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ABSTRACT

Fisher information is a lower bound on the uncertainty in the statistical estimation of classical and quantum mechanical parameters. While
some deterministic dynamical systems are not subject to random fluctuations, they do still have a form of uncertainty. Infinitesimal per-
turbations to the initial conditions can grow exponentially in time, a signature of deterministic chaos. As a measure of this uncertainty, we
introduce another classical information, specifically for the deterministic dynamics of isolated, closed, or open classical systems not subject
to noise. This classical measure of information is defined with Lyapunov vectors in tangent space, making it less akin to the classical Fisher
information and more akin to the quantum Fisher information defined with wavevectors in Hilbert space. Our analysis of the local state space
structure and linear stability leads to upper and lower bounds on this information, giving it an interpretation as the net stretching action of
the flow. Numerical calculations of this information for illustrative mechanical examples show that it depends directly on the phase space

curvature and speed of the flow.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0165484

Fisher information guides the design of experiments and the
optimal estimation of parameters. Because of its broad appli-
cability to statistical problems, the Fisher information has both
classical and quantum mechanical forms. Here, we define a clas-
sical Fisher information for deterministic dynamical systems not
subject to noise, including those that are purely mechanical and
non-Hamiltonian. While this new information is classical, it more
closely resembles the Fisher information in quantum mechan-
ics than the Fisher information in classical statistics. We give a
geometrical interpretation, showing that this quantity is directly
proportional to the speed of the flow. However, like other forms
of Fisher information, it is also a measure of curvature, in this
case, the local curvature of the state space.

I. INTRODUCTION

Across science and engineering,' Fisher information is widely
used in the design of statistical experiments on both classical and
quantum mechanical systems. Loosely speaking, it is a measure
of the amount of information that a data set contains about a
statistical parameter. In classical statistics, it was introduced by

Fisher’ for experiment design and predicting the minimum achiev-
able error in estimating physical quantities. It has since become
an important metric in information geometry' and a part of phys-
ical theories.” For example, the classical Fisher information has
been used to investigate phase transitions,” biological systems,” col-
lective synchronization,” and as a complexity measure in neural
networks.” For quantum mechanical systems, the quantum Fisher
information'®'" also guides measurements, characterizes the sensi-
tivity of quantum states to system parameters, and sets limits on
optimal estimation.'” It is a key element in quantum speed limits'*"!
that has been applied to quantum criticality,”” quantum phase
transitions,'®'” coherence,'*'” entanglement,”’' and metrology."'
While classical and quantum theories are distinct, their respec-
tive Fisher information sets bounds on the estimation of parameters.
Fisher information is also an integral part of the geometric struc-
ture of the theories, defining a metric on the appropriate statistical
manifold and, so, being related to measures of curvature.”>”* Con-
sider a classical probability distribution p(x;0) and the unbiased
estimation of the parameter 6. The classical Fisher information I¢
is the expectation value ((dy In p)z) of the square of the derivative
of the log of the probability distribution with respect to 6: by the
Cramér-Rao inequality, the variance ¢? in the unbiased estimation
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of 6, ezlg > 1, cannot be smaller than 1 /IE. If the probability dis-
tribution is Gaussian with variance o, the bound saturates and
I¢ = 072, Sharply peaked Gaussian distributions will then be bet-
ter estimates of the mean 6 than broad distributions, and a given
data set will have more information about the parameter. A more
sharply peaked probability distribution indicates that the manifold
has a higher local curvature near the maximum. More precisely,
Ig X —Kmax/ (1 + (dg In pmax)z), where k. is the curvature of the
distribution at its maximum. From this intuition, Fisher information
is important to the geometrical structure of statistical manifolds.***

Like its classical counterpart, the quantum Fisher information
is the minimum possible error in the unbiased estimation of an
unknown parameter. Here, though, the measurement is on a quan-
tum state’ @ that evolves unitarily under a Hamiltonian H. If &
represents the variance of the quantum parameter being measured 6,
then the quantum Fisher information sets the bound: &2.% > 1. For
pure states, the quantum Fisher information .Z2 = 4AH? is directly
related to the variance of the Hamiltonian AA?. Among geometric
formulations of quantum mechanics,”~ the quantum Fisher infor-
mation is a feature of density-matrix based information-geometric
approaches.”* The quantum statistical manifold consisting of a col-
lection of quantum states is endowed with a metric related to .7,
which defines the curvature of the manifold.”” On a manifold of pure
density matrices, the quantum Fisher information sets the upper
limit on the instantaneous rate of change of the absolute statisti-
cal distance’” between two pure quantum states. This geometric
perspective leads to quantum estimation and the comparison of
quantum sensing protocols with .#2."7

In both classical and quantum theories, the Fisher information
is also a part of some stochastic and quantum speed limits, upper
bounds on how quickly observables evolve in time. Both classical
and quantum speed limits are rapidly developing fields with interest-
ing parallels that include bounds set by the Fisher information.'***-*’
Stochastic thermodynamic speed limits on observables set by the
classical Fisher information, for example, apply to the fluxes of
energy and entropy exchange.”’ While in isolated quantum systems,
the Fisher information bounds the speed of the average energy,
purity, and entropy."’ Recently, two of us** derived a classical speed
limit on the growth rates of perturbations and rates of dissipation
for classical deterministic systems. One of these speed limits is set
by a quantity that we can identify as a classical Fisher information.
However, this Fisher information ﬂFC is a classical quantity, but it
is distinct from the classical Fisher information based on probabil-
ity distributions, I¢. For non-Hamiltonian dynamics, it is defined
in the tangent space of the state space. For many-particle systems
in the position-momentum phase space, it is defined in the tangent
space of a classical phase space point, making it a purely mechanical
quantity.

Here, we analyze this Fisher information for deterministic, dif-
ferentiable dynamics to relate it to both local instability and state
space curvature for classical, many-body systems. For many-body
Hamiltonian systems, there is evidence that the curvature of the
potential energy landscape can affect the stability of dynamical tra-
jectories and the fluctuations in the chaotic properties of fluids."*"
Phase space curvature can also regularize the dynamics of barrier
crossing, including the isomerization of atomic clusters,”** small
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molecules,”"* and proteins.”” The magnitude of (finite-time) Lya-
punov exponents™ reflects this behavior and can even be directly
related to the reactive flux over the barrier.”’ These examples sug-
gest the need for a better understanding of the relationship between
phase space curvature and the speed of dynamical processes.

To address this need, we examine this Fisher information .#¢
for deterministic dynamical systems, showing that a classical den-
sity matrix theory™ in Sec. I1 leads naturally to its definition, Sec. I11,
and a relationship to the speed through state space. Given the rela-
tionship of other forms of Fisher information to curvature, we
corroborate the hypothesis that this new Fisher information is a
measure of state space curvature with larger (smaller) values of .#¢
at a given state space point corresponding to higher (lower) cur-
vature, Sec. I1I B. In addition, we derive upper and lower bounds
on this Fisher information. To gain physical insight, we compute
these bounds for analytically tractable model oscillators, Sec. IV, one
conservative and one dissipative.

Il. CLASSICAL DENSITY MATRIX THEORY

We recently established a classical density matrix theory to
describe the time evolution of infinitesimal perturbations in deter-
ministic systems.”” This theory is based on the normalized time
evolution of the perturbation vectors in the tangent space of clas-
sical systems and analogous to the density matrix formulation of
quantum mechanics based on wavevectors in Hilbert space. In this
classical framework, the classical density matrix is mathematically
similar to the metric tensor associated with the underlying phase
space, which led to extensions of Liouville’s theorem and equation
for non-Hamiltonian systems.”” Local measures of dynamical insta-
bility and chaos also appear, but in classical (anti)commutators; for
Hamiltonian dynamics, they are directly related to Poisson brackets.
We first summarize the parts of this theory that we will need.

Consider a differentiable dynamical system, x = F(x), in which
apoint x(t) := [x!(£), ¥*(®), ..., x”(l‘)]T evolves in the n-dimensional
state space. A small perturbation to that point, |§x), also evolves in
time but according to the linearized dynamics,

d
218%(0) = Alx()]13x()). o

The stability matrix, A := A[x(f)] = VF has entries (A); =3x'(t)/
9x/ () and governs the time evolution of a perturbation vector
|8x(f)). Here, we use Dirac’s notation™ to represent a finite-
dimensional column (row) vector with the ket (bra): |5x(t))
= [8x1 (D), 8x2(D), ..., 8x"(H)] " in a real tangent space.

To define the classical density matrix and associated Fisher
information, we use the norm-preserving dynamics of the unit per-
turbation vector |Su(f)) = [8x(£))/|||8x(f))||. Here, ||.|| represents
the £2 norm: |||8x(f))|| := (8x|6x)*/2. The time evolution of this
vector,

d -
7 154®) = Aldu(®)), @

preserves the unit norm through the generator of the evolution
A = A — (Su(t)|A|3u(f))]. The matrix [ is the n x n identity matrix.
The source/sink term (Su(t)|A|Su(t)) is the instantaneous Lyapunov
exponent, which here counteracts any stretching or contraction and
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ensures the unit vector is normalized at all times. Overall, Eq. (2)
plays a role that is similar to the Schrédinger equation from quan-
tum mechanics with A playing the role of the Hamiltonian operator.
However, unlike the Hamiltonian, which has a Hermitian matrix
representation, the real matrix A is generally not symmetric and
depends on the unit perturbation vector at time t.

The classical density matrix associated with a unit perturba-
tion vector |§u) is the dyadic product, o(¢) = |§u(t)) (6u(t)|. Keeping
in mind this symmetric matrix is composed of classical variables,
we borrow the nomenclature of quantum mechanics and call this
density matrix a pure perturbation state. It has the usual proper-
ties of a projection operator: it is positive semi-definite, @ > 0, with
Tre = 1 and g = . Partitioning the matrix A into its symmetric
A, = (A+ A")/2and anti-symmetric A_ = (A — A")/2 parts, the
time evolution of the density matrix g is

%Q ={Ai 0} +[A-.e] —2(A)e. ()
The notation {-} and [-] indicate the anti-commutator and commu-
tator, respectively, while (X) := Tr(Xo) is the expectation value of
X with respect to the classical density matrix @. Eq. (3) is a classical
analog of the von Neumann equation. Unlike the quantum version,
this equation contains an anti-commutator along with a source/sink
term (A) and is valid for differentiable deterministic systems, not
only those that are Hamiltonian. From this equation of motion, we
construct a classical Fisher information and consider its geometric
interpretation in terms of phase space curvature and speed.

Ill. FISHER INFORMATION FOR CLASSICAL PURE
STATES

To define this Fisher information on the first variations of the

state variables (e.g., position and momentum), we start with Eq. (3)
in the form™
i -
—o0 =Ao +0A . 4
Lo =4ete )
Comparing to d,@ := ; (L@ + @L"), this equation of motion implic-
itly defines the logarithmic derivative L of the density matrix,
L =2A. From the logarithmic derivative, we can then show the
Fisher information .#¢ for a pure state @ is the variance of L
(Appendix A),

IS = AL* = 4AA”. (5)

We define the variance for a matrix X as AX?> = (X' X) — (X" )(X)
and use the fact that the expectation value of L vanishes (L)
= 2(A) = 0. The same expression of .7 follows from the variance
of the symmetric logarithmic derivative (Appendix B).

The mathematical form of this Fisher information resembles
the quantum Fisher information for pure quantum states. For a
pure quantum state evolving under unitary dynamics, the quan-

tum Fisher information is .72 = INREYN /h? directly related
to A, the variance of the Hamiltonian H with respect to the
pure state 9. It derives from the symmetric logarithmic derivative
L defined implicitly in d,0 = (Lo + oL)/2 for a pure quantum state
0.” The expectation value (L) also vanishes.
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A. Lower and upper bounds for classical states

Because .#¢ for pure states is a variance, it is nonnegative,
FE > 0, despite being computed with a perturbation vector in the
tangent space of a point in state space. However, there is also an
upper bound on this Fisher information: At a given point in state
space, the spectrum of the stability matrix A constrains the maxi-
mum value. To derive this upper bound, we consider the definition
of #¢ in Eq. (5) and write AA? explicitly as

LI = AT - (ar, ©)

using the equality (A) = (AT). We use two secondary results to
upper bound .#£ /4.

First, we recognize (AT A) as the Rayleigh quotient of |§u) with
respect to the matrix AT A. The symmetric matrix A" A is diagonal-
izable and g is positive-semidefinite, so we can apply the min-max
theorem™ to get

Amin(ATA) < < max(ATA). (7)

Tr(AT Ag)
Tro
The minimum, Amin(ATA), and maximum, Am.(ATA), eigenval-
ues of ATA set bounds on (ATA) = Tr(A" Ag). These inequalities
have been rigorously proven’ for any two real matrices X and Y of
order n x n, provided X is symmetric and Y is positive semidefinite,
X Tr(Y) < Tr(XY) < A% Tr(Y). Recognizing the dynamics of g
is trace-preserving, Trg = 1 for all times, the result here simplifies

to (Appendix C)

02, (A) < (ATA) < o2 (A), (8)

with bounds set by the singular values o of A. The upper (lower)
bound in Eq. (8) saturates when g is composed of the eigenvector of
ATA corresponding to the maximum (minimum) eigenvalue.

Second, we recognize that the second term on the right-hand
side of Eq. (6) is nonnegative, (A)? > 0, and appears with a negative
sign. Putting this fact together with the Rayleigh quotient in Eq. (7),
the bounds on .7 are

IE

= = O (A)- )

0 S max
This upper bound has a couple of useful features. Because the largest
singular value of A sets the maximum value, the bound is inde-
pendent of the basis chosen for . The upper bound also gives
a mathematical interpretation of this Fisher information. Loosely
speaking, singular values are a measure of how much the matrix
scales the space it acts on. So, we can interpret .7 as a measure
of the extent to which we can estimate the stretching action of the
linearized dynamics in the neighborhood of a point in state space.
When does the Fisher information here saturate the upper and
lower bounds? If A is a symmetric matrix, then (A%) = (A)? in the
direction of its eigenvectors. Therefore, the Fisher information .#¢
vanishes. In this case, the lower bound on JFC saturates. For the
upper bound to saturate, a perturbation vector |§u) needs to ful-
fill two conditions: (a) (A) = 0 and (b) |§u) must be that singular
vector of A that corresponds to its maximum singular value. When
these conditions are met, we can see from Egs. (6) and (8) that
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FE = 02, (A). This happens, for example, in the simple harmonic
oscillator, Sec. ['V B.

A tighter, and nontrivial, lower bound is possible for basis
sets where (A) is nonzero. To see how, we first recognize that (A)
= (Ay) = Tr(A0) is an instantaneous Lyapunov exponent associ-
ated with a pure perturbation state . From Eq. (7), this exponent
is bounded by the extremal eigenvalues™ of A.. Then, the pos-
sible values of {A;)? belong to the interval [0,02 (A4)], where
Omax(A+) is the maximum singular value of the symmetric matrix
A, . Now, using interval arithmetic, we obtain a potentially tighter
lower bound on .#F,

g
Oin(A) = 00 (A4) = =5 < 07, (A). (10)

The bounds are independent of the basis chosen for @ = |5u) (Su|.
This lower bound will be tighter than zero for arbitrary differentiable
dynamical systems with nonvanishing local Lyapunov exponents:
specifically, when 02, (4) > o2 (A}).

B. Decomposition into phase space curvature and
speed

For a geometric interpretation of ., we use Eq. (2) to find
(Appendix A)

Fi = 4l18i)|1* = |LIsu)||* = (SulL"L|5u). (11)

We consider an infinitesimal perturbation vector [u) in the tan-
gent space at a point x(f) on the state space trajectory I'(¢). The
logarithmic derivative L is a linear transformation on |§u) produc-
ing another vector | f) = L|§u). The vector |f) is the Fisher vector
and the matrix LTL is the Fisher matrix. Its £2 norm gives the tan-
gent space Fisher information at x(t) for the pure perturbation state
0 = |6u(t))(Su(t)|. Because the projection of |§u) on |f) given by
(L) = (8u|L|u) vanishes, the angle between an arbitrary tangent
vector and Fisher vector |f) is /2 at all points along a trajectory.
For a system with Hamiltonian H, the Fisher vector aligns with VH.

A natural choice for a perturbation vector is in the flow direc-
tion x at a state-space point, Fig. 1. For an infinitesimal time §t,
the perturbation in the flow direction is |§x) = |%)§t. Once normal-
ized, |8u) = (8x|8x)~/%|8x), we write it explicitly for the flow in the
n-dimensional phase space,

[kl(t)skZ(t)r R )jcn(t)]-r

Suy) = =
o) V() + 330 + ...+ x2(1)

, (12)

Un

where u; = x;/,/> ., % so that the normalization condition
>r, uf =1 is satisfied at all times. The subscript x indicates the
flow direction. We will use this vector to relate the Fisher informa-
tion here to the state space curvature.

A classical trajectory experiences the local curvature as it
evolves through state space. Geometrically, the curvature at a point
on the trajectory is the rate of change of the unit perturbation vector
|8u;) along the tangential direction to the flow x. The curvature of a

pubs.aip.org/aip/cha

I = =||L|éu 2
If)=L[su@®) \ " (FIF) = 1L 18u()) |

|Su(r))

FIG. 1. Geometric interpretation of the Fisher information .#¢: It is the €2 norm
of the vector | f) = L|du), which is a result of applying a linear transformation
L to a perturbation vector |5u) at a given point x(f) on a phase space trajectory
(8. Inthe diagram, the vector |su) aligns with the flow direction x, and the angle
between | f) and |§u) is 7t /2 as (L) = 0 at every point along a trajectory. The
vector collinear with the direction of the flow is only one possible choice of |Su).

trajectory segment of length s is (Appendix D)

d|Suy)
ds

k() = H , (13)

where s(f) = ftg [llx)|| dt for a trajectory given by integrating the
norm of x. Applying the chain rule, the curvature becomes

() = $H 18w | = )7 [118i) (14)

with § = |||x)|| by the fundamental theorem of calculus. From
Eq. (11), the Fisher information in the flow direction is

TE @) =4 1012, (15)

which is determined by the local curvature and the phase speed
along a trajectory. This form of the Fisher information is specific to
the direction of the flow and independent of whether the dynamics
are conservative or dissipative.

The upper and lower bounds in Sec. III A immediately apply
to this form of the Fisher information. To evaluate the bounds
and to elucidate the connection between .#(x) with phase space
curvature, we consider paradigmatic model mechanical systems.

IV. MODEL SYSTEMS
A. Free particle

The classical free particle has a nonnegative kinetic energy and
no potential energy. It is a linear system with Hamiltonian H(qg, p)
= p?/2m and equations of motions ¢ = p/m and p = 0. The parti-
cle, thus, moves in a straight line with a constant momentum p. A
perturbation in the direction of the flow is time independent,

Lg@.poN" _ | (1)
VE® +pA(D 0)’

|du;) =
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where =+ indicates the direction of the phase space velocity vector
[0, p(H)]T. The time derivative of |Su;) vanishes. As a conse-
quence, the Fisher information, .# = 0, from Eq. (11) also van-
ishes, reflecting the curvature-less geometry of the free particle phase
space.

B. Linear harmonic oscillator

As an example with a controllable phase space structure, we
consider the one-dimensional linear harmonic oscillator’” with mass
m, frequency w, and Hamiltonian H(g, p) = p*/2m + mw?q*/2. Its
equations of motion are

g=p/m and p=—mawq. (16)

For a given total energy, it is well known that the harmonic oscillator
has an elliptical phase space. The ellipses are a convenient feature for
illustrating the dependence of the Fisher information on phase space
curvature. In fact, in suitable dimensionless coordinates Q and P,
we can introduce a single parameter to control the orientation and
major axes of the ellipses, and, so, the variations in curvature of an
oscillator will sample along a dynamical trajectory. We define the
generalized coordinate Q and the conjugate momentum P through

9=9,Q and p=p,P. (17)

The coordinates Q and P are made dimensionless by the constant
factors g, and p,, with units of length [L] and momentum [MLT™'].
This coordinate transformation requires that the Poisson brackets
be {Q(g,p),P(q,p)} =1 and {Q(q,p), Q(q,p)} = {P(q,p), P(q, )}
= 0. Together, these lead to the condition g,,p,, = 1. We will use
this relation to define a de-dimensionalization parameter.

To write the transformed Hamiltonian, we introduce a param-
eter a := q,,/pm> with dimensions [TM™']. This parameter controls
the orientation of the phase space ellipses through the relative con-
tributions of the kinetic and potential energies to the Hamiltonian.
Larger (smaller) values of a will amplify the potential (kinetic)
energy term and the curvature of phase space trajectories around
q = 0 (p = 0). Using 4, the Hamiltonian is

p? mawQ?
+ Q).

2maw 2

The quantity g,,p,@ has the dimensions of energy [ML?>T~?] and
the terms inside the parenthesis in Eq. (18) are dimensionless. The
non-dimensionalized equations of motion become

Q=-— and P=-—-maw’Q (19)
ma

with the solution
Q(t) = Beos(wt + ¢), P(t) = —mawB sin(wt + ¢). (20)

The amplitude B is set by the initial condition. The stability matrix
for the system in Eq. (19) is

A=w ( 0 (’"““’)71> . @1)

—maw 0

By manipulating the dimensions in this way, the stability matrix has
dimensions of inverse time and the Fisher information has dimen-
sions of inverse time squared. The Fisher information depends, in
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part, on the positive semi-definite symmetric matrix,

ATA = o (("’“‘“)2 0 ) , (22)

0 (maw)™>
with the dimensions of ?® and eigenvalues,
M= (maa)z)2 and A, = (ma)2. (23)

These eigenvalues are the square of singular values o? of A.
The parameter a scales the mass m and ensures the stabil-
ity matrix has dimensions of frequency. The potential energy
V = gmpmmaw?*Q*/2 is a function of a and has the dimensions of
energy.

Now, for an arbitrary perturbation vector [Su) = [u, v]T, the
Fisher information for the simple harmonic oscillator (Appendix E)
is

Vz 2
JFC = 4AA? = 40* (maa)u2 + ) . (24)
maw

According to Eq. (8) (Appendix G), it is bounded by the extremal
eigenvalues A, and Apay, Of ATA,

4A‘min =< ypc =< 4A-max~ (25)

These bounds on the Fisher information are independent of the
choice of perturbation vector. For a < (mw)~", the minimum
and maximum bounds are A, = A, and Ay = Ay. The matrix
AT A has an exceptional point, a spectral singularity at the point
a = (mw)~" where the two eigenvalues are degenerate and the cor-
responding eigenvectors coalesce. In Fig. 2, this point is at a = 2.
At this point, JFC has a constant value determined by 4w?, which is
one for @ = 0.5. The bounds switch for a > (m®) ™", Amin = A1, and
Amax = Az. Figure 2 shows A; and A, as a function of a for m =1
and w = 0.5. For the initial condition at time t = 0, we chose a max-
imum amplitude of the oscillator by Q(y) = 4 and P(t;) = 0. These
initial conditions, together with m and w, also set the total energy of
the system.

1. Upper and lower bounds on #£ (%) and their
saturation

As we have seen, the Fisher information in the direction of
the flow is directly related to the phase space curvature. This infor-
mation is readily computed for the simple harmonic oscillator,
including the lower and upper bounds. The upper bound saturates
at the turning points on the trajectory where the potential energy
is at its highest point. The lower bound saturates at the minimum
potential energy, when kinetic energy is at its highest. In the flow
direction x, we start with the expression for /FC, which takes the
form (Appendix F)

maw ? (26)
1+ [(maw)® —1]% | °

IE (%) = 4 (
where 0 < V/E < 1. From this expression, the Fisher information
depends on the potential V for fixed energy E, a, m, and w. Since
maw and V/E are dimensionless, it has dimensions of w?.
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FIG. 2. Two eigenvalues of the matrix ATA, A, = (mawz)2 and A, = (ma)~?
vary with the parameter a. We set m = 1 and w = 0.5 here. These eigenvalues
give extremal bounds on JFC for the simple harmonic oscillator. There is a spectral
singularity ata = (mw)~" = 2 (black dot) where both eigenvalues are 1/4. At this
point, /FC attains a basis and time independent value 4w?, which corresponds
to phase space trajectories of constant curvature. The minimum and maximum
bounds on fFC fora < 2are A, and A4, respectively. The bounds switch fora > 2
because 21 is now greater than A,.

Bounds on .#£(x) follow from

2
i maw ) , 27)
1+ ((maa)) — 1) cos?(wt + ¢)

IE(x) = 40® (

which we derive in Appendix G. The extremal values of the cosine
function lead to two cases,

1
< I x) < 4mPd’w?, for a< —, (28)
m2a? mw
2.2 4 Cre 4 1
dm*a‘w* < I (x) < ——, for a> —. (29)
m2a? mw

For a < 1/mw, the minimum and maximum bounds saturate at
phase angles wt+ ¢ = (I4 1)7/2 and wt+ ¢ = Ir, respectively,
for I € {0,1,2,...}. At these phase angles, for a > 1/mw, it is the
maximum and minimum bounds that are saturated, respectively.
The bounds saturate because at these angles (A) = 0 and thus (A)
does not contribute to #¢ (x).

To illustrate these bounds, we choose three representative val-
ues of a € {1, 2, 3} that determine the orientation of the phase space
ellipse. We choose m =1 and @ = 0.5 such that the exceptional
point is located at a = 2. Panels (a), (b), and (c) in Fig. 3 show
the phase space trajectories for each a. The geometry of the phase
space is an oblate ellipse at a = 1, circle at a = 2, and prolate ellipse
at a = 3. As shown in panels (d), (e), and (f) in Fig. 3, the Fisher
information .#(x) and the potential energy V = g,,p,maw*Q*/2
oscillate as the phase point traces out a trajectory.

For a = 1, the oscillations of .#(x) are in phase with those in
V, Fig. 3(d). The periodic variation in .# (x) saturates the upper and
lower bounds at its maximum and minimum values, respectively. In
addition, we can see that .# (%) correlates with the local curvature

ARTICLE pubs.aip.org/aip/cha

of the trajectory. The points of the largest local curvature occur at
the turning points in Fig. 3(a) where the potential energy V is max-
imum. Figure 3(d) shows that at these points, #(x) is the largest,
saturating the upper bound. Similarly, at points of the lowest curva-
ture which corresponds to V = 0, the local curvature is the smallest,
saturating the lower bound.

As shown in Fig. 3(e), at the exceptional point a = 2, the phase
space trajectory traces out a circle of radius R = +/2mE and con-
stant curvature R™!. In this case, .# (%) is constant and both bounds
saturate. The potential energy does not share this signature of the
constant curvature. The case a = 3 shown in Fig. 3(f) is comple-
mentary to a = 1. The potential energy is out of phase with .7 (x).
The phase space structure is instead a prolate ellipse as can be seen
in panel (c), with a maximum local curvature at Q = 0 and a min-
imum at the turning points. Once again, .7 (&) correlates with the
local curvature at all points along the trajectory and its maximum
(minimum) saturates the upper (lower) bound.

2. Relation between .# £ (x) and the energy and period
In the case of the simple harmonic oscillator, the Fisher infor-
mation can also be expressed as a function of the Hamiltonian.
Combining the Hamiltonian in Egs. (15), (18), and (24), we get
(Appendix H)
2

“a )g:c%, (30)

qmPm

IEx) = <l6w2

where J/qupn has the dimensions of frequency w and « is the
local curvature. From this equation, we conclude that for a constant
energy given by .7, the Fisher information .7 (k) o< « 3.

One interpretation of the square root of the Fisher informa-
tion (parameterized by time) is as a speed of the evolution across the
statistical manifold defined by @.'*”* Because the Fisher information
has dimensions of inverse time squared, we can also relate it to the
natural frequency of the oscillator. Leaning on our interpretation,
we derive an expression for the period of the harmonic oscillator
(Appendix I),

N J
=2 L‘g) ds
oV ﬂ FC(x)
When a = 2, the phase space is a circle, Fig. 3(b), with radius
k = R7L. The Fisher information is constant .7 (x) = 4e?. The arc
length of the circle s can then be expressed in terms of the angle such
that s = RA. We then get

I | 2
T= 2/ — RdO = —, (32)
o RV4w? w

recovering the well-known period of simple harmonic motion.

T /. (31)

C. Damped harmonic oscillator

For comparison to the conservative dynamics of the simple
harmonic oscillator, we analyzed the dissipative dynamics of the
damped harmonic oscillator. In dissipative dynamics, the phase
space contracts over time, which we expect to affect the curvature
and speed along a trajectory and, so, the Fisher information.
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FIG. 3. Phase space of the simple harmonic oscillator for (a) a = 1, (b) a = 2, and (c) @ = 3. In each case, one trajectory (shown in red) is chosen to compute potential
energy V and Fisher information .#C (x). Time evolution of V (red) and . (%) (in black) for (d) a = 1, () a = 2, and (f) a = 3. The bounds on .7 (x) are marked by a

horizontal dashed line in gray. Here, mass m = 1 and frequency @ = 0.5.

For the damped harmonic oscillator, the equations of motion
are

s= 2
q_m

p=—mw'q— %p, (33)

where y is the positive friction coefficient.”” Again using the param-
eter a to non-dimensionalize, we get

. P .
Q=-—, and P=-man’Q-— ZP. (34)
ma m

In these coordinates, the stability matrix is now,

A=w ( 0 (maw)™! ) . (35)

—maw —y(mw)”"

As for the harmonic oscillator, we can use the symmetric matrix,

Ta (maw)2 ya
ATA=o ( va 1+ yzaz)(maw)_2> ’ (36)

to construct the Fisher information.
The analytical form of Fisher information .7 = 4AA? for a
general perturbation vector |Su) = [u, v]T for the damped harmonic

oscillator is (Appendix J)

a v\’
IE = 40? (mawu2 + X%t ) . (37)
maw maw

For the perturbation vector in the flow direction x, it becomes
(Appendix J)

6 P2 2
LG = 4=y (mﬂsz + 2 qp+ —> SNED
” X” maw maw
where ||X | = /P2 + Q? uses the equations of motion in Eq. (34).

For y = 0, we recover the expressions of Fisher information for the
harmonic oscillator.

As is well known, depending on the damping constant y, fre-
quency w, and mass m, there are three distinct cases—underdamped,
critically damped, and overdamped. We will consider these cases
next, setting m = 1 and w = 0.5.

Underdamped oscillator. The angular frequency for the damped
harmonic motion is w; = v/@? — (y/2m)*. For small damping y,
with y/2m < w, the system oscillates with frequency w; < w with
this motion dampened exponentially over time. The solutions to the
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FIG. 4. Underdamped oscillator. The phase space of the underdamped harmonic oscillator for (a) a = 1, (b) a = 2, and (c) @ = 3. In each case, one trajectory [shown in
red in (a), (b), and (c)] is chosen to compute potential energy V and Fisher information .7 (X). The three bottom panels show the time evolution of V/ (red) .7 (x) (black)
for (d)a =1, (e) a = 2, and (f) a = 3 for the chosen trajectories. The bounds on J/FC (x) are marked by a horizontal dashed line (gray). For computations, we have set mass

m = 1, frequency w = 0.5,and y = 0.1.

equations of motion in Eq. (34) are
Q) = Cexp(—2=1) cos(@at + ¢),
2m

P(t) = -C e Tt (% cos(wyt + @) + mawy sin(wyt + ¢)) ,
where ¢ = —arctan[(% + %E’))))/ (mawy)], C is a constant, and

Q(ty) and P(ty) are the initial conditions. The Fisher information

for an underdamped oscillator is (Appendix J)
202 L\ 2
IE() = 40’ (M) (39)

|1
Figure 4 shows the phase space trajectories, Fisher information, and
potential energy for the three representative values of a. Unlike the
harmonic oscillator, the point a = 2 is no longer an exceptional
point. As a consequence of damping, phase trajectories spiral inward
to the phase space origin; see panels (a), (b), and (c) in Fig. 4. The
local curvature of these trajectories varies in all three values of a
as indicated by changing shapes of the spirals and their orientation
about the (Q, P) axes.

As in the simple harmonic oscillator, the Fisher information
FE(x) exhibits oscillatory behavior in response to changes in local

curvature along the spiraling trajectories. To illustrate this behav-
ior, we chose a representative trajectory for each of the three values
of a. These trajectories are red in Figs. 4(a)-4(c). For these trajecto-
ries, the potential energy V and the Fisher information .7 (x) are
shown for (d) a = 1, (¢) a = 2, and (f) a = 3. However, .# < (x) does
not decay over time. In this case, the effect damping is neutralized
because the vector |§uy) is normalized at all times (as long as the
dynamics persist in the system). The potential energy V decays expo-
nentially due to damping, as expected. As a consequence, the largest
(smallest) local curvature of the trajectory does not exactly corre-
spond to local maxima (minima) in V. The oscillations in .7 (&)
and V are no longer in phase because the spiral geometry of the
trajectories is not symmetric about the (Q, P) axes.

The numerical calculations confirm the bounds on . (%) in
Figs. 4(d)-4(f). The upper bound is still given by the largest eigen-
value of AT A, which does not saturate as (A) never vanishes. To
compute the lower bound, we use the singular value of A and A,
according to Eq. (10). In panel (d), the lower bound computed
from Eq. (10) is not useful as, in this case, 62, (4) does not exceed
o2, (A}). However, the lower bound is tighter than zero in panels

(e) and (f) because 02, (A) > o2 (A;) at all phase space points.
Overdamped and critically damped oscillator. Our results for

the overdamped and critically damped dynamics are qualitatively
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FIG. 5. The top panels show the phase space of the critically damped harmonic oscillator for (a) a = 1, (b) 2 = 2, and (c) a = 3. In each case, one trajectory [red in (a), (b),
and (c)] is chosen to compute potential energy V and Fisher information .7 (x). The three bottom panels show the time evolution of V (red) .7 (x) (black) for (d) a = 1, (e)
a = 2,and (f) a = 3. The bounds on .# (x) are marked by a horizontal dashed line (gray). For computations, we have set mass m = 1, frequency w = 0.5, and y = 1.0.

similar, so we present our numerical results for the latter. The oscil-
lator exhibits critical damping when y/(2m) = w, ie., w; = 0. In
this case, the equations of motion have the solution

Q(t) = (B+ Ct) e~ 2",
P(t) = (maC - %B n %“Ct) et

where B is a dimensionless constant and C is a constant with dimen-
sions of frequency [T~']. Both are set by initial conditions Q(%,) and
P(ty). Their ratio is

B ma

C = Ja . B’ (40)

2Tq

where B= Q,, C = wQ, + %, and w = y/2m. In this case, the
Fisher information takes the form (Appendix J)

_r 4\ ¢
IE(E) = 40 (—V"’““’C“’"> , (41)

where ||X” =/Q*+ P2

When overdamped or critically damped, the oscillator does not
show oscillations. Its phase trajectories dampen exponentially until
motion ceases. The oscillator’s phase space for a € {1,2, 3} is shown

in panels (a), (b), and (c), respectively, of Fig. 5. To compute trajec-
tories, we set m = 1, y = 1, and w = 0.5. As before, we chose one
representative trajectory for each of the three values of a and show
the corresponding potential energy and Fisher information in panels
(d), (e), and (f) of Fig. 5 for a = 1, 2, and 3, respectively.

In each of these cases, the phase space trajectory is a curve
with one local maximum before reaching the fixed point. The cor-
responding Fisher information has a single peak and vanishes when
the trajectory reaches the origin. Intuitively, there is no Fisher infor-
mation when the system is static and at a fixed point. A higher peak
in #F(x) indicates a higher curvature in the corresponding tra-
jectory. The potential energy decays, as expected. The bounds on
Z£(x) are indicated by a horizontal dashed line in gray. The upper
bounds are the largest eigenvalue of AT A for the given a. The lower

; 2 2
bound is zero as 0}, (A) never exceeds o7, (A).

D. Fisher information ¢ in higher dimensional
systems

In Sec. IV, we obtained closed form expressions for JFC
and demonstrated its relation with phase space curvature for
low-dimensional conservative and dissipative systems. For higher
dimensional systems that are not amenable to analytical treat-
ment, #F is numerically computable. For instance, the Fisher
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information is computable from molecular dynamics simulations.
The stability matrix has been computed for atomic clusters,”*
small molecules,”"* simple liquids,"”* and proteins.”’ The results
here are also applicable to classic dynamical systems, such as the
Lorenz-Fetter model, for which one can compute the numerical
trajectory, the stability matrix A, and the unit perturbation vector
in the flow direction, |§u;) [from Eq. (12)]. With these ingredi-
ents, |§u;) and A, one can compute the Fisher information in the
flow direction x using Eq. (5): € (x) = 4AA? = 4(Su;|ATA|Suy)
— 4(Su;|A|Sus)?. This algorithm can also be used to calculate .7
for arbitrary perturbation vector |u) at any phase space point.*

V. CONCLUSIONS

We introduced a Fisher information for the differentiable
dynamics of classical systems. While classical, it is distinct from the
well-known classical Fisher information associated with probability
distributions that is used in the estimation of statistical parameters.
Its mathematical form is more akin to the quantum Fisher infor-
mation, and, for many-particle systems, it is a purely mechanical
quantity that depends on positions and momenta. Analyzing this
Fisher information .#¢ led to several interpretations. As a part of
a recent classical density matrix theory,” this information measure
is directly related to the fluctuations in local dynamical stability
for pure states. For these pure states, it is also a measure of the
speed at which the system progresses through the space of classical
density matrices. The square of the singular value of the stabil-
ity matrix sets an upper bound and gives an interpretation as the
net stretching action of the flow. Considering the direction of the
flow, the Fisher information depends on the curvature of phase
space; a higher (lower) value of .#€ indicates greater (smaller) curva-
ture. To illustrate these interpretations, we analyzed the conservative
and damped harmonic oscillator to obtain analytical expressions of
ZE and its bounds. Overall, this classical information measure is
computable for deterministic, differentiable systems; is a mechani-
cal counterpart to the classical Fisher information in statistics; and
offers a new perspective on how the time evolution of classical
systems depends on the geometry of state space.
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APPENDIX A: DERIVATION OF FISHER INFORMATION

The equation of motion of a pure state defined by the pertur-
bation vector |du) is

d _
aléu) = A|Su). (A1)
A pure perturbation state defined as @ = |8u) (5u| evolves in time as
d _
e =4e+ 0A”. (A2)

Using the logarithmic derivative L := 24, the Fisher information is
JE = AL = (L"L)

—4A'A) =4((ATA) — (A)) =4A4%  (A3)

Here, the average (-) is with respect to o: (X) = Tr(Xp). Alterna-

tively, we can use d;|du) to express ZC as

2

I =44 Ay =4 ((8u|AT) (Asu)) =4 H %Mu) (A4)

APPENDIX B: SYMMETRIC LOGARITHMIC DERIVATIVE
AND FISHER INFORMATION

The equation of motion of a pure state is

do de® do de  (2di0) o + 0 (2di0)

a T a® % T 2
Because g is symmetric, its time derivative d,0 is also symmetric. We
then obtain the symmetric logarithmic derivative Ls = 2d;0. The
Fisher information is the expectation value of Ls for o,

I = (L&) = ((2di0)’) = 4((di@)"). (B2)
From Eq. (A2),

() = (Aa-+047) (e +24")

= ApAo + AgoA' +0A'Ag+0A gA'. (B3)

(B1)

Using 0> = @ and (A) = 0, the expectation value with respect to o,

dQ 2 -T-= 2
(E) =(A A) = AA?, (B4)

which gives the Fisher information for a pure state,

SIE = 4AA% (B5)
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APPENDIX C: FISHER INFORMATION INEQUALITY OF
SINGULAR VALUES

We partition the stability matrix A into its symmetric and anti-
symmetric parts, A = A; + A_, and notice that

(4) = (44), (C1)

since (A_) = Tr(A_g) = 0, i.e,, the trace of the product of a sym-
metric matrix and an anti-symmetric matrix vanishes. As explained
in the main text, according to the min-max theorem and norm
preservation Trg = 1, the minimum and maximum eigenvalues of
A, bound (A, ) are

)\min (A+) =< (A+) = )\max (A+) > (CZ)

where Apin and A, are minimum and maximum eigenvalues of A,
respectively. The square of (A, ) is bounded from below by zero and
above by the square of its maximum singular values,

0= (A+)2 =< Unzqax(A+)- (C3)
Similarly, (AT A) is bounded by
Amin (ATA) < (ATA) < Amax (ATA), (C4)

the minimum and maximum eigenvalues of ATA: A, (ATA) and
Amax (ATA), respectively. These eigenvalues are the square of mini-
mum and maximum singular values oy, and o,y of A.

These bounds extend to the Fisher information .#f. Using
the bounds on the terms on the right-hand side of 1.7¢ = (ATA)
— (A4 )?, we obtain

o2 (A) — o2

min max

(Ay) < 198 <o, (A). (C5)

APPENDIX D: THE CONNECTION BETWEEN
CURVATURE AND FISHER INFORMATION

The curvature « of a state space trajectory of length s is related
to the perturbation vector |u;) in the flow direction x,

uo=”iww> (o)
ds
From the chain rule, we get
® = il&l') s h (D2)
=N a "

and recognize ds/dt = ||d|x)/dt|| = |||x)||. Using this result in
Eq. (11), the Fisher information becomes

2

. d .
I (%) = 4 H S 0| = 4 (| 1%) 117 (D3)

pubs.aip.org/aip/cha

APPENDIX E: FISHER INFORMATION FOR THE
DAMPED HARMONIC OSCILLATOR

The stability matrix of the harmonic oscillator,
A=a)< 0 l/maa))’ (E1)
—maw —y/mo
has an expectation value of A with respect to a pure state |Su)
=)',

(A) = (SuAlou) = % (4 — ((maw)* u+yav)).  (E2)

Using u? + v* = 1 and some algebra, we get
2

(A)? (u— ((maw)* u + yav))z ) (E3)

~ (ma)
Similarly, we obtain

1 2

(ATA) = o? <(maa))2u2 + 2yauv + Mf)

(maw)*

= (m_la)z (((maa))zu + yav)2 + VZ) . (E4)

Now, we can calculate the variance of the stability matrix A from the
equation AA? = (AAT) — (AT)(A)

2 2
AA? = o (maa)u2 + AN + V—) . (E5)

maw maw

Finally, the Fisher information for the damped harmonic oscillator

is
2 2
I = 40? (macou2—|— Ye it ) ) (E6)
maw maw

When the damping coefficient vanishes, y = 0, this expression
simplifies to

5 N2
/FC = 40? (maa)u2 + 4 ) s (E7)
maw

the Fisher information for the simple harmonic oscillator.

APPENDIX F: THE RELATION BETWEEN FISHER
INFORMATION AND POTENTIAL ENERGY FOR THE
SIMPLE HARMONIC OSCILLATOR

For the simple harmonic oscillator, the solutions to the equa-
tions of motion are

Q(t) = Bcos(wt + ¢),

(F1)
P(t) = —mawB sin(wt + ¢).
The time derivatives are
Q(t) = —Bwsin(wt + ¢),
(F2)

P(t) = —maw*B cos(wt + ).

Then, the coordinates of the pure state [5u;) in the flow direction
take the form

P _@n
i = (1) - _ea 3
= ()= aE A "

Chaos 33, 103139 (2023); doi: 10.1063/5.0165484
Published under an exclusive license by AIP Publishing

33, 103139-11

$6'G5°91 €202 1890100 /LT


https://pubs.aip.org/aip/cha

Chaos ARTICLE pubs.aip.org/aip/cha

where HX H =/ Q2 + P2, Now, we substitute the expressions of u
and v into the Fisher information,

2 2
I (%) = 4’ (mawu2 + 2 )
maw
2
= 40 maw
= 4w (1 + ((maw)* — l)cosz(a)t+¢)> . (F4)

The total energy E of the simple harmonic oscillator, the sum of the
kinetic energy K and the potential energy V, is conserved,

E=Vy = qmpmmawfonux/Z = qupmmaw*B*/2. (F5)
Thus,

V. qupmmaew’B’ cos’(ot + $)/2
E qmpmmaw*B? /2

= cos*(wt + ¢). (F6)

Substituting this result into the last expression of Fisher information,
we get

2
Crin 4 2 maw
S @) = o <1+((maw)z_1)g> '

APPENDIX G: FISHER INFORMATION BOUNDS FOR
THE SIMPLE HARMONIC OSCILLATOR

One way to find the bounds of .#¢ is using the purity of
the state |Su), u> + v = 1, with =1 <u <1land —1 <v < 1. The
maximum and the minimum of the Fisher information,

1 2
I = 40’ (maw + (— - maa)) VZ)
maw
2 1 1 2 ?
=40° | — + | maw — — Ju” ) , (G1)
maw maw

depend on the nondimensionalization parameter 4,

4 1
4(maw?)* < IE < > a<—, (G2)
(ma) mw
C 2\2 1
5 < Iy < 4(maw®) a>—. (G3)
(ma) mw

Another way to find the bounds is by taking the first derivative of
FE with respect to time,

dse  d
=4— ||s)]?
It 7 I8 |
— 4((Sit]Sir) + (SinlSia))
= 8(Suléu). (G4)
Because A> = —@’I for the simple harmonic oscillator, where T is
the 2 x 2 identity matrix, we get
dsf
th = —4(A).IF. (G5)

The maxima and the minima of Fisher information occur when

(A) = (L — maa)) uv = 0. (G6)

maw

This condition is satisfied when the potential energy is maximal,
which is when there is no momentum p =P =0, and ¥ = 0 and
v = 1in Eq. (24). Thus,

4
TE(p=0)= = 4hs. (G7)

The condition is also satisfied when the kinetic energy is maximal,
which is when g = Q=0 and u =1 and v = 0. In this case, the
potential energy V = g, p,maw*Q*/2 = 0. Thus,

]Fc(q = 0) = 4(maa)2)2 = 4A,. (G8)

Since the Fisher information has the form JFC = 4<ATA>
= 4Tr(A" Ag), we can use Eq. (7). Therefore,

Ahmin(ATA) < I < 4hpnu(ATA), (G9)

the Fisher information is in the interval [4A nin, 4Amax]-

APPENDIX H: FISHER INFORMATION IN TERMS OF
THE CURVATURE

From Eq. (24), using the coordinates of the pure state in
Eq. (F3), the equations of motion in Eq. (19) and the definition of

speed HX” = Q + P2, we get

2 2
I (%) = 4o? (maa)u2 + 7 )
maw

2 i 2
=4 a) - (man2 + i)
|X] maw

® P2 ) 2
=457 (i 10?)

® 2\’
=16 () . (H1)
FRYT

The last equality uses the Hamiltonian in Eq. (18). Because
arc length, s= s(Q,P), is dimensionless here, the derivative s
=||x)] = HX H has the units [T~'], which makes the curvature «
dimensionless. Rearranging Eq. (15), we get ||X||2 = FE(x) /42,
and substituting into Eq. (H1) gives

2

)gx%. (H2)

IE(%) = (16w2 7
Qum

APPENDIX I: RELATION BETWEEN STATE-SPACE
CURVATURE AND PERIOD

From Eq. (15) and the derivative of the arc length § = ||x||, we

get
s @
= — = = . Il
S=- (1] ae? (I1)
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The period is

T /Tdt / il 2/5 ) ds. (1)
= = —_— = K(S)—F———ds.
0 S0 /‘;‘;}E S0 \/jpc(x)

For the simple harmonic oscillator when a = 2, the Fisher informa-
tion JFC(J'C) = 4w?, curvature, and radius k = R™! are all constant.
The arc length of the circle can be expressed in terms of the angle
such that s = R6 and ds = Rd6. So, the period evaluates to

B | 2
T=2/ —_——_Rdh =", (13)
o R4w? w

the well-known result.

APPENDIX J: EXPRESSIONS OF MECHANICAL FISHER
INFORMATION IN THE FLOW DIRECTION FOR THE
UNDERDAMPED AND CRITICALLY DAMPED
HARMONIC OSCILLATOR

From the solutions Q = ﬁ and P = —maw?Q — %P, the
Fisher information in the flow direction is
Cys 2 2 a v\
I (%) = 4o | mawu” + uv +
maw maw
® a P\’
=42 (meZ + X% apy ) Y 3))
” X” maw maw

For the underdamped harmonic oscillator, substituting the solutions

Q(f) = Cexp (—Lt) cos(wgt + @),
2m
b4 yva (]2)
P(t) = —Ce zm’ (7 cos(wyt + @) + mawy sin(w,yt + ¢))
into Eq. (38) gives the Fisher information
) maww>C? e '
IER) =40 | —L— J3)

12
%]
For the critically damped harmonic oscillator, substituting the solu-

tions
Q(t) = (B+ Ctye ',

(J4)
- _Yap L YAy et
P(t) = (maC 3 B+ 3 Ct)e 2
into Eq. (38) gives
C m
I = do? | VAL (J5)
%]
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