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A B S T R A C T

Knowing local concentration distributions is important for transport and mixing, particularly in porous media,
yet a comprehensive understanding of them remains a challenge. Computing advancements have enabled high-
resolution pore-scale simulations, offering an unprecedented opportunity for in-depth investigation of mixing.
In this study we use simulation data to examine concentration distributions at the pore scale in the context of
longitudinal (pseudo-one-dimensional) solute transport through a porous column. These distributions arise in a
single column from heterogeneous flow at the pore-scale, which gets averaged out when upscaled and are not
with reference to statistics across multiple random realizations. To measure these distributions, we first devise a
semi-analytical approach to estimate the mean effective transport velocity profile for a non-uniform Darcy-scale
fluid velocity, which unavoidably occurs due to the presence of lateral boundaries. This development allows
sampling micro-scale concentrations over a moving surface that possesses a well defined Darcy-scale mean
concentration, enabling empirical computation of the local concentration distribution. As an added benefit
we find that our approach allows for the estimation of transverse dispersion coefficients, which is not typical
in traditional column experiments. The implemented approach can estimate it via inverse modeling, and it
agrees closely with previously published experimental data across the range of Peclet numbers we studied.
We found that the measured pore-scale concentration probability density functions are best represented by a
beta distribution, thus validating this longstanding hypothesis with direct evidence. Furthermore, we propose
a model to describe the temporal and spatial evolution of the local concentration pdf, as well as its Péclet
number dependence.
1. Introduction

Prediction of the environmental ramifications of groundwater con-
tamination should include knowledge of the spatial extent of a plume,
its temporal evolution, and prediction of the range of potential con-
centrations. Detailed knowledge of the distribution of concentrations is
particularly important when trying to understand mixing processes and
possible chemical reactions, which are typically nonlinear in nature.
Using the classical Advection-Dispersion equation is not always, if ever,
reliable. This is because of the presence of heterogeneity and incom-
plete mixing at all scales that is not adequately accounted for (Kapoor
et al., 1997; Gramling et al., 2002; Tartakovsky et al., 2009), which
an lead to a noticeable overestimation of reaction rates as demon-
trated by experiments (Raje and Kapoor, 2000; Gramling et al., 2002;
Anna et al., 2014) and numerical studies (Rubio et al., 2008; Liu and
Mostaghimi, 2018; Sole-Mari et al., 2022). Yet, the accurate prediction
of reactive transport is important across diverse applications, including
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contaminant transport, geological carbon sequestration, and nuclear
waste disposal to name a few (Liu and Mostaghimi, 2018; Valocchi
et al., 2019).

Recent high performance computing, high-resolution pore-scale
simulations that are capable of capturing the details of this incomplete
mixing behavior offer an unprecedented opportunity to investigate
such phenomena in depth. In particular, the simulations presented
in Sole-Mari et al. (2022) recreate a minimal representative porous
media column experiment. They used high performance computing
to simulate conservative transport in a column with high spatial and
temporal resolution. While previous studies have simulated incomplete
mixing and reactions at pore scales (Bijeljic et al., 2013; Alhashmi et al.,
2015; Liu and Mostaghimi, 2018), they were performed on relatively
small domains with a dimension of a few millimeters that might not
be enough to allow for the complete evolution of mixing dynamics.
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The Sole-Mari et al. (2022) simulations are, to our knowledge, the first
o attain a scale representative of a column experiment.
Multiple studies have developed mathematical models for the evolu-

ion of spatio-temporal fluctuations of local-scale concentrations under
oth conservative and reactive transport in porous media (Bellin and
onina, 2007; Dentz and Tartakovsky, 2010; Bellin et al., 2011). For the
sake of parsimony, as well as relevance for many systems of interest, a
commonly studied reactive transport scenario is the limiting case where
reactions are instantaneous and irreversible, and all reacting species
have an identical seepage velocity and diffusion coefficient. The reason
for this is that the full details of the reactive scenario can be predicted
from purely conservative transport data. Thus, if we can accurately
predict fluctuations in conservative transport concentrations, it also
enables us to comprehend them in a reactive setting.

An increasingly successful but to date unsubstantiated modeling ap-
proach is to represent concentration variability within a representative
elementary volume as a probability density function assuming a beta
distribution. The advantage of this distribution is that it is a highly
flexible bounded function with only two shape parameters. Oates and
Harvey (2007) proposed partial-differential equations for the evolution
of the mean and variance of concentrations and calibrated the beta
distribution parameters to fit experimental reactive data in a heteroge-
neous porous medium. Chiogna and Bellin (2013) derived an analytical
xpression of the beta pdf variance decay over time to describe re-
ctive transport in porous media. One drawback of their approach is
he necessity to calibrate their model parameters using an existing
oncentration profile. In their study, they used the data of Gramling
t al. (2002) and successfully applied their model to it. However,
hile their model successfully predicted observed mean behaviors, the
nderlying assumption of a beta distribution was not explicitly tested
nd validated.
To understand incomplete mixing, it is beneficial to investigate

he mixing interface where physical contact between reactive species
akes place. This interface is distorted by the velocity field in hetero-
eneous systems. Several theoretical approaches exist to explore this.
or example, there exists (i) volume averaging (Bolster et al., 2011)
hat can approximate the concentration distribution of a conservative
pecies in order to quantify nonlinear mixing effects; (ii) estimating
he effective dispersion coefficient of the Green’s function to account
or the role of transverse diffusion, which can be used to predict
ixing quite accurately (Perez et al., 2019); (iii) a lamellar depiction
f mixing, where a scalar mixture can be viewed as a collection of
amellae undergoing changes through stretching, diffusion, and coales-
ence (Le Borgne et al., 2015) and (iv) a dual-scale framework (coarse
nd local), where the concentrations at local scale undergo a process of
elaxation as they gradually converge towards the concentration values
bserved at the coarse scale (e.g. Multi Rate Interaction by Exchange
ith the Mean (MRIEM) model (Sole-Mari et al., 2020)).
While Darcy-scale heterogeneities arise in many experimental and

atural settings, it is also important to note that the presence of
oundaries can have a non-trivial influence on the flow and transport in
ny laboratory experiment or numerical simulation. A typical example
n laboratory experiments involving granular materials is the significant
and often undesired) alteration of grain arrangement, permeability,
nd fluid velocity near the lateral walls. In a numerical setting, bound-
ry effects can be reduced by imposing a fully periodic boundary
ondition (Bazarin et al., 2021). While it may solve the boundary prob-
em, some might argue it compromises a true description of reality in
ther ways. However, our main point is that boundary effects remains
ften undiscussed issue in both simulations and experiments even when
reventative measures are taken. In this paper, to tackle this, we pro-
ose a semi-analytical approach for approximating the average effective
ransport velocity profile in the presence of non-uniform fluid velocity
t the Darcy scale. We apply this approach to the simulations of Sole-
ari et al. (2022) to extract the local concentration variability along
2

he mixing interface. Then, we apply Maximum Likelihood Estimation
MLE) to test if the beta pdf is indeed the most adequate representation
f the local concentration distributions. Finally, we provide a mathe-
atical description to estimate the change in the variance of the local
oncentration distribution with time and space.

. Simulation

Many numerical simulations of flow and transport in porous media
ound in the literature are either two dimensional (Acharya et al., 2007;
olle et al., 2013), thus limiting the degrees of freedom relative to
eal settings, or, due to computational costs, three-dimensional with
mall domain sizes (Bijeljic et al., 2013; Alhashmi et al., 2015; Liu and
ostaghimi, 2018) thus not capturing the full development of mixing
ronts over sufficient time to attain asymptotic behavior. In this paper,
e used the pre-existing pore-scale simulations from Sole-Mari et al.
2022) to conduct our analysis. In this section we provide a brief
verview of this simulation set, but for full details we direct the reader
o Sole-Mari et al. (2022).

.1. Characteristics of the column simulation

To create a random porous medium that resembles a column such
s the one in the experiment of Gramling et al. (2002), spherical
olid grains with a uniform diameter 𝑑0 were allowed to settle by
ravity into an empty column using Blender. This is an open-source
D computer graphics and animation software with rigid body physics
imulation capabilities. Then an outer portion of the domain was cut
ff and discarded in order to get rid of boundary effects on the packing
eometry and properties.
The simulations were conducted using various utilities of the open-

ource Computational Fluid Dynamics (CFD) software OpenFOAM. A
ubic regular mesh with a cell size of 𝑑0∕60 was transformed into
n unstructured mesh using the snappyHexMesh utility to accurately
apture the grain-fluid interface. Fig. 1 shows the full column dimen-
ions, a detailed sample portion of it and the finite volume mesh. This
nstructured mesh was used to solve the steady-state, incompressible
avier–Stokes equations

𝑢𝑢𝑢 ⋅ ∇)𝑢𝑢𝑢 = 𝜈∇2𝑢𝑢𝑢 − 1
𝜌
∇𝑝 , (1)

where the velocity field is denoted by 𝑢𝑢𝑢 (𝐿𝑇 −1)), kinematic viscosity
by 𝜈 (𝐿2𝑇 −1), and the pressure gradient by ∇𝑝 (𝐿2𝑇 −2). No-slip bound-
ry conditions are enforced at the fluid-grain interface. Meanwhile,
full-slip boundary condition was applied to the column’s transverse
oundaries. This condition enforces a zero-shear stress at the side walls,
iming to minimize their influence within the bounded domain on flow
nd transport dynamics.
Even though the Reynolds number was about 0.2, which would fall

nto the Stokes flow regime where inertial forces are much smaller than
he viscous forces [(𝑢𝑢𝑢 ⋅∇)𝑢𝑢𝑢 ≪ 𝜈∇2𝑢𝑢𝑢], the advective inertial term was still
olved for in the simulation.

.2. Conservative and reactive transport

After the flow field has been solved at the pore scale, the advection-
iffusion equation was used to simulate the transport of a conservative
calar. This reads
𝜕𝐶
𝜕𝑡

= −𝑢𝑢𝑢 ⋅ ∇𝐶 +𝐷∇2𝐶, (2)

where the concentration is denoted by 𝐶 (𝑀𝐿−3), and the diffusion
coefficient by 𝐷 (𝐿2𝑇 −1).

The inlet boundary condition is a continuous injection with a Heavi-
side step function initial condition located a distance of 4.5 𝑑0 from the
inlet. Meanwhile, the outlet boundary condition is a Neumann bound-

ary condition with zero-gradient, with side walls enforcing no-flux
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Fig. 1. Full simulation column dimensions (9𝑑0, 9𝑑0, 188.8𝑑0) and an example portion of it (S1) Finite volume unstructured mesh that was used in the simulation (S2) Slice cut
f the domain at the mixing interface for conservative transport (S3) Longitudinal cross section of normalized concentrations for conservative transport.
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onditions. Sections 2 and 3 (S2 and S3) in Fig. 1 depict sample cross-
ectional and longitudinal views of the moving interface of normalized
oncentrations for conservative transport. Six grain Péclet number cases
ith 𝑃𝑒 = 10, 32, 100, 316, 1000, and 3160 were simulated by
hanging the molecular diffusion coefficient, where the grain Péclet
umber is defined as:

𝑒 = 𝑢𝑑0∕𝐷 . (3)

his range of Péclet numbers encompasses regimes where diffusion
ignificantly influences transport, transitioning to regimes where ad-
ection dominates.
Conservative transport can be reinterpreted to understand reactive

ransport. First, define two reactants A (invading) and B (resident),
hose product is C. By assuming an instantaneous irreversible reaction,
ne can define two reaction independent, conservative species 𝑢𝐴 and
𝐵 , as:

𝐴 = 𝐶𝐴 + 𝐶𝐶 , (4)

𝐵 = 𝐶𝐵 + 𝐶𝐶 . (5)

y simulating conservative transport, the reactive counterpart can be
valuated by stating that due to the instantaneous nature of the reaction
and B cannot coexist at the same point in space and time; thus the
oncentration of product C can be calculated as:

𝑐 (𝑧, 𝑡) = 𝑚𝑖𝑛(𝑢𝐴(𝑧, 𝑡), 𝑢𝐵(𝑧, 𝑡)) . (6)

his will be used to quantify the reaction product C, highlighting
ny incomplete mixing. Additionally, in this context, the 0.5 iso-
oncentration line from the conservative transport simulations is anal-
gous to the mixing interface between the reactants. Therefore, we will
se these terms interchangeably throughout the paper.

. Semi-analytical approach to track mixing interface deformation

We aim to investigate the spatial and temporal evolution of the local
robability density function (pdf) of concentrations under upscaling to
3

arcy-scale-uniform flow and transport. At that scale, our column is
odeled as one-dimensional, provided that the flow really is uniform
side from the random fluctuations exerted by pore-scale features. Un-
er such conditions, one could examine for instance the thin transverse
lice of medium over which the mean concentration at a given time is
̄ = 0.5, and compute the local concentration distribution around that
ean value, which characterizes pore-scale concentration fluctuations.
Unfortunately, the condition of a uniform Darcy flow is extremely

ifficult to fully achieve in a bounded medium such as our column,
here the typical flow profile over a cross-section exhibits some bound-
ry effect. Despite the efforts implemented towards minimizing it by (i)
nsuring stationary statistics for the grain packing and (ii) imposing a
ull-slip boundary condition at the lateral walls (see Sole-Mari et al.
2022)). Here, we clarify that the boundary effect we note arises from
the presence of the lateral walls themselves. Despite having a full-
slip boundary conditions, grains intersecting the boundary still exert
a no-slip boundary condition and the imposition of no flow across
the boundaries, leads to an average slowdown near the lateral walls,
as shown by the longitudinally averaged velocity profile in Fig. 2(b).
Consequently, the mixing interface in the transport simulations has a
tendency to become curved (faster in the center than in the corners) as
time advances (see Fig. 1 (S3)).

The concentration distribution over a flat slice of medium, as in
Fig. 1 (S2), will therefore contain information about both the boundary
effect and the pore-scale fluctuations, which is difficult to disentangle.
To prevent this, we aim to replace the flat-slice sampling, which is
based on the assumption of a uniform Darcy-scale flow, with a curved
slice that deforms following the apparent Darcy-scale velocity profile of
the mixing interface. In order to do this, we first need to conceptually
separate the scales. We distinguish the Darcy-scale velocity profile
(which includes the boundary effect but is otherwise smooth) from
the pore-scale velocity fluctuations by noting that the former would
emerge from averaging the flow field over a large number of random
realizations of the grain packing, whereas the latter would be washed
out by this averaging. Since such data from multiple realizations are
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not available, we use the longitudinally averaged velocity profile as a
proxy for the Darcy-scale velocity profile. Then, in order to derive the
apparent velocity profile of the mixing interface, we model Darcy-scale
transport as (i) longitudinal advection and (ii) transverse dispersion.
The latter is an adjustable parameter. We ignore longitudinal dis-
persion, focusing solely on local transverse dispersion as the process
responsible for exchanging solute mass between different streamlines
(Oya and Valocchi, 1998; Cirpka and Kitanidis, 2001).

Our approach is conceptually similar to contaminant source iden-
ification methods described in the literature (e.g. Wilson and Liu
1994) and Liu and Wilson (1995)). They solved the transport equation
sing stochastic differential equations backwards in time, keeping the
ispersion part positive while reversing advection. However, unlike the
sual focus on longitudinal positions in the literature (Atmadja and
agtzoglou, 2001), we aim to estimate the expected transverse posi-
ion. We first note the relationship between the Darcy-scale transport
olution for a Heaviside step function and the one for a Dirac delta
unction: the latter is the longitudinal spatial derivative of the former.
helpful analogy is to view the continuous injection; with Heaviside
tep function initial condition; as a cumulative density function (cdf)
nd the pulse injection result as its pdf. As such, the 𝑐 = 0.5 isosurface
or the former will correspond to the median longitudinal position of
he latter.
Let us consider the concentration field using a particle representa-

ion. Then, using the mean position as an approximation for the median
osition, we can thus assume that the Darcy-scale mixing interface
ongitudinal position 𝑧𝑖𝑡𝑓 (𝑡; 𝑥, 𝑦) is given by the expected value of 𝑧
mong all solute particles with transverse position 𝑥𝑡, 𝑦𝑡 at time 𝑡, with
ll particles originating from a Dirac delta function initial condition.
The expected 𝑧-position of a particle which lies on 𝑥𝑡, 𝑦𝑡 at time 𝑡

an be derived from its expected history of velocities, which, under
he assumption of a longitudinal Darcy-scale velocity profile that is
onstant in 𝑧, is a direct consequence of the probabilistic and temporal
istribution of 𝑥, 𝑦 positions. Neglecting for now the domain’s bounds,
he position history distribution 𝑃 (𝑥, 𝑦, 𝑡)|𝑥𝑡 ,𝑦𝑡 can be obtained by inte-
rating the Green’s function (Polyanin, 2001) for diffusion over time
nd assuming a Fickian transverse dispersion as:

(𝑥, 𝑦, 𝑡)|𝑥𝑡 ,𝑦𝑡

= 1
𝑡 ∫

𝑡

0

1
4𝜋

√

𝐷𝑥𝐷𝑦.(𝑡 − 𝜏)
exp

(

−(𝑥 − 𝑥𝑡)2

4𝐷𝑥(𝑡 − 𝜏)
+

−(𝑦 − 𝑦𝑡)2

4𝐷𝑦(𝑡 − 𝜏)

)

𝜕𝜏 . (7)

The normalization by 𝑡 ensures that the spatial integral of 𝑃 (𝑥, 𝑦, 𝑡) is
1, making it a proper probability density estimate. Here we denote
two different transverse dispersion coefficients (𝐷𝑥, 𝐷𝑦) so the solution
s generalized to anisotropic cases. By solving the integral in Eq. (7)
y substitution and recalling the definition of the exponential integral
1(𝜉),

1(𝜉) = ∫

∞

𝜉

1
𝑡
.𝑒𝑡𝜕𝑡 . (8)

e get the unbounded solution of (7) as:

(𝑥, 𝑦, 𝑡)|𝑥𝑡 ,𝑦𝑡 =
1

4𝜋
√

𝐷𝑥𝐷𝑦𝑡
𝐸1

(

(𝑥 − 𝑥𝑡)2

4𝐷𝑥𝑡
+

(𝑦 − 𝑦𝑡)2

4𝐷𝑦𝑡

)

. (9)

The boundary condition at the external walls (no diffusive flux) can
e implemented via reflection of the Green’s function (Szymczak and
add, 2003). To emulate reflection, a number 2𝑛 of virtual sources can
be placed outside the domain 𝑥 ∈ [−𝑘, 𝑘] and 𝑦 ∈ [−ℎ, ℎ], where ℎ and
𝑘 are the distances from the domain center to the 𝑥 and 𝑦 boundaries
respectively:

𝑃 (𝑥, 𝑦, 𝑡)|𝑥𝑡 ,𝑦𝑡 =
𝑛
∑

𝑖=−𝑛

𝑛
∑

𝑗=−𝑛

1
4𝜋

√

𝐷𝑥𝐷𝑦𝑡
𝐸1

(

(𝑥 − 𝑥𝑡 − 2𝑖𝑘)2

4𝐷𝑥𝑡
+

(𝑦 − 𝑦𝑡 − 2𝑗ℎ)2

4𝐷𝑦𝑡

(10)

here, theoretically, 𝑛 → ∞. In practice, 𝑛 is sufficiently large so that
he volume under surface (10) within 𝑥 ∈ [−𝑘, 𝑘] and 𝑦 ∈ [−ℎ, ℎ] is
4

s

qual to the total volume under the unbounded surface (9). Eq. (10) is
he general solution for the bounded (𝑥, 𝑦) position history distribution
or any particle found on (𝑥𝑡, 𝑦𝑡) at time 𝑡. At time 𝑡 → 0 the particle
osition history takes the shape of a Dirac delta 𝛿(𝑥−𝑥𝑡, 𝑦−𝑦𝑡), assigning
robability one to the singular position (𝑥𝑡, 𝑦𝑡). Hence, in this case the
article carries the velocity 𝑢𝑜(𝑥𝑡, 𝑦𝑡). At time 𝑡 > 0, the warped surface
elocity, for any given transverse position 𝑥𝑡, 𝑦𝑡, can be calculated via
onvolution of (I) 𝑃 (𝑥, 𝑦, 𝑡)|𝑥𝑡 ,𝑦𝑡 (Eq. (10)) and (II) the mean longitudinal
elocity 𝑢0(𝑥, 𝑦) (Fig. 2(b)) as:

𝑤𝑎𝑟𝑝𝑒𝑑 (𝑡)|𝑥𝑡 ,𝑦𝑡 = ∬𝛺
𝑃 (𝑥, 𝑦, 𝑡)|𝑥𝑡 ,𝑦𝑡𝑢𝑜(𝑥, 𝑦)𝜕𝑥𝜕𝑦 ≃

∑

(𝑃 (𝑥, 𝑦, 𝑡)|𝑥𝑡 ,𝑦𝑡𝑢𝑜(𝑥, 𝑦))
∑

𝑃 (𝑥, 𝑦, 𝑡)|𝑥𝑡 ,𝑦𝑡
.

(11)

To get the velocity of the entire warped surface, simply apply the
previous approach to a raster that covers the domain width 𝛺 (in our
case 𝑥𝑡 ∈ [0 9𝑑0], 𝑦𝑡 ∈ [0 9𝑑0]). We found a raster resolution of approx-
imately 0.25 to 0.5 grain radii to be sufficient. For large 𝑡 (i.e., 𝑡 ≫
max(𝑘2∕𝐷𝑥, ℎ2∕𝐷𝑦)), 𝑃 (𝑥, 𝑦, 𝑡)|𝑥𝑡 ,𝑦𝑡 approaches a uniform distribution
with a 1

4𝑘ℎ probability. Thus, the time-averaged longitudinal velocity
at any (𝑥, 𝑦, 𝑡, 𝑥𝑡, 𝑦𝑡) can be approximated by the global spatial mean
elocity 𝑢̄. This implies that the rate of longitudinal separation between
ny two random points (𝑥𝑡1, 𝑦𝑡1), (𝑥𝑡2, 𝑦𝑡2) goes to zero, suggesting that
he deformation of the interface will eventually stagnate.
The same approach can also be used for a two-dimensional domain,

hat is a one-dimensional cross-section. In this case, the transverse
osition history distribution 𝑃 (𝑦, 𝑡)|𝑦𝑡 (assuming a mean flow along the
axis) would be:

(𝑦, 𝑡)|𝑦𝑡 =
∞
∑

𝑛=−∞

|𝑦 − 𝑦𝑡 − 2𝑛ℎ|

4
√

𝜋𝐷𝑦𝑡
𝛤𝛤𝛤
[

−0.5,
(𝑦 − 𝑦𝑡 − 2𝑛ℎ)2

4𝐷𝑦𝑡

]

, (12)

where 𝛤 [𝜂, 𝑧] is the upper incomplete gamma function, defined as:

𝛤 [𝜂, 𝑧] = ∫

∞

𝑧
𝑡𝜂−1𝑒−𝑡𝜕𝑡 . (13)

Fig. 2(a) depicts 𝑃 (𝑥, 𝑦, 𝑡)|𝑥𝑡 ,𝑦𝑡 (i.e., the solution of Eq. (10)) as a
contour plot, for (𝑥𝑡, 𝑦𝑡) = (0, 0) and 𝑛 = 2, with arbitrary values
of 𝐷𝑥 = 𝐷𝑦 and at an arbitrary time 𝑡. Fig. 2(b) shows a heatmap
f the mean longitudinal velocity 𝑢𝑜(𝑥, 𝑦). Convolution between these
wo functions returns the time-averaged particle velocity at (𝑥𝑡, 𝑦𝑡) and
ime 𝑡, which, as explained above, closely corresponds to the apparent
elocity of the 𝑐 = 0.5 iso-concentration surface.
The value of the transverse dispersion coefficients 𝐷𝑥, 𝐷𝑦 is un-

nown a priori. Since the medium’s geometry is fully isotropic, we can
ssume 𝐷𝑥 = 𝐷𝑦 = 𝐷𝑇 . Then the value of 𝐷𝑇 can be determined by
nverse modeling, in our case by finding the value that minimizes the
oot mean square deviation between the semi-analytical solution and
he actual iso-concentration surface from the simulation data.
An unintended, yet powerful, consequence of this approach is

hat we can exploit the inadvertent influence of the boundaries to
et the added benefit of estimating transverse dispersion from ‘‘one-
imensional’’ column data by accounting for measurable transverse
ffects. We note that this approach is not limited to this specific
ean-longitudinal velocity profile; it is equally suitable for any other
on-uniform Darcy-scale velocity profiles. As a check for our method
e compare out estimates of transverse dispersion to published values.
n a comprehensive study, Delgado (2007) consolidated transverse
ispersion measurements from 15 different papers and experiments.
ver the range of Péclet numbers simulated, our measurements of
ransverse dispersion coefficients, represented by the red circles in
ig. 3, align closely with the available data..
Fig. 4 offers an illustrative direct comparison between the con-

entration distribution sampled by a transverse plane that moves at
he mean longitudinal velocity versus the corresponding distribution

ampled by a warped surface that accounts for the boundary effect as
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Fig. 2. Implementation of the semi-analytical solution to calculate the mixing interface deformation, (a) Sample solution of Eq. (10) for a point at the center of the domain (𝑥𝑡 , 𝑦𝑡)
at an arbitrary time with the virtual sources field. (b) Collapsed velocity profile in the 𝑧-direction of the simulation.
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Fig. 3. Transverse dispersion (𝐷𝑇 ∕𝐷𝑚) versus 𝑃𝑒𝑚 quantified using semi-analytical
solution compared to data from Delgado (2007).

detailed here. The former results, as shown in Fig. 4(a), are clearly
influenced by a mean inward concentration gradient, leading to a
probability density function estimate that does not accurately represent
pore-scale incomplete mixing in a one-dimensional uniform velocity
interpretation. Both an overestimation of the variance and artificial
skewness are observed in the distribution. On the other hand, usage
of the warped sampling surface (figure 4(b)) is able to decouple the
pore-scale incomplete mixing from the boundary distortion. In this
case, the pdf is much more symmetric and has lower variance. A more
thorough investigation is carried out in the next section in order to ro-
bustly identify the form of pdf that best represents these concentration
distributions.

Lastly, we note that the incomplete mixing reported in the litera-
ture (Raje and Kapoor, 2000; Gramling et al., 2002; Chiogna and Bellin,
2013; Sole-Mari et al., 2022) is likely often overestimated. To assess
this, we compare the one-dimensional reaction product concentration
𝐶𝑐 , as quantified by the Standard Pore-Scale Mixed (SPSM) model using
Eq. (6) (Gramling et al., 2002) to the observed concentrations both
with and without considering the boundary effect. The SPSM model
assumes that concentrations are effectively ‘‘well mixed’’ at the pore
scale. When the wall effects are relaxed using the approach outlined
in this section, one observes that the one-dimensional reaction product
concentration aligns more closely with the well-mixed estimation, as
shown in Fig. 4(c). We still observe incomplete mixing, but just less of
it.
5

4. Probability density function

Due to the heterogeneous nature of velocity fields in porous media
which leads to mixing-limited reactions, quick and reliable predictions
of reactive transport are often unavailable. While simulations like
those of Sole-Mari et al. (2022), where flow and transport are fully
esolved at the pore scale, are great test cases to explore reactive
ransport in porous media, computational costs render them impractical
or common applications. Here we use these simulations to develop
nd test an upscaled stochastic model based on the concentration
robability density function that captures the effect of heterogeneity
nd incomplete mixing.
We use the semi-analytical approach described in the previous

ection to determine the Darcy-scale geometry of the mixing interface,
enoted as 𝑧𝑖𝑡𝑓 (𝑡; 𝑥, 𝑦)|𝑐=0.5, and with this we obtain the pore-scale
onservative concentrations 𝑢𝐴. We sample concentrations within a
mall distance of ±0.25𝑑0 from 𝑧𝑖𝑡𝑓 (𝑡; 𝑥, 𝑦)|𝑐=0.5.
Fig. 5 (left) shows the temporal evolution of the pore-scale con-

entration pdf at 𝑧𝑖𝑡𝑓 (𝑡; 𝑥, 𝑦)|𝑐=0.5 for Pe=100. At early times, the pdf
s spread out with two peaks at concentration values 0 and 1. As
ime increases, the distribution becomes unimodal and concentrated
round the mean. We also note that there is a brief intermediate time
n which the distribution becomes quasi-uniform as can be seen from
ts representation at 2.5𝑡∗.
We use Maximum Likelihood Estimation (MLE) to optimize parame-

ers of a broad family of probability density functions to best match the
bserved distributions of 𝑢𝐴 across the simulated Péclet number cases.
e test 20 different bounded and unbounded continuous pdfs (the full
ist is reported in Fig. 5 (right)).
By optimizing the likelihood function across various times (namely

7 points in time comprising the different regimes) we demonstrate
that among the 20 distributions, the beta distribution emerges as the
most reliable and representative probability density function (see Fig. 5
right)). The Kumaraswamy pdf is also an adequate representation,
hich is not surprising as it is closely related to the beta pdf. Although
t has a simpler, closed-form probability density function, its mean and
ariance formulas are more complicated than those of the beta distribu-
ion. Additionally, the beta pdf presents less outliers, as shown in Fig. 5
(right). Lastly, the model we propose in Section 5, which is based on
the beta pdf assumption, can be adapted to obtain Kumaraswamy shape
parameters if needed. The truncated normal distribution becomes a
reliable approximation for the distribution at late times . However, it
is inadequate for earlier times, or when sampling mean Darcy-scale
concentrations other than 0.5 (𝑐 ≠ 0.5).

With this in mind, we proceed assuming that the pore-scale concen-

tration fluctuations are best captured by the beta probability density
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Fig. 4. Direct comparison between flat and warped sampling surfaces. (a) Sample cube of the domain with a flat slice located at the first moment showing the sampled concentrations
distributions and probability density function (b) The same cube in (a) but illustrating the warped surface geometry and coordinates, it also shows the pore-scale concentration
distribution and probability density function disentangled from the boundary effect (c) Measured one-dimensional reaction product concentration profiles at Peclet 10 with and
without the boundary effect compared to the ideal well-mixed behavior at 25.7, 77.2, and 128.7 advection times.
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function. It is supported on the interval [0 1] and is defined using
two shape parameters 𝛼 and 𝛽 (Elderton, 1906) as:

𝑝𝛽𝑒𝑡𝑎(𝑢𝑎) =
𝑢𝛼−1𝑎 (1 − 𝑢𝑎)𝛽−1

𝐵(𝛼, 𝛽)
, (14)

here 𝐵(𝛼, 𝛽) = 𝛤 (𝛼)𝛤 (𝛽)∕𝛤 (𝛼 + 𝛽) and 𝛤 is the Gamma function. The
xpected value and variance of the beta pdf are

[𝑢𝑎] =
𝛼

𝛼 + 𝛽
, (15)

𝑉 𝑎𝑟(𝑢𝑎) =
𝛼𝛽

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)
. (16)

Fig. 6 shows the temporal evolution of the incomplete mixing
concentration distributions at 𝑧𝑖𝑡𝑓 (𝑡; 𝑥, 𝑦)|𝑐=0.5 using a beta pdf. Concep-
tually, we divide it into two phases: an initial stage marked by double
peaks at zero and maximum concentration that transitions later into
a single peak, with a short-lived intermediate uniform structure. The
signature of this two-phase behavior can be observed in the temporal
decay of the variance of pore-scale concentrations as illustrated in
Fig. 7(a). At the start of each simulation (t=0), regardless of the Péclet
number, pdfs have a binary state of [0 1], thus the variance is 0.25.
In purely advective systems (𝑃𝑒 = ∞), this variance would not change,
as illustrated by the dashed horizontal red line in Fig. 7(a), due to the
lack of diffusion. However, in the presence of diffusion the variance
decays from its maximum and eventually reaches a late time regime
where 𝜎2 ∝ 𝑡−1. The transition to this was noted by Chiogna and Bellin
(2013) as the time after which advection dominates over diffusion.

At the Darcy-scale mixing interface 𝑧𝑖𝑡𝑓 (𝑡; 𝑥, 𝑦)|𝑐=0.5, due to sym-
etry, both distribution parameters 𝛼 and 𝛽 should be equal. The
6

alues obtained from fitting clearly validate that assumption aside from
inor variations imputable to the diverse sources of uncertainty and
andomness.. Thus we will henceforth assume that 𝛼 and 𝛽 are always
qual at 𝑧𝑖𝑡𝑓 (𝑡; 𝑥, 𝑦)|𝑐=0.5. We do note, though, that they do differ when
̄ ≠ 0.5, as we will explore in the following section.

. Modeling spatial and temporal evolution of the beta pdf

To provide a mathematical description that accounts for incomplete
ixing, we make a distinction between the mean of the beta pdf, 𝑐,
nd the pore scale concentrations at 𝑧𝑖𝑡𝑓 (𝑡; 𝑥, 𝑦), represented as 𝑢𝑎. We
assume that the former can be described by the 1-D solution of the
advection–dispersion equation for a Heaviside initial condition at 𝑧 = 0
n an infinite domain (Ogata and Banks, 1961)

̄(𝑧, 𝑡) = 1
2
erfc

[

𝑧 − 𝑢𝑡
√

4𝐷𝑙𝑡

]

, (17)

where 𝑧 [𝐿] is downstream distance, 𝑢 [𝐿𝑇 −1] is the average pore veloc-
ity, and 𝐷𝑙 [𝐿2𝑇 −1] is the longitudinal dispersion coefficient. The pore-
scale concentrations (𝑢𝑎) follow the beta distribution as in Eq. (14), and
their average is given by (17).

To avoid redundancy, let 𝜂 = 𝛼 + 𝛽. With this, and using (15),
Eqs. (14) and (16) are rewritten in terms of 𝜂 and 𝑐 as

𝑝𝛽𝑒𝑡𝑎(𝑢𝑎) =
𝑢𝑐𝜂𝑎 (1 − 𝑢𝑎)(1−𝑐)𝜂

𝑢𝑎(1 − 𝑢𝑎)
.

𝛤 [𝜂]
𝛤 [𝑐𝜂]𝛤 [(1 − 𝑐)𝜂]

, (18)

𝜎2 =
𝑐(1 − 𝑐)

. (19)

𝜂 + 1
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d

Fig. 5. (left) Concentrations pdfs at 𝑧𝑖𝑡𝑓 (𝑡; 𝑥, 𝑦)|𝑐=0.5 for Pe=100 at 0.2, 1, 2.5, 12.5, 37.5 advection times (t*) (right) Ranking based on Log-Likelihood of 20 tested continuous
istributions for the six Péclet numbers.
Fig. 6. Illustration of the temporal evolution of the pore-scale concentrations distribution at the mixing interface using beta pdf.
Fig. 7. (a) Variance temporal decay of pore scale concentrations pdfs at 𝑧𝑖𝑡𝑓 (𝑡; 𝑥, 𝑦)|𝑐=0.5 (b) 𝜂 linear scaling with time for Pe=1000.
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At 𝑧𝑖𝑡𝑓 (𝑡; 𝑥, 𝑦)|𝑐=0.5, we found that 𝜂 exhibits a linear scaling with time
as illustrated in Fig. 7(b). Here we present the results for 𝑃𝑒 = 1000,
but this linear time-scaling behavior was observed in all other cases.
Thus , we assume an empirical model of 𝜂 = 𝑚𝑡, where the slope 𝑚 can
be expressed in terms of Peclet number as:

𝜂(𝑡, 𝑃 𝑒)|𝑐=0.5 = 𝜅𝑃𝑒𝜆𝑡 . (20)

By conducting a simultaneous fit for all six Peclet cases to minimize the
mean squared error between the observed and empirical variance, we
determined that the empirical constants 𝜅 and 𝜆 are ∼ 0.2 ± 0.01 and
7

∼ −0.3 ± 0.02, respectively.
If we examine the scenario where 𝑐 = 0.5 and 𝜂(𝑡 = 0)=0, Eq. (19)
reduces to the initial variance of 0.25. Note that by combining (19) and
(20) the decay in variance scales at late times as 𝑡−1..

To generalize Eq. (20) for any 𝑐 ∈ [0 1], we analyzed how 𝜂(𝑡, 𝑃 𝑒)
hanges for the pdfs away from the interface (i.e, 𝑧𝑖𝑡𝑓 (𝑡; 𝑥, 𝑦)|𝑐≠0.5). We
efine 𝜂∗ as 𝜂 for 𝑐 ∈ [0 1] normalized by 𝜂 for 𝑐 = 0.5. By examining
ow the curves converged, as demonstrated in Fig. 8(a), we infer that 𝜂∗
s neither time nor Péclet dependent. That is, an invariant relationship
xists for 𝜂 between its value at the middle of the mixing interface and
verywhere else, and this relationship holds at all times and across all
éclet values. Therefore, we assume that the spatial variability of 𝜂∗
or 𝑐 ∈ [0 1] follows a 1

√ shape which fits the data in Fig. 8(a).

2 𝑐(1−𝑐)
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Fig. 8. (a) Observed 𝜂∗ for different times and Péclet numbers normalized with comparison to 𝜂∗ = 1
2
√

𝑐(1−𝑐)
(b) illustration of the pdfs variance as expressed by Eq. (22) at Pe=1000

(c) Heat map for the variance spatial gradient (Eq. (23)) at Pe=1000 showing the transition into a homogeneous system.
Fig. 9. Temporal decay of the variance of pore-scale concentration pdf at 𝑧𝑖𝑡𝑓 (𝑡; 𝑥, 𝑦)|𝑐=0.5 with comparisons to Eq. (22) for different Péclet cases.
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onsequently, we can reformulate Eq. (20) as:

(𝑐, 𝑡, 𝑃 𝑒) = 𝜅𝑃𝑒𝜆𝑡
2
√

𝑐(1 − 𝑐)
. (21)

In this expression the numerator characterizes the temporal evolu-
tion of 𝜂 at the interface 𝑧𝑖𝑡𝑓 (𝑡; 𝑥, 𝑦)|𝑐=0.5 and the denominator quantifies
the spatial variation of 𝜂 across the range of 𝑐 values from 0 to 1.
Thus, Eqs. (17), (18), and (21) provide the full temporal and spatial
volution of the pore-scale concentration pdf under incomplete mixing.
urthermore, we can generalize the expression for the variance by
ubstituting (21) into (19) as:

2 =
2𝑐3∕2(1 − 𝑐)3∕2

𝜅𝑃𝑒𝜆𝑡 + 2
√

𝑐(1 − 𝑐)
. (22)

Eq. (22) is visually illustrated in Fig. 8(b), showcasing the spatio-
emporal decay of the variance. This shows that at any given moment,
he pdfs representing concentrations at 𝑧𝑖𝑡𝑓 (𝑡; 𝑥, 𝑦)|𝑐=0.5 exhibit maxi-
um variance, whereas 𝜎2 tends to zero at the extreme values of 𝑐
f 0 or 1, far from the mixing interface. This explains the deviation
rom the well-mixed solution being maximum at the mixing interface
s previously illustrated in Fig. 4(c).
We can use Eq. (22) to quantify the rate of variance change along

he plume (i.e. 𝑐 ∈ [0 1]). Taking the derivative of Eq. (22) with respect
o 𝑐 we get

𝜕𝜎2

𝜕𝑐
= −

(2𝑐 − 1)
(

3𝑘𝑃𝑒𝜆𝑡
√

(1 − 𝑐) 𝑐 − 4𝑐2 + 4𝑐
)

(

2
√

(1 − 𝑐) 𝑐 + 𝑘𝑃𝑒𝜆𝑡
)2

. (23)

his is illustrated in Fig. 8(c). It shows that after approximately 10
dvection times, the variance of pore-scale concentrations fluctuations
round their respective mean 𝑐 becomes approximately uniform along
he column. This is not to be confused with being well-mixed which
efers to having a constant concentration.
Lastly, to validate Eq. (22), we compare it to the observed variance

s presented in Fig. 9. Our model captures the initial rapid decay in the
bserved variance and subsequently scales as 𝑡−1 in a manner consistent
ith the data.
8

a

. Summary and conclusion

In this research, we utilized high-resolution pore-scale simulations,
esigned to replicate a laboratory scale column experiment, to examine
he temporal and spatial changes in probability density functions (pdfs)
f pore-scale concentrations. These simulations numerically modeled
low and transport, exploring various Péclet numbers with a focus on
cenarios dominated by advection. Our objective was to analyze the
dfs within the context of uniform Darcy-scale flow. However, we
ecognized that it is crucial to account for unavoidable and ubiquitous
oundary effects that persist in confined simulations, despite efforts
o mitigate their influence. To address this, we developed a semi-
nalytical approach to estimate the mean effective transport velocity
rofile of the mixing interface in the presence of a non-uniform Darcy
elocity.
We applied this semi-analytical approach to determine the trans-

erse dispersion coefficient and our measurements closely matched
reviously published experimental data. While column experiments fre-
uently yield measurements of longitudinal dispersion, transverse dis-
ersion is usually not measured in such settings. Yet, we achieved this
hrough our framework, and we envision the possibility of applying it to
xperimental setups under specific conditions. This proposed method,
ith further refinement, has the potential to serve as a valuable tool
n obtaining as much information as possible from experiments, taking
dvantage of unavoidable and typically undesirable boundary effects.
Next, we used this semi-analytical solution to examine the prob-

bility density functions (pdfs) capable of describing spatio-temporal
hanges in pore-scale concentrations. As in many previous studies, in
ontrast to the common assumption of uniformity at the Darcy scale,
ur observations revealed that concentrations at the pore-scale mixing
nterface exhibit non-uniformity. This phenomenon, often referred to
s ‘‘incomplete mixing’’, arises from the complex flow dynamics within
orous media. In this paper, we demonstrated that among various com-
only employed pdfs, the beta pdf is the most consistent and suitable
or capturing the complete spatial and temporal evolution of pore-scale
oncentrations for any 𝑐 ∈ [0, 1]. Additionally, it was observed that
he Truncated Normal distribution becomes a reasonable estimate at
symptotic times, but only at the mixing interface (i.e., 𝑐 = 0.5).
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In an effort to upscale, we introduced a model that describes the
spatial and temporal decay of the variance of the beta probability
density function (pdf). The temporal evolution of the shape parameter
(𝜂) at the mixing interface exhibited a linear relationship with time
𝑡1, but leaves open the question as to what pore-scale mechanisms
might explain this scaling. The variance decay model matches obser-
vation from the pore-scale simulations of Sole-Mari et al. (2022).
Unlike previous approaches, we not only hypothesized but also demon-
strated that pore-scale concentrations can be represented by a beta pdf,
and that the variance decay can be quantified using the Péclet num-
ber and the 1-D Darcy-scale mean concentrations (𝑐). This work was
conducted using randomly arranged mono-dispersed granular porous
media, encouraging research on its applicability (or lack thereof) in
other settings.
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