF
and )’ = g)), it says that the construction is coarsely equivariant. In either case, what
we have to prove is essentially the following. The construction relies on certain choices,
namely the choices of functions A and A’ as above, and we have to show that these
only cause the kinds of perturbations described in the statement of the theorem. From
this perspective, it is clear that the proof for a general g is the same as that for g =1,
as gT(F,Y) coincides with the tree T (gF, g))) constructed based on different choices.
To save notation and make the proof more readable, we will prove only the case where
g is the identity.

3.1 Cluster separation graph

Let Ck = Cg(F UY) be as above and let C;,C,, C3 C C% be clusters (ie vertex
sets of connected components). We say that C, separates C1 from C3 in Z if there
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exists a minimal Z—geodesic segment o with endpoints on C; and C3 which meets the
2¢’—neighborhood of C,.

Definition 3.5 Let G = Gg(F U)) be a graph whose vertex set Q% is the set of
clusters of Cg, and where [Cy, C3] is an edge whenever there is no cluster separating
C from C; in Z. We call Gg the separation graph for Cg.

Lemma 3.6 If E > 4€’, then Gg is connected.

Proof Let C,C’'€GY%.1f C # C’, then dz(C,C’) > E (here dz means the minimal
distance, not the diameter of the union). If they are not adjacent in G, then there is a
third cluster B separating them in Z. Let o be a minimal geodesic connecting C to C’
with p € o within 2¢’ of B. Then p is distance at least E —2¢’ from each end of o since
B is at least E from both C and C’. It follows that dz(B,C) < dz(C,C’) — E + 4¢€/,
and similarly for dz(B, C’).

If dz(C,C’) < 2E — 4¢€ this gives dz(B, C) < E which is a contradiction, so C and
C’ must be connected by an edge in Gg. For dz(C,C’) > 2F — 4€’, we have that
dz(B,C) and dz(B, C’) are smaller than dz(C, C’) by at least E —4¢’, so we can
proceed inductively. O

For ease of notation, set C =Cg and G = Gf.

Definition 3.7 For any subset A of Z, let its shadow s(A) be the subtree of A(F)
obtained by taking the convex hull (in A(F)) of all the points in A(F) within distance
€ from points of A. For a singleton {x} we also write s(x) := s({x}).

Note that, since Y U F is in N¢(A(F)) by hypothesis, s(C) # & for any nonempty
subset C C YU F.

The rest of this subsection is devoted to establishing several properties of shadows
which will connect the separation properties of clusters in G to separation properties of
their shadows in A(F), thereby allowing us to work with G and independently of A(F).

The next lemma controls how and when shadows of clusters can intersect.

Lemma 3.8 Let E > 7¢ and let C, C’ € G° be distinct clusters. Then

(1) s(C)Ns(C’) can contain no leaf of s(C) or s(C');

Geometry & Topology, Volume 27 (2023)



Stable cubulations, bicombings, and barycenters 2415

s(Cy)

5(C2)

Figure 6: When there is branching, shadows can overlap in their interiors,
but never at their leaves.

(2) the diameter of s(C) N s(C’) is bounded by a constant depending on #F, E,
and ¢;

(3) if at least one of s(C) and s(C') is an interval along an edge of A(F), then
s(C)yns(C) =w.

Proof Note first that for any x € C, s(x) is a subtree of diameter at most 3¢. This is
because any two extreme points of s(x) are within € of x, and A(F) is (1, €)—quasi-
isometrically embedded. Similarly, for any x,y € C,

diamy gy (s({x, y})) <d(x,y) + 3e.

Claim 1 For every p € s(C), there exists g € s(C) at distance (in A(F)) at most
(E +3€)/2 such that d(q,C) <e.

Proof Either p € s(x) for some s(x) containing an extreme point of s(C), or p
separates some s(x) from s(y), for x, y € C. In the first case p is within 3¢/2 of a
point g for which d(q, x) <€ and we are done. In the second case, a path in Cg from x to
y then yields a sequence of points x; € C such that d(x;, xj+1) < E and p is contained
in one of the shadows s({x;, x; +1}). Since diamy (F)(s({x;, x; +1}) < E + 3¢, we find
that p is within (E + 3€)/2 of an extreme point g of s({x;, xj+1}), so d(¢q,x;) <€ or
d(q, xi+1) < €. The claim follows. |

For (1), suppose that a leaf p of s(C) is in s(C’). Note that the leaves of s(C) and
s(C’) are within € of C and C’, respectively. By the previous paragraph, there is
a point ¢ of s(C’) within (E + 3¢)/2 of p which is € close to C’ Thus we obtain
d(C,C')<2e+(E+3¢)/2<E,soC=C".

For (2), suppose that s(C) Ns(C’) contains an edge e of length greater than 2(E + 3¢).
Claim 1 implies that there is a set R in s(C) consisting of points at distance € from

Geometry & Topology, Volume 27 (2023)



2416 Matthew G Durham, Yair N Minsky and Alessandro Sisto

[ /

S1
Ss / s(C)
A(F) s
°
o Gi o
Gs
g
C
¢ G2 o

Figure 7: The cluster C is guaranteed valence at least 3 (via Sy, S> and S3)
by Lemma 3.10. In this case it has valence 4.

C and whose (E + 3¢)/2-neighborhood covers s(C); there is also a similar set R” in
s(C’). Since e is in both shadows, it must be that ¢ N R and e N R’ both cut e into
intervals of length at most £ + 3¢. Thus it must be that there is a point r € RNe
and r’ € R’ N e that are distance (E + 3¢)/2 apart. Then just as before we obtain
d(C,C’") < E so C = C’. Now the number of edges in s(C) N s(C’) is bounded by
the total branching of the tree, which depends on #F'. This gives (2).

Finally, for (3), if one of s(C) and s(C’) is an interval contained in an edge of A(F)
then it is easy to see that, if they overlap, then one must contain a leaf of the other,
thereby violating (1). a

Definition 3.9 From now on we set £ = 8¢’, so that the conclusions of both Lemmas
3.6 and 3.8 hold.

The following lemma connects the separation properties in G of a cluster to the separation
properties in A(F') of its shadow.

Lemma 3.10 Let C be aclusterand S1, ..., Sy, be the components of A(F)\int(s(C))
which meet s(C) at a leaf of s(C). Let G; be the set of clusters B € G°\ {C} such that
s(B) N S; # @&. Then each G; is in a distinct component of G\ C, and moreover the
valence of C in G at least m.
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Figure 8: Clusters with shadows on an edge in A(F') give rise to a path of
bivalent vertices in G.

Proof Note that if B is a cluster in G; then s(B) is actually disjoint from s(C), since
the leaves of s(C) cannot meet s(B) by Lemma 3.8. Moreover, there may be clusters
C’ # C that are not in any G;; their shadows meet components of A(F) \ int(s(C))
that do not meet leaves of s(C).

Let A € G; and B ¢ G; U{C}. A minimal geodesic o in Z connecting A to B must
be €’—close to the path in A(F) connecting s(A) to s(B), and this path passes through
a leaf p of s(C) (namely s(C) N S;). Thus there is a point of C within € + €’ < 2¢’
of 0, so C separates A from B in Z. In particular A and B cannot be adjacent in G.

Thus G; cannot be connected to any vertex in G°\ (G; U {C}), which implies distinct
G; are in distinct components of G\ C.

To see that the valence is at least m, we must check that each G; is nonempty. But
each §; must contain a leaf of A(F'), which is a point of F, so there must be a cluster
whose shadow is in S;. O

Lemma 3.11 If e is an edge of A(F), the clusters C whose shadows s(C) are sub-
intervals of e form a path in G whose interior vertices are bivalent. The ordering of this
path matches the ordering of the shadows in e.

Proof Let {Cy,...,C;} be the set of clusters whose shadows are subintervals of e.
By Lemma 3.8, s(C;) Ns(C;) = @ for all i and j. We may therefore assume that their
indices correspond to the order they appear along e in A(F').

The complement A(F') \int(s(C;)) has two components for each i, labeled A~ and Al.Jr ,
such that A4;" contains s(C;—1) when i > 0 and Al.Jr contains §(Cj4+1) when i < [.
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By our ordering, no shadows lie between s(C;) and s(C;+1). Lemma 3.10 implies
that C; separates (in G) the clusters whose shadows lie in A;” from those in AZT" . In
particular, no B can separate C; from C;4; in G, so they are adjacent and we obtain a
path Cyq,...,C; in G. Moreover for 1 <i <[ we can see that C; is bivalent as follows:
if D € C\ {Ci—1,Ci, Cit+1}, then one of C;_; or Cj4; separates D from C; in G,
again by Lemma 3.10, and so there can be no edge [C;, D] and the valence of C; is
exactly 2. |

Lemma 3.12 If C has valence 2 in G but s(C) is not an interval inside an edge of
A(F), then C contains a point of F.

Proof If s(C) is not an interval in an edge of A(F), it has a branch point and hence
at least three leaves. At most two of these can be interior to A(F'), because otherwise
C would have valence at least 3 in G by Lemma 3.10.

Thus s(C) contains a leaf ¢ of A(F'), which is a point of F'. Thismeans d(q,C)<e < E
(notice that, since ¢ is a leaf, it lies in the convex hull of a subset of A(F') only if it lies
in the subset). Hence, we have g € C. O

Structure of bivalent clusters Let £° denote the set of clusters C € G° which have
valence 2 in G and do not contain a point of F. Lemma 3.12 implies that each C € £°
has shadow inside an edge of A(F).

The next lemma gives that almost all clusters are bivalent.
Lemma 3.13 #(G%\ &% <2k —2.

Proof For a cluster C € G%\ €9, either C contains a point of F, or s(C) contains a
branch point of A(F'). There are at most k clusters of the former type. The number of
clusters of the latter type is bounded by the total branching b(A(F')), but to show this
we must contend with the fact that shadows can overlap.

Let W C A(F) be a connected union of shadows s(Cy), ..., s(Cy,), each of which
contains a branch point. By Lemma 3.8, no leaf of s(C;) can be in s(C;) fori # j.
Hence all leaves of s(C;) must be leaves of W and disjoint from each other. Since
each s(C;) has at least two leaves,

_| k) | [ bw)+2
me |52
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where k(W) is the number of leaves and b(W) is the total branching of W. Since
b(W) > 1, this implies m < b(W). Summing over all such W we find that the number
of clusters with branch points in their shadows is bounded by b(A(F)), or k —2. The
desired inequality follows. a

Let £ be the subgraph of G induced on the vertices £°.

Lemma 3.14 Let&,..., Ey be the components of £. For each &; there is an edge e;
of A(F) such that &; is apath Cy, ..., C,, in G consisting of all elements of £ whose
shadows lie in the interior of e;; the edges e; are distinct.

Proof Since each cluster D € &; is a bivalent vertex of G with shadow in an edge of
A(F) by Lemma 3.12, and Lemma 3.11 implies that all such clusters with shadows
on a given edge e € A(F) form a path in G, it suffices to prove that no two such edge
paths of bivalent clusters in G are directly connected by an edge.

Suppose C, D € &; are connected by an edge in G but s(C) and s(D) are not contained
in a single edge of A(F). Since s(C) N s(D) = &, we may label the components
of A(F)\s(C) and A(F) \ s(D) by y+ and 64, respectively, so that s(C) C §— and
s(D) C y—. Then the intersection y_ N §_ contains a vertex v of A(F) of valence at
least 3.

By Lemma 3.10, G \ C is divided into subgraphs G(y+) spanned by clusters whose
shadows are in y+, respectively, and are separated by C, and similarly G(6+) are
separated by D, respectively. In particular note C € G(6—) and D € G(y-).

Since v has valence at least 3, there is a component of A(F) \ {v} that meets neither
s(C) or s(D). A leaf of this component is in the shadow of a cluster B which is
therefore in G(y—) N G(6-).

Since G is connected, B is connected to C within G(y—) and to D within G(6—). Since
C and D are bivalent and by hypothesis adjacent in G, the edge between them is the
only edge connecting C to G(y—), and the only edge connecting D to G(6—). Hence
any path from B to C must pass through this edge and must therefore meet D first.
Reversing the roles of C and D we obtain a contradiction. |

3.2 Constructing the stable tree

In this section, we construct our stable tree T (F, )) from the structure of G without

referring to A(F') directly. In Proposition 3.17 below, we prove it is quasi-isometric
to A(F).
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Figure 9: The construction of a stable tree. Note that each complementary
component of G \ £% determines multiple components of T,, eg the lavender
forest A’(V?) determined by the component ¥ whose boundary is the bivalent
clusters Cy, C,, and C3. Each cluster C then determines a single component
u(C) of T, by connecting the points r(C) = C N (T, U F).

The two forests Now let us proceed to define the forests T, (F, ) and T, (F,)). We
let G = G (F U)) be as above.

Let V denote the set of closures of connected components of G\ £°. Thus each element
of V is a subgraph connected to the rest of G along vertices in £%. For each V € V
let V0 denote its vertex set, which is a collection of clusters. Some elements of V' are
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single edges [C, D], where C, D € £°, and others are subgraphs containing vertices in
G9\ £9, and we note they are not necessarily trees, though Lemma 3.13 bounds their
size.

For each V €V, let A'(V?) be the minimal network defined in the beginning of this
section, where V' is interpreted as a collection of subsets (clusters) in Z.

Now define

T.=T.(F.Y) = | |V (V).
Vey

Remark 3.15 The forest T, is a disjoint union of copies of forests each contained
in Z. It is important to note, however, that these trees might in fact intersect in Z. With
a slight abuse, we will conflate the abstract copies of the A’(V?) that constitute 7, and
their “concrete” counterparts in Z. Similar comments apply to 7, below. Since the
map E: T — Z is just going to be the identity on all the components of 7, and T¢,
we will allow ourselves to regard T as a subset of Z for purposes that do not require
understanding the metric of T, eg when measuring the Hausdorff distance between
(the image in Z of) a subset of 7" and a subset of Z.

Note that T, is a forest whose leaves are points of clusters.

Collapsing clusters to points, 7, becomes a connected network N, by the definition
of V. This connected network is a union of trees joined at points that correspond
to vertices of £%. Since any vertex in £ disconnects G, each of these join points
disconnects N, so we see that N is a tree.

Now for each cluster C € G°, we consider the set of points 7(C) = C N (T, U F). We
let £(C) denote the tree A(r(C)), and define

Te=T(F.Y) = | | w©).
Cego

The tree We now define T(F,)) =T (F,Y)UT.(F,Y),or T =T, U T, for short.
Note that T is a tree because as above collapsing the subtrees of 7, to points yields a
tree; see Figure 9.

Lemma3.16 LetT =T(F,Y) =T, UT,.

(1) The total branching b = b(T) is bounded by 2k — 4, and the leaves of T are
containedin F U ).
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(2) n(C) S No@e(C),s0T: CNo@E)(YUF).
(3) Forall p € T,, we have dz(p,Y U F) > Ldr(p,0T,)— O(e).

Proof To bound b(T'), we bound the number of leaves T can have. Leaves of T are
leaves of the various components of T, and 7, and thus can arise in two ways:

(a) If acluster C contains points of F', the points in C N F can be leaves of u(C)
which are also leaves of 7. There are at most k such points.

(b) If a cluster C contains no points of F and a single point ¢ of 07, which is
connected to only one subtree of Ty, then g is a leaf of T'; see Figure 10.

All other vertices of 0T, U 0T, have valence at least 2. Notice that we already showed
that all leaves of T are contained in F U ).

Clusters of type (b) must be in G2\ £9 since every cluster in £° belongs to two subgraphs
in V, and hence either has two points in 37, or two subtrees of T, meeting at a single
point. The number of clusters in G° \ £° that don’t contain points of F was bounded
in Lemma 3.13 by k —2.

This gives us a bound of 2k — 2 on the total number of leaves in 7', which bounds the
total branching by 2k — 4. This proves part (1).

Now for part (2), consider the minimal network p(C) for the cluster C. By Lemma 3.1
and the definition of shadows, u(C) is within O(¢) of the shadow of C in A(F), and
it follows from Claim 1 (in the proof of Lemma 3.8) that every point of s(C) is within
O(E) of C. This proves part (2).

For part (3), let p € (V%) C T,, where V € V, and let the distance dz(p, Y U F) be
realized on a point in a cluster C;. Write dz(p, C1) =t.

Suppose first that C; € V0. The quotient of A’(V?) obtained by collapsing the clusters
of V0 to points is a tree by minimality of the network, so there is some sequence of com-
ponents of A’(V %) which connects p to Cy, possibly through clusters C», ..., C; € VO.

Consider the unique path « in A’(V?) from p to C,. The path « branches at no more
than b = b(T) points, so let @’ C « be the longest unbranched subsegment of «. We
thus have |a’| > %dr (p, O (V9)). If |o’| > ¢, we may remove o’ from A/ (V' ?), attach a
minimal length path in Z from p to C; (of length ¢), and obtain a network with smaller
total length than A/(V?) that still connects the clusters in V. This would violate the
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MF)C Z

T(F.))

Figure 10: The stable tree T = T'(F, YY) may have leaves which are not points
in F, and some points of F' may not be leaves of T'. In this example, the
ambient space Z is the whole graph on the left, and T is realized geometrically
on the right. The orange cluster points atop spikes at the branch points
of the underlying tree create leaves in 7. New leaves in 7' always arise
from clusters near branch points of A(F). The pink bivalent cluster points
determine bivalent vertices in 7', with small neighborhoods thereof folding
into the spikes upon inclusion of T — Z. By contrast, A(F) contains none of
the spikes. Finally, the pairs of nearby points of F in A(F) on the left side of
Z form clusters. The components of 7, connect one point from each pair to a
pink cluster, while a component of 7, connects the pair. As a result, some
points of F' are not leaves of T'.

minimality of 1'(V'?), so we must have ¢ > |o’|, and therefore ¢ > %dT(p, oA (V9)),
as required.

Now consider the possibility that Cy is a cluster outside of V. Let s(V') denote the
shadow of the union of clusters S(U 4epo A), which is the same as the hull in A(F') of
the shadows {s(4) | A € V°}. We claim that s(V) Ns(C) = & for every C € G°\ VO,

Recall from Lemmas 3.8 and 3.10 that the shadow s(C) for each C € £° is disjoint
from all other cluster shadows, and that the separation of shadows by s(C) in A(F) is
the same as the separation of the corresponding vertices in G by C € G°. In particular,
if VeV and C € £° then all vertices D € V° (other than C itself if C happens to lie
in VV?) have shadows s(D) on one side of s(C). Any V; # V5 in V are separated in
G by some C € &o, including the case when C is the common vertex of V7 and V5.
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Z
- 1 1 1 1 -
100 100 100
A(F)
T(F,Y)

Figure 11: A basic, complicating example. The ambient space Z is a bi-
infinite line with spikes of height 1 at distance 100 from each other, which
we think of as 10-hyperbolic. The cluster points ) (in orange) sit on the ends
of the spikes. The two points in F are very far apart. The spanning tree A(F)
for F is a long segment. The stable tree T'(F,))) is also abstractly a long
concatenation of segments of length 102. The natural map 7'(F, ))) — Z folds
the ends of these segments onto the spikes and is therefore not an embedding.
It is a quasi-isometric embedding, but the multiplicative constant is at least
102/100.

Thus the shadows s(V7) and s(V5) are either disjoint or overlap exactly on s(C) for
this common vertex C. The claim follows.

Now applying Lemma 3.1 again we find that A’(V'?) is in an O(¢) neighborhood of
s(V). Thus if Cy is a cluster in G° \ V? then any Z—geodesic from p to C; has an
O(¢) fellow-traveling path in A(F) which must exit s(V') before it arrives at s(Cy).
It follows that d(p, C1) > d(p, C2) — O(€), for some C, € VO, This reduces to the
previous case. O

We are now ready to prove that our stable tree T'(F,)) coarsely behaves like A(F).
Unlike Gromov’s trees, stable trees quasi-isometrically embed with multiplicative
constants possibly larger than 1; see Figure 11. This is an inconvenient fact for what
follows and later in Section 4.

Proposition 3.17 The natural map T'(F,Y) — Z is a (K1, K1)—quasi-isometric embed-
ding, and T (F, ) lies within Hausdorff distance K1 of A(F), where K1 = K1(k, 8, €).

Proof It follows from Lemma 3.1 that each component of T, and T is (1, O(¢))-

quasi-isometric to its shadow in A(F'), and moreover is within Hausdorff distance O (¢)
of its shadow in A(F').
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Consider two distinct clusters C, C» € G, and their shadows. By Lemma 3.8(2), the
shadow intersection s(C1) N s(C2) has uniformly bounded diameter. If C; and C,
belong to different pieces Vi, V, € V, then there is a cluster D € £ 0 separating V7 from
V5 in G. If D is not equal to either C; then its shadow separates s(C1) from s(Cz)
by Lemma 3.10, and hence the shadows are disjoint. If C; = D, say, then again the
shadows are disjoint, by Lemma 3.8(3).

In particular, the clusters in £° have pairwise disjoint shadows, and moreover by
Lemma 3.10 their separation properties in the graph G are preserved in A(F) — that
is, if C separates C; from C3 in G then s(C5) separates s(Cy) from s(C3) in A(F).
This means that any V' € V is associated to a complementary component ¢ (V') of the
shadows of £% in A(F), in the following way. For every C € &, any cluster in VO\ {C}
has shadow contained in one of the two components of A(F) \ s(C), by Lemma 3.10.
We let ¢ (V) be the intersection of all these components. Notice that if V # V'’ then
c(V) # c¢(V'), since in that case some C € &y will separate V from V' in G.

We now study overlaps of the shadows of the various relevant subtrees of 7', showing
that said overlaps are bounded.

Let V €V be the closure of a component of G\ £°. If A and A, are distinct components
of A'(V?), we claim that their shadows in A(F) have an intersection of bounded
diameter.

Indeed, if the shadows of A; and A, had overlap of size >> €, then A; would contain
points within O(¢) of A,, at distance >> € from each other, and with no branch point
of either A1 or A, within O(¢) of the geodesic in A connecting the two points (this
uses the bound on the branching of 7'). A simple surgery would then reduce the total
length of A’(V?), contradicting its minimality.

Now consider a component A of A’(V?) and one of the clusters C in V. We claim
their shadows also have bounded-diameter intersection. Lemma 3.16 tells us that any
point of A; within d of p(C) is within O(d) of the boundary of A;. This proves the
claim.

Note that the number of clusters in V', and therefore the number of components of
A'(V?), is bounded via Lemma 3.13. Thus the subtree 7" comprising A’(V ) together
with all the components of 7, associated to clusters in V' has a decomposition into
a bounded number of subtrees, and a map to A(F) (using the shadows) which is a
(1, O(€))—quasi-isometric embedding on each subtree and such that the images of
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distinct subtrees have bounded overlap. Under these circumstances it follows that
the map TV — A(F) is a (k, k)—quasi-isometric embedding, where k depends on
these bounds. Moreover, the image of this map must, up to bounded error, lie in the
component of A(F) minus the shadows of those clusters in £° that separate V from
the rest of G (by the preservation of separation properties noted above).

It follows that these maps piece together to give a (K1, K1)—quasi-isometry, where
K1:K1(k,8,6). O

3.3 Proof of Theorem 3.3

Property (a), the branching bound on 7'(F, ), was proved in Lemma 3.16.
Property (b), the quasi-isometry, is given by Proposition 3.17.
Property (c) follows from the construction of 7, and Lemma 3.1.

Regarding property (d), we have a natural bijection between components of 7, and
clusters by construction, and each component p(C) is contained in a controlled neigh-
borhood of the corresponding cluster C by Lemma 3.16, where by controlled we mean
that the corresponding constant depends on 6, €, and E. We are left to argue that C
lies in a controlled neighborhood of 1 (C). This is equivalent to showing that s(C)
lies in a controlled neighborhood of w(C). If this was not true then, in view of the
bound on the total branching of A(F'), we would have that s(C) contains an interval
I in an edge of A(F) of length > E not contained in a controlled neighborhood of
1 (C). From Proposition 3.17 we know that 7" lies within controlled Hausdorff distance
of A(F), so I is contained in a union of controlled neighborhoods of the u(C’) for
C’ # C, and controlled neighborhoods of the components of T,. Neighborhoods of
the latter type cannot contain points in / far from its endpoints by Lemma 3.16(3), and
the same holds true for neighborhoods of the former type in view of Lemma 3.8(1), a
contradiction. Therefore, s(C) and C are contained in a controlled neighborhood of
w(C), as required.

We now prove the “furthermore” part of the statement. Recall that, for the reasons
explained in Remark 3.4, we only treat the case that g is the identity. Let (F’,)’)
be a second configuration differing from (F,))) as in the statement. We name the
constructions arising from (F’,)") by C’, G', &', V', etc. Also, we write T = T'(F,))
and 7' = T(F’,)’), and similarly for T¢, Te, T/, and T,. Set N = #(Y A Y').

Claim 1 The cardinality |G® A (G')°| is bounded in terms of k, §, and N .
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Proof A cluster C is in the symmetric difference G° A (G')° only if it is within E of
apoint of F U F" U (Y A)'), of which there are at most 2k + 2 + N. Now each point
of a cluster in C is within € of some point in A(F), and there is a number R depending
only on the total branching of A(F) such that among any R points in A(F) within a
ball of radius E + € (in A(F)), there must be two which are less than € apart (and the
same is true for C’ and A(F’)). Thus, if there are more than (2k + 2 + N)R elements
ing% A (4 )0, then two are closer than E apart, which is a contradiction. O

Claim 2 The symmetric difference of the edge sets of G and G’ has cardinality bounded
in terms of k, 8, and N .

Proof By Lemma 3.13, the maximal valence of any vertex of G is bounded, and so the
number of edges incident to elements of G A (G')° is bounded. Therefore it suffices
to consider the case where C, D € G° N (¢")° with [C, D] an edge in G but not in G'.
This implies there is a B’ € (G')°\ G° separating C from D when no such cluster in G°
did so before.

Since B’ separates C from D, there is a point ¢ € B’ N ((Y' A Y) U (F" A F)) which
lies at distance at most € from a Z—geodesic y joining C and D. The shadow s(g) on
A(F) must therefore be in a 10e—neighborhood of the interval in A(F') between s(C)
and s(D).

Each such ¢ can only affect a bounded number of such edges (C, D) in this way,
because the shadows of edges in each component of £ are arranged sequentially and
disjointly along edges of A(F) by Lemma 3.14, and G° \ £° is bounded (again by
Lemma 3.13). Since there are only boundedly many such ¢, this bounds the number of
edges in the symmetric difference. a

Let (7)) denote the set of components of a forest 7. By Claim 2, there is a bound on
the number of collections of clusters in V A V', and this gives us a bound, say K, on
|70(Te) A o(T))].

Now the components of 7, and 7/ correspond to the elements of G% and (¢")° re-
spectively, whose symmetric difference is bounded by Claim 1. Moreover for each
element C of G° N (G")°, the points r(C) used to determine the component of 7,
(resp. T/) associated to C are determined by the components of T, (resp. T,,) adjacent
to C. Thus, together with the bound on |7o(7e) A 7o(7,)|, we obtain a bound on
|70 (Te) A& 7o (T7)]-
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We now increase K in a controlled way a few times, with the result of each step
depending only on k, §, and €.

By item (b), we can increase K to ensure that dya,s(7,7') < K. By Lemma 3.18
(below) we can further assume that dy,s(BU Tc U F, B'UT,U F’) < K, where B and
B’ are the sets of branch points of 7 and 7’. We have to be careful in using Lemma 3.18
because the sets of leaves of 7" and 7’ need not be within bounded Hausdorff distance
of each other, since they might contain more than F and F’; see Figure 10. However,
we can apply the lemma after slightly modifying 7" and 7’ by adding “spikes” (meaning
edges attached at T, or T’, at one side and having a leaf on the other side) of length,
say, 1 to ensure that the sets of leaves of the new trees that we obtain do lie within
controlled Hausdorff distance. Such spikes only need to be added close to 7 and T} by
Lemma 3.16(1), yielding the required Hausdorff distance estimate (indeed, BU 7T, U F
is Hausdorff close to the union of 7, and the set of branch points and leaves of the
modification of 7', with 7, being Hausdorff close to 7/ in view of property (d), and
the latter set being close to the corresponding one for 7’ by Lemma 3.18).

We can then increase K once more to ensure that 7. U ()’ —Y) and T U (Y —)) also
lie at Hausdorff distance bounded by K. This can be done since 7¢, ) and TC’ , ) are at
bounded Hausdorff distance by Lemma 3.16(2). Finally, we also require that K > K1
as in Proposition 3.17.

Now let 0 = 0 (K, §) be the fellow-traveling constant for (1, K)—quasigeodesics with
endpoints at distance at most K in a §—hyperbolic space. This constant will be relevant
later because geodesics in our trees 7 and 77 are (1, K)—quasigeodesics in Z by item (b)
and our choice of K.

For ease of notation, we will refer to components in i = 7o (7 ) 7o (7,) as “unchanged”
components, and the remaining components as “changed”. We note that there are at
most K changed components in each of T, and 7},.

For each component E € 7o(Te) \ 7o(T}), let Ey» = hullg (E NNk ()')), where the
hull of this intersection is taken in the tree E, while the neighborhood is taken in Z.
Now define R = U gery(7,)\no(zy) E>’> and define R’ similarly. We now collect the
“unstable parts” of the trees along with the unchanged parts. Set

U=T.URUUUBUF and U'=T/UR'UUUB UF'

Note that we included F and F’ in these sets to ensure that they lie within bounded Haus-
dorff distance of each other, but this is inconsequential for the purposes of considering
the complementary forests, which is what we want to do next.
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Let K’ = K'(K, N, k) > 10K be such that

(i) digaus(T, T') < K and dygaus(U, U") < 10K,
Gi) |#70(T\U)| < K’ and |#70(T’ \U")| < K,
Gii) (T\U)C T, and (T"\U") C T,
(iv) |#70(T. NU)\U| <K' and |#7o(T.NUN\U'| < K’, and
(v) forany C € (mo(Te NU) Uno(T,NU’)) \U, we have diam C < K'.

Regarding property (i), the “10” in “10K™ is there to keep into account the fact that we
took hulls.

Property (ii) can be shown observing that the intersection of U with each changed
component can only have a bounded number of components because of the bound N
on |Y A Y'| and the bound on |B| given by Lemma 3.16. This same observation shows
item (iv). Property (iii) holds by construction.

Property (v) is nontrivial for R and R’, in which case it holds since C is a union of
boundedly many components, each of bounded diameter. In particular, any set Eyr is
a union of hulls in E of intersections with balls centered at an element of ), which
have bounded diameter, and the union consists of at most N elements.

Now let Ly = L1(K’,8), L, = Ly(K’,8) > 0 be the constants given by Lemma 3.19
(below) with T, U and T’, U’ satisfying the conditions of that lemma via (i) and (ii).

Let £ C mo(T \ U) be the set of all components of 7 \ U of diameter greater than L.

Define L' C 7o(T’\ U’) to be the set of components of 77\ U’ that lie within Hausdorff
distance L, of an element of £. Since there are at most K’ components of 7'\ U, this
bounds the cardinality of 7o(7 \ U) \ £, and any component in this set has diameter at
most Lj. Similarly, the numbers and diameters of the components of (7’ \ U’) not in
L’ are also bounded, this time the bound on the diameter being L3 by the “moreover”
part of Lemma 3.19.

Lemma 3.19 provides a bijection p: £ — £’ which sends any component in £ to
the unique component in £ which is within Hausdorff distance L,. That is, for any
C € mo(L), we have dyaus(C, p(C)) < Lo.

Now let 7,0 be the union of all elements of £ U/, and define Ts/,0 similarly. We
observe that we have by construction and (iii) above that T o C T, and Ts/,O c T,
Moreover, the number of components of 7, \ 7,0 and their diameters are bounded by
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2K'(L1 +10L2 + K" + 1), and similarly for 7, \ 7§ ;. In fact, the number of such
components is bounded by 2K’, since each is a union of

 changed components of T, N U, and there are at most K’ of those by (iv), and

e components of 7'\ U of diameter at most L1, and again there are at most K’ of
those.

The bound on the diameter also follows from this description.

To obtain the sets 7y and T required by the theorem, it suffices now to remove the
branch points from the unchanged components contained in 7y o and Ts/,o to ensure (1)
(which at this point is not satisfied only because of the unchanged components, since we
included the branch points in U and U’), while all other properties have been checked
above. d

Two supporting lemmas The following two lemmas were used in the proof of
Theorem 3.3 above. To simplify notation, we will not distinguish between a tree
quasi-isometrically embedded in a metric space, and the image of said tree.

Lemma 3.18 Foreach K and § there exists Lo such that the following holds. Let T and
T’ be trees (K, K)—quasi-isometrically embedded in the §—hyperbolic metric space Z,
with dyaus(Fo, Fy) < K, where Fo and Fj are the sets of leaves of T and T’ respectively.
Then the sets of branch points B and B' of T and T satisfy dyaus(BU Fo, B'U Fj) < L.

Proof The set 5U Fy can be coarsely characterized as the set of points x of 7" such
that there are f1, f> and f3 in Fy (not necessarily distinct) with the property that the
Gromov product at x between any f; and f; is small, and similarly for 7’. We leave
the details to the reader. a

Lemma 3.19 For each K there exist L1, L, and L3 such that the following holds.
Let T and T’ be trees (K, K)—quasi-isometrically embedded in the metric space Z,
with dyas(T,T') < K. Also, let U € T and U’ C T' be subforests such that
dyaus(U, U") < K and all branch points of T (resp. T') are contained in U (resp. U’).

Then for each component C of T \ U of diameter at least L1, there exists a unique
component C’ of T’ \ U’ within Hausdorff distance L, of C. Moreover, every
component C' of T'\ U’ of diameter at least L3 arises in this way.

Proof We will conflate components of 7'\ U with their closures, so we can talk about
their leaves, and similarly for 7"\ U’.
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The main observation is that there exists K» = K»(K) such that the following holds.
Let C be a component of 7\ U and let x and y be (not necessarily distinct) points in
C that, in the metric of C, are at least K, from all the leaves of C. Then there exists a
unique component C’ of 77\ U’ which is within K of both x and y.

To prove this, suppose by contradiction that K> > K and that there are distinct
components of 77\ U’ that contain points x” and y’ that are within K of x and y,
respectively. Then there exists some p’ € U’ on the geodesic [x’, y'] in T’ from x’
to y’. Let p € U be such that d(p, p’) < K. Then p lies within 0 = ¢ (K) > 0 from the
geodesic from x to y, since considering points in 7 that are within K of those along
[x, y'] yields a quasigeodesic in T. Since x and y are at least K, from the leaves
of C, they cannot lie close to any point of U, in particular p. We can then deduce that
either p lies along the geodesic [x, y] in T from x to y, or there is a branch point of
T along [x, y]. In either case, x and y do not lie in the same component of 7\ U, a
contradiction. (Recall that U contains all branch points of 7' by hypothesis.)

Consider now a component C of 7\ U of diameter sufficiently large that it contains a
point which is at least K, from all the leaves of C. By the observation above, all such
points are close to a unique component C’ of T’, and since the set of all such points
has bounded Hausdorff distance from C, we have that C is contained in a uniform
neighborhood of C’. Moreover, if C has sufficiently large diameter, then we can apply
the same reasoning to C’ and deduce that C’ contains points that are within K of a
unique component C” of T\ U, and that C’ is contained in a uniform neighborhood
of C”. But the above observation implies that C” = C, and it follows that C and C’
lie within uniformly bounded Hausdorff distance.

Finally, the “moreover” part follows from a similar back-and-forth using the previous
part of the statement. Namely C’ has sufficiently large diameter and is within bounded
Hausdorff distance of a component C of 7'\ U, then C also has large diameter and is
thus in turn within bounded Hausdorff distance of some component of 7’ \ U’, which
needs to be C’. O

4 Stable cubulations

Fix a G—colorable HHS (X, &) for G < Aut(&), and let F C X be a finite set.

In this section, we use the stable trees constructed in Section 3 for the projections of
F to the relevant domains to define a wallspace on the hull Hy(F'). This wallspace
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can then be plugged into Sageev’s machine to produce a cube complex which, by an
argument from [8], coarsely models the hull of F' in X'. Stability of the tree construction
then induces stability in the cubulations under perturbations of F'. We refer the reader
to Section 2.1 for some background and references on cube complexes, wallspaces,
and hyperplane deletions, as well as to Section 2.2 for background on HHSs.

The main result of this section, and the only statement from this section that we will
use in the rest of the paper, is the following precise version of Theorem A.

Theorem 4.1 Let (X, &) be a G—colorable HHS for G < Aut(&). Then for each k
there exist K and N with the following properties. To each subset F' C X' of cardinality
at most k one can assign a triple (Qf , ®f, V) satisfying

(1) QF is a CAT(0) cube complex of dimension at most the maximal number of
pairwise orthogonal domains of (X, &);
2) ®f:QF — Hy(F) is a K—median (K, K)—quasi-isometry;
(3) vr: F — (QF)© satisfies dx(Pr oYr (f). f) < K foreach f € F.
Moreover, suppose that F' C X is another subset of cardinality at mostk, g € G, and
duaus(gF, F') < 1. Choose any map 1 : F U F' — F such that.p(f) = fif f € F

anddx(g(r(f)), f)<1if f € F'. Also, choose amap tg/: F U F’ — F' such that
tr(f)=fif f e Fanddx(g(f),tp/(f)) < 1if f € F. Then the following holds:

There is a third CAT(0) cube complex Qg and K-median (K, K)—quasi-isometric
embedding ®¢ such that the diagram

F L OF
Y
(4-1) FUF Qo —20 x
Lp/ " T /
F QOF/

commutes up to error at most K, where n and n’ are hyperplane deletion maps that delete
at most N hyperplanes. The left side commutes exactly, ienoygotgp =n oy g/ otLp:.

The notion of K—median refers to the coarse median structure on X" in the sense of [15],
and we only define it later where it is needed, since we obtain it directly from [8].
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The “1” in “dyaus (g F, F’) <17 could be changed with any other constant up to changing
K in the “moreover” part. We decided to keep the statement slightly simpler and not
introduce further quantifiers since one can always replace an HHS with a graph, or
rescale the metric.

The remainder of this section is devoted to the proof of this theorem.

Standing assumptions For this section, we fix an HHS (X', &) as in Theorem 4.1,
which, in light of Theorem 2.9, we can assume to have stable projections. Furthermore,
we can assume that it has the property that all 7y (x) and all pg for U © V are single
points; see Remark 2.16.

4.1 Subdivision sets for stable trees

In this section, we establish a formalism for subdividing trees. In Section 4.2 these
subdivision points will give the walls in our cubulation. This mostly follows the strategy
of [8], except that we need to take greater care in making choices for the subdivision.

Definition 4.2 Let M/ > M > 0. An (M, M')—subdivision of a tree T is a collection
of points p(T) C T satisfying:

(1) The points p(T) are contained in the interiors of edges of 7. We set
p(e) = p(T) Nint(e)
for each edge e of T'.
(2) The M'/2-neighborhood of p(e) U de covers e.
(3) All points of p(e) U de are at least M apart in e.

In other words, the spacing between points of p(e) U de along e is at least M and
strictly less than M’.

We additionally say that p(7T') is (M, M')—evenly spaced if M’ > 8 M and the spacing
between successive points of p(e) is exactly M for each edge e.

We will specify M and M’ later, though for now it suffices to assume they are large
relative to the various HHS constants.

We fix, once and for all, a subdivision operator gpg,p- Which to any tree T associates
a fixed (M, M")—evenly spaced subdivision g@pr a(T') of (the edges of) T'. Often the
constants M and M’ are fixed, and we simply write (7). Similarly we can define
#Mm, M’ on a forest as the union of subdivisions gpy ps/ on its components.
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We now explain how to associate a collection of subdivisions on stable trees to a set of
points F C X.

Fix some large K (depending on M, to be specified later) and write ¢/ (F) = Relg (F)
for any finite set F C X.

For any V € &, define
V=W |WeuF),weVy and FY =ny(F).

Note that whenever K is larger than the bounded geodesic image constant ko, we have
that V" is contained in the ko—neighborhood of the hull of FV in C(V'). This ensures
that IV satisfies the requirements of Theorem 3.3 for any € > 2. We fix such € as in
Theorem 3.3, and we will always apply that theorem with this €.

Note that if V ¢ U/(F) then YV U F" has uniformly bounded diameter.

Let V € U(F). From V, we get corresponding sets of projections F" and YV
in C(V'), which we may consider independently of the set F'. Doing so, we obtain from
Theorem 3.3 a fixed stable tree

T¥ =TV, V")
and we denote its decomposition by 7.} U T, .

Let M’ > 8M > 0 be subdivision constants (to be specified later). Applying gar, a7 to
each forest TeV in T}/ , we call the resulting subdivision eV (F).

Remark 4.3 We emphasize that the distance between the subdivision points is mea-
sured in the various trees themselves, not in the corresponding C(V') where the trees
quasi-isometrically embed. This is something that will require care throughout this
section, but the fact that the trees are quasi-isometrically embedded in the corresponding
C(V) will ensure that no real issues arise.

The disjoint union over all V € U(F) gives us
p=p(F)= || " .
Veu(r)

More generally, we will consider (M, M’) subdivisions of the forests TeV which are
not necessarily obtained from our subdivision operator gps a, and in particular may
not be evenly spaced (they will arise by taking subsets). In this case if we name the
full configuration p, we will again denote the restriction to TeV as py (F).

Geometry & Topology, Volume 27 (2023)



Stable cubulations, bicombings, and barycenters 2435

/

/

L

— —e
°

\__
/ E
.

SN

TY ccv) /
A

o F
e pv(F)
— T/ (F.Y)
TY(F.)

—o—0

Figure 12: An evenly spaced subdivision of the stable tree T}/ . Note that
subdivision points are far away from leaves, components of 7;, and branch
points.

Remark 4.4 Our choice of constants M’ > 8 M gives that any point p € p" (F) is at
least distance 4 M from any point p‘V,V eV for W Vorleaf feFV.

4.2 The cube complex

Following the scheme of [8], given a union p of (M’, M) subdivisions as above, we
now describe a cube complex Qf , and a map

CDF’I,I QF,P - X

which turns out to be a quasi-isometric embedding whose image is within bounded
Hausdorff distance of Hg(F), when the constants M, M’ and K are chosen suitably
(see below).

To build the cube complex QF_ p,, we build a wallspace structure on the hull Hg(F) in
which each p € p corresponds to a wall, ie a partition of Hg(F') into two sets.

For each V € G, we let ﬂ}? C(V) > TIE-/ be, roughly, a closest-point projection map
to T}/ , and more precisely any fixed map such that dy (x, E (,Bg(x))) is minimal for
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all x € C(V), where we recall that E is the quasi-isometric embedding of T¥ in C(V).
With slight abuse of notation, for x € X we write 8% F (x) for BY F oy (x)).

Remark 4.5 To save notation, we will often omit the map E, thereby identifying
points and subsets of some TIE/ with their image in C(V') (as one often does with quasi-
geodesics). For example, for p € Y (F) and x € C(V) we will write dy (ﬁg(p), X)

rather than dy (2 (ﬁg(p)), X).

Given p € py(F), let T 4 denote one of the components of TV \{p}, and let TV be
the union of the other component and {p} (we arbitrarily choose the first component).
Let

(,BF) 1( i) N Hy(F).
Note that W 4 and WV form a partition of Hy(F). Let £V ={W . +, WV } be the
wall assoc1ated to p. We call T . the half-trees associated to the wall EV

Let Q = QF, p be the CAT(0) cube complex dual to the wallspace {E},’}.

To define ®p = ®p ,: Y — X, note that it suffices to define @ on the O—skeleton of V.
Let x € Y@ we view x as a coherent orientation of the walls EV' see Section 2.1.1.
That is, for each p € p, we have x(p) equal to one of WV or WV

Coarsely, we would like to define ®(x) by
P(x) ~ ﬂ x(p).
PEP
This is done in [8] by considering the projections of x(p) to the factor trees T}f . That
is, we set
Sp.y (x) = hull (B (x(p))).

where Y € & and hull denotes convex hull in the tree T}f . Note that p € py (F) for
some V', which is typically different from Y.

We now define the intersection
(4-2) by =by (x) = (] Sp.r (x).
DEp
These by will serve as (coarse) coordinates for the map @, as given by the theorem
that we state below, after we explain how it can be extracted from [8].

Remarks on the construction in [§] We now summarize various results proven in [§]
regarding cubulations of hulls in HHSs. We note that the construction in [8] of the
CAT(0) cube complexes approximating hulls is the same as the one we just described,
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with one difference. The difference is that, rather than using T}/ to approximate
the hull of 7y (F) in C(V), in [8] the authors use any choice of tree contained in
C(V) that uniformly approximates the hull and is quasi-isometrically embedded with
multiplicative constant 1. This choice is not due to the fact that the multiplicative
constant being 1 is needed for the arguments, but more simply due to the fact that one
such tree exists, and so it is more convenient to use it. For our purposes, we have to
be more careful in the choice of the tree, and as a result we cannot guarantee that the
multiplicative constant is 1 with our construction (recall Figure 11). However, this does
not affect the arguments of [8], except that the subdivision constant M has to be chosen
large compared to the quasi-isometric embedding constants, so that the subdivision
points are sufficiently far apart in the various hyperbolic spaces C(V).

Another remark about the statement below is that the constant dependencies that we
give below are not explicitly stated in [8], but can be recovered as follows. In [8,
Section 2], the constant M is chosen large compared to various HHS constants and
k = | F|, so that the construction has all the stated properties for any sufficiently large M .
Regarding M, in [8, Section 2.1] it is taken to be 10M k, as can be seen from point (4)
of the construction of the walls. The reason for the constant 10M k is that one can
choose subdivision points that make the diameter of the complementary components at
most that quantity, but with any other bound one would obtain the same properties (eg
that the CAT(0) cube complex quasi-isometrically embeds in the HHS), with different
constants. Regarding K, in [8, Section 2.1] it is chosen to be 100M k, and similar
remarks to those regarding M’ apply.

Properties of the cubulation With this in mind, we now state various results about
the construction we explained above, and point out where the arguments for those can
be found in [8].

Theorem 4.6 Given an HHS (X, &) and an integer k, there exist Mo > 1 and functions
Mj: R — R and Ko: R — R with the following property. Whenever M > M,
M’ > M{(M), and K > Ko(M), there exists £ such that for every F € X with |F| <k,
the following hold:
(1) [8, Lemma 2.6, paragraph “Definition of p4” in proof of Theorem 2.1] For
every x € Qgﬂ)’)p, by (x) is nonempty and diam¢(y)(by (x)) <§&.
(2) [8, Lemma 2.7, paragraph “Definition of p4” in proof of Theorem 2.1] For every

X € Q(I?)p, there exists a point in Hg (F'), denoted by ®(x), whose projections to
all C(Y') are within distance & of by (x).
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(3) [8, Theorem 2.1] & is a §—median (&, §)—quasi-isometry to Hg(F).

(4) [8, Theorem 2.1] The dimension of QF j is bounded by the maximal number
of pairwise orthogonal domains in &.

We will also need some more technical properties of the trees TIL/ and projections pIL,I
related to the HHS consistency axioms.

Proposition 4.7 Given an HHS (X, G) and an integer k, there exists k such that given
K sufficiently large (depending only on (X, G)):

(1) [8,Lemma2.3] IfU,V €U(F)andU th V, then pg lies k—close in C(V) to a
point of wy (F).

(2) [8,Lemma2.5] IfU,V elU(F),V=U,andqge p(U), then pg (g) lies k—close
inC(V') to a point of wy (F).

Remark 4.8 1In the rest of this section, whenever we use constants M, M’ and K we
will assume that they are chosen as in Theorem 4.6, and so that all supporting lemmas
in [8] apply. Moreover, we will impose further requirements as needed. We note that
the role of K is often hidden in the statements, since it affects the set 2/ (F'), which in
the various statements often only plays a role implicitly.

4.3 Deleting subdivision points

Now we consider how the construction of Qf p is affected by the deletion of points
in p. If po C p, there is a hyperplane-deletion map 7: Qf , — QF, p,. That is, for
x € QF,p, the image h(x) € QF p, is just the orientation on the remaining walls:
h(x)(p) = x(p) for p € pg. We note that the subdivisions in the following proposition
need not be evenly spaced.

Proposition 4.9 For every k andn, and M, M’ and K as in Theorem 4.6, there exist
K’ and M" such that if F has cardinality at most k, p is an (M, M’)—subdivision,
and po C p satisfies |p \ po| < n, then py is an (M, M"")—subdivision satisfying the
conclusions of Theorem 4.6, and the diagram

QF,p
(4-3) hl or.p
®F po
QF,po X

commutes up to error K'.
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Proof As above, the map @ ,(x) is determined by the coordinates

by = (1) Sp.v (%),

DEPp

whereas @ r p,(h(x)) is determined by

bou = [ Sp.v(x).
PEPo
Note that by C bg,u, and in the other direction the diameter of b,y is bounded by
Theorem 4.6(1) because the new set pg is an (M, M"")—subdivision for some M" > M’
(and in particular M” > M{(M), so that the conclusion of Theorem 4.6 holds for po)
depending only on M, M’ and the number n of deletions.

The bound on d(®f, p, DF, p,oh) then follows from Theorem 2.6 (the distance formula)
since the coordinates of ®r p,(h(x)) and ®f p,(x) coarsely coincide with by and
bo.,u - i

4.4 Intersection conditions

Recall that Lemma 2.3 explains how a bijection between halfspaces that preserves
intersection properties induces an isomorphism of the corresponding cube complexes.
In view of this, we are interested in knowing when two of our halfspaces intersect.

We fix the setup of Section 4.2. The next lemma is the main technical support for
Proposition 4.13.

Lemma 4.10 There exists M1, depending on (X, &) and | F |, such that the following
holds. Let p be an (M, M')—subdivision with M > M. Consider two halfspaces, Wp"/a
and Wfr, with associated half-trees TPI’/U and TqZJ, where p € py(F),q € pz(F) and
1,0 € {x}.

Then Wpl’/(7 and Wq?r intersect if and only if one of the following holds, up to switching

the roles of the half-spaces:

(H V.1Z.

Q) V=ZandT),NTA # 2.

3) VMhZ, and TqZ,r contains BZ(pY).

4) VoZ,and TqZJ contains f %(pg)
(5) V= Z,and TPI,/U contains ﬁ;(pg ().
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Figure 13: The first possibility in case (2), when V = Z, where p and ¢

choose different ends of T}/, and diam(Tp"/U N Tq‘,/t) > dT}/ (p.q) =M.
We note that the last three cases of the lemma boil down to the consistency inequalities
for HHSs (and could even be seen as interpretations thereof).

Proof In an effort to enhance readability of the proof, we will make coarse, comparative
arguments which keep track of dependencies of constants and their relative size, instead
of precise quantities.

It follows from Theorem 2.7 and the fact that the various T}/ are quasi-isometrically
embedded (Theorem 3.3) that the image ,BIK(HQ (F)) is D—dense in the tree T}/ (with
respect to its path metric), where D only depends on the HHS structure and | F|. We
may assume that M has been chosen greater than 10D. Moreover, throughout the
proof we will further specify conditions on M, requiring it to be suitably larger than
other constants appearing in the argument. It is important to notice that, in each case,
these constants depend only on (X, &) and | F|. We also remark that we need to be
careful when comparing distances in the trees T}/ and the ambient spaces C(V).

Case (1) Suppose V L Z. The fact that in this case all pairs of halfspaces intersect is
[8, Lemma 2.13].

Case (2) Suppose V = Z. If the halfspaces intersect, then any point x in their

intersection has ,Bg(x) € Tpr(, N quf,. Conversely, suppose Tpl’/(r N Tq"/r # . If the

intersection contains both p and ¢, then

diamyy (Tye NT) ) > dry (p.q) = M.
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Figure 14: The other possibility in case (2), when V' = Z, where p and ¢
now choose the same ends of T}/ .

If not, then the intersection contains all of Tplfo or all of Tq"/r, and again

diampy (T); N Ty) = M.

Since BY (Hg(F)) is D—dense in T} and M > D, we can then find x € Hg(F) with

,Bg(x) € Tplfo N TqZ’,, so that x € WpV N WqZ , as required.

Case (3) Suppose V rh Z. If the halfspaces WPI,/G and Wq?t intersect, then any point x
in their intersection has ﬁg(x) € Tpl,/a and B %(x) € TqZJ. We claim that

BE(py) ¢ TZ, = dz(py.mz(x)) > ko

where «¢ is the constant in the transverse consistency inequality (2-1), and similarly
with the roles of Z and V interchanged. Indeed, recall that Proposition 4.7(1) says
that (assuming M is sufficiently large) pg lies within « of a leaf of TI,Z , where « only
depends on the HHS structure and | F|. Since g is at least M away from the leaves,
and we can assume that M is sufficiently large compared to « and the quasi-isometric
embedding constants of TZ, we see that if ﬁ%(pg) is not in TqZ’r then it must be at
least M /2 from it (as measured in the metric of TPZ ). Thus ,81% (,og) is at least M /2
from % (x) in T#, and since we can assume that M is sufficiently large compared
to k, the quasi-isometric embedding constants of 7%, and the distance between 7z (x)
and (the image in C(Z) of) T#, we have the desired inequality. The same holds with
V and Z interchanged.

However, the transverse consistency inequality (2-1) says that we cannot have both
dz(pg,nz(x)) > ko and dV(,og,nV(x)) > ko. Hence one of ﬂ%(pg) € TqZJ or
,Bg(p% ) e TPI’/U must hold, which is what we wanted to prove.
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Figure 15: Case (3), when V th Z.

Conversely, suppose that TqZ’t contains ﬂ%(pg). Because ,BK(Hg(F )) is D—dense
in T}f , p is far from any leaf of TI,Z , and ,BI% (pg) is close to a leaf (Proposition 4.7(1)),
we may choose x € Hy(F) with 8}.(x) € T,); and dry (BY(x), Br(p%)) > M/2
(again, with distance in Tlff ).

Then x € Wpl’/a by construction, and we claim also x € qu. Indeed, for M sufficiently
large, dy (x, p%) > K, SO transverse consistency (2-1) implies that d z (7 z (x), pg) <Ky.
Again for M sufficiently large, this gives d7Z (f 1% (x), B 1% (pg)) < M/2, and since the
M /2—neighborhood in TI,Z of B % (,og) is contained in TqZJ, we conclude I% (x) e TqZ’T.

Cases (4) and (5) Suppose V = Z. Cases (4) and (5) are similar to the previous case,
instead using the nested consistency inequality (2-2).

Let x € Wp‘fa N an. Because the partition points in TI,Z are M away from pg by
assumption, we have again that either

. qu,r contains the M /2-neighborhood of 8 %(pg), or

o dpg(TZ. BE(Y) > M/2.

In the first case, we are done (obtaining case (4)). In the second case, for M suffi-
ciently large, dy (my (x), p% (rz(x))) < ko by the nested consistency inequality (2-2).
Moreover, for M sufficiently large, there is a geodesic (in C(Z)) from g to wz(x)
which is farther than ko from pg, where k¢ is the constant in the bounded geodesic
image property (axiom (7) in Definition 2.4). In fact, the distance from 7z (x) to TqZ,T
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Figure 16: Case (4), when V = Z and TqZ’r contains f % (pg).

is bounded in terms of (X, &) and | F|, as is the quasiconvexity constant (of the image
inC(Z)) of TqZ,r, and thus so is the distance of any point along this geodesic from TqZ’,.

On the other hand, we can estimate dz (TqZJ, ,og) in terms of M and the quasi-isometric
embedding constants of T1~Z (which is independent of M). Hence by choosing M
large enough, we may use the bounded geodesic image property to conclude that
dy (pg (rz(x)), pg (9)) < ko. Since 7y (x) is within some distance of Tp‘,/g which is
bounded in terms of (X', &) and | F|, we see that dy (ﬂ;(p% (q), TpI’/U) <M/2 for M
sufficiently large. However, this implies that ﬁg(pg (g)) is in fact contained in TpI’/U,
since p% (g) is within « of a leaf of T}/ by Proposition 4.7(2). Hence we are done in
either case.

Now in the converse direction, suppose first that (4) holds; namely that TqZ,r contains
B % (pg). Again since partition points are M away from p points, we know that TqZ’r
contains the M/2-neighborhood (in 7)) of BZ (pY,). Using D—density of 8% (Hg(F))
in T}/ and the fact that p is far from any leaf of 7, we can choose x € Hy(F) with
,Bg(x) € Tplfo and ,BZ(x) at least M /2 from a leaf of TpI’/U.

We claim that this implies that 1% (x) has to lie within M/2 of % (pg), as usual for
M large. If not, another application of the bounded geodesic image axiom would imply
that p% (rz(x)) is within k¢ of a leaf, and the nested consistency inequality again
gives that p‘% (rz(x)) and y (x) are within k¢ of each other, showing that 7y (x) lies
within 2« of a leaf. Since the constants involved in the preceding argument depend
only on (X, &) and | F|, it follows that the distance (in TII-/ ) between ﬂ}?(x) and a leaf
is bounded independently of M, contradicting the choice of x.
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Figure 17: A cartoon for case (5), when V = Z and Tp"/o contains ﬁg(p‘% (q))-

As a result, we find that 8 % (x)isin TqZ’t and hence x € Wplf(, N Wq%,, as required.

Suppose now as in (5) that Tp‘,/g contains ﬂ% (p% (g)), and assume also that (4) does not

hold, so that TqZ’U avoids the M /2-neighborhood of ,8;(,0% ) in TII-/ . In this case, we
can take x € Hy(F) with ﬂ%(x) € TqZ,r and drz (ﬂ%(x), q) < D. Then since ﬂ%(p%)
is at least M /2 from the geodesic in TI? between S % (x) and ¢, and since TI,Z is quasi-
isometrically embedded in C(Z), we may apply the bounded geodesic image axiom and
the nested consistency inequality to obtain that dy (,Bg(x), ,BK (p% (9))) < M/2, where
as before we choose M as large as necessary. Since p% (g) lies within « of a leaf of Tlff
by Proposition 4.7(2) with « depending only on & and | F'|, the M /2-neighborhood of
,Bg(p% (g)) in TIE-/ must be contained in Tp"/g, and hence ,Bg(x) is contained in TPI,/G,
showing x € WPI’C7 N Wfr as required. O

4.5 Refining the subdivisions

In this section, we analyze the difference between (M, M’)—evenly spaced subdivisions
p = e(F) and p’ = p(F’) (using the fixed subdivision mechanism g of Section 4.1).
The main result here, Proposition 4.12, is that there are bounded refinements po and py
which are related by an “order-preserving” bijection j : po — py, (in the sense specified
below) which only moves points a bounded distance. This is where we will use the
“evenly spaced” condition, which guarantees, roughly, that along corresponding edges
we have the same number of partition points up to an additive, rather than multiplicative
constant.
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In the next subsection, we prove that these refined subdivisions determine isomorphic
cube complexes when put through our cubulation machine.

Coarse separation We will need the following short discussion about coarse sepa-
ration in quasi-isometrically embedded trees. Suppose j: T — X is a (x, y)—quasi-
isometric embedding of a tree T into a §—hyperbolic space X, and p € T is a point
inside an edge, distance more than yu > 0 from the endpoints. Let T, 4+ (i) be the
two components of the complement of a u—neighborhood of p. For any € there is a
w(e€, 8, x) such that the images j(7, +(p)) are at least € apart from each other. We
want to compare this separation for two nearby trees:

Lemmad4.11 Let Ty and T be trees with (y, y)—quasi-isometric embeddings u; : T; —
X into a §—hyperbolic space X whose images are within Hausdorff distance €. There
exists (o = wo(8, x, €) > 10€ such that for all u > o the following holds.

Suppose that p; € T; are points with d(u1(p1),u2(p2)) < n and each p; is in a
segment e; contained in an edge of T; such that u;le; is a (1, y)—quasi-isometric
embedding. Moreover, assume that p; lies at distance more than 2y from the endpoints
of e;. Then the labels of the components can be chosen so that

* u1((T1)p,,+(2w)) is in an e—neighborhood of u>((12)p,,+ ).
o u1((T1)p,,+(2w)) is p—far fromu»((12)p,,—), and

e the same holds if we swap + and —.

In what follows we apply this to trees T/, and so that half-trees that here would
be (T}/ )p,o correspond to what we wrote as Tp‘fa in Section 4.1. We will use both
notations, and hope not to confuse the reader.

Common refinements from close components We are now ready to prove the refine-
ment statement. We note that this is the main point at which we use the full power of
Theorem 3.3, which provides not only that each of the pairs of trees T}/ and T}// have
Hausdorff close images in C(V), but that they are identical on almost every component,
and that their different components can be cut into large pieces where they are coarsely
identical.

Proposition 4.12 There exists M, = M, (|F|, &) > 0 such that if M > M, there
exists R > 0 and:
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(1) Subsets po C p and p, C p’ with
o po(V)orpy(V)# @ onlyif VeU(F)NU(F'), and
* [P\ pol.IP"\ Pyl < R.
(2) A bijection j: pg — py withdy (p, j(p)) <2M/3 for any p € po(V).

(3) Forevery p € po, a bijection j, between the half-trees defined by p and those
defined by j(p) with the following property. For any V and p,q € po(V), if the
half-tree (TIL/)p,g contains ¢, then jp((T}/)p,g) contains j(q).

(4) Moreover, let f and f’ be such that either f € F, f' € F', anddx(f, f') <1,
or f = f' = pY for some U,V € U(F) NUF') withU =V orU dh V. If
Br(f) € (T )po, then B, (f) € jp(T¥ )p.o)-

Proof We work in each V' € & separately, constructing po(V'), py (V') and the bijection,

and combine the results.

First, if V € U(F) AU(F'), then diamy (F) and diamy (F’) are uniformly bounded
and we set po(V) = py(V) = @. By Proposition 2.12, there are boundedly many
such V'; hence this involves deleting at most boundedly many subdivision points.

Next, if V € U(F) NU(F') is not involved in the transition from F to F’ (see
Definition 2.13), then all of the relevant data is constant. Hence, by our formalism for
choosing subdivisions (see the definition of g in Section 4.1), we have p(V) = p’(V),
and we set po(V) = po(V) = p(V).

Hence we may restrict our attention to a fixed V € U(F) NU(F") for which either
ay(F) # ay(F') or UV (F) # UV (F’) (or both). We note that Proposition 2.14
bounds the number of such V solely in terms of # and G.

Fix such a V. Recall that within C(V') we have F¥ = ny(F) and
YW=toy | Y et (F)y,

and similarly for F'"V and y/V. By Proposition 2.14, #(V A y/V) < Njp, where
N1 = Nl(G,k) > 0.

Recall that Theorem 3.3 provides a constant L. = L(k, &) > 0 and the following:
(1) Stable trees with decompositions
TY = Te(FV Y UT(FY. YY), Tf =T.(FV Y uT.(F" . v"):
we write these as .V (F), T.) (F) and TV (F"), T} (F’) for short.
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(2) Two stable subsets, Ty C TeV(F )and T} C TeV (F’), such that

(a) Ty and T{ are contained in the interiors of the edges of TeV (F) and TeV(F N,
respectively;

(b) the complements T, (F)\ Ty and T,V (F’) \ T/ each have at most L com-
ponents, each of which has diameter at most L;

(c) there is a bijective correspondence between the components of T and T}

(d) this bijective correspondence is the identity on all but at most L components,
with identical components of Ty, T, coming from identical components of
TV (F)and T) (F');

(e) the remaining components of Ty are within Hausdorff distance L of their
corresponding components in 7.

We assume M > max(4L, 4o, 4k), where g is given by Lemma 4.11 when € = L
and the quasi-isometry constants of the trees match those for T}V/ and T}/,, and « is the
constant in Proposition 4.7.

Consider the sets of subdivision points p1(V) = p(V)NTs and p| (V)= p'(V)N T,
which are contained in the stable subsets. Since p(V) C TeV(F )and p'(V) C TeV (F",
items (2a) and (2b), and our choice of subdivision width M > 4L, imply p(V)\ p1(V)
and p’(V) \ p7(V) both have cardinality bounded above by L.

By item (2d), the induced subdivisions p(V) and p} (V') agree on all but at most L
components of Ty and Ty, respectively, as these components are segments in the com-
ponents of TeV (F) and TeV (F’) which are equal and hence have the same subdivisions
by our setup (see Section 4.1).

On the remaining L components we can make bounded adjustments. Let e and e’ be
edge components of Ty and 7 related by the correspondence. The closest subdivision
point in e to an endpoint is at most M’/2 away and at least M, by definition of the
subdivisions, and similarly for e’. Since dyaus(e, e’) < L by item (2¢), and e and e’
are quasi-isometrically embedded with multiplicative constant 1 and additive constant
depending on (X, &) and n (Theorem 3.3(c)), the difference between the number of
subdivision points in e and e’ is bounded in terms of M, M’, L, (X, &), and n.

We write p1(e) = p1(V)Ne, and similarly for p/ (e’). Note that these sets are naturally
ordered once we choose endpoints of e and ¢’, and we order e and ¢’ by declaring those
endpoints to be minimal. We choose endpoints of e and ¢’ within distance bounded in
terms of L and the constants of the quasi-isometric embeddings of e and ¢’ in C(V).
We will assume that M is larger than this bound.
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After deleting from pq(e) U p}(e’) a number of points bounded by this constant (all of
which occur near the endpoints of e and e’) and using the fact that p;(e) and p’ (e’) are
M —evenly spaced, we can obtain refinements po(e) and pg(e’), which admit an order-
preserving (with respect to the aforementioned order) bijection je: po(e) — py(e’)
which satisfies
dy (p. je(p) <L+ +¢ < 2L

where ¢’ — C(V) is a (1, {)—quasi-isometric embedding by Theorem 3.3(c), and we
have chosen M sufficiently large to guarantee the inequality. Indeed, for each p we
find a nearest point in ¢/, which is at most L away, and then move along e’ at most
M /2 + ¢ to a point of pg(e’). For later purposes, we can assume that points in po(e)
do not lie within 2M of the endpoints of e, and similarly for pg(e’).

If we set po(V) = Ueeyro(Ts) po(e) and define py(V) similarly, then the j, maps
combine to give a bijection ji : po(V) — pg (V) which moves points by distance at
most 2M /3, as required for item (2) of the proposition.

To define the map j, between half-trees we use Lemma 4.11. Namely, we pair the
half-tree (TIL/ )p,o With the half-tree (T}/,) v (p),r that contains (T}/ )p,o(2M) in its
L-neighborhood.

For item (3) of the proposition, let p,q € po(V). There are two cases.

Suppose first that p and ¢ lie in the same edge-component e of T;. Recall that we
chose the bijection j, to be order-preserving, with respect to the order along e and e’
determined by choosing endpoints e~ € e and (¢’)” € ¢’ which are a small distance
(Iess than M) apart to be minimal in the orders. Let (T}/ )p,o denote the half-tree of p
containing e~ and let (T}/,) i (p),z denote the half-tree of jy (p) containing (e’) ™. Since
we have 2M spacing now between p and the endpoints of e, e~ is in (T}/ )p.o(2M),
and Lemma 4.11 says that there is exactly one half-tree at jj (p) which comes within
M of (TY)p,s(2M). Since e~ is within M of (¢’), it follows that (T},);, (p).c is
in fact the paired half-tree provided by Lemma 4.11, which is our jp((T}/ )p.o). We
conclude that ¢ < p in the order along e if and only if ¢ € (TIE-/)[,,(r and jy(q) < jv(p)
along ¢’ if and only if jy(q) € jp((T}f-/)p,(,). Since j, is order-preserving, (3) follows
in this case.

Suppose now that p and ¢ do not lie in the same edge-component of Ts. Suppose ¢
is contained in the half-tree (T}/)p,cr, and let (TIE-//)q,, = jp((T}/)p,U). In this case
we have that ¢ lies in (T}ff)p,(, (2M), rather than just in (T}/)p,o. By Lemma 4.11
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there is only one half-tree of T}/, at jy(p) that comes within M of (T}/ )p.o(2M),
and said half-tree must be (T}/,) v (p),z- Since jy(q) lies within M of g, we have

Jv(q) € (T¥)}y (). as required.

The argument for part (4) of the proposition is essentially the same as the argument
for the second case of part (3), since all we used there is that the point g of T}/ is not
close to p, but it is close to a corresponding point in TIE-/,, and the analogous properties
hold in all the listed cases. |

4.6 Refinements give isomorphic cube complexes

Consider the refined subdivisions po and pg for F and F’, respectively, that are
produced by Proposition 4.12. These are (M, M") spaced subdivisions (though no
longer evenly spaced) so each of the sets of data (F, po) and (F’, p;) —and their
associated collections of stable trees —can be plugged into our cubulation machine
to produce cube complexes QF p, and Qf/, P’ respectively. We also assume that
M > max{My, M}, where M| and M, are the constants from Lemma 4.10 and
Proposition 4.12, respectively, along with our other base assumptions about M.

Our next result says that these cube complexes are abstractly isomorphic and admit
coarsely compatible quasi-isometric embeddings into X. Using Proposition 4.9, we
will be able to conclude that the right hand side of diagram (4-1) from Theorem 4.1
commutes.

Proposition 4.13 There exists M3 = M3(|F|, &) > 0, such that if M > M3, there
exists B > 0 and a cubical isomorphism h: Qf p, — QF/, A such that the diagram

(4-4)

commutes up to error B.
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Proof We will define the required cubical isomorphism h and then prove that the
middle triangle commutes up to bounded error. This suffices for the proposition because
Proposition 4.9 says that the top and bottom triangles commute up to bounded error.

In order to use Lemma 2.3 to define an isomorphism between QF, p, and Qp/ pr, we
need a bijection between the corresponding collections of half-spaces which preserves
complements and disjointness.

Let WF,p, and W p; be the sets of half-spaces and construct a bijection
LWFE, po = W/,

as follows. By Proposition 4.12, we need only consider V € U(F) NU(F’). Any
p € po(V) is contained in an edge of TIE-/ (in fact in TeV) and is at least M from its
endpoints.

Let j: po — pg be the bijection provided by Proposition 4.12, together with the
corresponding maps j, pairing the half-trees at p € po with those at j(p).

To define ¢, let p€ pg and o0 € {£}. If jp(TpI,/U) = TNK (). We define L(Wp‘,/a) = sz ()
It is straightforward to confirm that ¢ respects complementation as in condition (1) of

Lemma 2.3.

We now confirm condition (2) of Lemma 2.3 for ¢ by using the various characterizations
of half-space intersections given in Lemma 4.10. We remark that the figures from the
proof of Lemma 4.10 are again relevant.

Let p € po(V) and g € po(Z) for Z,V € U(F) NU(F’), and suppose that the
half-spaces corresponding to the half-trees Tp‘fa and TqZ,r

o, T € {%}. There are five cases, up to switching the roles of V and Z.

intersect nontrivially, where

Case Z LV This case follows immediately from the construction and Lemma 4.10(1),
since all relevant pairs of half-spaces intersect in this case.

Case Z = V In this case, Lemma 4.10(2) implies that Tp‘fg N Tq"/r # @ (recall
Figures 13 and 14).

In particular, up to switching the roles of p and g, we have ¢ € TPI,/G. But then, in view
of Proposition 4.12(3), j(gq) € jp(Tpro). In particular, jp(TprU) N Jjg (qufr) # I, S0
that the corresponding half-spaces intersect, again by Lemma 4.10(2).

Case Z th V In this case, Lemma 4.10(3) implies, up to switching the roles of Z
and V, that (Tlff )p,o contains ,B},f(pg) (recall Figure 15). It follows immediately from
part (4) of Proposition 4.12 that ﬁ;,(pg) € jp(Tp"/a), as required.
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Case V = Z By Lemma 4.10, there are two subcases, up to switching the roles of V

and Z: (a) when TqZ’r contains ﬂ%(pg), and (b) when Tp‘fa contains ﬂg(p% (g))-

In case (a), since V € U(F) NU(F') part (4) of Proposition 4.12 immediately gives
that ﬁ%,(pg) lies in jq(TqZJ).

Suppose now that (b) holds. We prove that ﬂg,(pg (j(g))) is contained in j, (TIKU)
(recall Figure 17). Recall from Proposition 4.7 that p% (g) lies close to some 7y (f)
with bound in terms of & and | F|. Since dy (g, j(g)) <2M/3 and both ¢ and j(g)
are at least M — 2K from pg, with the 2K coming from the facts that TCZ(F ) is
within Hausdorff distance K of the YZ and the edge of TeZ (F) containing ¢ is (1, K)-
quasi-isometrically embedded in C(Z) (Theorem 3.3(d)), choosing M sufficiently
large, we can guarantee that any geodesic in C(1') between p and jy (p) avoids the
ko—neighborhood of pg, for ko the constant of the bounded geodesic image property,
which then bounds dy (pg (9), p‘% (jz(gq))) < ko. Hence p% (jz(g)) is close to both
pg (¢) and a leaf of TIL/,, and thus ,Bg,(pg (7 (@) C jp (Tpl’/g), as required.

Since the wallspace map ¢ satisfies the conditions of Lemma 2.3, we obtain a cubical
isomorphism /: Qf p, — QF’,p(’)'
Commutativity It remains to prove that

PF,po: QF,po > X and Pp/ proh: QF, p, > X

are the same up to a bounded error depending only on k and the ambient HHS structure.

By the distance formula (Theorem 2.6), it suffices to show that for each O—cube
X € QF p,» its respective images ®p, p,(x) and O/, ) © h(x) have coarsely the same
projections to C(V') for each V e U(F) NU(F").

Recall from the end of Section 4.2 that the maps ®f p, and Pp-, p|, are defined
domainwise by intersecting certain collections of half-trees of T}/ and T}/, for each
V € &, and hence the same is true for O, P oh. By chasing the relevant definitions, of
h and j especially, we see that the collections of half-trees involved in the definition of
®p po(x) and g/ P} © h(x) are in bijection with each other, with corresponding half-
trees lying within bounded Hausdorff distance depending only on k and the ambient
HHS structure. Hence their intersections in T}/ and T}// coarsely coincide, as required.
This completes the proof of the proposition. |
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Tu « .
Urp ={U,V, W, X} | | | |

Upr ={UV.W.Y} T} . .
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Figure 18: A simple example of how subdivision bijections determine hy-
perplane deletions. The relevance of X for F’ but not F requires deleting a
subdivision point to obtain the bijection jy : py — py,; (indicated in pink),
and similarly with Y for jy: py — pj,. Deleting subdivision points results
in hyperplane deletions when passing from Qf and Qg+ to Qp. Note that
since X, Y ¢ Ur NUF/, neither domain determines any subdivision points.

4.7 Proof of Theorem 4.1

Let F and F’ be as in the statement.

The CAT(0) cube complexes QF, QF are constructed in Section 4.2, using subdivisions
p = p(F), p’ = p(F’) within each of the relevant stable trees produced in Section 3.
Items (1) and (2) are proven in [8], as recalled in Theorem 4.6 above.
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For (3), we may define a map ¥ : F' — QF as in [8, Proof of Theorem 2.1]. For each
f € F,let yr(f) be the orientation of the walls on hull Hg(F) obtained by choosing,
for each wall (Wpl’/ Iy Wpl,/—)’ the halfspace containing f. We define y - similarly. That
Y F and Y F/ satisfies (3) now follows from Theorem 4.6.

We now prove the stability statements. We will only consider the case that g is the
identity for the same reason as in Remark 3.4, namely that what we have to prove is
that the choices that we made along the way only affect the output in the way predicted
by the statement, and such choices can be “translated” by automorphisms. The choices
we are referring to are those of the trees T'% , of the evenly spaced subdivisions, and of
points projecting coarsely in specified places in the various C(Y), as in Theorem 4.6.(2).

Let po C p and p; C p’ be the refinements provided by Proposition 4.12, where at
most N subdivision points are deleted.

The cube complex Qg as in the statement of Theorem 4.1 can be taken to be either
of the cube complexes QF p, or Qp, P that are produced by Proposition 4.13. So
take Q¢ = QF’,PE) and let ®p: Q¢ — X be the map CIDF/,I,(/): QF’,p(’J — X given by
Proposition 4.13. Finally, let n’ = h’: QF — Qg be as in Proposition 4.13 and define
n: QF —>Q0byn=fzoh.

By Proposition 4.13, these maps each satisfy the required properties and the right part
of diagram (4-1) commutes up to bounded error, as required.

To see exact commutativity of the left part of the diagram, it remains to prove that
noygotgp =n oyp otp. Recall that Y : F — Qp is defined by sending f to the
coherent orientation on the wallspace defined by p which, for each p € p(V'), chooses
the half-tree of T}/ \ p containing ,BE( f), foreach V e U(F). Since h is a hyperplane
deletion map, & o ¥ makes, for p € pg, the same choice as Y r.

Fix f € F (the argument for f € F’ is similar). Then the two sides of the equation
are coherent orientations on the wallspace defining Q- P’ and we have to check that
they coincide on every halfspace. Pick p € po and let p’ = jy (p), the map defined in
Proposition 4.12. As above the orientation of ho g otp (f) =hoyr(f) on the wall
associated to p is the one that chooses the half-tree of T}/ \ p, call it (T}/ )p.+, that
contains ,BZ( f). The map h, by the construction in Proposition 4.13, takes this to the
orientation that chooses the half-tree of p’ in T}// given by j, ((Tlff )p,+) (where jj, is
the bijection of half-trees provided by Proposition 4.12). Letting f/ = tg/( f) we have
dx(f’, f) <1, so part (4) of Proposition 4.12 tells us that ﬂg/(f’) € jp((Tlf-/)an),
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which means that jp((T}/)p,Jr) is the half-tree selected by 1’ o Y g/(f’). Thus we
conclude that n(Yr (tr (f))) = 1" (W p (Lr (1))

This completes the proof of Theorem 4.1. O

5 Generalizing normal paths to find barycenters

In this section, we describe a variation on the “normal paths™ construction due to Niblo
and Reeves [46]. We remark that they used these normal paths to build a biautomatic
structure for any cubical group, with the paths playing the central role of the bicombing
in that structure.

For the case of two points, our construction gives a “symmetrized” version of the
Niblo—Reeves construction. The main difference with their construction, however, is
that ours is adapted to allow for multiple points, which we need for our barycenter
application (Theorem E).

The reader may want to refer to Section 2.1 for the various notions and notations
relating to cube complexes that we will use throughout this section

Let X be a CAT(0) cube complex, H its set of hyperplanes, and f: P — X ©) a (not
necessarily injective) map from a finite set P into the vertices of X. Roughly, we will
find a barycenter for the set f(P) in X by an iterative sequence of contractions which
behaves stably under hyperplane deletions. The main result of this section, and the only
statement from this section that we need to prove our main theorems, is the following:

Theorem 5.1 Let X be a CAT(0) cube complex, and let ‘H be its set of hyperplanes.

Foreach f: P —> X () where P is a finite set, there is a finite sequence
{(fi:P—>XxXO =0,....n=nys}

with the following properties:

(1) fo=f and diameo(f(P)) < 1.
(2) Foreachp e P and 0 <i <n—1 wehaved(fi(p), fi+1(p)) < 1.
(3) For each p, there is an £ —geodesic going through the vertices
fo(p). f1(p)..... fu(p)
in this order.

(4) No hyperplane separates every point of f(P) from a point in f,(P).
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(5) If g: Q — P issurjective, then f;og = (f og); foralli.
(6) If G is any hyperplane of X, the hyperplane deletion map Res;pg : X — X(H\G)
satisfies

nf —nRes;ngorl =1 and  doo(ResynG (fi(p)). (Resyng o f)i(p)) < 1.

Recall that d is the metric generated by the sup metric on each cube in the ambient
complex.

The proof of Theorem 5.1 occurs in parts over the remainder of this section. We tie
them together in Section 5.4 below.

We will mostly ignore the ambient cube complexes and focus on the hyperplane set
and regard maps f as above as maps associating to p € P an orientation on H. For
each pair ( f, ) we consider a number of operations.

First, let s be the set of hyperplanes of X that separate f(P). Thatis, Hy is the set
of hyperplanes H € H for which there exist p, p’ € P such that f(p) and f(p’) are
on different sides of H.

Let
Trim(f, H) = (Resy, (f). Hy)

be the restriction to Hy. Note that the quotient complex X (#H ) actually embeds in
X(H) (with image the subcomplex spanned by all vertices that lie in the intersection of
all the halfspaces of X (%) that contain f(P)), and that it is finite even if X (%) is not.

If G is a collection of mutually crossing hyperplanes, we let

delg (/. H) = (Resyng (/). H\G)

This “deletion map” corresponds to composing f with the quotient by G; that is,
Res;pngo f: P — X(H\G).

We will also write Resy\g (/) as f|\G. in a slight abuse of notation.

5.1 Extremal and transitional hyperplanes

As stated above, our generalized normal paths give a series of contractions of our set
f(P) to a bounded diameter set in X . This is accomplished by iteratively jumping the
points of f(P) (and their subsequent contracted images) over a sequence of hyperplanes
in Hy. Thus we are led to understand which hyperplanes are next in line to be jumped.
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N
)\

Figure 19: H is extremal but not transitional, while H' and H" are both transitional.

Definition 5.2 Let X be a cube complex and H its set of hyperplanes.

e A point p € X is adjacent to a hyperplane H € H if there are no hyperplanes
separating p from H.

* A hyperplane H € Hy is extremal if on one side of H every point of f(P) is
adjacentto H in X. We let E ( f,H) C Hs denote the set of extremal hyperplanes.

e A hyperplane H € E (X, f) is transitional if it is extremal and on one side of
H not every point of f(P) is adjacent to H; we let T (f, H) C E(f, H) be the
set of transitional hyperplanes.

If H is transitional, we write P = Po(H)U P1(H) = PoU Py where f(Pyp) is adjacent
to H on one side, f(P7) is on the other side, and at least one point of f(Pq) is not
adjacent to H.

We note that E ( f, ) is always nonempty when P is nonempty. In fact, for any p € P,
it is readily shown that H is extremal whenever H is a hyperplane in H s such that the
number of hyperplanes separating f(p) from H is maximal.

Moreover, for any hyperplane H € E (f,H) \ T (f, H), every point of f(P) must be
adjacent to H.

Lemma 5.3 The set f(P) is contained in a single cube of X ifandonly if T (f,H) =0.

Proof First of all, we observe that f(P) being contained in a single cube is equivalent
to Hy being mutually crossing. Moreover, it is clear from the definitions that if H is
mutually crossing, then T (f, H) = <.

In the other direction, we suppose that f(P) is not contained in a single cube and then
produce a transitional hyperplane. The fact that f(P) is not contained in a single cube
implies that there exists p € P and a hyperplane H € Hy with f(p) not adjacent to H .
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Figure 20: An example of a single move. f(P) consists of three points,
and the points of f1(P), in matching colors, are on the other side of the
transitional hyperplanes, which are indicated in orange.

Choose now p € P and H € Hy so that the number of hyperplanes separating f(p)
from H is maximal; the argument above implies that the number of these hyperplanes
is positive, so f(p) is not adjacent to H. As observed before the lemma, it follows
that H is extremal, and since f(p) is not adjacent to H, we have that H is in fact
transitional, as required. |

5.2 The move sequence

We now build our sequence of contractions, which we call moves.

Roughly speaking, a move is an operation on ( f, ) in which, for every H € T (f, H),
the points of Po(H) cross H to the opposite side. The resulting pair

(f1.H) = Move(f. H)

is a map for which H s, = Hz \ T ( f, H), so the image of the new map f1(P) is strictly
contained within the subcomplex spanned by f(P).

To define f1, we need the following observation:

Lemma 5.4 Foreach p € P, the set

J(p)={H eT(f. H)|p e Po(H)}
is mutually crossing.

Proof Suppose, by way of contradiction, that Hy, H, € J(p) and that H; does not
cross Hp. Let s1 be the side of H; on which f(Py(H1)) lies (and hence is adjacent)
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Figure 21: An example of a move sequence terminating in all points lying
in a single cube. Concentric circles around a vertex indicate, in this case, a

point p with f; (p) = fi+1(p).

and let s, be the corresponding side for H». Since p € Po(H1) N Po(H>2), we have that
s1 and s7 intersect. Since H; does not cross H», up to swapping indices we have that
H> lies in s1 and separates H; from f(Po(H>)), which contains p and thus contradicts
the choice of 5. a

We can now define f1(p). By Lemma 5.4, f(p) is the corner of a unique maximal
cube, each of whose midcubes is contained in some hyperplane of J(p), and we can
choose f1(p) to be the diagonally opposite corner. Equivalently, fi(p) can be defined
as the point obtained by flipping the orientation that f(p) gives to all the hyperplanes
in J(p). Either definition gives the new map f].

Note that there may be p for which J(p) = &, and for these fi(p) = f(p). Moreover,
since the operation moves all points of Py(H) across H for each H € T (f,H), we
have the following consequence:

Lemma 5.5 Hr, =He \T(f. H).

Now we are ready to consider the move sequence of ( f,H). For i > 0 define

(fi, ") = Move' (1. H).

Lemma 5.6 The move sequence { f;} is eventually constant, with constant image all
contained in one cube.

Proof By Lemma 5.5, the set Hy, becomes strictly smaller for each i as long as
T (fi, H) # 2, so after a finite number of steps we must have T ( f,,, H) = @. Thereafter,
the f; are all the same and their images are all contained in a cube by Lemma 5.3. O
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Resyng

HFO—O—O—O—Q—I_H_G_G_Q_H

[

O

Figure 22: An illustration of Proposition 5.7, where P has two points.

Our main result about this sequence is its stability under the operation delg. This is
part of Theorem 5.1, which we rephrase here in our new language:

Proposition 5.7 Let G be a mutually crossing setin Hy. Let

(fi,H) = Move' (f,H)
and
(ff,H\G) = Move! (delg (. H))

be the move sequences for ( f,H) and delg( f, ). Then for each p € P,

dos(Resy\G © fi(p). f{(p)) < 1.

The proposition is in fact a generalization of what we need, since it deals with a mutually
crossing set.

5.3 Proof of stability of move sequences

We begin by studying the structure of the extremal and transitional hyperplanes for a
pair (f, 1), and the way in which they are affected by hyperplane deletions.

Lemma 5.8 Every J € E(f,H) \ T (f.H) crosses every hyperplane in Hy \ {J }.
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Proof Since J is extremal but not transitional, f(P) is adjacent to it on both sides;
see Figure 19. This means that no other hyperplane can separate any f(p) from J, and
this implies that every H € Hy \ {J} crosses J. |

The next lemma explains how the extremal and transitional hyperplanes change after a
deletion step:

Lemma 5.9 Let G be a mutually crossing hyperplane set in Hy. Then

(5-1) E(fH)\G C E(delg(f. H))

and

(5-2) E(delg (£, H)\E(f.H) =T (delg(SLH)\T (/. H).
Moreover, if G N E(f.") = @, then

(5-3) E(f,H) = E(delg (/. H))

and

(5-4) T(f H)=T(delg(f. H)).

Proof The inclusion (5-1) is clear from the definitions.

For (5-2),if J € E(delg(f.,H))\ E (f,H), then f(P) is not adjacent to J on either
side, but on at least one side the only hyperplanes separating J from f(P) are in G. In
fact this happens on exactly one side since G is a mutually crossing set and its members
cannot be separated by J. In particular this means J € T (delg( f, #)), and therefore
J eT(delg(f,H))\T (f,H) since T (f,H) C E(f,H). This situation is indicated in
Figure 23, left.

Conversely if J € T (delg(f,H)) \ T (f, H), then either f(P) is not adjacent to J on
either side, in which case we are in the same situation as above, or f(P) is adjacent
to J on both sides. But in the latter case this adjacency remains true after deletion
of G, which contradicts J € T (delg (f, H)).

Thus, J € E (delg (f, H))\ E (f, H) if and only if J € T (delg ( f, H))\ T ( f, H), which
gives (5-2).

In the description of J € E (delg(f, 1)) \ E (f, H), we note that the hyperplanes of G
separating J from f(P) cannot themselves be separated from f(P) (on the side not con-
taining J) by any other hyperplanes, because this would contradict J € E (delg ( f, H)).
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G
7 7 G 7 G

Figure 23: Changes caused by deleting G. Left, J is not in E ( f, ) but is in
T (delg (f,H)). Middle, J isin E \ T both before and after. Right, J is in
T (f,H) butnotin T (delg(f, H)).

Thus those hyperplanes are themselves extremal. We conclude that, if GNE (f, H) =&,
then E (delg(f,H)) \ E(f, H) = &, giving (5-3).

Finally to show (5-4) when G N E ( f, H) = O, note first that (5-2) and (5-3) imply that
T (delg(f,H)) CT(f,H). Nowif J € T(f,H)\T (delg(f,H)), then on the side of
J where f(P) is not adjacent there must only be hyperplanes of G separating J from
f(P), whose deletion makes f(P) adjacent on that side; see Figure 23, right. But this
contradicts the assumption that G N E (f, H) = <. ad

We can now obtain the following lemma, which in the simplest case shows that moves
and deletions commute.

Lemma 5.10 In the notation of Proposition 5.7, if GNE ( f, H) = &, then the following

diagram commutes:
delg

(fH) — (/. H\G)

l/Move lMove

delg

(/1. H) — (f{.H\G)

Proof ByLemma5.9, T (f,H)=T (delg(f,H)). This means that the Move operation
on both (f,H) and (f’,H \ G) affects exactly the same set of hyperplanes, and in
exactly the same way. That is, for J € T ( f, H), the subset Py C P whose f-image is
on the adjacent side of J is also the subset whose f’—image is on the adjacent side,
since the deletion of G does not affect this. The lemma follows. O

Now we consider the general situation, where some hyperplanes of G may be in

E(f H).
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Si| Si Si|S;j Si | Si

Gr G G H
G, G ! G/ G, eG

1
Figure 24: The contradictions arising from hyperplanes in G’ not being

mutually crossing.

Lemma 5.11 Let G be a mutually crossing set in H and define
G' =(GUTdelg(fL,H))\T(f.H) and K=T(f.H)\(GUT (delg(f.H))).

Then G’ is a mutually crossing set, every hyperplane H € K crosses all hyperplanes of
Hr \ (G U{H}), and there exists amap g: P — X(Hs \ (G U G’ U K)) such that the
following diagram commutes:

(f, H) o s (f',H\G)
lMove Move
(f1. 1) 2 (filng H\ G (f1.H\G)
delg
N (f{lx\(Guky: H\ (G UK))
Trim

(.1 \ (GUG' UK))

Proof First we prove that G’ ={G1, ..., G} } is a mutually crossing set. Suppose that
G/ and G]’. do not cross. Then they cannot both be in G by hypothesis.

Assume first that G; and Gj/. are in T (delg(f,H)) \ T (f,H), which is the same as
E (delg(f.H))\ E (f, 1) by Lemma 5.9. Let s; be the side of G; that contains GJ/-, and
define 5; similarly (Figure 24, left). Then f’(P) cannot be adjacent to G; on the side s;,
since part of f/(P) is separated from G/ by GJ’.. Therefore, since G/ € E (delg (/. H)),
f’(P) must be adjacent to G/ on the opposite side, §;. Similarly f’(P) must be
adjacent to G]/. on the opposite side, 5;. Note that 5; and 5; are disjoint. On the other
hand, since G/ and G]/. are not in E ( f, H), there must be some G € G in §; separating
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G| from some point of f(P), and similarly G; € G in §; separating Gj/- from some
point of f(P). But this is not possible since G crosses Gj.

Now assume G/ € E (delg (f. H)) \ E (f. ) and Gj/- € G\ T (f,H) (Figure 24, right).
If GJ’. € E(f.H) \ T(f. 1) then it crosses G; by Lemma 5.8, so we may assume
G; ¢ E(f.H). Define s; as before. Now since G; ¢ E(f H), on the side of G;
contained in s;, there must be another hyperplane H separating GJ’. from a point of
f(P). This H cannot be in G since G]’. crosses H, so it is not deleted and hence
f'(P) is not adjacent to G; on the s; side. As above there must therefore be a Gy € G
on the §; side. This Gy cannot cross G]’.; again a contradiction.

To see that each hyperplane of K crosses all other hyperplanes of Hy \ G, note that K
is contained in E (delg(f, H)) \ T (delg (f, H)) by (5-1) of Lemma 5.9, and then use
Lemma 5.8.

To finish the argument, we claim that all we have to check is that the set of hyperplanes
that are either transitional for a Move operation or deleted along each side of the
diagram is the same. This is because of the relations

Trim o Move( f, 1) = delr ( r.3;) o Trim( f, )
and

Trim o delg = delg o Trim.

which follow directly from the definitions. With these relations, we can simplify each
side of the diagram to a single Trim o dely, where V is the union of hyperplanes from
all the deletion and Move steps on that side.

Thus, comparing the left side of the diagram with the top arrow and right side, it
remains to check that

(5-5) T(fH)UG =GUT(delg(f. H)) UK.
Using the definitions of G’ and K, we see that both sides are equal to

GUT (delg(f.H)UT(f, H). d
Every hyperplane H € Hy becomes extremal at some point along the move sequence.
We want to understand how deletions affect when this occurs. Note that when a

hyperplane H € Hy becomes extremal, it need not become transitional, and what
happens can change with the deletion of a nearby hyperplane.
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For a hyperplane H € Hy, define

eq (f. 1)
to be the first index i such that H € E (f;, H).

Lemma 5.12 For any mutually crossing set G C Hy, and any H € Hy \ G,

(5-6) eg(f.H) =en(delg(f,H))+§

for some 6 € {0, 1}.

Proof Ifey (f, H)=0then H isalready in E ( f, 1), which implies H € E (delg ( f, H))
by (5-1) of Lemma 5.9. The equality (5-6) follows with § = 0.

Thus we may assume eg ( f, H) > 0. Suppose that eg (delg( f, %)) = 0. This means
that H € E(delg(f,H)) \ E (f, H), which implies (as in the proof of Lemma 5.11)
that there are some elements G; of G which separate H from f(P) on one side s;,
so that f(P) is adjacent to G; on the s; side. But f(P) is not adjacent to G; on the
other side because H is there, which means G; € T (f, ). But this implies that, in

Move( f, H), all G; as above are no longer in the set of separating hyperplanes, and
hence H € E (Move( f,H)), so ey (f,H) = 1. This gives (5-6) with § = 1.

From now on we can assume eg (f, H) > 0 and ey (delg (f, H)) > 0, and prove the
statement by induction on the cardinality of s (the case |Hy| = 2 is easy, and already
covered by the previous paragraphs).

Let (f/,H') =delg(f. 1), (fi.H) = Move(f, 1), and (f{.,H') =Move(f’, H'). By
definition (since egy (f,H) > 0 and ey (', H) > 0),

en(fH)=eu(fi,H)+1 and em(f' . H)=eu(f|,1H)+1
Thus it will suffice to prove
(5-7) en (f1.H) =en(f{.H)+86.
Consider the warmup case when G N E (f,’H) = @. By Lemma 5.10,

(f{. H) = delg(f1. ).

Since |Hy, | < |H |, the inductive hypothesis gives us

eg(fi.H)=eq(f{.H)+
for § = 0 or 1, proving (5-7) and hence (5-6).
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Now in the general case, we use the diagram of Lemma 5.11. Note first that the value
of ey is not affected by a Trim operation. This is because Trim does not affect the
set Hr, or the membership in £ or T.

The value of eg is also unaffected by the delgx arrow on the right side. This is
because each hyperplane H € K crosses every hyperplane in Hz \ (G U {H }), which
implies that any hyperplane in K cannot affect the membership in E or T of any other
hyperplane in H s \ G. Therefore, we see that delx commutes with the Move sequence

on (f{,Hs\G).

The remaining arrow is labeled by delg/, and G’ is a mutually crossing set. Thus by
induction we know
eq (f1,H) =en(delg/(f1.H)) + 8

for 6 = 0 or 1. Again the equality (5-7) follows. |
We are now ready to prove the stability result for move sequences.

Proof of Proposition 5.7 We need to prove the following statement: for each i and
p € P, the setof H € Hy \ G such that H separates f;(p) from f;(p) is mutually
crossing.

Note that when a sequence (f;j(p)) crosses a hyperplane H, it can only happen
in the transition from f; to fj4+1 where j = ey (f, ). Moreover it must be that
H e T(f;j,H), and that f;(p) is on the side of H where f;(P) is adjacent. If the
sequence ( f;(p)) does not cross H, then H will either remain in Hy, foralli > j, or
it will be crossed only by points on the other side and not by f; (p). The same holds
for the sequence (f).

Now suppose that H; and H, separate f;(p) from f/(p), for some i, and Hy does
not cross Ha. Since fo(p) and f;(p) are on the same side of both hyperplanes, we
may assume that H; separates them from H,. Hence there exists a (different) time i at
which one of them is still on the original side of H;, whereas the other has crossed
both hyperplanes; fix such an i.

Suppose first that f;/(p) is the one which lies on the other side of H>. Let j =eg, (' H).
Then since H; does not cross H>, fj/+1(p) has not yet crossed H,. Thus we must
have

j = €H, (f/’H) < €H2(f,,H) <i
and H; € T(fj’, H), with fj’(p) on the side where fj’(P) is adjacent to Hj.
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Now k = ep,(f.H) < j + 1 by Lemma 5.12. Since j + 1 <i and f;(p) has not
crossed H1, it must be that the side of H; where f; (P) is adjacent is the one opposite
from fi(p), the one containing H>.

But this means that H> can no longer be in Hy, , which can only be if
em,(fH)<k—1=<.

Thus, again by Lemma 5.12, eq, (f ’,H) < j, which is a contradiction.

We conclude that H; does not cross H», which is what we wanted.

The case where f;(p) crosses the hyperplanes and f;'(p) does not is handled similarly.
The main difference is that in this case, instead of using eg, (f, H) <em, (f',H) + 1,
we use eg, (f', H) < em, (f, H), which creates a “+1” there, which is then lost in the
other application of Lemma 5.12. a

5.4 Completing the proof of Theorem 5.1

Property (1) follows from Lemma 5.3, while property (2) follows from the construction,
where for both properties we use the fact that cubes have diameter 1 in the doo metric.
Property (5) is also easily seen to hold by construction, and more specifically it follows
from the fact that the sets E (f,H) and T ( f, 1) only depend on the image of f (and
hence that this will remain true throughout the move sequence).

For property (3), observe that for a fixed p € P, no hyperplane H separates f;(p) from
fi+1(p) for two different values of i. It follows that any combinatorial path obtained
by concatenating a choice of geodesics from f;(p) to fi+1(p) for 0 <i < n is an
£'—geodesic in X. This proves (3).

For property (4), by definition of the contraction sequence, the hyperplanes that separate
any given f(p) from f,(q) for p,q € P are contained in Hs. On the other hand,
a hyperplane H € Hy cannot separate every point in f(P) from any fixed vertex
of X, because there are elements of f(P) on both sides of H, by definition of .
Hence, there can be no hyperplane separating f(P) from a point in f,, (P). This gives

property (4).

Property (6) is a direct consequence of Proposition 5.7 and Lemma 5.6. |
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6 Proofs of the main theorems

We are now almost ready to prove our main theorems, Theorem E and Theorem B. The
main bit of work here is Proposition 6.1, which compiles our preceding stability results
into a useful form for our current purposes.

Proposition 6.1 Let (X, &) be a G—colorable HHS for G < Aut(&). For any k € N,
there exists K3 = K3(k, &) > 0 such that the following holds.

Suppose that F, F' C X are finite subsets satisfying | F|, |F'| <k, let g € G, and suppose
that dyaus(gF, F') < 1. Choose any map tg: F U F' — F such that g (f) = f if
feFanddy(gip(f), f)<1if f € F'. Also, choose amap tp:: F U F' — F’ such
that g/ (f)= fif f € F' anddx(gf,tp/(f)) < 1if f € F. Consider:

e The cube complexes QFf, QF produced by Theorem 4.1 with associated maps
Op, Op/ to X, and Y, Y from F, F' to QF, QF.

e The sequences of contractions {(Y'r); = Vi }ifnxz/F and {(VF/); = wi’}ifnwp/
produced by Theorem 5.1. Set ny,, =np and ny,., =ng.

Then
() |nF—np/|<Ks,
(2) foreachi €{l,...,max{np,np/}} andany f € F U F’,
dx(go®rovi(tr (). Prroyi(tr(f))) < K,
(3) diamyx(PF (Y (F))) < K3.

More visually, item (2) says that the diagram

V F Vi =(¥r)i OF
%‘PF
(6-1) FUF' P X
Lr F Y= )i Op @ p

coarsely commutes.

Proof We will use the output and notation of Theorem 4.1, and in particular the
CAT(0) cube complex Qp obtained from both Qf and Q-+ by collapsing at most
N = N(k, &) > 0 hyperplanes, with hyperplanes collapse maps 4 and /'.
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We will also use the notation of Theorem 5.1, in particular the notation { f; |i <nyr}
for the sequence of maps starting with f and ending with a map with bounded image.

We have Y ;= hoypotp =h' oypsotps, as stated in Theorem 4.1. By Theorem 5.1,
composing, say, Y r with a hyperplane deletion map affects the length of the corre-
sponding sequence of maps by at most 1. In particular, [n p —ny | < N and, similarly,
|nfFr—ny| < N (notice that ny, . =Ny o, by Theorem 5.1(5), and a similar statement
holds for F’). Hence, conclusion (1) holds for any K3 larger than 2N.

We now prove conclusion (2). By Theorem 4.1, diagram (4-4) commutes with error at
most K = K(k, S). For convenience, we reproduce the diagram here:

F L) OF
V l Y@w
(6-2) FUF Q0 —20 x
LF’/ v T /
F' % Qp

Forany f € FUF’,

dx(go@ro(Yr)i(tr(f)), Poono(Yr)i(tr(f)) < K.
By Theorem 5.1, doo(no (Y F)i (tr(f)), Mo ¥F)i(tr(f))) < N, and hence
dx(®oono(Yr)i(f). Poo(novr)i(f)) <K =K'(k,S)

since ®g is a quasi-isometric embedding with controlled constants (and the dimension
of Qp is bounded in terms of & by Theorem 4.1, so that the £°° and ¢ metrics on it
are uniformly quasi-isometric). The triangle inequality then gives

dx(go®ro(Yr)itr(f)), Poo(moyr)itr(f)) <K +K.

Similarly, we get
dx(®p o (Yp)i(tr(f)), Poo (' oy r)i(tr (f)) =K'+ K.

By Theorem 5.1(5), (n o )i (tp/(f)) = (0 oYy Frotp)i(f) = (moyr otp)i(f),
and hence conclusion (2) holds for any K3 larger than 2(K’ + K).

Finally, to prove (3), we now bound the diameter of ® g (Y, - (F)). Similarly to above,
®F is a quasi-isometric embedding with constants controlled in terms of k¥ and &
even when we endow Qf with the £*° metric. Since diamg . (¥, (F)) <1 (in the £*°
metric) by Theorem 5.1, this gives the required bound on diamx(®r (¥, . (F))). O
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6.1 Barycenters: proof of Theorem E

Our next goal is to prove Theorem E. To do so, we’ll need the precise definition of
stable barycenter:

Definition 6.2 For a metric space X a stable barycenter map for k points is a map
7: X*¥ — X which is
e permutation invariant, meaning t o 7 = t for any 7: X¥ — X that is a
permutation of the factors;

e coarsely Lipschitz, meaning there exists «; > 0 such that for x, x’ € X*,
dy (t(x), t(x")) < krdyr (x,x") +Ky.
We further say that t is coarsely equivariant with respect to a group I' acting on X by
isometries if there exists k1 > 0 such that for all g € T’
dx (gt(x), 7(gx)) < k1,

where T acts on X¥ diagonally.

We now prove that colorable HHSs admit stable coarsely equivariant barycenters, with
the following version slightly more general than Theorem E:

Theorem 6.3 Let (X, S) be a G—colorable HHS for G < Aut(&). Then X admits
coarsely G —equivariant stable barycenters for k points, for any k > 1. Moreover, the
coarse barycenter of a set F is contained in the hierarchical hull of F'.

Proof We use the notation from the statement of Proposition 6.1.

To define a barycenter t(f1,..., fx), we consider F' = {f;}, set xp = ®r (Y (F)),
and let T( f1,..., fx) be an arbitrary point in x z; we make the choice depending on
the set F' only, so that permutation invariance is achieved.

This choice does not matter for our purposes since diamy(®r (Y, - (F))) < K3 by
Proposition 6.1.

Now suppose that (f{, ..., f;) is such that duaus({ f;'}, { fi}) < 1, and set F’ = { f/}.
Without loss of generality, assume that n g > n g/, where we note that ng —ng < K3
by part (1) of Proposition 6.1. Part (2) of Proposition 6.1 now implies that for any
feFUF,

dx(®F (WY F (), PR (. F (1)) < K3.
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But ¥, , =V, since np > np, so we can conclude that

dx(QF Wnp (r (1)), Pr (W ., (tr (1)) < K.

Finally, the fact that diamx (®F (Y (F))) < K3 and diamx(®r/ (¥, , (F))) < K3
gives that
diamy(xr Uxp/) < 3K3.

Setting k1 = 3K3, we get that 7 is x1—coarsely Lipschitz.

Finally, coarse equivariance follows similarly, applying Proposition 6.1 with F' = gF,
as follows. First, as above we can assume n g > ngp, for otherwise we can swap the
roles of F and gF, by considering the automorphism g~1. We still have n p —n ¢F <Ks3.
Part (2) of Proposition 6.1 implies that for any f € F U gF,

dx (g0 ®F Ynp(F (f)), Pgr (Vp, . (Ler () < Ks.
As above, we conclude that
diamx(g(xF) Uxgr) <3K3,

which completes the proof. O

6.2 Bicombability: Proof of Theorem B

We begin with the formal definition of bicombing which is appropriate for our context;
see [1]. In the following definition, we adopt the convention that if ¢: [0,a] — X is a
map, then we trivially extend ¢ by ¢(¢) = ¢(a) for all ¢ > a.

Definition 6.4 A discrete, bounded, quasigeodesic bicombing of a metric space X
consists of a family of discrete paths {2y }x,yex Which are, for some constant k2 > 0,

(1) quasigeodesic, meaning that for any x, y € X with d = dx(x, y), there exists
nx,y < k2d + K7 such that the path Qx 5, : {0, ..., 1y} — X is a (k2, k2)—quasi-
isometric embedding with Q) (0) = x and Qx , (nx,,) = y; and

(2) fellow-traveling, meaning that if x’, y’ € X with d’ = dx (x’, y’) and

dx (x.x),dx (v, ") <1,

then for all € {0, ..., max{nx,y,nx y}},

dx (S2x,y (1), R,y (1)) < k2.
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Figure 25: A simple example of bicombing paths, building on the hierarchical
setup from Figure 18. Deleting the orange hyperplanes from Qf and Q-
results in perturbing the contraction paths in Q.

In addition, we say that {Q2x,y }x,yex is I'—coarsely equivariant with respect to a group
I' <Isom(X) if forany g€ I'and x,y € X and f € {0,... , max{ny, y,ny |},

dx(g- Qx,y (1), Qg-x,g-y(t)) <K32.

Finally, we recall the following definition from [7], which was inspired by the paths
constructed in [43]:
Definition 6.5 For D > 1, a path y in X is a D-hierarchy path if

(1) yisa (D, D)—quasigeodesic,

(2) foreach W € &, mwy oy is an unparametrized (D, D)—quasigeodesic.

We can now prove that colorable HHSs admit discrete, bounded, quasigeodesic, coarsely
equivariant bicombings by hierarchy paths.

Theorem 6.6 Let (X, S) be a G—colorable HHS with G < Aut(&). Then there
exists D > 0 such that (X, &) admits a coarsely G—equivariant, discrete, bounded,
quasigeodesic bicombing by D—hierarchy paths.
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Proof Let (X, S) be a colorable HHS. We again use the notation from the statement
of Proposition 6.1, where now F = {x, y} and F’' = {x’, y'} with dx(x,x’) <1 and
dx(y,y’) < 1. We make a blanket observation that k = 2 and so the constant K3 in
Proposition 6.1 depends only on (X, ).

Coarse equivariance can be obtained using the argument below, setting F' = gF. We
omit the details for readability.

Construction of the bicombing paths Let v = ¢ and define a map

a)x’y: {0, . .,znx’y} —> QF

wl(x) ifie{o,...,nx’y},
1//‘2nxgy_i(y) ifie{nx’y—i_l,...,znx’y}.

We claim that wy,y is a (C, C)—quasigeodesic in the £! metric on Q, for some

by

wx,y (i) =

uniform C. First, the points wy,(0), ..., wx,,(nx,,) appear on an £!-geodesic y;
from wy,y (0) to wy,y(nx,y) in the given order by Theorem 5.1(3), and the same holds
for wy,y(nx,y +1), ..., 0x,y(2ny,,) for some £!-geodesic y» from wy, y (nx,y + 1) to
wx,y(2ny,y). Moreover, consecutive wy, (i) are uniformly close to each other, since
they are at distance at most 1 in the £°° metric, which is uniformly quasi-isometric to
the £! metric with constant only depending on the dimension of Qf, which in turn
only depends on G.

Let y be the concatenation of y1, an £!~geodesic from wy y (nx,y) to wx,y(nx,y + 1),
and y,. Since no hyperplane can separate {x, y} from ¥, (x) or ¥, (), again
by Theorem 5.1, we see that y crosses each hyperplane at most once, and is therefore
an £!-geodesic. Since wy,y(nx,y) and wy,,(nx,, + 1) are just opposite corners of a
cube, we see that the wy (i) appear along an ¢'—geodesic in the given order, and
with uniformly spaced gaps. This shows that wyy, is a (C, C)-quasigeodesic in the ¢!
metric, for C depending only on the dimension of Qf and hence only on G.

It follows then that the composition
Qx’y == @F Oa)x,y: {0, ceay 2nx’y} — X

is a (K4, K4)—quasigeodesic in X with K4 = K4(&). We can perturb it a uniformly
bounded amount at the endpoints to make sure that the endpoints are x and y; with a
slight abuse of notation we still denote the perturbation by €2, and the quasi-isometry
constants by Kjy.

This proves that Definition 6.4(1) holds for the family {Qx y}x yex-
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Fellow-traveling We now prove the fellow-traveling condition in Definition 6.4(2)
holds. Once again adopting our previous notation, we want to prove that there exists
k2 = k2(X, &) > 0 such that for any ¢ € {0, ..., max{2ny y,2ny y}},

(6-3) dx(Rx,y(t), Qx,y (1)) < k2.

Without loss of generality, suppose that 71, > ny’ ;s and recall that Proposition 6.1(1)
gives that § = ny, y —ny/ y» < K3, where K3 depends only on (X, &). There are four
cases to consider:

(i) When O <i <ny y, where Qx , and Q,/ , are defined using x and x', respec-
tively.

(i) When ny/ y» < j < ny, where Q5 is defined using x whereas Q2 , is
defined using y’.

(iii) When ny , < g < 2ny,, where both Qy ) and 2,/ ,/ are nonconstant and
defined using y and y’, respectively.

(iv) When 2ny/ ,» <r < 2ny,y, where Q2 y is nonconstant but

Qx’,y’(].) = Qx’,y’(znx’,y’)
for all such j.

In what follows, we will repeatedly use the fact that Qx ,, and Q,/ , are (K4, K4)—
quasigeodesics. Also, set K5 = K4-(28) + K4.

In case (i), equation (6-3) follows immediately from Proposition 6.1(2) with k; = K3.
In case (ii),
dx(Qx,y(nxy), Qx,y(j) < Ks and  dx(Qx,y (nx,y), Lxr,y7(j)) < Ks,
while Proposition 6.1(2) gives
dx(Qx,y(j +26), Qx,y(j)) < K3,
so the triangle inequality implies that (6-3) holds in this case with x» = 2K5 + K3.

In case (iii),
dx(Qx,y(q), 2x,y(q +268)) < Ks

and Proposition 6.1(2) provides

dx(Qx,y(q +28), 2x,y(q)) < K3,

so the triangle inequality implies that (6-3) holds with k» = K3 + K.
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Finally, in case (iv),

dx(Qx,y(2nyr y), Qx,y(2nF)) < Ks

and Proposition 6.1(2) provides
dx(QRx,y(2nyxr y), Qyr,yr 2nyx yr)) < K3.

Since Q2 y/(2nF) = Qyx’,y7(2ny’,y7) by convention, the triangle inequality implies
that (6-3) holds with k» = K3 + Ks5.

Hence we may set k; =2 K5+ K3 to complete the proof of the fellow-traveling condition
in Definition 6.4(2). This completes the proof that these paths gives a bicombing.

Hierarchy paths To finish the proof, we now show that 2y ) is a D-hierarchy path
for some D = D(S) > 0 (Definition 6.5). We will use that ® ¢ is a K—median map
(Theorem 4.1(2)); we now recall what this means.

In a CAT(0) cube complex Q one can define a map mg: Q>0 (called median), and
the only property of this map that we need here is that if x, y, and z appear in this
order along an £!-geodesic, then m(x, y,z) = y. Also, in an HHS X, there is a map
my: X3 — X called coarse median, whose definition we do not need, and ® being
K—median means that for all x, y,z € QF,

dx(Pr(may(x,y,2)).mxy(Pr(x). Pr(y), Pr(2)) < K.

This inequality implies that, for all i < j < k, we have that Q2 ,(;j) lies uniformly
close to mx(2x,y (1), Q2x,y(J), Rx,y (k)). This is enough to guarantee that the quasi-
isometric embedding €2y y is a hierarchy path by [8, Lemma 1.37]. |
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