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Microplastics and antibiotics are emerging pollutants in the environment and have received widespread attention 
globally. In coastal areas, microplastic and antibiotic pollution is ubiquitous and often overlapping. Microplastic-
antibiotic compound pollutants that are formed through adsorption have thus become a major concern. However, 
modeling knowledge of microplastic transport in coastal areas is still limited, and research on the impact of 
compound pollutants caused by Polythene (PE)-antibiotics in such settings is in early stages. In this study, using 
a lattice Boltzmann method (LBM) and temporal Markov method (TMM) under a statistical-physical framework, 
we simulated pollutant transport and PE-antibiotic compound pollutants in coastal areas. First, a series of 
models are proposed, including an LBM wave-current coupling model, an LBM antibiotic transport model, an 
LBM particle-tracking model, a TMM microplastic transport model and the final LBM-TMM hybrid compound 
pollutant model. Then, the suitability and applicability of the models was validated using experimental data and 
numerical simulations. Finally, the models were applied to a study area, Laizhou Bay (China). The simulation 
results demonstrate that adsorption will reduce the concentration of antibiotics in the water environment. Within 
44 days, the adsorbed antibiotic carried by PE particles migrate further, and the width of the pollution zone 
escalates from 234.2 m to 689.0 m.
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 Introduction

Microplastics are plastic particles with a size less than 5 mm, 
ith the term first introduced in 1968 (Crawford and Quinn, 2017). 
t present, it has been recognized that microplastic pollution exists 
idely across a variety of environmental systems, including coastal 
eas where high levels have been detected as a result of human ac-
ity (Xu et al., 2023). Microplastic pollution in water environments 
ainly includes two aspects: direct and indirect pollution (Everaert et 
., 2018). Direct pollution refers to pollution attributed to toxic and 
rmful substances released by microplastics, whereas indirect pollu-
n refers to pollution caused by the chemical substances that can be 
rried by microplastics. Due to their high specific surface area and 
rong hydrophobicity, microplastics can adsorb heavy metals and per-
stent organic pollutants and act as carriers in aqueous environments 
uo et al., 2020), which poses potential risks to the environment and 
man health.

This paper has been recommended for acceptance by Eddy Y. Zeng.
Corresponding author.

As an effective group of antibacterial drugs, antibiotics are exten-
sively used by humans as pharmaceuticals as well as in agriculture and 
aquaculture. Only a small fraction of antibiotics is partially degraded in 
aquatic systems; most of them are residual (Kümmerer, 2003; Zhang et 
al., 2021). For instance, Andreozzi et al. (2003) found that the degra-
dation coefficient of erythromycin is about 0.82% per day. Antibiotic 
residues can reach aquatic and terrestrial environments, where they can 
have detrimental effects (e.g., antibiotic resistance among pathogens in-
fecting cultured animals and human) (Kümmerer, 2003, 2009; Rakib 
et al., 2023). Li et al. (2018) demonstrated that antibiotics can be 
adsorbed by microplastic particles. Additionally, antibiotics transform 
into different forms (cations, neutral ions and anions) under varying 
environmental conditions, especially pH. Such conditions affect the 
adsorption process between antibiotics and microplastics. Therefore, 
different types of antibiotics display distinct adsorption characteristics 
across varying environments (Li et al., 2018). Because antibiotics and 
microplastics are ubiquitous in aquatic environments, the adsorption 
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 antibiotics by microplastics likely contributes to the large-distance 
ansport of formative compound pollutants, increasing the risk to the 
uatic environment (Imran et al., 2019).
Understanding microplastic-antibiotic compound pollution is still in 

 infancy, and relevant studies are limited, although some researchers 
ve investigated the biological toxicity of compound pollution through 
ld sampling, on-site monitoring and laboratory experiments. Zhang 
019) first confirmed the coexistence of microplastics and antibiotics 
 Taihu Lake in China and then evaluated the effect of microplastics 
 the distribution and bioaccumulation of roxithromycin in fish as well 
 their interactive biological effects. In laboratory experiments, Shan 
 al. (2020) studied the ability of ryegrass to remove ciprofloxacin 
 the presence of polystyrene, which increased the toxic effects of 
profloxacin on plant growth. Additionally, there are relevant stud-
s on the influence of microplastics on the antibiotic resistance genes 
 living organisms (Sathicq et al., 2021; Zhang et al., 2022). However, 
rrent research on these two emerging pollutants mainly focuses on 
ther microplastics or antibiotics in the aquatic environment, whereas 
search on the impacts of microplastic-antibiotic compound pollution 
 still scarce. In particular, the influence of microplastics on the amount 
 antibiotics in waters through adsorption and the prediction of the 
atial distribution of compound pollutants due to transport remain 
en questions. Therefore, it is useful to develop models for compound 
llutant transport, which is a basis for understanding the extent of 
mpound pollution in water environments.
In coastal areas, wave-current conditions, boundary conditions and 
pography make the hydrodynamic and pollutant transport processes 
mplicated, with multiple important temporal and spatial scales play-
g a role (Cole et al., 2011). A convenient and efficient approach is to 
ply tested and validated numerical simulation tools to study hydro-
namics, pollutant transport and particle migration. Traditional fluid 
echanics approaches are manifold, spanning Eulerian and Lagrangian 
ethods. However, relatively speaking, computational costs can be 
ite high, especially for tracking the movement of large numbers of 
dividual particles (Xu et al., 2014). Statistical physics approaches 
at build a bridge between micro- and macro-levels serve as tools to 
prove speed and efficiency (Huang, 2001). The lattice Boltzmann 
ethod (LBM) and Markov transport models are two common meth-
s within such a statistical-physics framework that are widely used in 
rious complex hydrological systems and play an increasingly impor-
nt role in water environment simulations (Xing et al., 2020; Sherman 
 al., 2021).
LBM is a mesoscopic numerical simulation method, lying somewhere 
tween macroscopic and microscopic ones (Zhou, 2002). It obtains the 
locity distribution of particles at mesoscopic scales using a Lagrangian 
ewpoint and then uses principles from statistics to establish the rela-
nship between the mesoscopic particle distribution and macroscopic 
ysical quantities. LBM has developed rapidly in recent decades due 
 its advantages, such as ease of programming and ability to han-
e complex boundaries. To date, LBM has been extensively applied 
 various contexts relating to water environments, including hydrody-
mics and pollutant transport (Zhou and Liu, 2013; Liu et al., 2020; 
ng et al., 2020). While powerful, LBM still needs to process large sets 
 spatiotemporal distribution data. Therefore, regarding the transport 
les of a large number of microplastics over long times and distances, 
e introduce another statistical simulation method based on Markov 
ethods to improve efficiency. Markov methods are based on Markov 
ains and include many other frameworks of continuous-time random 
alk (CTRW) models, which can capture the motion characteristics of 
rticles by sampling from a probability distribution to describe the 
rge-scale transport process of a large number of particles efficiently 
d accurately (Borgne et al., 2011; Anna et al., 2013; Sherman et al., 
17). That is, given a spatiotemporal probability distribution contain-
g the motion characteristics of a large number of representative par-
les, Markov models can predict their large-scale transport processes. 
2

is can considerably save the time required to perform calculations. Le so
Environmental Pollution 344 (2024) 123339

rgne at al. (2008) proposed a correlated CTRW, introducing the no-
n of a transition matrix to incorporate the velocity correlation effect 
 particles, which is regarded as ever present in many hydrological sys-
ms (Bolster et al., 2014). This correlated model can accurately capture 
rticle transport in highly complex and heterogeneous hydrological 
vironments (Le Borgne at al., 2008; Sherman et al., 2017, 2021), in-
uding in the context of microplastic transport in open channel flows 
ing et al., 2022).
Laizhou Bay (37.65◦ N, 119.28◦ E ∼ 37.68◦ N, 120.22◦ E) is one of 
e three largest bays in the Bohai Sea (Fig. 1). Favorable natural con-
tions and water quality make it rich in fishery resources. However, it 
so causes pollution, including microplastics and antibiotics. Addition-
ly, along the coastline, there are more than 20 large rivers flowing 
to the bay. These rivers provide input routes for pollutants, resulting 
 a continuous terrestrial input of domestic and industrial wastewater. 
e Xiaoqing River, which is a typical river in this region, is the main 
llution source of Laizhou Bay. The quality of its water will directly 
ect the regional economies and marine resources.
In order to simulate pollutant transport and PE-antibiotic compound 
llutants in coastal areas, in this study, we will establish a series of wa-
r environment models, with a focus on a typical bay area. First, using 
M and temporal Markov methods (TMM), a two-dimensional (2D) 
ave-coupling hydrodynamic model, a 2D antibiotic transport model, 
2D particle-tracking model and a one-dimensional (1D) microplastic 
ansport model were proposed. We then explore a 1D-2D LBM-TMM 
brid simulation method to investigate the transport of microplastic-
tibiotic compound pollutants. After validation of the models, the 
brid simulation method is applied to our test area.

 Model framework

1. LBM

1.1. Hydrodynamic model
As is typical in coastal areas, 2D shallow water equations, including 
e continuity equation and momentum equation, are commonly used 
 describe water flows and are stated as follows:

𝜕ℎ

𝜕𝑡
+
𝜕(ℎ𝑢𝑗 )
𝜕𝑥𝑗

= 0,

𝜕(ℎ𝑢𝑖)
𝜕𝑡

+
𝜕(ℎ𝑢𝑖𝑢𝑗 )
𝜕𝑥𝑗

= −𝑔 𝜕

𝜕𝑥𝑖
(ℎ

2

2
) + 𝜈

𝜕2(ℎ𝑢𝑖)
𝜕𝑥𝑗𝜕𝑥𝑗

+ 𝐹𝑖,
(1)

here 𝑖 and 𝑗 represent the spatial direction indices following the 
nstein summation convention; 𝑥𝑗 represents the two Cartesian co-
dinates, 𝑥 and 𝑦; 𝑢𝑗 represents the velocity components, 𝑢 and 𝑣, 
rresponding to those in the 𝑥 and 𝑦 directions, respectively; ℎ repre-
nts the water depth; 𝑡 is time; 𝜈 represents the eddy viscosity; and 𝐹𝑖
presents the force term, and the calculation method can be found in 
pplementary Information 1. We solve the above set of equations using 
 LBM approach, the details of which are included in Supplementary 
formation 2.

1.2. Advection-dispersion model
The processes of antibiotic dispersion, advection and decay can be 
scribed with the 2D advection-diffusion equation as follows:

(ℎ𝑐)
𝜕𝑡

+
𝜕(ℎ𝑐𝑢𝑖)
𝜕𝑥𝑖

= 𝜕

𝜕𝑥𝑖
[𝐷𝑖𝑗

𝜕(ℎ𝑐)
𝜕𝑥𝑖

] +𝑆𝑐, (2)

here 𝑐 represents the depth-averaged antibiotic concentration; 𝑆𝑐 rep-
sents a source term that can be calculated as 𝑆𝑐=−ℎ𝑐𝐷𝑑 , where 𝐷𝑑
presents the decay coefficient including the degradation process of the 
tibiotic and adsorption process with suspended particles; and 𝐷𝑖𝑗 rep-
sents the dispersion coefficient. Likewise, we use an LBM approach to 

lve this equation, which is detailed in Supplementary Information 3.
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Fig. 1. Map of Laizhou Bay and its adjacent rivers and estuaries.
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1.3. Particle-tracking model
Polyethylene (PE) in many forms is commonly used in the man-
acturing of film, packaging materials, containers among others. In 
cent years, PE has become the largest category of total plastic pro-
ction, accounting for 36% (Geyer et al., 2017). Meanwhile, spherical 
d cylindrical PE microplastics are widely present on the surface wa-
r of Laizhou Bay (Teng et al., 2020). Therefore, PE was selected as 
r target type of microplastics in this study. Considering their small 
ze and hydrophobicity, PE particles can be regarded as conceptual 
grangian particles. Each particle is displaced solving a second-order 
nge-Kutta scheme applied to the following equations, which is de-
ved from (Lavieville et al., 1995).

𝜕𝑥𝑝𝑗

𝜕𝑡
= 𝑢𝑝𝑗 ,

𝜕𝑢𝑝𝑗

𝜕𝑡
=

3𝜈𝐶𝐷𝑅𝑒𝑝𝜌
4𝑑2
𝑝
𝜌𝑝

(𝑢𝑗 − 𝑢𝑝𝑗 ),
(3)

here 𝐶𝐷 is the local drag coefficient. The empirical relation for 𝐶𝐷
 Schiller and Naumann (1935) was employed (it should be noted that 
e Schiller-Naumann model applies to solid spherical particles), and 
tails can be found in Supplementary Information 1 - Part (2); 𝜈 rep-
sents the eddy viscosity, as in Eq. (1); Subscript 𝑝 represents the PE 
rticle. Therefore, 𝑥𝑝𝑗 , 𝑢𝑝𝑗 , 𝑑𝑝 and 𝜌𝑝 represent the position, veloc-
, size and density of the PE particle, respectively; 𝑅𝑒𝑝 represents the 
ynolds number of PE particles governed by 𝑅𝑒𝑝 = (𝑑𝑝|𝑢𝑗 − 𝑢𝑝𝑗 |)∕𝜈; 
3

d 𝑢𝑗 represents the velocity components as same as the 𝑢𝑗 in Eq. (1). ⎪
⎩

should be noted that the disintegration or aggregation of particles are 
t included in the LBM particle-tracking model. We do not account for 
oyancy forces of particles as vertical displacements are not included 
ith the shallow water equation. Particles can be thought of as mov-
g along the sea surface. Additionally, the coupling between particles 
ase and water phase is one-way coupling.
Thus, the macroscopic 𝑥𝑡+Δ𝑡

𝑝𝑗
and 𝑢𝑡+Δ𝑡

𝑝𝑗
can be calculated to first-

der in time using an explicit scheme as follows:

𝑥𝑡+Δ𝑡
𝑝𝑗

= 𝑢𝑡
𝑝𝑗
Δ𝑡+ 𝑥𝑡

𝑝𝑗
,

𝑢𝑡+Δ𝑡
𝑝𝑗

=
3𝜈𝐶𝐷𝑅𝑒𝑝𝜌Δ𝑡

4𝑑2
𝑝
𝜌𝑝

(𝑢𝑡
𝑗
− 𝑢𝑡

𝑝𝑗
) + 𝑢𝑡

𝑝𝑗
.

(4)

2. Markov method – temporal Markov model

Predicting with the Markov method is based on a 1D random pro-
ss. We project the transport process in the direction of the mean flow 
d then analyze the Lagrangian velocity statistics along the projected 
rticle trajectories. The projection trajectory of each particle in time 
d space can be described by the Langevin equation,

𝑥𝑛+1 = 𝑥𝑛 + 𝑣𝑛
𝑡
Δ𝑡,

(5)
𝑡𝑛+1 = 𝑡𝑛 +Δ𝑡,
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here 𝑣𝑛
𝑡
represents a stochastic process of the Lagrangian velocity field 

ong the particle’s projected trajectory at an equidistant time Δ𝑡. Gen-
ally, 𝑣𝑛

𝑡
can be randomly sampled from the trajectories. However, 

rticles may have a strong correlation between successive steps in 
any hydrological systems, namely, particles that make a fast/slow 
ansition in one step may often make a fast/slow transition in the next 
ep, and the correlation will have an effect on the behavior of particle 
ansport on a macroscale level. Therefore, a temporal Markov method 
MM) model is applied in this work.
A spatial transition matrix 𝑇𝑖,𝑗 is introduced here in order to describe 
e correlation, and the calculation of 𝑇𝑖,𝑗 can be found in Supplemen-
ry Information 4.
After obtaining the transition matrix, we can acquire the break-
rough curves (BTCs) after certain steps, which are a very standard 
ansport metric to characterize the motion properties of particles in 
mplex hydrological systems. Therefore, BTCs are used to validate the 
M model in subsequent sections. Spatial distributions of particles at 
given time can also readily be predicted with this model.

3. LBM-TMM hybrid model

By virtue of the above statistical-physical method, the results of the 
 antibiotic concentration from LBM and the 1D spatial distribution 
om TMM are collected and will be the basis for the 1D-2D LBM-TMM 
brid (LTH) model. To achieve this, we must first quantify the adsorp-
n of antibiotics on PE, which is a bridge between the LBM and TMM 
ethods. Generally, the equilibrium partition coefficient (𝐾𝑑 ) of antibi-
ics between PE and water is used to represent the adsorption capacity 
elzeboer et al., 2014). In this work, a quantitative structure-property 
lationship (QSPR) model is applied to predict 𝐾𝑑 . QSPR is an effec-
e tool to reveal the mathematical relationship between the molecular 
ructure of a compound and its environmental behaviors (Wei et al., 
17; Bakire et al., 2017) and relevant transport parameters, which are 
lculated theoretically using a variety of methods, including quantum 
emistry (description of the QSPR model can be found in Supplemen-
ry Information 5). Then, based on the 𝐾𝑑 calculated by the QSPR 
odel, we apply them to the numerical simulation method for investi-
ting the transport of PE-antibiotic compound pollutants.
To predict a large number of particles on long-distance transport 
ciently, an LTH model is established in this work to intelligently 
mbine the fine simulation of the 2D-LBM with the efficient simu-
tion via the 1D-TMM. Using the idea of dimensional reduction, the 
icroplastic number follows the normal distribution of the advection-
ffusion equation in the vertical direction of the mean flow to simulate 
e transport of compound pollutants. The detailed implementation pro-
ss of the LTH model can be found in Supplementary Information 6.

 Validation and application

In this work, we have proposed a novel 1D-2D hybrid model to 
vestigate the transport of PE-antibiotic compound pollutants in a rep-
sentative shallow coastal region. Thus, the lattice Boltzmann model 
r simulating antibiotic transport and the temporal Markov model for 
mulating PE particle migration should be validated first. Then, the 
oposed LTH model is applied to our representative test case – Laizhou 
y.

1. Validation of the lattice Boltzmann model

1.1. Data acquisition and model inputs
The bottom elevation of Laizhou Bay can be plotted, as shown in 
g. S4. Tidal-level data in Laizhuo Bay were extracted from Liu et al. 
017). To validate the advection-diffusion model, field data of antibi-
ics in Laizhou Bay were also collected. We obtained the experimental 
ta from the Zhang et al. (2012), in which four types of antibiotics 
4

ith high prevalence were selected, including erythromycin (ETM), ra
Environmental Pollution 344 (2024) 123339

oxacin (ENO), trimethoprim (TMP) and sulfamethoxazole (SMX), and 
e sample sites included the estuaries of adjacent rivers and the sam-
ing locations (Fig. S4).
Degradation is an important decay process for environmental an-
iotics, and it depends on the chemical structure and environmental 
ctors. Meanwhile, adsorption between antibiotics and suspended sed-
ent is also a major removal process of antibiotics from water. The 
sorption process is generally expressed by the partition coefficient 
𝑑 ). The Decay details of the target antibiotics ETM, ENO, TMP and 
X are shown in Table S2 (Supplementary Information).
Detailed and specific parameter setting and boundary conditions can 

 found in Supplementary Information 7.

1.2. Validation
The hydrodynamic model is the basis for all the model frameworks 
roughout the paper and must first be validated. As shown in Fig. 2(a) 
d Fig. 2(b), the maximum velocity occurs northwest of the bay mouth, 
d the minimum value occurs along the coastline. The proposed hy-
odynamic model was validated to be able to generate reliable results 
mpared with the previous results (Lv et al., 2017; Xing et al., 2020).
Then, simulated concentrations are compared to the vertically in-
grated measurements (Zhang et al., 2012) at the near-shore locations 
, P2, and P3 (Fig. 1) to validate the lattice Boltzmann model. Fig. 2(c) 
ows the comparison between the simulations and measurements for 
fferent antibiotics and locations after 42 hours. All the absolute value 
 percentage errors are less than 15%. Since the samples are acquired at 
proximately 50 𝑐𝑚 below the water surface, this inevitably involves 
me errors in validating the 2D depth-averaged model. Therefore, the 
sults obtained by the proposed model are deemed sufficiently accu-
te for dealing with the transport of antibiotics in Laizhou Bay.

2. Validation of the temporal Markov model

2.1. Particle-tracking data acquisition
The temporal Markov model is employed to simulate the transport 

 the PE particles. To this end, we need to collect the trajectories of 
large number of particles to determine the spatial transition matrix, 
hich can provide enough information about particle movements. The 
rticle-tracking model based on LBM is used to generate the trajecto-
es of particles.
In the LBM particle-tracking model, 106 PE particles were released 

multaneously in the first time step at the estuary of the Xiaoqing River. 
sed on the previous literature and field research of the study area 
eng et al., 2020), the size and density of the PE particles in this study 
e determined as 1.66 mm and 0.956 g/cm3, respectively. The model 
as simulated for 24 hours in real-world time, and particle-position 
ta were recorded every minute (details on the data analysis for 
rticle-tracking data can be found in Supplementary Information 8).

2.2. Validation
Considering the two reciprocating processes in the particle-tracking 
odel, the entire simulated time can be regarded as two continuous 
mporal increments. The stable segments of projected trajectories dur-
g each reciprocating process provide us with an isochronal time, 
mely, Δ𝑡 = 30000 s. Therefore, the spatial distribution 𝜓(𝑥) of par-
les can be obtained at Δ𝑡 (Fig. S6 (a)). Then, the spatial transition 
atrix can be calculated (Fig. 2(d)), there is an obvious diagonal ten-
ncy, reflecting a strong correlation. We use 𝑘 = 20 classes in this 
udy, which has been shown to be sufficient to acquire correlated ef-
cts and generate reliable results (Borgne et al., 2011).
The comparison at 2Δ𝑡 between the predicted BTC from the TMM 
d the LBM simulations is shown in Fig. 2(e). At this point, the mean 
solute percentage error between the TMM predictions and LBM sim-
ations is 6.76%, which demonstrates that the TMM model can accu-

tely reproduce the early, peak and late arrivals. Therefore, the TMM 
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Fig. 2. Validation of the model framework: in subfigure (c), P1, P2 and P2 are sample locations corresponding to those in Fig. 1; histograms represent the 
concentrations (𝑛𝑔∕𝐿) of four antibiotics; and the percentage error (%) between the simulations (𝐶) and measurements (𝐶𝑚) is calculated by (𝐶 − 𝐶𝑚)∕𝐶 × 100%
(it should be noted here the y-axis represents the concentrations of antibiotics as well as the percentage error. (For interpretation of the colors in the figure(s), the 
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ader is referred to the web version of this article.)

odel appears effective at capturing the motion properties of a large 
mber of PE particles in a computationally efficient manner.

3. Setting up a scenario in Laizhou Bay

Under the proposed statistical physical framework, we established 
 LBM-TMM hybrid model to investigate the transport of PE-antibiotic 
mpound pollutants. To apply the proposed hybrid model in Laizhou 
y, the following scenario is assumed:
i. Transport of antibiotics: Considering a sewage treatment plant 
5

ar the estuary of the Xiaoqing River, the effluent was discharged con- (S
uously into Laizhou Bay for 30 minutes. The concentration of all the 
rget antibiotics in the effluent was 100 mg/L.
ii. Transport of PE particles: As in Section 3.2.1, a number of 106 PE 
rticles were released simultaneously at the estuary of the Xiaoqing 
ver.

 Results and discussion

1. Equilibrium partition coefficient of antibiotics

𝐾𝑑 can be determined by Eq. (S15) and is also shown in Table S1 

upplementary Information). The 𝐾𝑑 of ETM, ENO, SMX, TMP and 
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Table 1

Transport of PE-antibiotic combined pollutants in Laizhou Bay.
Day Antibiotic Max.𝐶𝑃

(%)

𝑊

(m)

𝑥

(m)

𝐵𝑒𝑓𝑜𝑟𝑒

(g)

𝐴𝑓𝑡𝑒𝑟

(g)

𝑃𝐼

(%)

14th ETM 5.64

234.2 9835

- - 0

SMX 4.96 - - 0

TMP 4.97 - - 0

24th ETM 2.26

495.0 16960

8.29×107 8.31×107 0.24

SMX 0.11 0.2568 0.2569 0.039

TMP 0.61 6.848×10−7 6.852×10−7 0.058

44th ETM 1.22

689.0 31200

6.03×106 5.95×106 1.36

SMX 0.06 1.873×10−9 1.874×106 0.05

TMP 0.35 1.421×10−19 1.423×10−19 0.14
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FX are 238.78 L/kg, 174.58 L/kg, 8.87 L/kg, 50.12 L/kg and 216.77 
kg, respectively. We find that 𝑙𝑜𝑔𝐾𝑑 of ETM, ENO and CPFX are the 
me order of magnitude; therefore, ETM is chosen as a typical an-
iotic among the three referred types of antibiotics to investigate the 
ansport of compound pollutants. As a result, the target antibiotics se-
cted for this study were ETM, SMX and TMP.
It has been proven that the adsorption equilibrium between PE par-
les and the aqueous phase is achieved after 80 hours (Yu et al., 2020); 
erefore, according to the calculation process of the 1D-2D LTH model, 
e equilibrium time was assumed to be the fourth day.

2. Impacts on antibiotic concentration

Due to the adsorption process between the antibiotic and PE parti-
es, the antibiotic concentration of each grid is reduced. For the same 
id at the same time, the adsorption amount of ETM is maximum, and 
e adsorption amount of TMP is minimum. Moreover, their equilib-
um partition and decay coefficients satisfy the following relationship:

𝐾𝑑𝐸𝑇𝑀 >𝐾𝑑𝑇𝑀𝑃 > 𝐾𝑑𝑆𝑀𝑋,

𝐾𝑑𝑒𝑇𝑀𝑃 > 𝐾𝑑𝑒𝑆𝑀𝑋 >𝐾𝑑𝑒𝐸𝑇𝑀 ,

(6)

hich demonstrates that the decay process of antibiotics plays a greater 
le in the adsorption amount. For the same kind of antibiotic within 
 days, it is obvious that the concentration changes of TMP and SMX 
crease significantly over time, which also emphasizes the importance 
 the decay process of antibiotics. However, the concentration changes 
 ETM (larger 𝐾𝑑 but smaller 𝐷𝑑 ) increase slightly in the southeastern 
ids over time, which indicates that the accumulation effect of antibi-
ics with a smaller decay coefficient is stronger in the southeastern 
astal area where the flow velocity is low. This will lead to a higher 
tential ecological risk in this area.
Furthermore, the percentage changes (𝐶𝑃 ) in the antibiotic concen-

ation were calculated as

𝑃 = Δ𝑐
𝑐(𝑖, 𝑗)

∗ 100% (7)

e results within 44 days are shown in Fig. 3, and the maximum 𝐶𝑃
ax.𝐶𝑃 ) of the three days for antibiotics are shown in Table 1.
There is a decreasing trend of antibiotic concentration over time as 
e particles travel towards the outer part of the bay due to the hydro-
namic conditions including the turbulence due to terrain conditions 
d tidal boundaries. Among the three antibiotics, PE particles have the 
aximum effects on the percentage changes in the ETM concentration 
 well as the minimum effects on SMX, which is caused by the different 
uilibrium partition coefficients of the three antibiotics (Eq. (6)); that 
, antibiotics with larger equilibrium partition coefficients will have 
6

eater percentage changes in their concentration. an
3. Transport of compound pollutants

To investigate the transport of PE-antibiotic compound pollutants, 
e spatial distribution of antibiotic mass adsorbed by PE particles was 
otted as shown in Fig. 4. The adsorption amount of PE particles by 
M is maximum, and that by TMP is minimum. This demonstrates 
at the adsorption amount depends on the decay coefficient of the an-
iotic. During the transport process, all the curves gradually flatten 
e to the impacts of the advection and dispersion on PE particles. The 
ad and tail of all the curves show fluctuations (especially on the 44th 
y, in which there are breakpoints at the head of the curves), as there 
e fewer particles at the edge of the contamination zone due to advec-
n and dispersion. Then, we calculated the width of the contaminated 
ne (𝑊 ), which can be defined by the distance difference between 
e slowest and fastest moving particles (shown in Table 1). Within 44 
ys, the adsorbed antibiotic carried by particles will migrate further 
ith the transport of microplastics. The width of the pollution zone es-
lates from 234.2 m to 689.0 m.
Then, we compared the total amount of antibiotics in Laizhou Bay 
fore and after adsorption to discuss the long-distance transport of 
e compound pollutants. Before adsorption, the total amount of antibi-
ics can be calculated from the LBM advection-diffusion model. After 
sorption, the total amount is the sum of the antibiotic mass remain-
g in the aqueous phase and carried by PE particles. To compare with 
e spatial distribution results under the 1D Markov system, it is neces-
ry to reduce the dimensionality of the antibiotic concentration results 
der the 2D Euler system; that is, the 2D antibiotic simulations ob-
ined by LBM need to be reduced to 1D results along with the mean 
w direction (projected line). As shown in Fig. 5, the antibiotic mass 
 Laizhou Bay gradually declines with increasing 𝑥 (recall 𝑥 represents 
e distance from the initial position of the particles), which results 
om the function of transport and diffusion. The slight fluctuations are 
tributable to the boundaries of the computational domain.
As illustrated in Fig. 5, the antibiotic mass in Laizhou Bay after 
sorption was visibly less than that before adsorption due to the ad-
rption process and the decay of antibiotics. Then, we focus on some 
ucial segments whose 𝑥-values correspond to the peaks in Fig. 4. As 
own in Table 1, 𝐵𝑒𝑓𝑜𝑟𝑒 and 𝐴𝑓𝑡𝑒𝑟 represent the total antibiotic mass 
 Laizhou Bay. 𝑃𝐼 represents the percentage increase, which can be 
lculated by (𝐴𝑓𝑡𝑒𝑟 − 𝐵𝑒𝑓𝑜𝑟𝑒)∕𝐴𝑓𝑡𝑒𝑟 × 100%. On the 14th day, at 
proximately 𝑥 = 9835 m, the total antibiotic mass between 𝐵𝑒𝑓𝑜𝑟𝑒
d 𝐴𝑓𝑡𝑒𝑟 is basically the same. Over time, the antibiotic masses of 
e three antibiotics increased by different magnitudes around the 𝑥-
lues we focus on, which indicates that the compound pollutants raise 
e ecological risk in these areas. Meanwhile, antibiotics with larger 
uilibrium partition coefficients will have a greater 𝑃𝐼 . Taking the 
M as an example, 𝑃𝐼 increases by approximately six times from 
e 24th day to the 44th day. Therefore, microplastics can be used as 
rriers for long-distance transport to adsorb antibiotics, providing the 
rmation of compound pollutants. Given enough time, the 𝑃𝐼 of the 

tibiotic amount near the location of the compound pollutants will rise 
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Fig. 3. The percentage changes in the antibiotic concentration in Laizhou Bay.
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arkedly, so there will be an increasing ecological risk of antibiotics in 
e sea.

4. Computational benefits and model limitations

We employed two statistical-physical methods in this work: LBM 
d TMM. Regarding LBM, the seemingly chaotic movements of a large 
mber of particles can be statistically averaged to obtain a velocity 
stribution, which is the only unknown quantity when the particles’ 
ovements are at equilibrium. Given the velocity distribution, macro-
opic quantities can be calculated. Although LBM uses a statistical 
ethod to solve the velocity distribution, in essence, it still tracks the 
ovements of numerous discrete particles to obtain the macroscopic 
w field. Therefore, its computational efficiency is much lower than 
at of TMM, which does not need to resolve large bodies of spatio-
mporal data. The required CPU time between the two methods is 
lculated in MATLAB. The LBM particle-tracking model takes (106)
U seconds to run 106 particles in 24 hours, whereas the TMM model 
sts (10−1) CPU seconds to predict the movements of particles in the 
me situation. This very large gap highlights the great advantage of 
7

e high efficiency of the TMM model. However, without LBM simula- va
ns, an efficient TMM model cannot be properly implemented since 
ere is no model input. Therefore, the complete reduction in the com-
tational cost has not been truly realized. However, since the input 
atial distribution of particles can be captured before completing a full 
M simulation, the TMM model still has computational advantages 
er LBM.
The innovative 1D-2D hybrid model uses an approach of dimen-

onal reduction to simplify microplastic transport into an average be-
vior in the mean flow direction. Then, its influence on the antibiotic 
antity is investigated. This indeed greatly reduces the computing cost, 
aking it extremely adaptive for efficiently predicting the transport of 
large number of microplastics for a longer time. However, the 1D 
arkov model is quite inadequate, as the 2D Markov model (Mose et 
., 2019) will have much broader application prospects. Therefore, we 
uld involve the 2D Markov model in the statistical-physical frame-
ork, which is worth further study.
PE particles, which are prevalent in Laizhou Bay, were selected as 
r target type of microplastic to proceed with the research. However, 
e physical properties (such as the size, density, shape, and surface tex-
re) or aging effects of the microplastics detected in coastal water may 

ry significantly depending on the category of polymer and the du-
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Fig. 4. The spatial distribution of PE-antibiotic compound pollutants.
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tion of its exposure in the environment (Bao et al., 2022; Liu et al., 
22). The referred properties have a powerful influence on hydrody-
mic processes such as suspension and settlement, thus affecting the 
ansport process. The physical and dynamic properties of microplas-
s have been poorly investigated to date. Moreover, the properties 
so have impacts on the adsorption process; for instance, particles with 
rger specific surface areas can adsorb more antibiotics (Xuan and Jwa, 
19). In addition, while the degradation of antibiotics is considered in 
is study, a rigorous way to consider the degradation of microplastics 
ould be sought in future research efforts.

 Conclusions

In this work, we simulated the transport of PE-antibiotic compound 
llutants using a statistical-physical framework including lattice Boltz-
ann and Markov methods. The simulation results show that the con-
ntration of antibiotics in Laizhou Bay (which does not include the 
tibiotics adsorbed by microplastics) was reduced by the adsorption 
tween the PE particles and antibiotics. Concurrently, the compound 
llutants will migrate over a larger distance with time. Moreover, with 
rther movement of the compound pollutants, the percentage increase 
 the antibiotic quantity in its vicinity becomes greater, which raises 
vironmental risks in Laizhou Bay. The proposed hybrid model does 
t only predict the influence of microplastics on the abundance of 
tibiotics, but also efficiently predicts the spatial distribution of com-
und pollutants. The proposed statistical-physical framework can be 
plied to simulating the transport of microplastic-antibiotic compound 
8

llutants in other bay areas. Basically, we need to obtain the data Ec
t of the study area including topographic data, boundary conditions, 
al period, etc. Once obtained they should be readily implementable 
ithin our more general framework, which will help us better predict 
ovement trends of pollutants and improve assessment of environmen-
l risks in the future.
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Fig. 5. Long-distance transport of PE-antibiotic pollutants (in the case of SMX, crucial segments are magnified as individual boxes to show detailed information).
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