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Microplastics and antibiotics are emerging pollutants in the environment and have received widespread attention
globally. In coastal areas, microplastic and antibiotic pollution is ubiquitous and often overlapping. Microplastic-
antibiotic compound pollutants that are formed through adsorption have thus become a major concern. However,
modeling knowledge of microplastic transport in coastal areas is still limited, and research on the impact of
compound pollutants caused by Polythene (PE)-antibiotics in such settings is in early stages. In this study, using
a lattice Boltzmann method (LBM) and temporal Markov method (TMM) under a statistical-physical framework,
we simulated pollutant transport and PE-antibiotic compound pollutants in coastal areas. First, a series of
models are proposed, including an LBM wave-current coupling model, an LBM antibiotic transport model, an
LBM particle-tracking model, a TMM microplastic transport model and the final LBM-TMM hybrid compound
pollutant model. Then, the suitability and applicability of the models was validated using experimental data and
numerical simulations. Finally, the models were applied to a study area, Laizhou Bay (China). The simulation
results demonstrate that adsorption will reduce the concentration of antibiotics in the water environment. Within
44 days, the adsorbed antibiotic carried by PE particles migrate further, and the width of the pollution zone

escalates from 234.2 m to 689.0 m.

1. Introduction

Microplastics are plastic particles with a size less than 5 mm,
with the term first introduced in 1968 (Crawford and Quinn, 2017).
At present, it has been recognized that microplastic pollution exists
widely across a variety of environmental systems, including coastal
areas where high levels have been detected as a result of human ac-
tivity (Xu et al., 2023). Microplastic pollution in water environments
mainly includes two aspects: direct and indirect pollution (Everaert et
al., 2018). Direct pollution refers to pollution attributed to toxic and
harmful substances released by microplastics, whereas indirect pollu-
tion refers to pollution caused by the chemical substances that can be
carried by microplastics. Due to their high specific surface area and
strong hydrophobicity, microplastics can adsorb heavy metals and per-
sistent organic pollutants and act as carriers in aqueous environments
(Guo et al., 2020), which poses potential risks to the environment and
human health.
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As an effective group of antibacterial drugs, antibiotics are exten-
sively used by humans as pharmaceuticals as well as in agriculture and
aquaculture. Only a small fraction of antibiotics is partially degraded in
aquatic systems; most of them are residual (Kiimmerer, 2003; Zhang et
al., 2021). For instance, Andreozzi et al. (2003) found that the degra-
dation coefficient of erythromycin is about 0.82% per day. Antibiotic
residues can reach aquatic and terrestrial environments, where they can
have detrimental effects (e.g., antibiotic resistance among pathogens in-
fecting cultured animals and human) (Kiimmerer, 2003, 2009; Rakib
et al.,, 2023). Li et al. (2018) demonstrated that antibiotics can be
adsorbed by microplastic particles. Additionally, antibiotics transform
into different forms (cations, neutral ions and anions) under varying
environmental conditions, especially pH. Such conditions affect the
adsorption process between antibiotics and microplastics. Therefore,
different types of antibiotics display distinct adsorption characteristics
across varying environments (Li et al., 2018). Because antibiotics and
microplastics are ubiquitous in aquatic environments, the adsorption
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of antibiotics by microplastics likely contributes to the large-distance
transport of formative compound pollutants, increasing the risk to the
aquatic environment (Imran et al., 2019).

Understanding microplastic-antibiotic compound pollution is still in
its infancy, and relevant studies are limited, although some researchers
have investigated the biological toxicity of compound pollution through
field sampling, on-site monitoring and laboratory experiments. Zhang
(2019) first confirmed the coexistence of microplastics and antibiotics
in Taihu Lake in China and then evaluated the effect of microplastics
on the distribution and bioaccumulation of roxithromycin in fish as well
as their interactive biological effects. In laboratory experiments, Shan
et al. (2020) studied the ability of ryegrass to remove ciprofloxacin
in the presence of polystyrene, which increased the toxic effects of
ciprofloxacin on plant growth. Additionally, there are relevant stud-
ies on the influence of microplastics on the antibiotic resistance genes
in living organisms (Sathicq et al., 2021; Zhang et al., 2022). However,
current research on these two emerging pollutants mainly focuses on
either microplastics or antibiotics in the aquatic environment, whereas
research on the impacts of microplastic-antibiotic compound pollution
is still scarce. In particular, the influence of microplastics on the amount
of antibiotics in waters through adsorption and the prediction of the
spatial distribution of compound pollutants due to transport remain
open questions. Therefore, it is useful to develop models for compound
pollutant transport, which is a basis for understanding the extent of
compound pollution in water environments.

In coastal areas, wave-current conditions, boundary conditions and
topography make the hydrodynamic and pollutant transport processes
complicated, with multiple important temporal and spatial scales play-
ing a role (Cole et al., 2011). A convenient and efficient approach is to
apply tested and validated numerical simulation tools to study hydro-
dynamics, pollutant transport and particle migration. Traditional fluid
mechanics approaches are manifold, spanning Eulerian and Lagrangian
methods. However, relatively speaking, computational costs can be
quite high, especially for tracking the movement of large numbers of
individual particles (Xu et al., 2014). Statistical physics approaches
that build a bridge between micro- and macro-levels serve as tools to
improve speed and efficiency (Huang, 2001). The lattice Boltzmann
method (LBM) and Markov transport models are two common meth-
ods within such a statistical-physics framework that are widely used in
various complex hydrological systems and play an increasingly impor-
tant role in water environment simulations (Xing et al., 2020; Sherman
et al., 2021).

LBM is a mesoscopic numerical simulation method, lying somewhere
between macroscopic and microscopic ones (Zhou, 2002). It obtains the
velocity distribution of particles at mesoscopic scales using a Lagrangian
viewpoint and then uses principles from statistics to establish the rela-
tionship between the mesoscopic particle distribution and macroscopic
physical quantities. LBM has developed rapidly in recent decades due
to its advantages, such as ease of programming and ability to han-
dle complex boundaries. To date, LBM has been extensively applied
in various contexts relating to water environments, including hydrody-
namics and pollutant transport (Zhou and Liu, 2013; Liu et al., 2020;
Xing et al., 2020). While powerful, LBM still needs to process large sets
of spatiotemporal distribution data. Therefore, regarding the transport
rules of a large number of microplastics over long times and distances,
we introduce another statistical simulation method based on Markov
methods to improve efficiency. Markov methods are based on Markov
chains and include many other frameworks of continuous-time random
walk (CTRW) models, which can capture the motion characteristics of
particles by sampling from a probability distribution to describe the
large-scale transport process of a large number of particles efficiently
and accurately (Borgne et al., 2011; Anna et al., 2013; Sherman et al.,
2017). That is, given a spatiotemporal probability distribution contain-
ing the motion characteristics of a large number of representative par-
ticles, Markov models can predict their large-scale transport processes.
This can considerably save the time required to perform calculations. Le
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Borgne at al. (2008) proposed a correlated CTRW, introducing the no-
tion of a transition matrix to incorporate the velocity correlation effect
of particles, which is regarded as ever present in many hydrological sys-
tems (Bolster et al., 2014). This correlated model can accurately capture
particle transport in highly complex and heterogeneous hydrological
environments (Le Borgne at al., 2008; Sherman et al., 2017, 2021), in-
cluding in the context of microplastic transport in open channel flows
(Xing et al., 2022).

Laizhou Bay (37.65° N, 119.28° E ~ 37.68° N, 120.22° E) is one of
the three largest bays in the Bohai Sea (Fig. 1). Favorable natural con-
ditions and water quality make it rich in fishery resources. However, it
also causes pollution, including microplastics and antibiotics. Addition-
ally, along the coastline, there are more than 20 large rivers flowing
into the bay. These rivers provide input routes for pollutants, resulting
in a continuous terrestrial input of domestic and industrial wastewater.
The Xiaoqing River, which is a typical river in this region, is the main
pollution source of Laizhou Bay. The quality of its water will directly
affect the regional economies and marine resources.

In order to simulate pollutant transport and PE-antibiotic compound
pollutants in coastal areas, in this study, we will establish a series of wa-
ter environment models, with a focus on a typical bay area. First, using
LBM and temporal Markov methods (TMM), a two-dimensional (2D)
wave-coupling hydrodynamic model, a 2D antibiotic transport model,
a 2D particle-tracking model and a one-dimensional (1D) microplastic
transport model were proposed. We then explore a 1D-2D LBM-TMM
hybrid simulation method to investigate the transport of microplastic-
antibiotic compound pollutants. After validation of the models, the
hybrid simulation method is applied to our test area.

2. Model framework
2.1. LBM

2.1.1. Hydrodynamic model

As is typical in coastal areas, 2D shallow water equations, including
the continuity equation and momentum equation, are commonly used
to describe water flows and are stated as follows:
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where i and j represent the spatial direction indices following the
Einstein summation convention; x; represents the two Cartesian co-
ordinates, x and y; u ; Tepresents the velocity components, u and v,
corresponding to those in the x and y directions, respectively; h repre-
sents the water depth; ¢ is time; v represents the eddy viscosity; and F;
represents the force term, and the calculation method can be found in
Supplementary Information 1. We solve the above set of equations using
an LBM approach, the details of which are included in Supplementary
Information 2.

2.1.2. Advection-dispersion model
The processes of antibiotic dispersion, advection and decay can be
described with the 2D advection-diffusion equation as follows:

d(hc) | dChew) 9 d(he)

or ox;  ox, U ox,
where c represents the depth-averaged antibiotic concentration; .S, rep-
resents a source term that can be calculated as S, = —hcD,, where D,
represents the decay coefficient including the degradation process of the
antibiotic and adsorption process with suspended particles; and D;; rep-
resents the dispersion coefficient. Likewise, we use an LBM approach to
solve this equation, which is detailed in Supplementary Information 3.

1+S (2)
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Fig. 1. Map of Laizhou Bay and its adjacent rivers and estuaries.

2.1.3. Particle-tracking model

Polyethylene (PE) in many forms is commonly used in the man-
ufacturing of film, packaging materials, containers among others. In
recent years, PE has become the largest category of total plastic pro-
duction, accounting for 36% (Geyer et al., 2017). Meanwhile, spherical
and cylindrical PE microplastics are widely present on the surface wa-
ter of Laizhou Bay (Teng et al., 2020). Therefore, PE was selected as
our target type of microplastics in this study. Considering their small
size and hydrophobicity, PE particles can be regarded as conceptual
Lagrangian particles. Each particle is displaced solving a second-order
Runge-Kutta scheme applied to the following equations, which is de-
rived from (Lavieville et al., 1995).
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where Cp, is the local drag coefficient. The empirical relation for Cp,
by Schiller and Naumann (1935) was employed (it should be noted that
the Schiller-Naumann model applies to solid spherical particles), and
details can be found in Supplementary Information 1 - Part (2); v rep-
resents the eddy viscosity, as in Eq. (1); Subscript p represents the PE
particle. Therefore, Xpis Upjs d)y and p, represent the position, veloc-
ity, size and density of the PE particle, respectively; Re, represents the
Reynolds number of PE particles governed by Re, = (d,|u; — u,;|)/v;
and u; represents the velocity components as same as the u; in Eq. (1).

It should be noted that the disintegration or aggregation of particles are
not included in the LBM particle-tracking model. We do not account for
buoyancy forces of particles as vertical displacements are not included
with the shallow water equation. Particles can be thought of as mov-
ing along the sea surface. Additionally, the coupling between particles
phase and water phase is one-way coupling.

Thus, the macroscopic x;;’.m and u'*2' can be calculated to first-

order in time using an explicit scheme as follows:
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2.2. Markov method — temporal Markov model

Predicting with the Markov method is based on a 1D random pro-
cess. We project the transport process in the direction of the mean flow
and then analyze the Lagrangian velocity statistics along the projected
particle trajectories. The projection trajectory of each particle in time
and space can be described by the Langevin equation,

X = x4 vf’At,
5)
M =" 4 A
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where v} represents a stochastic process of the Lagrangian velocity field
along the particle’s projected trajectory at an equidistant time Az. Gen-
erally, v/ can be randomly sampled from the trajectories. However,
particles may have a strong correlation between successive steps in
many hydrological systems, namely, particles that make a fast/slow
transition in one step may often make a fast/slow transition in the next
step, and the correlation will have an effect on the behavior of particle
transport on a macroscale level. Therefore, a temporal Markov method
(TMM) model is applied in this work.

A spatial transition matrix T} ; is introduced here in order to describe
the correlation, and the calculation of 7 ; can be found in Supplemen-
tary Information 4.

After obtaining the transition matrix, we can acquire the break-
through curves (BTCs) after certain steps, which are a very standard
transport metric to characterize the motion properties of particles in
complex hydrological systems. Therefore, BTCs are used to validate the
TMM model in subsequent sections. Spatial distributions of particles at
a given time can also readily be predicted with this model.

2.3. LBM-TMM hybrid model

By virtue of the above statistical-physical method, the results of the
2D antibiotic concentration from LBM and the 1D spatial distribution
from TMM are collected and will be the basis for the 1D-2D LBM-TMM
hybrid (LTH) model. To achieve this, we must first quantify the adsorp-
tion of antibiotics on PE, which is a bridge between the LBM and TMM
methods. Generally, the equilibrium partition coefficient (K,) of antibi-
otics between PE and water is used to represent the adsorption capacity
(Velzeboer et al., 2014). In this work, a quantitative structure-property
relationship (QSPR) model is applied to predict K,;. QSPR is an effec-
tive tool to reveal the mathematical relationship between the molecular
structure of a compound and its environmental behaviors (Wei et al.,
2017; Bakire et al., 2017) and relevant transport parameters, which are
calculated theoretically using a variety of methods, including quantum
chemistry (description of the QSPR model can be found in Supplemen-
tary Information 5). Then, based on the K, calculated by the QSPR
model, we apply them to the numerical simulation method for investi-
gating the transport of PE-antibiotic compound pollutants.

To predict a large number of particles on long-distance transport
efficiently, an LTH model is established in this work to intelligently
combine the fine simulation of the 2D-LBM with the efficient simu-
lation via the 1D-TMM. Using the idea of dimensional reduction, the
microplastic number follows the normal distribution of the advection-
diffusion equation in the vertical direction of the mean flow to simulate
the transport of compound pollutants. The detailed implementation pro-
cess of the LTH model can be found in Supplementary Information 6.

3. Validation and application

In this work, we have proposed a novel 1D-2D hybrid model to
investigate the transport of PE-antibiotic compound pollutants in a rep-
resentative shallow coastal region. Thus, the lattice Boltzmann model
for simulating antibiotic transport and the temporal Markov model for
simulating PE particle migration should be validated first. Then, the
proposed LTH model is applied to our representative test case — Laizhou
Bay.

3.1. Validation of the lattice Boltzmann model

3.1.1. Data acquisition and model inputs

The bottom elevation of Laizhou Bay can be plotted, as shown in
Fig. S4. Tidal-level data in Laizhuo Bay were extracted from Liu et al.
(2017). To validate the advection-diffusion model, field data of antibi-
otics in Laizhou Bay were also collected. We obtained the experimental
data from the Zhang et al. (2012), in which four types of antibiotics
with high prevalence were selected, including erythromycin (ETM),
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enoxacin (ENO), trimethoprim (TMP) and sulfamethoxazole (SMX), and
the sample sites included the estuaries of adjacent rivers and the sam-
pling locations (Fig. S4).

Degradation is an important decay process for environmental an-
tibiotics, and it depends on the chemical structure and environmental
factors. Meanwhile, adsorption between antibiotics and suspended sed-
iment is also a major removal process of antibiotics from water. The
adsorption process is generally expressed by the partition coefficient
(K,). The Decay details of the target antibiotics ETM, ENO, TMP and
SMX are shown in Table S2 (Supplementary Information).

Detailed and specific parameter setting and boundary conditions can
be found in Supplementary Information 7.

3.1.2. Validation

The hydrodynamic model is the basis for all the model frameworks
throughout the paper and must first be validated. As shown in Fig. 2(a)
and Fig. 2(b), the maximum velocity occurs northwest of the bay mouth,
and the minimum value occurs along the coastline. The proposed hy-
drodynamic model was validated to be able to generate reliable results
compared with the previous results (Lv et al., 2017; Xing et al., 2020).

Then, simulated concentrations are compared to the vertically in-
tegrated measurements (Zhang et al., 2012) at the near-shore locations
P1, P2, and P3 (Fig. 1) to validate the lattice Boltzmann model. Fig. 2(c)
shows the comparison between the simulations and measurements for
different antibiotics and locations after 42 hours. All the absolute value
of percentage errors are less than 15%. Since the samples are acquired at
approximately 50 ¢cm below the water surface, this inevitably involves
some errors in validating the 2D depth-averaged model. Therefore, the
results obtained by the proposed model are deemed sufficiently accu-
rate for dealing with the transport of antibiotics in Laizhou Bay.

3.2. Validation of the temporal Markov model

3.2.1. Particle-tracking data acquisition

The temporal Markov model is employed to simulate the transport
of the PE particles. To this end, we need to collect the trajectories of
a large number of particles to determine the spatial transition matrix,
which can provide enough information about particle movements. The
particle-tracking model based on LBM is used to generate the trajecto-
ries of particles.

In the LBM particle-tracking model, 10¢ PE particles were released
simultaneously in the first time step at the estuary of the Xiaoqing River.
Based on the previous literature and field research of the study area
(Teng et al., 2020), the size and density of the PE particles in this study
are determined as 1.66 mm and 0.956 g/cm?, respectively. The model
was simulated for 24 hours in real-world time, and particle-position
data were recorded every minute (details on the data analysis for
particle-tracking data can be found in Supplementary Information 8).

3.2.2. Validation

Considering the two reciprocating processes in the particle-tracking
model, the entire simulated time can be regarded as two continuous
temporal increments. The stable segments of projected trajectories dur-
ing each reciprocating process provide us with an isochronal time,
namely, Ar = 30000 s. Therefore, the spatial distribution y(x) of par-
ticles can be obtained at At (Fig. S6 (a)). Then, the spatial transition
matrix can be calculated (Fig. 2(d)), there is an obvious diagonal ten-
dency, reflecting a strong correlation. We use k = 20 classes in this
study, which has been shown to be sufficient to acquire correlated ef-
fects and generate reliable results (Borgne et al., 2011).

The comparison at 2A¢ between the predicted BTC from the TMM
and the LBM simulations is shown in Fig. 2(e). At this point, the mean
absolute percentage error between the TMM predictions and LBM sim-
ulations is 6.76%, which demonstrates that the TMM model can accu-
rately reproduce the early, peak and late arrivals. Therefore, the TMM
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Fig. 2. Validation of the model framework: in subfigure (c), P1, P2 and P2 are sample locations corresponding to those in Fig. 1; histograms represent the
concentrations (ng/L) of four antibiotics; and the percentage error (%) between the simulations (C) and measurements (C,,) is calculated by (C — C,,)/C x 100%
(it should be noted here the y-axis represents the concentrations of antibiotics as well as the percentage error. (For interpretation of the colors in the figure(s), the

reader is referred to the web version of this article.)

model appears effective at capturing the motion properties of a large
number of PE particles in a computationally efficient manner.

3.3. Setting up a scenario in Laizhou Bay

Under the proposed statistical physical framework, we established
an LBM-TMM hybrid model to investigate the transport of PE-antibiotic
compound pollutants. To apply the proposed hybrid model in Laizhou
Bay, the following scenario is assumed:

i. Transport of antibiotics: Considering a sewage treatment plant
near the estuary of the Xiaoqing River, the effluent was discharged con-

tinuously into Laizhou Bay for 30 minutes. The concentration of all the
target antibiotics in the effluent was 100 mg/L.

ii. Transport of PE particles: As in Section 3.2.1, a number of 10° PE
particles were released simultaneously at the estuary of the Xiaoging
River.

4. Results and discussion
4.1. Equilibrium partition coefficient of antibiotics

K, can be determined by Eq. (S15) and is also shown in Table S1
(Supplementary Information). The K, of ETM, ENO, SMX, TMP and
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Table 1
Transport of PE-antibiotic combined pollutants in Laizhou Bay.
Day Antibiotic Max.CP w x Before After PI
(%) (m) (m) ® (€3] (%)
14th  ETM 5.64 - - 0
SMX 4.96 2342 9835 - - 0
TMP 4.97 - - 0
24th  ETM 2.26 8.29x107 8.31x107 0.24
SMX 0.11 495.0 16960  0.2568 0.2569 0.039
TMP 0.61 6.848x1077 6.852x1077 0.058
44th  ETM 1.22 6.03x10° 5.95x10° 1.36
SMX 0.06 689.0 31200  1.873x107° 1.874x10° 0.05
TMP 0.35 1.421x107"°  1.423x10°"  0.14

CPFX are 238.78 L/kg, 174.58 L/kg, 8.87 L/kg, 50.12 L/kg and 216.77
L/kg, respectively. We find that /logK,; of ETM, ENO and CPFX are the
same order of magnitude; therefore, ETM is chosen as a typical an-
tibiotic among the three referred types of antibiotics to investigate the
transport of compound pollutants. As a result, the target antibiotics se-
lected for this study were ETM, SMX and TMP.

It has been proven that the adsorption equilibrium between PE par-
ticles and the aqueous phase is achieved after 80 hours (Yu et al., 2020);
therefore, according to the calculation process of the 1D-2D LTH model,
the equilibrium time was assumed to be the fourth day.

4.2. Impacts on antibiotic concentration

Due to the adsorption process between the antibiotic and PE parti-
cles, the antibiotic concentration of each grid is reduced. For the same
grid at the same time, the adsorption amount of ETM is maximum, and
the adsorption amount of TMP is minimum. Moreover, their equilib-
rium partition and decay coefficients satisfy the following relationship:

Koerm > Karmp > Kasmxo
(6)
Kaermp > Kiesmx > KaererM>

which demonstrates that the decay process of antibiotics plays a greater
role in the adsorption amount. For the same kind of antibiotic within
44 days, it is obvious that the concentration changes of TMP and SMX
decrease significantly over time, which also emphasizes the importance
of the decay process of antibiotics. However, the concentration changes
in ETM (larger K,; but smaller D,) increase slightly in the southeastern
grids over time, which indicates that the accumulation effect of antibi-
otics with a smaller decay coefficient is stronger in the southeastern
coastal area where the flow velocity is low. This will lead to a higher
potential ecological risk in this area.

Furthermore, the percentage changes (C P) in the antibiotic concen-
tration were calculated as

cp=A¢
e, )

The results within 44 days are shown in Fig. 3, and the maximum CP

(Max.C P) of the three days for antibiotics are shown in Table 1.

There is a decreasing trend of antibiotic concentration over time as
the particles travel towards the outer part of the bay due to the hydro-
dynamic conditions including the turbulence due to terrain conditions
and tidal boundaries. Among the three antibiotics, PE particles have the
maximum effects on the percentage changes in the ETM concentration
as well as the minimum effects on SMX, which is caused by the different
equilibrium partition coefficients of the three antibiotics (Eq. (6)); that
is, antibiotics with larger equilibrium partition coefficients will have
greater percentage changes in their concentration.

* 100%

7)

4.3. Transport of compound pollutants

To investigate the transport of PE-antibiotic compound pollutants,
the spatial distribution of antibiotic mass adsorbed by PE particles was
plotted as shown in Fig. 4. The adsorption amount of PE particles by
ETM is maximum, and that by TMP is minimum. This demonstrates
that the adsorption amount depends on the decay coefficient of the an-
tibiotic. During the transport process, all the curves gradually flatten
due to the impacts of the advection and dispersion on PE particles. The
head and tail of all the curves show fluctuations (especially on the 44th
day, in which there are breakpoints at the head of the curves), as there
are fewer particles at the edge of the contamination zone due to advec-
tion and dispersion. Then, we calculated the width of the contaminated
zone (W), which can be defined by the distance difference between
the slowest and fastest moving particles (shown in Table 1). Within 44
days, the adsorbed antibiotic carried by particles will migrate further
with the transport of microplastics. The width of the pollution zone es-
calates from 234.2 m to 689.0 m.

Then, we compared the total amount of antibiotics in Laizhou Bay
before and after adsorption to discuss the long-distance transport of
the compound pollutants. Before adsorption, the total amount of antibi-
otics can be calculated from the LBM advection-diffusion model. After
adsorption, the total amount is the sum of the antibiotic mass remain-
ing in the aqueous phase and carried by PE particles. To compare with
the spatial distribution results under the 1D Markov system, it is neces-
sary to reduce the dimensionality of the antibiotic concentration results
under the 2D Euler system; that is, the 2D antibiotic simulations ob-
tained by LBM need to be reduced to 1D results along with the mean
flow direction (projected line). As shown in Fig. 5, the antibiotic mass
in Laizhou Bay gradually declines with increasing x (recall x represents
the distance from the initial position of the particles), which results
from the function of transport and diffusion. The slight fluctuations are
attributable to the boundaries of the computational domain.

As illustrated in Fig. 5, the antibiotic mass in Laizhou Bay after
adsorption was visibly less than that before adsorption due to the ad-
sorption process and the decay of antibiotics. Then, we focus on some
crucial segments whose x-values correspond to the peaks in Fig. 4. As
shown in Table 1, Be fore and A fter represent the total antibiotic mass
in Laizhou Bay. PI represents the percentage increase, which can be
calculated by (After — Before)/After X 100%. On the 14th day, at
approximately x = 9835 m, the total antibiotic mass between Be fore
and After is basically the same. Over time, the antibiotic masses of
the three antibiotics increased by different magnitudes around the x-
values we focus on, which indicates that the compound pollutants raise
the ecological risk in these areas. Meanwhile, antibiotics with larger
equilibrium partition coefficients will have a greater PI. Taking the
ETM as an example, PI increases by approximately six times from
the 24th day to the 44th day. Therefore, microplastics can be used as
carriers for long-distance transport to adsorb antibiotics, providing the
formation of compound pollutants. Given enough time, the PI of the
antibiotic amount near the location of the compound pollutants will rise
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Fig. 3. The percentage changes in the antibiotic concentration in Laizhou Bay.

markedly, so there will be an increasing ecological risk of antibiotics in
the sea.

4.4. Computational benefits and model limitations

We employed two statistical-physical methods in this work: LBM
and TMM. Regarding LBM, the seemingly chaotic movements of a large
number of particles can be statistically averaged to obtain a velocity
distribution, which is the only unknown quantity when the particles’
movements are at equilibrium. Given the velocity distribution, macro-
scopic quantities can be calculated. Although LBM uses a statistical
method to solve the velocity distribution, in essence, it still tracks the
movements of numerous discrete particles to obtain the macroscopic
flow field. Therefore, its computational efficiency is much lower than
that of TMM, which does not need to resolve large bodies of spatio-
temporal data. The required CPU time between the two methods is
calculated in MATLAB. The LBM particle-tracking model takes ((10°)
CPU seconds to run 10° particles in 24 hours, whereas the TMM model
costs @(10~!) CPU seconds to predict the movements of particles in the
same situation. This very large gap highlights the great advantage of
the high efficiency of the TMM model. However, without LBM simula-

tions, an efficient TMM model cannot be properly implemented since
there is no model input. Therefore, the complete reduction in the com-
putational cost has not been truly realized. However, since the input
spatial distribution of particles can be captured before completing a full
LBM simulation, the TMM model still has computational advantages
over LBM.

The innovative 1D-2D hybrid model uses an approach of dimen-
sional reduction to simplify microplastic transport into an average be-
havior in the mean flow direction. Then, its influence on the antibiotic
quantity is investigated. This indeed greatly reduces the computing cost,
making it extremely adaptive for efficiently predicting the transport of
a large number of microplastics for a longer time. However, the 1D
Markov model is quite inadequate, as the 2D Markov model (Mose et
al., 2019) will have much broader application prospects. Therefore, we
could involve the 2D Markov model in the statistical-physical frame-
work, which is worth further study.

PE particles, which are prevalent in Laizhou Bay, were selected as
our target type of microplastic to proceed with the research. However,
the physical properties (such as the size, density, shape, and surface tex-
ture) or aging effects of the microplastics detected in coastal water may
vary significantly depending on the category of polymer and the du-
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Fig. 4. The spatial distribution of PE-antibiotic compound pollutants.

ration of its exposure in the environment (Bao et al., 2022; Liu et al.,
2022). The referred properties have a powerful influence on hydrody-
namic processes such as suspension and settlement, thus affecting the
transport process. The physical and dynamic properties of microplas-
tics have been poorly investigated to date. Moreover, the properties
also have impacts on the adsorption process; for instance, particles with
larger specific surface areas can adsorb more antibiotics (Xuan and Jwa,
2019). In addition, while the degradation of antibiotics is considered in
this study, a rigorous way to consider the degradation of microplastics
should be sought in future research efforts.

5. Conclusions

In this work, we simulated the transport of PE-antibiotic compound
pollutants using a statistical-physical framework including lattice Boltz-
mann and Markov methods. The simulation results show that the con-
centration of antibiotics in Laizhou Bay (which does not include the
antibiotics adsorbed by microplastics) was reduced by the adsorption
between the PE particles and antibiotics. Concurrently, the compound
pollutants will migrate over a larger distance with time. Moreover, with
further movement of the compound pollutants, the percentage increase
in the antibiotic quantity in its vicinity becomes greater, which raises
environmental risks in Laizhou Bay. The proposed hybrid model does
not only predict the influence of microplastics on the abundance of
antibiotics, but also efficiently predicts the spatial distribution of com-
pound pollutants. The proposed statistical-physical framework can be
applied to simulating the transport of microplastic-antibiotic compound
pollutants in other bay areas. Basically, we need to obtain the data

set of the study area including topographic data, boundary conditions,
tidal period, etc. Once obtained they should be readily implementable
within our more general framework, which will help us better predict
movement trends of pollutants and improve assessment of environmen-
tal risks in the future.
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