

Instability of On-Resistance in Vertical GaN PIN Diodes under High-Temperature and Voltage Stress

Dawei Wang, Dinusha Herath Mudiyanselage, Ziyi He, and Houqiang Fu, *Member, IEEE*

Abstract— The ON-resistance (R_{ON}) instability of vertical GaN PIN diodes under high-temperature (up to 400 °C) and forward voltages stress were comprehensively investigated. The turn-on voltages (V_{ON}) of vertical GaN PIN diodes under high-temperature or forward voltage stress were generally stable, while the instability of R_{ON} of the devices was very pronounced under temperature and voltage stress. With temperature increasing from 25 °C to 400 °C, both R_{ON} and ideality factor showed a similar trend with large variations in decrease and increase. The decrease in the ideality factor was attributed to the transition from Shockley–Read–Hall (SRH) recombination to carrier diffusion currents, while the increase in the ideality factor was due to the activation of additional trap-assisted recombination. During the long-time temperature stress, the R_{ON} was unstable and increased for several hours at 200 °C, likely due to time-dependent thermal activation of nitrogen vacancies (V_N) in p-GaN, while the R_{ON} remained roughly constant at 400 °C. For the forward voltage stress, it was found that the shift of R_{ON} was voltage-dependent and decreased from 1.05 to 0.6 mΩcm² with increasing forward voltage stress due to voltage-dependent carrier accumulation. Further, increased forward voltage stress will cause the sub-turn on current due to high electric field-induced electron injection into the p-GaN layer. In addition, the device R_{ON} can also be increased by high reverse voltage biasing due to holes being driven out of the p-GaN. These results can serve as a critical reference for the reliability study of vertical GaN devices and provide guidance for the future development of robust GaN power electronics.

Index Terms—GaN, vertical transistor, vertical diodes, GaN stability, p-GaN, stability testing, power electronics.

I. INTRODUCTION

Wide bandgap GaN RF and power electronics have been widely investigated for various applications due to the excellent material properties of GaN and their superior device performance compared with traditional semiconductor Si. GaN lateral high electron mobility transistor (HEMT) based RF amplifiers are now deployed in commercial 5G communications, and GaN power HEMTs with voltage ratings from 15 V to 900 V have been recently commercialized for applications in power supplies, data centers, and fast chargers [1-3]. Vertical GaN power devices have recently attracted significant attention since they have high voltage and current handling capability, immunity to surface-related issues, less cooling requirement, smaller chip area, avalanche capability, and better scalability [4-7].

Dawei Wang, Dinusha Herath Mudiyanselage, Ziyi He and Houqiang Fu are with Department of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA (e-mail: houqiang@asu.edu).

However, the material properties of GaN, especially the p-GaN material, are significantly different from those of Si and SiC, which leads to various stability issues [8-11]. For example, for lateral GaN devices, gate-bias-induced on-resistance (R_{ON}) instability is a serious concern in p-GaN HEMTs [12-14] due to dynamic effects in the AlGaN barrier and the GaN channel under the gate [15]. For GaN metal-insulator-semiconductor HEMT (MIS-HEMT), gate dielectrics usually lead to new issues, such as bias-temperature instability (BTI) [16, 17]. For vertical GaN devices, it was found that the turn-on voltage (V_{ON}) and R_{ON} in vertical GaN Schottky barrier diode (SBD) showed instabilities under on-state forward-current stress due to the degradation of the anode/GaN interface [18] and/or the trapping/de-trapping mechanism in passivation materials. For vertical GaN P-N junctions, the instability issue under high current-induced localized heating was more pronounced [19]. These instabilities in vertical GaN devices are due to trapping or floating body effects without permanent damage to the devices. These behaviors of these devices are not well described by standard equivalent circuit models used for Si and SiC, thus causing considerable power loss in compensation circuits and degrading the system reliability [11, 20-25]. In addition, carrier trapping can significantly increase the reliability and degradation concern due to high local electric fields [10].

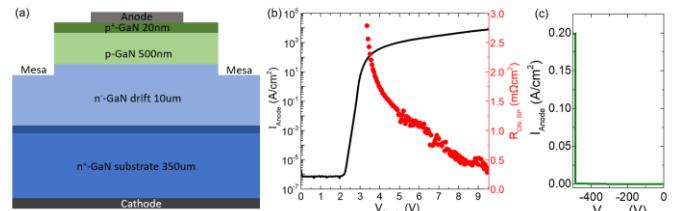


Fig. 1. (a) Schematic of the vertical GaN PIN diode. (b) Forward I-V curve and specific R_{ON} of the device. (c) Reverse breakdown curve of the device.

Vertical PIN diodes are generally preferred over SBDs for high-voltage, high-power applications due to excellent current capability and higher reliability [2]. But vertical GaN PIN diodes may exhibit instabilities under temperature and forward voltage stress, especially when the devices operate under dynamic voltages [26], due to carrier flow through highly doped p-GaN with low effective ionization of acceptors, degraded crystal quality, and high density of defects [27]. However, there is still a lack of systematic stability study of GaN vertical PIN diodes under forward bias. In this work, the effect of forward voltage and high-temperature (up to 400 °C)

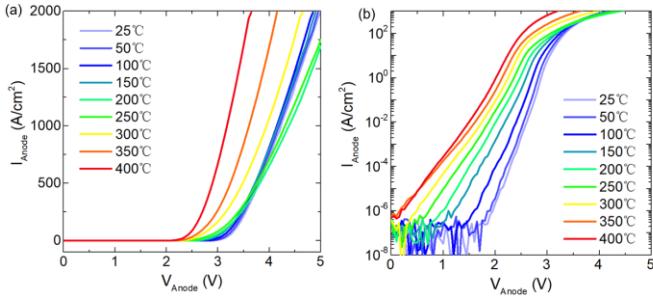


Fig. 2. Forward I-V curves of the vertical GaN PIN diode at different temperatures (a) in linear scale and (b) in semi-log scale.

stress on V_{ON} and R_{ON} of vertical GaN PIN diodes have been comprehensively investigated. This work can serve as a critical reference for the reliability evaluation of GaN vertical PIN diodes under high-temperature and voltage applications and provide guidance for the future development of reliable vertical GaN power devices.

II. DEVICE FABRICATION AND MEASUREMENT

The vertical GaN PIN diodes were grown on a 2-inch n⁺ GaN substrate by metalorganic chemical vapor deposition (MOCVD). As shown in Fig. 1 (a), the device consisted of a 350 μm n⁺ doped GaN substrate with a Si doping concentration of $1 \times 10^{18} \text{ cm}^{-3}$, a 2 μm n⁺-GaN layer with a doping concentration of $3 \times 10^{18} \text{ cm}^{-3}$, a 10 μm n⁻-GaN drift layer with a doping concentration of $1 \times 10^{16} \text{ cm}^{-3}$, a 500 nm p-GaN layer with an Mg doping concentration of $1 \times 10^{19} \text{ cm}^{-3}$, and a 20 nm p⁺-GaN with an Mg doping concentration of $3 \times 10^{19} \text{ cm}^{-3}$. The diode fabrication started with p-GaN activation under 750 °C for 30 minutes, followed by 800 nm mesa isolation via chlorine-based dry etching. The cathode metal stacks Ti/Al/Ni/Au (25/120/40/100 nm) were deposited by electron beam evaporation on the backside of the samples. The anode contacts Pd/Ni/Au (25/30/150 nm) were deposited on top of the p⁺-GaN layer by electron beam evaporation, followed by rapid thermal annealing at 500 °C for 5 minutes in N₂ ambient.

High-temperature stability testing and forward-bias stability testing of these vertical GaN PIN diodes were performed. The testing of device stability under high-temperature stress was conducted using a probe station equipped with a controllable thermal chuck and Keithley 4200-SCS parameter analyzer. The forward I-V curves of the devices were measured during the temperature stress to monitor the evolution of the stress-induced parameter shift, such as V_{ON} and R_{ON} . For stability testing under forward-bias stress, the Keithley 2611A source meter was used to measure the device's forward I-V curves under forward voltages. The V_{ON} was defined as when the device current reaches 1 A/cm². The R_{ON} is the minimum value of dV/dI , i.e., at liner region of on-current. The measured typical I-V curve and calculated specific R_{ON} of a representative vertical GaN PIN diode at room temperature without stress are shown in Fig. 1(b). The devices had a maximum on-current density of >8 kA/cm², an ON/OFF ratio of >10⁹, an ideality factor of ~2, R_{ON} of <0.5 mΩcm², and breakdown voltage of 487 V, which are comparable to previous reports [28-31].

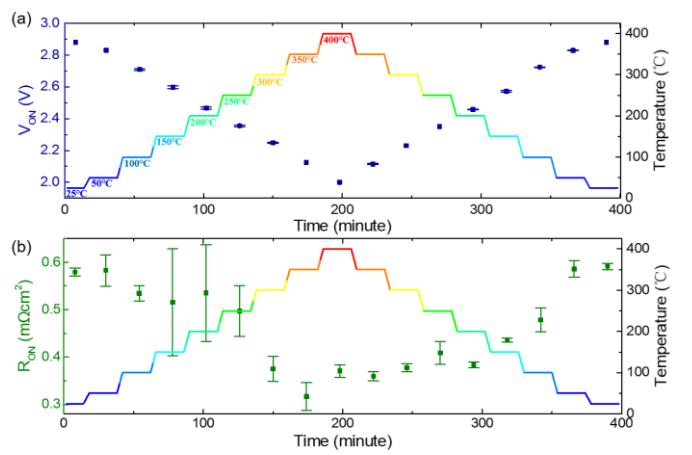


Fig. 3. (a) The V_{ON} of the vertical GaN PIN diodes under the temperature stress from 25 °C to 400 °C and the cool down process. (b) The R_{ON} of the vertical GaN PIN diodes under the temperature stress from 25 to 400 °C and the cool down process. Each temperature stage has multiple measurements.

III. RESULTS AND DISCUSSIONS

A. R_{ON} Instability under High-Temperature Stress

The devices were thermally stressed from 25 to 400 °C with a step of 50 °C for 25 minutes at each temperature, where a 10-minute stabilization time was included when the temperature was changed. Several forward I-V curves of the devices were collected every 2 minutes during each temperature to monitor the evolution of V_{ON} and R_{ON} . Fig. 2(a) shows the forward I-V curves of the vertical GaN PIN diodes at different temperatures. It showed that the V_{ON} and R_{ON} of the devices varied with increasing temperatures. Fig. 2(b) shows the forward I-V curves in a semi-log scale. The extracted device V_{ON} during the whole temperature ramp-up and cooling-down process is shown in Fig. 3(a). The V_{ON} decreased from 2.88 V to 1.95 V when the temperature increased from 25 to 400 °C due to the temperature-induced barrier lowering in the depletion region [4, 29, 42-44]. Moreover, it can be noticed that the V_{ON} was stable during each temperature step. After the device was cooled to room temperature, V_{ON} recovered to the original value. Fig. 3(b)

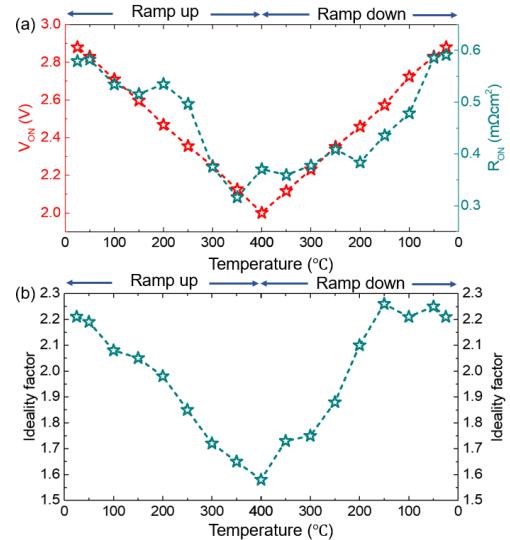


Fig. 4. (a) The V_{ON} and R_{ON} and (b) ideality factor n of the vertical GaN PIN diodes with different temperatures extracted from Fig. 2.

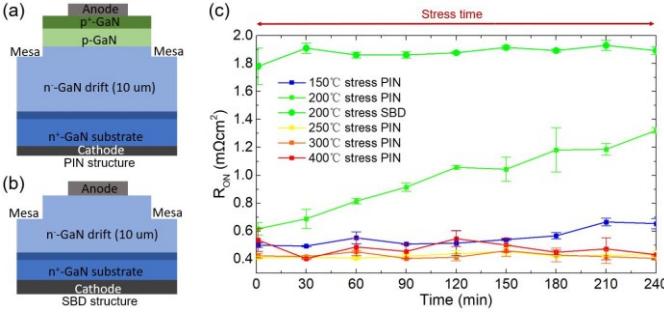


Fig. 5. Schematic of the vertical GaN (a) PIN diodes and (b) reference SBD. (c) The R_{ON} of the vertical GaN PIN diodes and SBDs under 200 °C, and R_{ON} of the vertical GaN PIN diodes at 150 °C, 200 °C, 250 °C, 300 °C, and 400 °C long-time temperature stress.

presents the extracted R_{ON} of the devices at different temperatures. The device R_{ON} generally decreased during the temperature ramp-up process from 25 to 400 °C and increased during the temperature ramp-down process. This can be explained by the conductivity change in the p-GaN. The conductivity of the p-GaN is proportional to the product of mobility and hole carrier concentration. Due to the high acceptor ionization energy and incomplete acceptor ionization in p-GaN, when the temperature increased, the concentration of free holes would increase [35]. In Fig. 3(b), the device R_{ON} could recover after the temperature was ramped down. However, it can be noticed that the device R_{ON} has a relatively longer error bar under thermal stress of ~150-250 °C during the ramp-up process, indicating an evident instability issue of R_{ON} of vertical GaN PIN structure during ~150°C-250°C. This will be discussed in detail later. The trend of V_{ON} and R_{ON} of the vertical GaN PIN diodes with different temperatures extracted from Fig. 2 is shown in Fig. 4(a). The overall trend of device V_{ON} and R_{ON} with temperature was consistent with that in Fig. 3. The extracted device ideality factor n as a function of temperature is shown in Fig. 4(b). Diodes generally have an ideality factor between 1 and 2 due to the combination of carrier diffusion and recombination processes, such as Shockley-Read-Hall (SRH) and band-to-band recombination. In addition, trap-assisted tunneling and carrier leakage can also cause an increase in the ideality factor [36-38], leading to high ideality factors of over 2. From Fig. 4(b), the ideality factor generally decreased with increasing temperature due to the transition from SRH recombination to diode diffusion current due to higher energy carriers [39]. The ideality factor also does not show symmetrical characteristics during temperature ramp-up and ramp-down process. This indicated activation or de-activation process of traps (e.g., nitrogen vacancy (V_N) [45-47]), happened at different temperature between ramp-up and ramp-down, which induced variation of trap-assisted recombination of carriers [36-38, 40-41]. For the instable R_{ON} around 200 °C, we designed another experiment to investigate the R_{ON} instability under long-time temperature stress at different temperatures for 4 hours. The extracted R_{ON} of the devices under long-time thermal stress is analyzed in Fig. 5.

In addition, to verify whether the R_{ON} shift during the stress of 200 °C was caused by p-GaN, vertical GaN Schottky barrier diodes (SBDs) were fabricated and thermally stressed for comparison. The schematics of the vertical GaN PIN diode

and SBD are shown in Fig. 5(a) and 5(b), respectively. The vertical GaN SBD had the same device structure as the PIN diode except without p-GaN layers. The Schottky contact for the GaN SBD was Ni/Au (25nm/150nm). Fig. 5(c) shows the R_{ON} of the vertical GaN PIN diodes and SBD during the temperature stress. When the 250 °C, 300 °C, and 400 °C thermal stress was applied to the PIN diode, the device R_{ON} remained relatively stable during the stress. However, the device R_{ON} under 150 °C and 200 °C thermal stress increased with increasing stress time. The increasing of R_{ON} under 200 °C is more evident. On the other hand, the vertical GaN SBDs under 200 °C thermal stress showed relatively stable R_{ON} . This indicates that the observed time-dependent R_{ON} shift at ~150-200 °C for GaN vertical PIN diodes was caused by conductivity modulation of p-GaN material [48]. A series of electrical-thermal effect may modulate the R_{ON} during the long-time thermal stress. At high temperature such as 400°C, the carriers have enough energy to be released from the traps in p-GaN, resulting in stable R_{ON} . At medium temperature such as 200°C, the energy is not enough to activate the trapped electrons in p-GaN. However, the applied positive voltage during I-V curve scanning can lower the conduction band and release some electrons, thus gradually increasing the R_{ON} . It is likely that V_N in p-GaN are the activated traps, where the V_N -Mg_{Ga} complex has been identified [49-50]. The electrons can be gradually released when the temperature increases above ~200 °C and compensate the holes in p-GaN, thus reducing the conductivity of the p-GaN layer. In addition, similar effects of conductivity modulation on temperature-induced carrier instability have also been investigated in some reports of p-GaN gated HEMT devices, with identified mechanisms such as hole trap emission, carrier out-spilling [32], trapped positive charges [33], and hole injection through thermionic emission [34]. The extracted V_{ON} under 4 hours of temperature stress at 200 and 400 °C is shown in Fig. 6(a), indicating that the device V_{ON} is generally stable at high temperatures. The forward I-V curves measured at room temperature before and after the temperature stress of 4 hours are shown in Fig. 6(b). For the curves before and after the temperature stress of 200 °C, the current decrease after the stress due to the R_{ON} modulation process during 200 °C, which indicated that the R_{ON} shift cannot be recovered when the temperature stress was removed. For the curves before and after the temperature stress of 400 °C, the current has a slight increase, possibly due to the hydrogen residue driven out.

B. R_{ON} Instability under Forward Voltage Stress

Several reports have shown voltage and current stress-caused parameter shifts in GaN devices [25, 51-54]. Hole deficiency in p-GaN occurred at the beginning of the applied

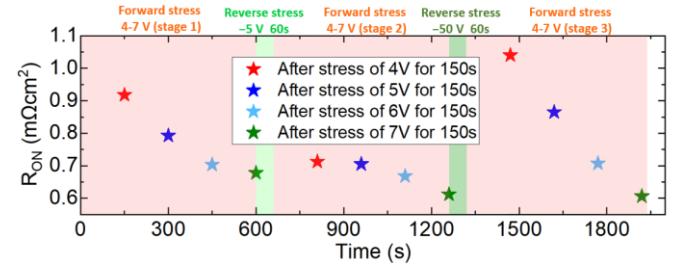


Fig. 7. (a) The testing process of device R_{ON} under the forward voltage stress from 4 V to 7 V and reverse stress of -5 V and -50 V.

voltage [25]. Trapping and de-trapping in p-GaN or n-GaN occurred during the long-time voltage stress [53, 54], and the energy level of traps can be shallow levels (0.26eV, 0.59eV, 0.71eV [55-57]) or many deep levels [26, 27]. To date, several interpretations of trapping mechanisms have been reported, such as nitrogen vacancies, carbon and hydrogen impurities, and magnesium-hydrogen complex formation [26]. It was also found from the voltage-transient method that the trapping process at different energy levels was time-dependent. And slow trapping transients can happen at room temperature in the order of a few seconds [54].

Fig. 7 shows the R_{ON} testing scheme under different forward voltage stress at the fixed time (150s) before and after reverse voltage stress. First, forward stress from 4 V to 7 V was applied to a fresh device (as stage 1), the R_{ON} were extracted during the forward stress. Then, the same experiment was repeated after the negative low voltage of -5 V and -50 V were applied to the device (as stage 2 and 3). The extracted R_{ON} with different stress time from 30s to 150s of stage 1, 2

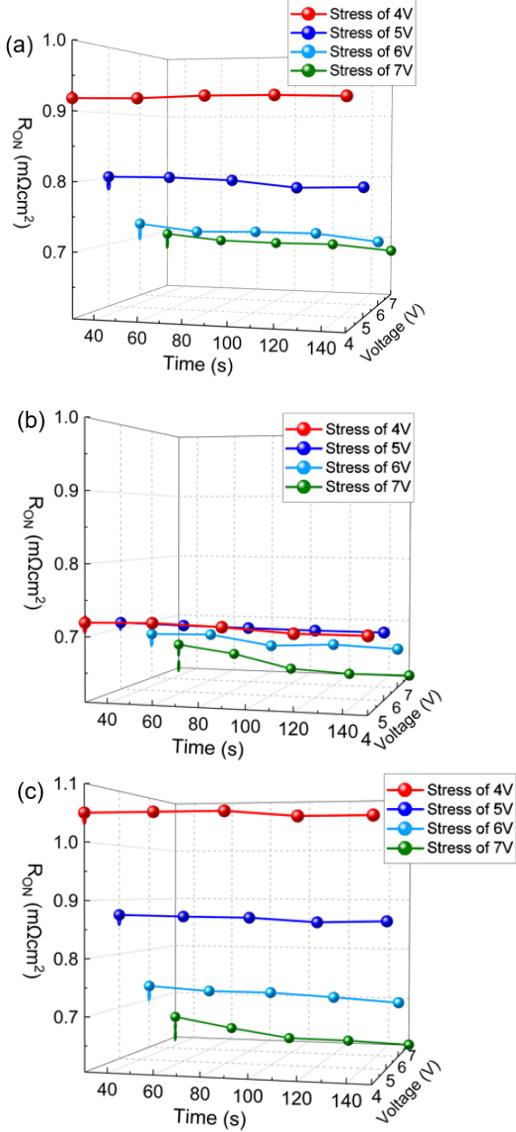


Fig. 8. The R_{ON} of vertical GaN PIN diodes under forward voltage stress from 4V to 7V with stress time from 30 to 150 s: (a) without reverse voltage stress; (b) After reverse voltage stress of -5 V. (c) After reverse voltage stress of -50V.

and 3 were shown in Fig. 8(a), Fig. 8(b) and Fig. 8(c), respectively. From Fig. 8(a), It was found that the R_{ON} of the GaN PIN diode shifted under positive voltage stress, and the shift was also voltage dependent. The R_{ON} of the devices decreased from 0.92 to ~ 0.65 $\text{m}\Omega\text{cm}^2$ with increasing stress voltage, while R_{ON} was less sensitive to stress time. Fig. 8(b) showed that after the negative stress of -5 V, the R_{ON} of the device increased to 0.72 $\text{m}\Omega\text{cm}^2$. From Fig. 8(c), after the

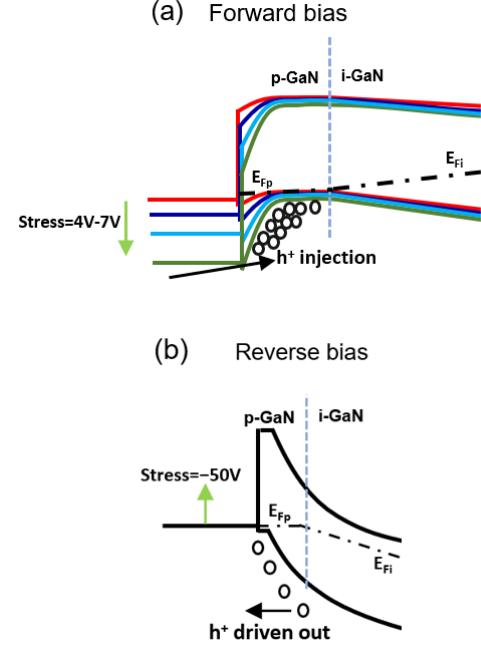


Fig. 9. Band diagram near the surface of vertical GaN PIN diode under (a) forward bias from 4V to 7V and (b) under reverse bias.

reverse voltage stress of -50 V, the R_{ON} of the device increased to ~ 1.05 $\text{m}\Omega\text{cm}^2$. The mechanism of R_{ON} shift under voltage stress can be explained from the band structure in Fig. 9. In Fig. 9(a), a fresh device has high R_{ON} due to hole deficiency in p-GaN [25]. When a forward voltage is applied, the p-GaN will be charged by hole injection, thus decreasing the device resistance. And the quantity of the injected holes depends on the applied voltage. However, when a reverse voltage is applied to the device in Fig. 9(b), the holes are driven out of the p-GaN by a high negative electric field, thus increasing the device's resistance. The V_{ON} of the device under

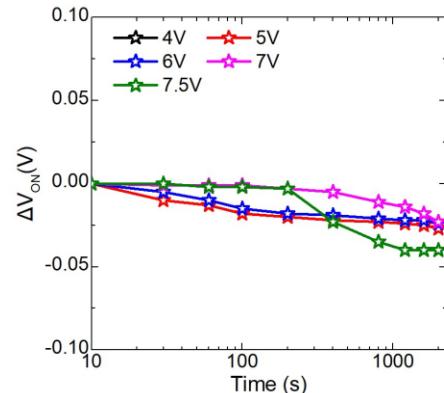


Fig. 10. The V_{ON} of the vertical GaN PIN diodes under forward voltage stress from 4V to 7.5V with the stress time of 1200s at each voltage.

positive voltage stress was also extracted in Fig. 10. It shows that the positive voltage stress does not have an evident impact on the V_{ON} , and the shift of the V_{ON} was less than 0.05 V. In addition, we also studied the effect of higher positive voltage stress on GaN vertical PIN diodes. Figs. 11 (a) and (b) show the measured forward curves under high positive voltage stress from 8.5 to 9V. From Fig. 11(a), it can be noticed that after the high positive voltage stress, the leakage current before the turn-on voltage (2.88 V) increased, especially after the stress of 8.8 and 8.9 V. From Fig. 11(b), the leakage current also increased evidently after voltage stress of 9 V. The device behavior at high forward bias can be explained by the band structure in Fig. 11(c). The drastic band bending at a high forward voltage can drive the electrons into the p-GaN region and induce an electron current before the device is turned on. No device recovery was observed after several days or by reverse stress, indicating that the transient high voltage spikes are detrimental to vertical GaN PIN diodes.

IV. CONCLUSION

In conclusion, a comprehensive investigation of vertical GaN PIN diode stability under thermal and forward voltage stress was presented. The device V_{ON} was quite stable under high-temperature or forward voltage stress, while the device R_{ON} showed large instabilities. With the temperature increasing from 25 °C to 400 °C, both the device R_{ON} and ideality factor first decreased, then increased with a maximum at ~200 °C and further decreased until 400 °C. The transition from SRH recombination to carrier diffusion can decrease the ideality factor, while the activation of trap-assistant recombination can increase it. During the long-time temperature stress of 200 °C, the R_{ON} was unstable, likely due to time-dependent thermal activation of V_N in p-GaN material, while the R_{ON} kept roughly constant at 400 °C since the carriers are constant. Furthermore, the shift of R_{ON} is voltage-dependent and decreased from 1.05 to ~0.6 mΩcm², with the forward voltage stress increasing from 4 to 7 V due to voltage-dependent carrier accumulation. If the forward voltage stress

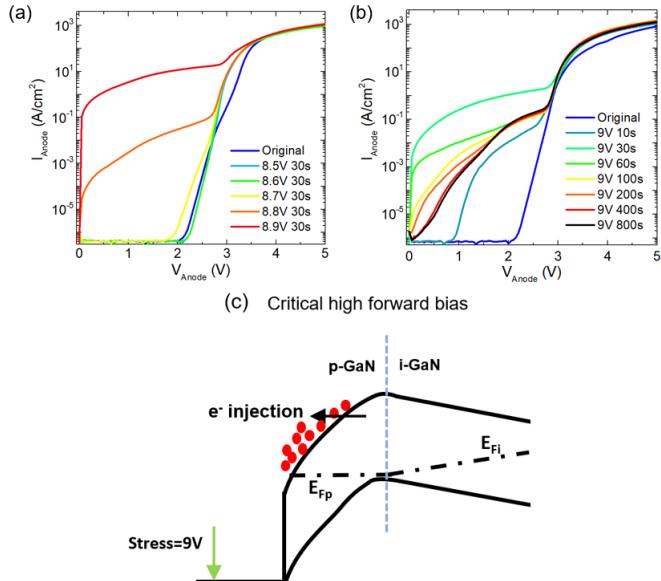


Fig. 11. (a) Forward I-V curves of vertical GaN PIN diodes after forward voltage stress of 8.5, 8.6, 8.7, 8.8 and 8.9 V. (b) Forward I-V curves of vertical GaN PIN diodes after forward voltage stress of 9 V from 10 to 800 s. (c) Band diagram of vertical GaN PIN diodes under very high forward voltage bias.

is further increased, high forward voltage stress will cause the sub-turn on current due to high electric field-induced electron injection into the p-GaN layer. In addition, the R_{ON} can also be increased by high reverse voltage biasing due to holes being driven out of p-GaN. This work provides important information on the reliability of vertical GaN PIN diodes under temperature and forward voltage stress, which is beneficial for the commercialization of vertical GaN power technology.

ACKNOWLEDGMENT

This work is supported by the National Science Foundation (NSF) under Award # 2302696.

REFERENCES

- [1] H. Amano, Y. Baines, E. Beam, M. Borga, T. Bouchet, M. Borga, T. Bouchet, M. Charles, K. J. Chen, N. Chowdhury, R. Chu, C. De, S. Maria, M. D. Souza, S. Decoutere, L. D. Cioccio, T. Egawa, P. Fay, J. J. Freedman, G. Haynes, T. Heckel, D. Hemakumara, P. Houston, J. Hu, M. Hua, Q. Huang, A. Huang, S. Jiang, H. Kawai, D. Kinzer, M. Kuball, A. Kumar, K. B. Lee, X. Li, D. Marcon, M. März, R. McCarthy, G. Meneghesso, M. Meneghini, E. Morvan, A. Nakajima, E. M. S. Narayanan, S. Oliver, T. Palacios, D. Piedra, M. Plissonnier, R. Reddy, M. Sun, I. Thayne, A. Torres, N. Trivellin, V. Unni, M. J. Uren, M. V. Hove, D. J. Wallis, J. Wang, J. Xie, S. Yagi, S. Yang, C. Youtsey, R. Yu, E. Zanoni, S. Zeltner and Y. Zhang, "The 2018 GaN power electronics roadmap," *Journal of Physics D: Applied Physics*, vol. 51, no. 16, 2018.
- [2] E. A. Jones, F. F. Wang, and D. Costinett, "Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges," *IEEE Journal of Emerging and Selected Topics in Power Electronics*, vol. 4, no. 3, pp. 707-719, 2016.
- [3] K. J. Chen, O. Häberlein, A. Lidow, C. I. Tsai, T. Ueda, Y. Uemoto, and Y. Wu, "GaN-on-Si Power Technology: Devices and Applications," *IEEE Transactions on Electron Devices*, vol. 64, no. 3, pp. 779-795, 2017.
- [4] H. Fu, K. Fu, H. Liu, S. R. Alugubelli, X. Huang, H. Chen, J. Monteset, T. H. Yang, C. Yang, J. Zhou, F. A. Ponce, and Y. Zhao, "Implantation-and etching-free high voltage vertical GaN p-n diodes terminated by plasma-hydrogenated p-GaN: revealing the role of thermal annealing," *Applied Physics Express*, vol. 12, no. 5, 2019.
- [5] H. Fu, K. Fu, S. Chowdhury, T. Palacios, and Y. Zhao, "Vertical GaN Power Devices: Device Principles and Fabrication Technologies—Part I," *IEEE Transactions on Electron Devices*, vol. 68, no. 7, pp. 3200-3211, 2021.
- [6] H. Fu, K. Fu, S. Chowdhury, T. Palacios, and Y. Zhao, "Vertical GaN Power Devices: Device Principles and Fabrication Technologies—Part II," *IEEE Transactions on Electron Devices*, vol. 68, no. 7, pp. 3212-3222, 2021.
- [7] K. Fu, Z. He, C. Yang, J. Zhou, H. Fu and Y. Zhao, "GaN-on-GaN p-i-n diodes with avalanche capability enabled by eliminating surface leakage with hydrogen plasma treatment," *Applied Physics Letters*, vol. 121, pp. 092103, 2022.
- [8] K. Mukherjee, C. D. Santi, S. Decoutere, P. Diehle, G. Meneghesso, M. Borga, K. Geens, S. You, B. Bakeroor, S. Hübner, F. Altman, M. Buffolo, E. Zanoni and M. Meneghini, "Challenges and Perspectives for Vertical GaN-on-Si Trench MOS Reliability: From Leakage Current Analysis to Gate Stack Optimization," *Materials* (Basel), vol. 14, no. 9, Apr 29 2021.
- [9] S. You, K. Geens, M. Borga, H. Liang, H. Hahn, D. Fahle, M. Heuken, K. Mukherjee, C. D. Santi, M. Meneghini, E. Zanoni, M. Berg, P. Ramvall, A. Kumar, M. T. Bjork, B. J. Ohlsson, S. Decoutere, "Vertical GaN devices: Process and reliability," *Microelectronics Reliability*, vol. 126, 2021.
- [10] J. A. del Alamo and E. S. Lee, "Stability and Reliability of Lateral GaN Power Field-Effect Transistors," *IEEE Transactions on Electron Devices*, vol. 66, no. 11, pp. 4578-4590, 2019.

[11] J. P. Kozak, R. Zhang, M. Porter, Q. Song, J. Liu, B. Wang, R. Wang, W. Saito and Y. Zhang, "Stability, Reliability, and Robustness of GaN Power Devices: A Review," *IEEE Transactions on Power Electronics*, pp. 1-31, 2023.

[12] H. Jin, Q. Jiang, S. Huang, X. Wang, Y. Wang, Z. Ji, X. Dai, C. Feng, J. Fan, K. Wei, J. Liu, Y. Zhong, Q. Sun, and X. Liu, "An Enhancement-Mode GaN p-FET With Improved Breakdown Voltage," *IEEE Electron Device Letters*, vol. 43, no. 8, pp. 1191-1194, 2022.

[13] Y. Yin and K. B. Lee, "High-Performance Enhancement-Mode p-Channel GaN MISFETs With Steep Subthreshold Swing," *IEEE Electron Device Letters*, vol. 43, no. 4, pp. 533-536, 2022.

[14] L. Zhang, Z. Zheng, W. Song, T. Chen, S. Feng, J. Chen, M. Hua, and K. J. Chen, "Gate Leakage and Reliability of GaN -Channel FET With SiN_x/GaN Staggered Gate Stack," *IEEE Electron Device Letters*, vol. 43, no. 11, pp. 1822-1825, 2022.

[15] M. Meneghini, C. D. Santi, I. Abid, M. Buffolo, M. Cioni, R. A. Khadar, L. Nela, N. Zagni, A. Chini, F. Medjdoub, G. Meneghesso, G. Verzellesi, E. Zanoni, and E. Matioli, "GaN-based power devices: Physics, reliability, and perspectives," *Journal of Applied Physics*, vol. 130, no. 18, 2021.

[16] S. Zafar, A. Kumar, E. Gusev, and E. Cartier, "Threshold voltage instabilities in high-/spl kappa/ gate dielectric stacks," *IEEE Transactions on Device and Materials Reliability*, vol. 5, no. 1, pp. 45-64, 2005.

[17] N. Wu, Q. Zhang, C. Zhu, C. Shen, M. F. Li, , D. S. H. Chan, and N Balasubramanian, "BTI and charge trapping in germanium p- and n-MOSFETs with CVD HfO₂ gate dielectric.", *IEEE International Electron Devices Meeting*, 2005.

[18] S. Zhao, J. Zhang, Q. Feng, L. Du, W. Zhang, S. Ji, X. Song, F. Wu, W. Zhang, Z. Bian, Z. Liu and Y. Hao., "Parameter Shift of Quasi-Vertical GaN-on-Si Schottky Barrier Diodes Under On-State Forward-Current (2-4 kA/cm²) Stress," *IEEE Transactions on Electron Devices*, vol. 70, no. 3, pp. 959-962, 2023.

[19] Y. Li, S. Yang, F. Ji, X. Tang, and K. Sheng, "Investigation of conductivity modulation in vertical GaN-on-GaN pIN diode under high current density," *Applied Physics Letters*, vol. 122, no. 9, 2023.

[20] X. Ming, Z. W. Zhang, Z. W. Fan, Y. Qin, Y. Y. Liu and B. Zhang, "High Reliability GaN FET Gate Drivers for Next-generation Power Electronics Technology", *IEEE 13th International Conference on ASIC*, 2019.

[21] M. Meneghini, I. Rossetto, C. D. Santi, F. Rampazzo, A. Tajalli A. Barbato M. Ruzzarin, M. Borga, E. Canato, E. Zanoni, and G. Meneghesso, "Reliability and failure analysis in power GaN-HEMTs An overview", *IEEE International Reliability Physics Symposium*, 2017.

[22] M. Hua, J. Chen, C. Wang, L. Liu, L. Li, J. Zhao, Z. Jiang, J. Wei, L. Zhang, Z. Zheng, and K. J. Chen, "E-mode p-GaN Gate HEMT with p-FET Bridge for Higher VTH and Enhanced VTH Stability," *2020 IEEE International Electron Devices Meeting*, 2020.

[23] S. Jha, J. C. Qian, O. Kutsay, J. K. Jr, C. Y. Luan, J. A. Zapien, W. Zhang, S. T. Lee and I. Bello, "Violet-blue LEDs based on p-GaN/n-ZnO nanorods and their stability," *Nanotechnology*, vol. 22, no. 24, p. 245202, Jun 17 2011.

[24] X. Xia, J. S. Li, C. C. Chiang, T. J. Yoo, F. Ren, H. Kim, and S. J. Pearton, "Thermal stability of band offsets of NiO/GaN," *Journal of Vacuum Science & Technology A*, vol. 40, no. 5, 2022.

[25] J. Chen, M. Hua, J. Jiang, J. He, J. Wei, and K. J. Chen, "Impact of Hole-Deficiency and Charge Trapping on Threshold Voltage Stability of p-GaN HEMT under Reverse-bias Stress.", *2020 32nd International Symposium on Power Semiconductor Devices and ICs*, 2020.

[26] D. Bisi, M. Meneghini, C. d. Santi, A. Chini, M. Dammann, P. Brückner, M. Mikulla, G. Meneghess and E. Zanoni, "Deep-Level Characterization in GaN HEMTs-Part I: Advantages and Limitations of Drain Current Transient Measurements," *IEEE Transactions on Electron Devices*, vol. 60, no. 10, pp. 3166-3175, 2013.

[27] S. Yang, S. Huang, J. Wei, Z. Zheng, Y. Wang , J. He and K. J. Chen, "Identification of Trap States in p-GaN Layer of a p-GaN/AlGaN/GaN Power HEMT Structure by Deep-Level Transient Spectroscopy," *IEEE Electron Device Letters*, vol. 41, no. 5, pp. 685-688, 2020.

[28] E. Farzana, J. Wang, M. Monavarian, T. Itoh, K. S. Qwah, Z. J. Biegler, K. F. Jorgensen and J. S. Speck, "Over 1 kV Vertical GaN-on-GaN p-n Diodes With Low On-Resistance Using Ammonia Molecular Beam Epitaxy," *IEEE Electron Device Letters*, vol. 41, no. 12, pp. 1806-1809, 2020.

[29] H. Fu, K. Fu, S. R. Alugubelli, C. Y. Cheng, X. Huang, H. Chen T. H. Yang, C. Yang, J. Zhou, J. Montes, X. Deng, X. Qi, S. M. Goodnick, F. A. Ponce and Y. Zhao , "High Voltage Vertical GaN p-n Diodes With Hydrogen-Plasma Based Guard Rings," *IEEE Electron Device Letters*, vol. 41, no. 1, pp. 127-130, 2020.

[30] K. Fu; H. Fu, X. Huang, T. H. Yang, H. Chen, I. Baranowski, J. Montes, C. Yang, J. Zhou, Y. Zhao, "Threshold Switching and Memory Behaviors of Epitaxially Regrown GaN-on-GaN Vertical p-n Diodes With High Temperature Stability," *IEEE Electron Device Letters*, vol. 40, no. 3, pp. 375-378, 2019.

[31] W. Kwon, S. Kawasaki, H. Watanabe, A. Tanaka, Y. Honda, H. Ikeda, K. Iso and H. Amano, "Reverse leakage mechanism of dislocation-free GaN vertical p-n diodes," *IEEE Electron Device Letters*, pp. 1-1, 2023.

[32] Y. Gu, W. Huang, Y. Zhang, J. Sui, Y. Wang, H. Guo, J. Zhou, B. Chen and X. Zou "Temperature-Dependent Dynamic Performance of p-GaN Gate HEMT on Si," *IEEE Transactions on Electron Devices*, vol. 69, no. 6, pp. 3302-3309, 2022.

[33] H. Wu, X. Fu, J. Guo, Y. Wang, T. Liu, and S. Hu, "Time-Resolved Threshold Voltage Instability of 650-V Schottky Type p-GaN Gate HEMT Under Temperature-Dependent Forward and Reverse Gate Bias Conditions," *IEEE Transactions on Electron Devices*, vol. 69, no. 2, pp. 531-535, 2022.

[34] H. Wang, Y. Lin, J. Jiang, D. Dong, F. Ji, M. Zhang, M. Jiang, W. Gan, H. Li, M. Wang, J. Wei, B. Li, X. Tang, C. Hu and W. Cao "Investigation of Thermally Induced Threshold Voltage Shift in Normally-OFF p-GaN Gate HEMTs," *IEEE Transactions on Electron Devices*, vol. 69, no. 5, pp. 2287-2292, 2022.

[35] J. S. Kwak, O. H. Nam, and Y. Park, "Temperature-dependent contact resistivity of the nonalloyed ohmic contacts to p-GaN," *Journal of Applied Physics: Condensed Matter*, vol. 95, no. 10, pp. 5917-5919, 2004.

[36] X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, "Diffusion and Tunneling Currents in GaN/InGaN Multiple Quantum Well Light-Emitting Diodes," *IEEE Electron Device Letters*, vol. 23, no. 9, pp. 535, 2002.

[37] K. Mayes, A. Yasan, R. McClintock, D. Shiell, S. R. Darvish, P. Kung, and M. Razeghi, "High-power 280 nm AlGaN light-emitting diodes based on an asymmetric single-quantum well," *Applied Physics Letters*, vol. 84, no. 7, pp. 1046, 2004.

[38] A. Chitnis, R. Pachipulusu, V. Mandavilli, M. Shatalov, E. Kuokstis, J. P. Zhang, V. Adivarahan, S. Wu, G. Simin, and M. Asif Khan, " Low-temperature operation of AlGaN single-quantum-well light-emitting diodes with deep ultraviolet emission at 285 nm," *Applied Physics Letters*, vol. 81, no. 16, pp. 2938, 2002.

[39] M. Cho, Z. Xu, M. B.-Noodeh, T. Detchprohm, M. A. Daeumer, J.-H. Yoo, Q. Shao, T. A. Laurence, D. Key, T. Hashimoto, E. Letts, R. D. Dupuis, and S.-C. Shen, "1.2-kV Vertical GaN PIN Rectifier With Ion-Implanted Floating Guard Rings," *IEEE Transactions on Electron Devices*.

[40] D. Zhu; J. Xu; A. N. Noemaun; J. K. Kim; E. F. Schubert; M. H. Crawford; D. D. Koleske, "The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes," *Applied Physics Letters*, vol. 94, pp. 081113, 2009.

[41] K. Fu, H. Fu, H. Liu, S. R. Alugubelli, T. H. Yang, X. Huang, H. Chen, I. Baranowski; J. Montes; F. A. Ponce, Y. Zhao, "Investigation of GaN-on-GaN vertical p-n diode with regrown p-GaN by metalorganic chemical vapor deposition," *Applied Physics Letters*, vol. 113, pp. 233502, 2018.

[42] D. Maier, M. Alomari, N. Grandjean, J. F. Carlin, M. A. di F. Poisson, C. Dua, A. Chuvilin, D. Troadec, C. Gaquiere, U. Kaiser, S. L. Delage, and E. Kohn, "Testing the Temperature Limits of GaN-Based HEMT Devices," *IEEE Transactions on Device and Materials Reliability*, vol. 10. no. 4, pp. 427, 2010.

[43] K. Fu, H. Fu, X. Huang, T. H. Yang, C. Y. Cheng, P. R. Peri, H. Chen, J. Montes, C. Yang, J. Zhou, X. Deng, X. Qi, D. J. Smith, S. M. Goodnick, and Y. Zhao, "Reverse Leakage Analysis for As-Grown and Regrown Vertical GaN-on-GaN Schottky Barrier Diodes," *IEEE Journal of the Electron Devices Society*, vol. 8. pp. 74-83, 2020.

- [44] H. Fu, X. Huang, H. Chen, Z. Lu, I. Baranowski, and Y. Zhao, "Ultra-low turn-on voltage and on-resistance vertical GaN-on-GaN Schottky power diodes with high mobility double drift layers," *Applied Physics Letters*, vol. 111, pp. 152102, 2017.
- [45] I. C. Diallo and D. O. Demchenko, "Native Point Defects in GaN: A Hybrid-Functional Study", *Physical Review Applied*, vol. 6, pp. 064002, 2016.
- [46] A. O. Evwaraye, S. R. Smith and S. Elhamri, "Optical admittance spectroscopy studies near the band edge of gallium nitride", *Applied Physics Letters*, vol. 115, pp. 033706, 2014.
- [47] D. C. Look, D. C. Reynolds, J. W. Hemsky, J. R. Sizelove, R. L. Jones and R. J. Molnar, "Defect Donor and Acceptor in GaN", *Physical Review Letters*, vol. 79, no. 12, pp. 2273, 1997.
- [48] I. Rossetto et al., "Study of the stability of e-mode GaN HEMTs with p-GaN gate based on combined DC and optical analysis," *Microelectronics Reliability*, vol. 64, pp. 547-551, 2016.
- [49] S. Hautakangas, J. Oila, M. Alatalo and K. Saarinen, "Vacancy Defects as Compensating Centers in Mg-Doped GaN", *Physical Review Letters*, vol. 90, no. 13, pp. 137042, 2003.
- [50] J. Buckeridge, C. R. A. Catlow, D. O. Scanlon, T. W. Keal, P. Sherwood, M. Miskufova, A. Walsh, S. M. Woodley and A. A. Sokol, "Determination of the Nitrogen Vacancy as a Shallow Compensating Center in GaN Doped with Divalent Metals", *Physical Review Letters*, vol. 114, pp. 016405, 2015.
- [51] S. Li, C. Zhang, S. Liu, J. Wei, L. Zhang, W. Sun, Y. Zhu, T. Zhang, D. Wang, Y. Sun "Reliability concern of quasi-vertical GaN Schottky barrier diode under high temperature reverse bias stress." *Superlattices and Microstructures*, vol. 130, pp. 233–240, 2019.
- [52] S. Mukherjee, E. E. Patrick, and M. E. Law, "Simulation of Deep-Level Trap Distributions in AlGaN/GaN HEMTs and Its Influence on Transient Analysis of Drain Current," *ECS Journal of Solid State Science and Technology*, vol. 6, no. 11, pp. S3093-S3098, 2017.
- [53] J. Joh and J. A. del Alamo, "A Current-Transient Methodology for Trap Analysis for GaN High Electron Mobility Transistors," *IEEE Transactions on Electron Devices*, vol. 58, no. 1, pp. 132-140, 2011.
- [54] S. Pan, S. Feng, X. Li, X. Zheng, X. Lu, X. He, K. Bai, Y. Zhang and L. Zhou "Identifying the Properties of Traps in GaN High-Electron-Mobility Transistors via Amplitude Analysis Based on the Voltage-Temporary Method," *IEEE Transactions on Electron Devices*, vol. 68, no. 11, pp. 5541-5546, 2021.
- [55] P. Hacke, T. Detchprohm, K. Hiramatsu, N. Sawaki, K. Tadatomo, and K. Miyake, "Analysis of deep levels in n-type GaN by transient capacitance methods," *Journal of Applied Physics*, vol. 76, no. 1, pp. 304-309, 1994.
- [56] X. S. Nguyen, K. Lin, Z. Zhang, B. McSkimming, A. R. Arehart, J. S. Speck, S. A. Ringel, E. A. Fitzgerald, and S. J. Chua, "Correlation of a generation-recombination center with a deep level trap in GaN," *Applied Physics Letters*, vol. 106, no. 10, 2015.
- [57] C. B. Soh, S. J. Chua, H. F. Lim, D. Z. Chi, W. Liu, and S. Tripathy, "Identification of deep levels in GaN associated with dislocations," *Journal of Physics: Condensed Matter*, vol. 16, no. 34, pp. 6305-6315, 2004.