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Abstract—Graph Convolutional Networks (GCNs) have
demonstratedgreatpotentialinanalyzingenergydataforlearn-
ingthecomplexinteractionsanddynamicsforsupportingvarious
functionswithinpowersystemsincludingstateestimation.How-
ever,these modelsaresusceptibletonoiseintheirunderlying
graphstructure.Inthispaper,topologynoisereferstothe
presenceofafewadditionalor missinglinksinthepower
systemgraph model,causedbyinaccurateinformationabout
thestructureofthesystemandstateofthelinesoradversarial
attacksonthegraph’sstructure.Thefocusofthisworkison
evaluatingtheeffectsoftopologynoisesorattacksandtheir
locationontheperformanceofaTemporalGraphConvolutional
Network(TGCN)frameworkforpowersystemstateestima-
tion.TheresultsofthisstudydemonstratetheTGCNframework’s
sensitivityinthepresenceoftopologynoisesandattacksforstate
estimationinpowersystems.Thisstudyprovidesnewinsight
regardingareasofvulnerabilitythatcouldbeexploitedbysuch
disturbances.
IndexTerms—TopologyNoise,PoisoningAttacks,SmartGrids,

StateEstimation,GraphConvolutionalNetworks.

I.INTRODUCTION

Powersystemsarebeingequippedwithlargenumberof
monitoringandsensingdevicesgeneratinglargevolumeof
data.Thedatacollectedfromthesesystemalongwithin-
telligentalgorithmsandmachinelearning(ML)approaches
foranalyzingthemprovidegreatopportunitiesforimproving
andsupportingvariouscriticalfunctionsinpowersystems.
However,asthenewapproachesarebeingdeveloped,it
isessentialtoevaluatetheirsensitivitytovariousformsof
deicienciesandvulnerabilitiestoattacksandmisinformation.
Stateestimationisoneofthecriticalfunctionsinpowersys-

temsthatisessentialforsituationalawarenessandoperationof
thepowersystems.Stateestimationinpowersystemsaretradi-
tionallyperformedusingmodel-basedtechniques[1];however,
recentadvancesinthemonitoringofpowersystemsandlarge
volumeofenergydataandintelligentdataanalytictechniques
haveprovidednewopportunitiestosupporttheseimportant
functions.VariousMLtechniqueshavebeenrecentlyadopted
fordata-drivenstateestimationinpowersystemsincluding
neuralnetwork-basedmodels[2]–[4].Theadvantageofgraph
neuralnetwork(GNN)approachesinthestateestimation
probleminpowersystemsandgenerallyinanalyzingthe
energydataistheircapabilityincapturingtheunderlying
interactionsandstructureswithinthedatausingagraphmodel

[5].Inpowersystems,suchinteractionscanbeduetothe
physicalstructureofthesystem,physicsofelectricityand
variousoperatingrulesgoverningthesystem.Suchinteractions
canbecapturedingraphs,whichhavebeenextensivelyused
invariousanalysisrelatedtopowersystems.Inmanyofsuch
techniques,thephysicalstructureofthepowersystem(its
physicalcomponentsandtheirphysicalconnections)areused
asthegraphmodelofthesystem.However,consideringthe
largescaleofthepowersystemsandtheirstochasticdynamics,
theremaybescenariosinwhichthestateofthewholesystem
maynotbefullyobservableandassuchinaccuraciesinthe
graphmodelofthesystemispossible.Moreover,adversarial
topologyattackscanalsocausedisruptionstothecorrectgraph
modelforthesystem.
Thefocusofthispaperisontopologynoise,whichrefers
tothepresenceofasmallnumberofadditionalormissing
linksinthepowersystemgraphmodel.Inthisstudy,vari-
oustopologicaldisturbances,includingtopologyattacks,are
consideredasinstancesoftopologynoises.Itisshowninthe
literaturethatsmallgraphnoisesorattackscansigniicantly
affecttheperformanceoftheGNNmodels[6].Understanding
theeffectsofsuchnoisesorattacksontheperformanceof
GCNsiscrucialforreliablepowersystemstateestimation.
Ourprimaryobjectiveistoevaluatetheimpactoftopology
noiseandattacksontheperformanceofaTemporalGraph
ConvolutionalNetwork(TGCN)frameworkforpowersystem
stateestimationdevelopedinourearlierworkin[7].Bysys-
tematicallyintroducingandvaryingthelocationsoftopology
noise,thegoalistogaininsightsintothesensitivityofthe
TGCNframeworkinthepresenceofthesedisturbances.The
outcomesofthisstudyareexpectedtoprovidevaluablenew
insightsintothebehaviorandvulnerabilitiesoftheTGCN
frameworkwhenconfrontedwithtopologynoiseorattacks
duringpowersystemstateestimation.Armedwiththisknowl-
edge,decision-makerscanmakeinformedchoicesregarding
theareasthatrequireadditionalsafeguardstomitigatethe
adverseeffectsofsuchdisturbances.
Inthesubsequentsectionsofthispaper,adetailedanal-
ysisoftheexperimentalsetup,methodology,andevaluation
metricsemployedtoassesstheperformanceoftheTGCN
frameworkunderdifferentscenariosoftopologynoiseand
attacksarepresented.Itisdiscussedthattheobtainedresults
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and drawn conclusions shed light on the sensitivity of the
TGCN framework and its implications for state estimation in
power systems.

II. LITERATURE REVIEW

The robustness and security of GNNs against adversarial
topology attacks and topology noise have become critical
concerns. Some of such work are focused on evaluating the
vulnerability of the GNN model to topology attacks [6],
[8], [9]. For instance, the authors in [8] investigated the
vulnerability of GNNs to topology attacks and proposed a
framework to generate adversarial examples. They demon-
strated that targeted attacks, such as link addition or removal,
can significantly degrade the performance of GNNs in tasks,
such as node classification and link prediction.

Some of the related work focus on detecting the topology
noise and attacks [10]. In addition, some efforts are focused on
developing defense mechanisms against topology attacks [11].
In [12], the unexpected changes occurring in the graph topol-
ogy are viewed as a noise in the structural information where
a graph topology optimization method is proposed to improve
the quality of structural information for the semi-supervised
node classification tasks. Another related research [13] intro-
duced a Parameterized Topological Denoising Network (PTD-
Net), which aims to enhance the performance and robustness
of GCNs by eliminating edges that are not relevant to the task
at hand. The authors in [14] introduced a noise-resistant GNN
that can effectively denoise and densify the graph in a super-
vised approach, mitigating the negative impacts of noisy edges
and promoting efficient message passing between labeled and
unlabeled nodes. Transferability of topology attacks have also
been studied in the literature. For instance, in [15], it was found
that adversarial examples generated for one GNN model could
also successfully deceive other GNN models, suggesting the
existence of universal adversarial attacks against graph-based
models.

While topology noise and attacks are prevalent in various
domains and problems, they also pose a threat to models devel-
oped for power systems. For instance, the research presented
in [16] examines the effects of topology poisoning attacks on
the economic operation of smart grids, specifically focusing on
the optimal power flow (OPF). One of the source of topology
noise or attack in power systems is bad data injection attack to
the system model. Several studies in the field of power grids
have focused on detecting false data injection and their counter
measures. For example, in the study presented in [17], a Tem-
poral GNN model is proposed with the ability to locate and
detect instances of false data injection attacks in smart grids.
This model and similar ones, such as [18], assume that the
grids’ topology remains unaffected by malicious adversaries.
In power system state estimation, the authors in [19] conducted
one of the early studies of the graph topology attacks resulted
from the man-in-the-middle attacks that modify data from
specific meters and network switches to deceive the control
center by providing incorrect network topology information.
In another work [20], an Advanced Persistent Threat (APT)

scenario is investigated where the attackers persistently and
gradually manipulate the topology and structural configuration
of the power grid to perturb the smart grid state estimation
after successfully infiltrating the system. Recently, in [21] a
Proactive Topology Obfuscation (ProTO) method is suggested
to prevent active end-to-end topology attacks in network
systems by adversaries, which aims to prevent them from
obtaining the topology information of a target network. Finally,
[22] introduces a GNN model for state estimation in smart
grids. The model utilizes time-synchronized data from Phasor
Measurement Units (PMUs) and effectively handles topology
changes. The authors demonstrated the robustness of their
GNN-based estimator in presence of non-Gaussian measure-
ment noises and topology changes, respectively, by comparing
it with a model-based Least Squares Estimator (LSE) and a
regular Deep Neural Network-based State Estimator.

While many of the existing work in evaluating sensitivity
analysis to topology noise and attacks are focused on the ef-
fects of systematically designed topology attacks and counter-
measures for them in graph-empowered ML techniques, this
work is focused on evaluating the effects of topology noise
or attacks and their locations on the performance of a graph-
empowered ML approach to state estimation in power systems.
This study is an example study that can show vulnerable areas
of power systems with respect to the ML models supporting
their critical functions.

III. METHODOLOGY

A. Topology Noises and Attacks in Smart Grids

In the studies related to topology poisoning and edge per-
turbation in graph-empowered ML techniques, it is important
to define the attack model on the structure or attributes of the
edges and nodes of the graph. The assumption in such models
is that the attacks are systematically designed to mislead the
learning process for the largest impact on the performance.
However, when it comes to topology noise, particularly in
power system models, the inaccuracies in the graph structure
and information may occur randomly due to missing and
inaccurate information, or even false data injected by an
attacker about the system structure. Specifically, the topology
noise in power systems’ models may occur due to the limited
observability on certain parts of the system because of the large
geographical scale of the system, limited or failed monitoring
and measurement devices at certain areas, which can lead to
unknown state of the components (e.g., a transmission line
may have tripped but the system failed to record it), failures
in the communication system responsible for transferring the
data and more.

To model such scenarios, in this work, the original/correct
graph of the system is denoted by G = (V, E) with the set
of N vertices denoted by V representing the buses in the
power system and the set of edges, denoted by E , representing
the power lines in the power system. The noisy topology is
denoted by G′ = (V, E ′), in which the set of edges is different
from the original set of edges E in few extra or missing links
enabling the modeling of different kind of inaccuracies and
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attacks discussed earlier. While in a more general model, nodes
as well as the attributes associated with the nodes and links
may get noisy or be target of attacks, in this work the focus is
on the noise/attack affecting the edges of the topology. To be
specific, eEN

ij denotes the case in which an extra edge between
nodes i and j from V is present in the topology by mistake.
Similarly, eMN

ij denotes the case in which an edge between
nodes i and j from V existed in the original graph G, which
is missing in the considered topology by mistake.

Note that the presented graph model G is one of the
key inputs to the TGCN model, which allows capturing the
structure of interactions in the binary N × N adjacency
matrix of the model A, which is directly derived from G by
considering zero when two nodes are not connected and one
when they are. The topology noise will alter the adjacency
matrix to a noisy one A′, misleading the information sharing,
message passing and graph convolutional functions in many
of the GNN models. In this work, the effects of both missing
and extra links in the power system graph model on the state
estimation performance using the TGCN are studied. Next,
the TGCN model adopted in this work from [7], is briefly
reviewed.

B. TGCN Model for State Estimation

This study builds upon the TGCN framework, which was
first introduced in [7]. In this section, a brief overview of the
model is presented to set the stage for the following sections,
where we delve into the effects of topology noise on the
system state estimation within this framework.

The TGCN model in [7] utilizes a message-passing frame-
work that is based on message passing and sharing information
among neighboring nodes in the model. This model leverages
neighbor information to estimate the state of unobservable
nodes. Unobservable nodes here refer to the nodes that are not
directly monitored using measurement devices, such as phasor
measurement units (PMUs), due to lack or failure of such
devices or communication failure to collect the data from such
devices. Additionally, the model incorporates one-step ahead
prediction by capturing both temporal and spatial interactions
among the measurements. In other words, this TGCN model
exploits both the temporal and spatial information (through
the adjacency matrix of the system) to estimate the state of
the whole system both at current time t and next time instant
t+1. Here the electrical attributes, such as voltage magnitude
Vn and phase angle θn at the buses of the system define the
state of the components. The measurement vector for bus n
at time t is denoted by Zn,t := [Vn,t, θn,t]

T . The state of
the system at time t is defined as Xt := [Vt, θt]

T ∈ R2N .
The goal of the TGCN model is to learn the relationship
between the observations and the state of all the nodes as well
as learning the relationship between the past measurements
and future state of the system. These two relationships can be
captured through two non-linear functions, namely f1 and f2,
to be learnt using the neural network model. A non-linear ag-
gregation function f1, combines the measurement information
from the neighbors of the node to estimate the state of the

unobservable nodes. This can be denoted as Zt = f1(.)Xt.
The non-linear functionf2 captures the temporal relationships
between the state and measurements, which can be denoted as
Xt+1 = f2(.)Xt. Combining these two will show the process
of the TGCN in the form of Xt+1 = F (Zt, Xt), where F (·)
represents the aggregated function responsible for estimating
the system’s state by capturing both the spatial and temporal
information in the measurements.

The TGCN framework comprises two layers. The first layer
is a graph convolution layer that utilizes a message passing
framework to effectively capture the system’s structure and
interactions among its components. The graph convolution
layer can be formulated as Hl+1 = σ(D̃− 1

2 ÃD̃− 1
2HlWl),

where Ã := A+IN , with A representing the adjacency matrix
and IN being the identity matrix of size N . Additionally,
D̃ := IN

∑
jÃi,j serves as the degree matrix. Here, σ(·)

denotes the sigmoid activation function, and Hl represents
the output of layer l with weights Wl. The second layer
of the TGCN framework is a Gated Recurrent Unit (GRU)
layer, which is responsible for capturing temporal dependen-
cies within the time-series data. The TGCN process can be
summarized as F (Zt, A) = σ(ÂReLU(ÂZtW0)W1), where
Â := D̃− 1

2 ÃD̃− 1
2 . W0 ∈ Rβ×δ and W1 ∈ Rδ×τ are the

model weights with β, δ, and τ representing the batch size,
hidden units, and prediction length, respectively. More detailed
information about the model’s parameters, including the reset
gate, update gate, memory unit, hidden state, and model bias,
can be found in [7].

IV. PERFORMANCE EVALUATION UNDER TOPOLOGY
NOISE

This section presents the performance evaluation of the state
estimation using the TGCN framework under various scenarios
of topology noise including missing and extra edges in the
topology at different locations in the system.

To perform this evaluation, the IEEE 118 bus system
has been utilized to generate a large dataset of synthesized
PMU time-series through simulation using MATPOWER [23].
Following the methodology described in [7], the dynamics and
temporal aspects are incorporated into the simulations by con-
sidering load profiles obtained from the New York Independent
System Operator (NYISO) [24] sampled at a frequency of
30Hz. The recorded state variables in this simulation consist
of time-series data for bus voltage magnitudes and angles.
The IEEE 118 bus system consists of 186 transmission lines,
including 7 dual links connecting the buses. Treating each dual
link as individual link, the total number of links in the system
becomes 179.

In order to better understand the effects of the location
of topology noise, the missing and extra edge locations are
organized as following: (1) Incorrect Missing Edge Scenario:
In each scenario one node (bus in the power system) is
considered as the target location of the noise and the lines
connected to it are removed one by one in the graph model
to form the G′. The performance of the state estimation
using TGCN with the generated G′ for each node is averaged
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over the missing line scenarios at that node. This scenario is
examined at every bus of the system. (2) Incorrect Extra Edge
Scenario: In each scenario one node is considered as the target
location of the noise and one line is added at a time between
the target bus and nearby buses within a predetermined radius,
R, which is selected to ensure the presence of at least one
neighboring bus in close proximity to the target bus. This
proximity is necessary to add the deceptive lines between
them, which results in a new G′ for each extra added line. In
this work, the radius is selected to be R = 500 based on the
geographical coordinates of the buses shown in Fig. 2. Using
this approach, 406 new links were considered to be added into
the original graph of the system, G. The performance of the
state estimation using TGCN with the generated G′ for each
node is averaged over the extra line scenarios at that node.
This scenario is examined at every bus of the system.

Fig. 1: Average accuracy of the TGCN framework as a function of
topology noise/attack in the form of link removal and link addition at
different buses of the IEEE 118 bus system. Note that the first data
point represents the accuracy for the model with original topology G

The TGCN model’s performance is evaluated via RMSE
and accuracy metrics and is shown in Fig. 1. This figure
illustrates the average accuracy of the TGCN framework for
the cases of incorrect missing edge scenario, referred to as
Link Removal and incorrect extra edge scenario, referred to
as Link Addition. While the results shown in Fig. 1 seem to
exhibit a random pattern as they are organized by the location
of the noise, i.e., bus index, there are some key observations
to pay attention to. First, the drop in the performance of the
TGCN framework for state estimation is more in the case of
link removal as some essential topology information is lost
due to the noise. Moreover, both in the case of link removal
and link addition, the location of the noise/attack plays a
key role in determining the severity of the impact. While the
performance is minimally affected in certain locations, there
are few locations that show more drops in the performance of
the state estimation. This may suggest the need for improving
the protection and monitoring services in such locations to
prevent noise or attacks in more sensitive locations.

While these are important observations, the results presented
in Fig. 1 do not offer insights into why certain locations could
be more sensitive to topology noise and attacks. As such,
more investigation is necessary in understanding the relation

Fig. 2: Color-mapped representation of the IEEE 118 bus system
topology illustrating the average accuracy of the TGCN framework
when the noise in the topology is localized in one-hop vicinity of
each bus. The state estimation accuracy is displayed under (a) link
addition and (b) link removal scenarios.

between the noise sensitivity and the structure of the system.
Figure 2 displays the IEEE 118 bus system topology in which
the average accuracy of the state estimation under link addition
(Fig. 2-a) and link removal (Fig. 2-b) scenarios are shown
using a color-mapped over the buses of the system. This figure
reveals that while certain locations are more sensitive to link
removal, they are less sensitive to link addition. However, it is
still not clear how the topology noise is related to the features
of the system as clearly there is no correlation between the
performance and the geographical location of the buses.

Next, the performance of the model is evaluated with respect
to the location of the topology noise as a function of a
topological feature of the buses, namely their degree (i.e.,
number of connection to adjacent buses in G). In Fig. 3, the
link removal and link addition scenarios, shown in Fig. 1, are
sorted based on the degree of the buses. It can be observed that
the state estimation model is less sensitive to topology noise
at buses with lower degrees compared to those with higher
degrees. In both scenarios of link removal and addition, up to
the degree value of six, the accuracy of the state estimation
decreases as the degree increases. However, for buses with
higher degrees, there is no distinguished pattern in the model’s
performance although the accuracy in such cases are less than
the topology noise at buses with less degree. Although the
decreasing pattern does not fully capture the overall trend in
the presented results in Fig. 3, it can be observed that topology
noises at higher degree buses can impact the performance
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more.

Fig. 3: Accuracy of TGCN framework for state estimation in the
IEEE 118 bus system to reflect the impact of topology noise/attacks
through link removal and addition as a function of target bus degree.

V. CONCLUSION

The vulnerability of the Graph Neural Network models to
noise in the underlying graph structure is a concern, especially
when the model is supporting critical functions, such as state
estimation, in critical systems, such as power systems. Our
study aimed to evaluate the effects of topology noise, which
refers to the presence of additional or missing links in the
power system graph model due to inaccurate information or
deliberate adversarial attacks, and their location on the perfor-
mance of a Temporal Graph Convolutional Network (TGCN)
framework for power system state estimation. Through our
analyses, it was discovered that topology noise in the form
of missing links in the graph have more severe impact on
average compared to topology noise in the form of incorrect
extra edges in the graph. Moreover, it was observed that the
degree of a bus, representing the number of connections it
has with other buses, plays a crucial role in the network’s
response to topology noises. By understanding the sensitivity
of the TGCN framework to topology noise or attacks, informed
decisions can be made and appropriate measures can be taken
to enhance the robustness and security of power systems in
the face of potential threats.
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