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Abstract. We study waves on infinite one-dimensional lattices of particles that each interact
with all others through power-law forces F ∼ r−β . The inverse-cube case corresponds to Calogero-
Moser systems which are well known to be completely integrable for any finite number of particles.
The formal long-wave limit for unidirectional waves in these lattices is the Korteweg-de Vries equation
if β > 4, but with 2 < β < 4 it is a nonlocal dispersive PDE that reduces to the Benjamin-Ono
equation for β = 3. For the infinite Calogero-Moser lattice, we find explicit formulas that describe
solitary and periodic traveling waves.
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1. Introduction. In this work we study wave motions in infinite lattices of
particles that each interact with all the others through long-range power-law forces.
The particle positions xj are required to increase with j and evolve according to the
equations

(1.1) ẍj = −α

∞
m=1


(xj+m − xj)

−α−1 − (xj − xj−m)−α−1

,

where α > 1. For α = 2 this is an infinite-lattice version of the famous Calogero-Moser
system [6, 20]

(1.2) ẍj =

k ̸=j

2

(xj − xk)3
,

which is well-known to be completely integrable and has been extensively investigated
when the number of particles is finite.

Wave motions have been widely examined in infinite particle lattices with non-
linear nearest-neighbor forces, known as Fermi-Pasta-Ulam-Tsingou (FPUT) lattices.
Such lattices typically admit a Korteweg-de Vries scaling limit for the unidirectional
propagation of long waves of small amplitude, a fact that helped to trigger the great
bounty of discoveries in the theory of completely integrable systems that has emerged
over the last half-century [39].

Also, FPUT lattices typically admit exact solitary wave solutions [34, 15, 14]. The
form of these waves is known explicitly only in the case of the Toda lattice, which is
completely integrable. Recently Vainchtein [35] surveyed work on solitary waves in
lattices, including lattices with next-nearest-neighbor or longer-range interactions. In
particular, existence theorems for interactions of any finite range were proved recently
by Herrmann and Mikikits-Leitner [17] using a KdV approximation argument, and
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by Pankov [22] using variational methods. The former authors mention that the
approximation argument should work for infinite-range interactions if their strength
decays rapidly enough, e.g., exponentially fast.

Strong motivation for considering lattice systems with power-law forces such as
(1.1) comes from experimental work on solitary waves in chains of repelling magnets by
Molerón et al. [19]. These authors mention that long-range dipole-dipole interactions
between magnets separated by a large distance d involve repulsive forces proportional
to d−4 in theory. Over distances appropriate to their experiments, however, measure-
ments better fit a force law proportional to d−β with β ≈ −2.73. The Calogero-Moser
force law, with β = 3, may be considered a reasonable approximation. And since
such power-law forces have long range, it is interesting to consider the infinite-range
limit represented by (1.1). Admittedly, the system (1.1) is not a perfect model for
the experiment setup of [19], not only because dissipation is neglected, but because a
given magnet successively repels and attracts others along the chain due to the alter-
nating orientation of north and south poles. Such forces can be treated as differences
between forces from two systems of repulsive forces, though, and we will discuss this.
Studying the system (1.1) is clearly an important step anyway toward understanding
more general systems with forces of infinite range.

Formal long-wave scaling limits. As it turns out, a formal KdV limit is
possible for the system (1.1) with power-law forces of infinite range, but only when α
is sufficiently large, namely when β = α+ 1 ≥ 4 as we show below. When 2 < β < 4,
we find instead in Section 2 that a different scaling limit obtains, with small long
waves formally governed by a nonlocal dispersive PDE of the form

(1.3) ∂tu+ u∂xu+H|D|αu = 0 .

Here H is the Hilbert transform, and |D|α has Fourier symbol |k|α, thus the dispersion
term f = H|D|αu has Fourier transform f̂(k) = (−i sgn k)|k|αû(k). For the case
α = 2 corresponding to the infinite Calogero-Moser lattice in particular, (1.3) is the
Benjamin-Ono equation, in the form

(1.4) ∂tu+ u∂xu−H∂2
xu = 0 .

There is a well-known link between the Calogero-Moser system and Benjamin-
Ono equations through the pole dynamics of rational solutions [3, 8, 7, 31]. Also
through pole dynamics, formal continuum limits of Calogero-Moser systems have been
connected with coupled Benjamin-Ono-type equations in the physics literature [27,
31, 1]. To our knowledge, however, the long-wave limit that we consider herein has
not been previously described.

Formulae for Calogero-Moser waves. The fact that dispersive PDE of the
form in (1.3) admit solitary wave solutions is a consequence of the analyses of Ben-
jamin et al. [5] and Weinstein [36]. For the long-range particle system (1.1), a rigorous
analysis of existence for solitary waves is out of the scope of the present paper. It
is plausible, though, that such an analysis could be performed by methods like those
used for FPUT lattices and lattices with longer-range interactions, either of variational
character [15, 22, 23] or of iterative/fixed-point character [14, 16, 17].

At present, we focus discussion of solitary and periodic traveling waves to the
special case of the infinite Calogero-Moser lattice. Waves traveling to the right in
such a lattice are solutions with the property that after some time delay τ > 0, the
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configuration of the lattice recurs with an index shift and a spatial shift h > 0, so
that

(1.5) xj+1(t+ τ) = xj(t) + h

for all j and t. This means that traveling waves can be expressed in the form

(1.6) xj(t) = jh− φ(jh− ct),

where c = h/τ and −φ(−ct) = x0(t) for all t. Moreover, by the scaling xj → hxj ,
t → h2t which leaves (1.2) invariant, and a choice of origin for space and time, we can
suppose h = 1 and x0(0) = 0.

By making use of Bäcklund transforms for Calogero-Moser-Sutherland systems
(see [37, 38] and also [1, 31, 26]), we have managed to derive striking explicit formulas
that determine both solitary waves and periodic waves for Calogero-Moser lattices.

Theorem 1.1 (Solitary waves). For each wave speed c satisfying c2 > π2, the
infinite Calogero-Moser lattice admits a solitary wave solution of the form

(1.7) xj(t) = j − φ(j − ct),

where φ = φ(s) increases from φ(−∞) = − 1
2 to φ(+∞) = 1

2 and is determined by
the relation

(1.8) (c2 − π2)(s− φ) = π tanπφ .

The significance of the condition c2 > π2 lies in the fact that π is the speed of long
waves in the linearized Calogero-Moser lattice. Thus these solitons exist with any
speed exceeding the “sound speed” π. These solitons are compression waves that
produce a unit translation of particles in the direction of wave motion, with xj(t)
increasing from j − 1

2 to j + 1
2 as t increases from −∞ to ∞.

The result above for solitary waves will follow by taking limits of waves on the
infinite lattice that are periodic in space, satisfying

(1.9) xj+N (t) = xj(t) + L,

where N > 1 is an integer and L > 0 is real. Traveling waves of the form (1.7) satisfy
this periodicity condition if and only if the wave profile φ(s) satisfies

(1.10) φ(s+N) = φ(s) +N − L for all s.

For such periodic waves, since xj+nN = xj+nL and due to the pole expansion identity

(1.11)

n∈Z

2

(z − n)3
=

d2

dz2
(π cotπz) = 2π3 cosπz

sin3 πz
,

the infinite-lattice Calogero-Moser system (1.2) reduces to Calogero-Sutherland equa-
tions for finitely many particles, namely Hamilton’s equations of motion for the Hamil-
tonian

(1.12) HCS =
1

2

N
j=1

p2j +
1

2

N
j,k=1
j ̸=k

a2

sin2(a(qj − qk))
,

with qj = xj , pj = ẋj , and a = π
L , see [32, 31, 26]. Explicitly, we find the following.
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Theorem 1.2 (Periodic waves). The infinite Calogero-Moser lattice admits wave
solutions satisfying (1.7) and (1.9) with φ(s) odd and monotone increasing being
determined for s ∈ (−N/2, N/2) by a relation of the form

(1.13) κ tan (a(s− φ)) = tanπφ .

Here a = π
L with L = N − 1, and κ > 1 is determined for any c > π + a by

(1.14) κ =
1 + ν

1− ν
, ν =


c2 − (π + a)2

c2 − (π − a)2
.

The proof of Theorem 1.2 will be provided in Section 3 below, where we also
discuss a connection to the projection method devised by Olshanetsky and Perelo-
mov [21] for the general solution of Calogero-Moser-Sutherland systems. Theorem 1.1
will be derived in Section 4 through taking the limit N → ∞. Galilean transforma-
tions can be applied to these results to obtain a broader family of waves, but we have
no proof that all Calogero-Moser solitary and periodic waves are obtained in this way.

The paper concludes with a discussion of how the solitary wave profiles behave
in the limits as c → ∞ and as c approaches π, along with numerical illustrations and
comparison with wave profiles for nearest neighbor models corresponding to keeping
only the term with m = 1 in system (1.1), especially for the case α = 1.73 taken by
Molerón et al. [19].

There is some evidence that the waves we find can be stable, as numerical compu-
tations reported by Abanov et al. [2] and Philip [26] show localized “1-soliton” waves
repeatedly passing over a finite array of particles subject to Calogero-Moser dynamics
with a weak harmonic trapping force. The question of stability deserves a much more
thorough investigation than we have space to undertake here, however, and we leave
it for future research.

But before treating wave formulae, first in Section 2 we carry out a formal long-
wave scaling analysis of the lattice equations in (1.1). When initially looking to study
solitary waves on the infinite Calogero-Moser lattice in the long-wave limit, it was
surprising to us that the KdV scaling fails to be correct. Thus it behooves us to
explain what the correct scaling limit should be. It takes little more effort to do this
for power-law forces with different exponents, and the fact that such forces lead to
the nonlocal continuum limits in (1.3) is of general interest.

We also adapt the analysis to formally handle systems with forces alternating in
sign, as appears appropriate for modeling the experiments of [19]. Pairing consecutive
terms produces an effective repulsive force that decays as d−α−2 at long range. For
α > 2 this results in a KdV scaling, as one may expect from the case of purely
repulsive forces. For 0 < α < 2 one might expect to get a nonlocal PDE of the form
(1.3) with α replaced by α+1. Thus it is quite surprising that instead a KdV scaling
still works, for all α > 0.

2. The long-wave scaling limit. The lattice equations (1.1) are in equilibrium
for particles with a uniform spacing that may be taken to be unity after a trivial
scaling. Considering perturbations xj = j + ϵvj about this equilibrium solution and
retaining only terms of order ϵ results in the linearized system

(2.1) v̈j = α(α+ 1)

∞
m=1

vj+m − 2vj + vj−m

mα+2
.
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Seeking solutions vj(t) = ei(kj−ωt) with wave number k yields a dispersion relation
with squared phase speed

(2.2)
ω2

k2
= α(α+ 1)

∞
m=1

sinc2( 12km)

mα
, sincx =

sinx

x
.

The maximal linear wave speed appears in the long-wave limit, where we get

(2.3)
ω
k

→ cα :=


α(α+ 1)ζα ,

in terms of the Riemann zeta function denoted ζs =
∞

m=1 m
−s. In particular the

long-wave speed in the Calogero-Moser lattice is c2 = π, since ζ2 = π2

6 .
This long-wave limit formally leads to the expectation that the scaling ansatz

xj = j+ϵv(ϵj, ϵt) should require v(x, τ) to approximate a solution of the wave equation

(2.4) ∂2
τv = c2α∂

2
xv ,

up to residual errors that vanish as ϵ → 0 for times t of order O(1/ϵ). In traditional
fashion, we now examine the effects of dispersion and nonlinearity on long waves
traveling in one direction over longer time scales, by making the scaling ansatz

(2.5) xj = j + ϵpv(ϵ(j − cαt), ϵ
qt) .

The case p = 1, q = 3 corresponds to the classical KdV scaling.
For the sake of clarity regarding the results of formal scaling analysis, let us define

the lattice error of the ansatz (2.5) in equation (1.1) to be the result of substituting
(2.5) into the expression

(2.6) Rϵ = ẍj + α

∞
m=1


(xj+m − xj)

−α−1 − (xj − xj−m)−α−1

.

We consider this as a function Rϵ = Rϵ(x, τ) where x = ϵ(j − cαt) and τ = ϵqt. The
result of formal scaling analysis will be to show that for a suitably “nice” function
v(x, τ), taken as fixed, the lattice error takes the form

(2.7) Rϵ(x, τ) = ϵp+q+1Q(x, τ) + o(ϵp+q+1)

in the limit ϵ → 0. The function Q is independent of ϵ and is the error of substituting
u = −∂xv after a simple scaling into either a nonlocal PDE of the form (1.3), or the
KdV equation

(2.8) ∂τu+ u∂xu+ ∂3
xu = 0.

Notably, the lattice error Rϵ will be o(ϵp+q+1) if and only if Q = 0, meaning u is a
solution of the nonlocal PDE or the KdV equation in the appropriate case.

Theorem 2.1. Let α > 1 with α ̸= 3. Assume v(x, τ) is smooth with square-
integrable derivatives ∂j

xv for 1 ≤ j ≤ 5. Then with

u(x, τ) = −∂xv(x, τ) , κ1 = 2cα , κ2 = α(α+ 1)(α+ 2)ζα ,

the lattice error relation (2.7) holds as follows.
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(i) For α > 3, p = 1, q = 3, we have Rϵ = ϵ5Q+ o(ϵ5) with

Q = κ1 ∂τu+ κ2 u∂xu+ κ3 ∂
3
xu, κ3 = 1

12α(α+ 1)ζα−2 .

(ii) For 1 < α < 3, p = α− 2, q = α, we have Rϵ = ϵ2α−1Q+ o(ϵ2α−1) with

Q = κ1 ∂τu+ κ2 u∂xu+ κ3 H|D|αu, κ3 = α(α+ 1)

 ∞

0

1− sinc2(x/2)

xα
dx .

Remark 2.2. The case α = 3 requires a logarithmic correction to the KdV scaling.
In Appendix A, we show that if (2.5) is replaced in this case by the scaling ansatz

(2.9) xj = j + ϵ log(1/ϵ)v(ϵ(j − c3t), ϵ
3 log(1/ϵ)t),

then Rϵ = ϵ5 log2(1/ϵ)(Q+ o(1)) where Q is as in part (i) but with κ3 = 1.

Remark 2.3. The PDE errors take a simpler form after a scaling. We find that
in case (i), Q = ∂τ ũ+ ũ∂xũ+ ∂3

xũ, where ũ(x, τ) = γ2u(γax, γ3bτ) with

a2 =
κ3

κ2
, b =

κ1a

κ2
, γ5 =

κ2

a
.

In case (ii), Q = ∂τ ũ+ ũ∂xũ+H|D|αũ, where ũ(x, τ) = γα−1u(γax, γαbτ) with

aα−1 =
κ3

κ2
, b =

κ1a

κ2
, γ2α−1 =

κ2

a
.

We emphasize that Theorem 2.1 is the result of a purely formal long-wave analy-
sis. Of course, it would be desirable to prove a long-wave approximation theorem
that compares true solutions of the lattice system (1.1) to solutions of the nonlocal
PDE (1.3) over the appropriate time scale. Such an analysis is beyond the scope of
the present paper, however. We expect it would involve delicate stability estimates for
dispersive wave propagation such as have been used to justify KdV limits in various
fluid and lattice systems [9, 28, 29, 18].

Proof. From (2.5), it is convenient to express differences of lattice particle posi-
tions in terms of u as follows. We write

xj+m − xj = m+ ϵp(v(x+ ϵm, τ)− v(x, τ)) = m(1− ϵp+1Aϵmu),

xj − xj−m = m+ ϵp(v(x, τ)− v(x− ϵm, τ)) = m(1− ϵp+1A−ϵmu),

in terms of the averaging operator defined for h ̸= 0 by

(2.10) Ahu(x, τ) =
1

h

 h

0

u(x+ z, τ) dz .

By our assumptions this is uniformly bounded, with

(2.11) |Ahu(x, τ)| ≤ ∥u∥∞ = O(1).

Then with the shorthand α1 = α+ 1, α2 = 1
2 (α+ 1)(α+ 2), Taylor expansion yields

mα+1

(xj+m − xj)α+1
= 1 + α1ϵ

p+1Aϵmu+ α2ϵ
2p+2(Aϵmu)2 +O(ϵ3p+3) ,

mα+1

(xj − xj−m)α+1
= 1 + α1ϵ

p+1A−ϵmu+ α2ϵ
2p+2(A−ϵmu)2 +O(ϵ3p+3) .
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Then we can write (2.6) as

(2.12) Rϵ = ẍj + αα1Lϵ + αα2Nϵ +O(ϵ3p+3) ,

where the acceleration, linear and nonlinear terms are given by

ẍj = −ϵp+2c2α∂xu+ 2ϵp+q+1cα∂τu+ ϵp+2q∂2
τv ,(2.13)

Lϵ = ϵp+1
∞

m=1

1

mα+1
(Aϵmu−A−ϵmu) ,(2.14)

Nϵ = ϵ2p+2
∞

m=1

1

mα+1
(Aϵmu+A−ϵmu)(Aϵmu−A−ϵmu) .(2.15)

Let us first estimate factors in the nonlinear term.

Lemma 2.4. For fixed x, τ , we have Nϵ = ϵ2p+3

2ζαu∂xu


+ o(ϵ2p+3).

Proof. We have

(2.16) Aϵmu+A−ϵmu =
1

ϵm

 ϵm

−ϵm

u(x+ z, τ) dz = 2u(x, τ) + om(1) ,

where the notation om(1) denotes a generic term that is uniformly bounded with
respect to m and satisfies om(1) → 0 as ϵ → 0 for each fixed m. For the difference
factor, we have

Aϵmu−A−ϵmu

ϵm
=

1

(ϵm)2

 ϵm

0

u(x+ z, τ)− u(x+ z − ϵm, τ) dz

=
1

(ϵm)2

 ϵm

0

 0

−ϵm

∂xu(x+ y + z, τ) dy dz

= ∂xu(x, τ) + om(1) ,(2.17)

since our assumptions ensure ∂xu is bounded and continuous. By consequence we find
that as ϵ → 0,

Nϵ = ϵ2p+3
∞

m=1

1

mα
(2u∂xu+ om(1)) ,(2.18)

and the lemma follows by dominated convergence.

By (2.17), we find similarly that the leading part of the linear term is

(2.19) Lϵ = ϵp+2ζα∂xu+ o(ϵp+2)

This cancels with the term ϵp+2c2α∂xu in ẍj since the sound speed in the linearized
lattice satisfies c2α = αα1ζα from (2.3). The dispersive term arises at the next order
in the expansion of Lϵ. We consider first the easier case α > 3.

Case (i): For α > 3, standard use of Taylor’s theorem yields

−Aϵmu−A−ϵmu

ϵm
=

v(x+ ϵm, τ)− 2v(x, τ) + v(x− ϵm, τ)

(ϵm)2

= ∂2
xv +

(ϵm)2

12
(∂4

xv + om(1)),(2.20)
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since our assumptions ensure ∂4
xv is bounded and continuous. Hence we have

Lϵ = ϵp+2
∞

m=1

1

mα


∂xu+

ϵ2m2

12
(∂3

xu+ om(1))


= ϵp+2ζα∂xu+ 1

12ϵ
p+4ζα−2∂

3
xu+ o(ϵp+4),(2.21)

by dominated convergence. Then taking p = 1 and q = 3 (corresponding to the KdV
scaling), the dispersive and nonlinear terms balance and we find Rϵ = ϵ5Q + o(ϵ5)
with Q as stated in the Theorem.

Case (ii): For α ≤ 3 the ordinary KdV scaling fails, due to the divergence of the
series


1/mα−2 appearing in (2.21). To study the linear term Lϵu we take the

Fourier transform, defined for u ∈ L1(R) (suppressing dependence on τ) by

û(k) = Fu(k) =
1

2π


R
u(x)e−ikx dx .

Since ∂xu(k) = ikû(k) and Aϵmu(k) = û(k)(eiϵmk − 1)/iϵmk, we find

Lϵ(k) = ϵp+1
∞

m=1

1

mα+1

(eiϵmk/2 − e−iϵmk/2)2

(iϵmk)2
(iϵmk)û(k)

= ϵp+2ikû(k)

∞
m=1

sinc2(ϵmk/2)

mα

= ϵp+2ikû(k)


ζα − (ϵ|k|)α

∞
m=1

1− sinc2(ϵm|k|/2)
(ϵm|k|)α


.(2.22)

The last line involves a Riemann sum approximation to a convergent integral. Since
1 < α < 3, we have

(2.23) h

∞
m=1

1− sinc2(mh/2)

(mh)α
−→
h→0

ηα :=

 ∞

0

1− sinc2(x/2)

xα
dx < ∞ .

Therefore we infer that as ϵ → 0,

(2.24) Lϵ(k) = ϵp+2û(k)

ikζα + ϵα−1(−i sgn k|k|α)(ηα + ok(1))


.

Upon Fourier inversion we find

(2.25) Lϵ(x, τ) = ϵp+2ζα∂xu+ ϵp+α+1ηαH|D|αu+ ϵp+α+1Eϵ(x, τ) ,

where Eϵ(k) = û(k)|k|αok(1). Our assumptions ensure û(k)|k|α is integrable, for since
1
2 (1 + k2)|k|2α ≤ 1 + k8, by the Cauchy-Schwarz inequality we have ∞

−∞
|û(k)||k|α dk

2

≤ 2

 ∞

−∞
|û(k)|2(1 + k8) dk

 ∞

−∞

dk

1 + k2

= C

 ∞

−∞
u2 + (∂4

xu)
2 dx < ∞ .

By Fourier inversion and dominated convergence it follows Eϵ(x, τ) = o(1). Taking
p = α − 2 and q = α, the linear and nonlinear terms in Rϵ now balance and we find
Rϵ = ϵ2α−1Q+ o(ϵ2α−1) with Q as stated in the Theorem.
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Remark 2.5. An explicit formula for the integral ηα in (2.23) is

(2.26) ηα =


−2 sin (πα/2) Γ(−1− α) , α ∈ (1, 2) ∪ (2, 3),

π/6 , α = 2.

This formula for general α is motivated from the form of Ramanujan’s Master Theorem
[4], which relates to Mellin transforms. We were not able to verify the hypotheses
of this theorem, unfortunately, but instead found the following rather uncomplicated
direct proof of (2.26): Note ηα = 2

∞
0

x2−αf(x) dx where

(2.27) f(x) :=
1− sinc2( 12x)

2x2
=

cosx− 1 + 1
2x

2

x4
.

For s, p > 0 we have
∞
0

xs−1e−px dx = p−s Γ(s), and this formula extends by analytic
continuation to hold whenever Re s and Re p > 0. Taking p = ϵ± i with ϵ > 0 we find

I(s, ϵ) :=

 ∞

0

xs−1x4f(x)e−ϵx dx

=
1

2


(ϵ− i)−s + (ϵ+ i)−s


Γ(s)− ϵ−sΓ(s) +

1

2
ϵ−s−2Γ(s+ 2) .

The integral I(s, ϵ) is analytic in the half-plane where Re s > −4, and this formula
extends analytically to this half-plane. For Re s ∈ (−4,−2) with s ̸= −3 we can take
the limit ϵ ↓ 0 and infer

(2.28) I(s, 0) = cos
πs

2


Γ(s) .

Taking s = −1− α we deduce the first formula in (2.26). To get the second formula,
take s → −3.

Alternating forces. For a system having power-law interaction forces that al-
ternately repel and attract, given by

(2.29) ẍj = −α

∞
m=1


(xj+m − xj)

−α−1 − (xj − xj−m)−α−1

(−1)m−1 ,

we find that the KdV scaling as in part (i) of Theorem 2.1 works for all α > 0. The
only change in the statement, aside from including a factor (−1)m in the definition
of the lattice error Rϵ in (2.6), is that for determining the sound speed cα and the
coefficients, the zeta function values ζα and ζα−2 should be respectively replaced
by values ζ∗α and ζ∗α−2 of the alternating zeta function given by ζ∗s = ζs(1 − 21−s),
satisfying ζ∗s =

∞
m=1(−1)m−1m−s for Re s > 0.

Theorem 2.6. Let α > 0 and take v and u as in Theorem 2.1. Then under the
ansatz (2.5) with p = 1, q = 3, cα =


α(α+ 1)ζ∗α, the lattice error Rϵ for system

(2.29) satisfies Rϵ = ϵ5Q+ o(ϵ5), where

Q = κ1 ∂τu+ κ2 u∂xu+ κ3 ∂
3
xu,

with κ1 = 2cα, κ2 = α(α+ 1)(α+ 2)ζ∗α, and κ3 = 1
12α(α+ 1)ζ∗α−2.

When α > 3 the proof is a simple modification of the arguments above for proving
part (i) of Theorem 2.1. For 0 < α ≤ 3 the proof is a modification of the proof of
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part (ii), with the only essential change being that the expression in (2.22) now takes
the form Lϵ(k) = ϵ3ikû(k)


ζ∗α − Sα(ϵ|k|)


,(2.30)

Sα(h) =

∞
m=1

1− sinc2(mh/2)

mα
(−1)m−1.(2.31)

Then based on the following lemma, one finds that (2.24) changes to

(2.32) Lϵ(k) = ϵ3ζ∗α
∂xu(k) + 1

12ϵ
5ζ∗α−2

∂3
xu(k)(1 + ok(1)),

and the rest of the proof goes as before.

Lemma 2.7. For any α > 0, we have Sα(h) =
1
12ζ

∗
α−2 h

2 +O(h3) as h → 0.

We prove this lemma in Appendix B using the inversion formula for the Mellin trans-
form and path deformation; see [12] for this method.

3. Periodic Calogero-Moser-Sutherland waves.

3.1. Bäcklund transforms for Calogero-Sutherland systems. Our strat-
egy to prove Theorem 1.2 involves equations for Calogero-Sutherland systems intro-
duced by Wojciechowski [37] that he called an analogue of the Bäcklund transforma-
tions known for other integrable systems. The equations couple N particle positions
x1, . . . , xN ∈ C with M “dual” particle positions y1, . . . , yM ∈ C. In the case we will
use, they take the form

iẋj =

N
k=1
k ̸=j

a cot a(xj − xk)−
M

m=1

a cot a(xj − ym) ,(3.1)

iẏn =

N
k=1

a cot a(yn − xk)−
M

m=1
m̸=n

a cot a(yn − ym) .(3.2)

For any solution of these coupled equations, it is well known (but see the Supplemen-
tary Material for an efficient proof) that x1, . . . , xN and y1, . . . , yM separately solve
decoupled Calogero-Sutherland systems, with

ẍj = 2a3
N

k=1
k ̸=j

cos a(xj − xk) sin
−3 a(xj − xk) ,(3.3)

ÿn = 2a3
M

m=1
m̸=n

cos a(yn − ym) sin−3 a(yn − ym) .(3.4)

Several authors [2, 31, 26] refer to solutions of the coupled system (3.1)–(3.2)
as providing “M -soliton” solutions of the Calogero-Moser-Sutherland system (3.3).
Possibly this terminology is motivated by the connection, through pole dynamics,
with rational N -soliton solutions of the Benjamin-Ono equations in the case when
N = M and yj = x̄j and when the function ϕ(r) = a cot ar is replaced by ϕ(r) = 1/r
above [7]. In this rational case when ϕ(r) = 1/r a harmonic force term is sometimes
included.
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3.2. Steps to prove Theorem 1.2. Throughout this section we assume a = π
L

with L = N − 1 ∈ N. The proof of Theorem 1.2 will have four main steps:
1. First, we show that for any κ > 1, the relation (1.13), together with the

periodicity property

(3.5) φ(s+N) = φ(s) + 1 ,

determines a unique strictly increasing real analytic function φ(s) on the line,
and that (1.7) then defines lattice particle positions xj(t) for j ∈ Z with the
desired periodic wave symmetries in (1.5) and (1.9).

2. Next, we infer that corresponding points on the unit circle in C, given by

(3.6) zj = e2iaxj , j = 1, . . . , N,

comprise N distinct roots of a certain polynomial of degree N , given by

(3.7) P (z;σ) := zN − νσzN−1 + νz − σ , ν =
κ− 1

κ+ 1
, σ = e2iact.

3. Third, under the assumption that ν and c are related as in (1.14), we deduce
that the Bäcklund transform equations (3.1)–(3.2) hold, with M = 1 and
with y1(t) = y0(t) + L where

(3.8) y0(t) = ct− ib,

for a certain value of b determined by c and N .
4. The final step is simply to deduce that thus x1, . . . , xN satisfy the Calogero-

Sutherland equations (3.3), and therefore the xj (for j ∈ Z) form an N -
periodic wave solution of the Calogero-Moser system (1.2).

We remark that our discovery of the determining formula (1.13) for the wave pro-
file proceeded by seeking traveling-wave solutions for the Bäcklund transform equa-
tions, and ignoring the real part of (3.1). We omit this heuristic derivation as it is
somewhat involved and would muddy the logic of the rigorous proof.

3.3. Profile and wave symmetries.

Lemma 3.1. Let κ > 1 be arbitrary. Then there is a unique strictly increasing
real analytic function φ : R → R such that the relation (1.13) holds, together with the
periodic-shift condition (3.5).

Proof. We first determine y (later = (s− φ)/L) as a function of φ so that

(3.9) κ tanπy = tanπφ and κ cotπφ = cotπy.

One checks that y = ŷ(φ) can be defined on R by direct integration from

(3.10) y =


κ dφ

κ2 cos2 πφ+ sin2 πφ
, y(0) = 0,

after substituting κw = tanπφ. Clearly ŷ : R → R is odd, strictly increasing, surjec-
tive and real analytic, and moreover ŷ(φ+ 1) = ŷ(φ) + 1 for all φ.

Next, with s = ŝ(φ) defined by s = φ + Ly, clearly relation (1.13) holds, and
moreover ŝ is odd, strictly increasing, surjective and real analytic, with ŝ(φ + 1) =
ŝ(φ)+N for all φ. Upon inverting, we find φ as a function of s with all the properties
claimed.
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Corollary 3.2. Let c > 0. With xj(t) given by (1.7) for all j ∈ Z, the traveling-
wave symmetry condition (1.5) (with h = 1 = cτ) and the periodic-wave symmetry
condition (1.9) both hold. Moreover, for all j ∈ Z,

xj < xj+1 < . . . < xj+N = xj + L.

Proof. Observe xj − ct = j + s− φ(j + s) where s = −ct. The symmetry (1.5) is
easy to check. Also, xj is strictly increasing in j since s− φ(s) = Lŷ(φ(s)) is strictly
increasing in s. And, (3.5) implies xj+N = xj + L, hence the result.

3.4. Periodic waves and polynomial roots.

Lemma 3.3. Let zj = e2iaxj for all j ∈ Z. Then for all real t, the values
z1(t), . . . , zN (t) are distinct and comprise all N roots of the polynomial

P (z;σ) := zN − νσzN−1 + νz − σ , with ν =
κ− 1

κ+ 1
, σ = e2iact.

Proof. It follows from Corollary 3.2 that zj+N = zj for all j and that z1, . . . , zN
are distinct complex numbers on the unit circle. Next, observe that relation (1.13)
says that for all s,

(3.11) κ tan a(s− φ) =
κ

i

e2ias − e2iaφ

e2ias + e2iaφ
=

1

i

e2iπφ − 1

e2iπφ + 1
= tanπφ .

In terms of u = e2iaφ(s) = e2iπφ/L and noting σ̄ = e2ias, this is equivalent to

0 = κ(u− σ̄)(uL + 1) + (u+ σ̄)(uL − 1),

and again to the polynomial equation

(3.12) 0 = uL+1 − νσ̄uL + νu− σ̄ = P (u; σ̄) = P (e2iaφ(s); e2ias).

Since z̄k = e2ia(φ(s+k)−k) and e2iaL = e2πi = 1, we find

P (z̄k; σ̄) = P (e2ia(φ(s+k)−k); e2ias)

= e−2iakP (e2iaφ(s+k); e2ia(s+k)) = 0.

Upon conjugation we obtain P (zk;σ) = 0, for every k ∈ Z and t ∈ R.

3.5. Validity of Bäcklund transform equations.

Proposition 3.4. Let c > π + a, let y0(t) = ct− ib, and assume µ = e2ab and

(3.13) µ =


(c+ a)2 − π2

(c− a)2 − π2
, ν =


c2 − (π + a)2

c2 − (π − a)2
.

Then the following Bäcklund transform equations hold:

iẋj =

N
k=1
k ̸=j

a cot(a(xj − xk))− a cot(a(xj − y0)) ,(3.14)

iẏ0 =

N
k=1

a cot(a(y0 − xk)) .(3.15)
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Before starting the proof proper, we express equation (3.14) in terms of the vari-
ables zj using the identities

(3.16) cot(x− y) = i
e2ix + e2iy

e2ix − e2iy
, e2iay0 = e2iacte2ab = σµ.

Then (3.14) is equivalent to

1

2ia

żj
zj

= a

N
k=1
k ̸=j

zj + zk
zj − zk

− a
zj + σµ

zj − σµ
.(3.17)

The sum can be expressed in terms of zj alone, in terms of P (z) = P (z;σ):

Lemma 3.5. For each j it holds that

N
k=1
k ̸=j

zj + zk
zj − zk

=
zjP

′′(zj)− LP ′(zj)

P ′(zj)
=

LνσzN−2
j − Lν

(L+ 1)zN−1
j − LνσzN−2

j + ν
.

Proof. Fix j and note that

N
k=1
k ̸=j

zj + zk
zj − zk

=

N
k=1
k ̸=j

zk − zj + 2zj
zj − zk

= −L+ 2zj

N
k=1
k ̸=j

1

zj − zk
.

Now, since P (z) =
N

k=1(z − zk), for P (z) ̸= 0 we have

N
k=1
k ̸=j

1

z − zk
=

P ′(z)

P (z)
− 1

z − zj
=

P ′(z)(z − zj)− P (z)

P (z)(z − zj)
.

Then by Taylor expansion at zj (or L’Hôpital’s rule), taking z → zj yields

N
k=1
k ̸=j

1

zj − zk
=

P ′′(zj)

2P ′(zj)
.

This proves the Lemma.

Proof of Proposition 3.4. 1. We will prove (3.17) first. To begin we note that µ
and ν are related by the equations

(3.18) µν =
c+ a+ π

c− a+ π
,

µ

ν
=

c+ a− π

c− a− π
.

Next, differentiation of P (zj ;σ) = 0 yields, since σ̇ = 2iacσ,

żjP
′(zj) = σ̇(νzN−1

j + 1) = 2iac(zNj + νzj).

Combining this with the last Lemma, in order to verify (3.17) it suffices to show

(3.19) c
zN−1 + ν

P ′(z)
= aLν

σzN−2 − 1

P ′(z)
− a

z + σµ

z − σµ
.
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We drop the subscript, writing z = zj here and for the rest of this step of the proof.
Cross-multiplying, we find (3.19) is equivalent to

0 = (czN−1 + cν − aLνσzN−2 + aLν)(z − σµ)

+ a((L+ 1)zN−1 − LνσzN−2 + ν)(z + σµ) .

Because aL = π we find this equivalent to

0 = (c+ π + a)(zN + νz)− σzN−1((c− π − a)µ+ 2πν)− σµν(c+ π − a).

But due to the relations (3.18) this is equivalent to

0 = (c+ π + a)P (z;σ) ,

which is true. This completes the proof of (3.17).
2. It remains to prove (3.15). Note that by summing (3.14) we find

N
k=1

a cot a(y0 − xk) =

N
k=1

iẋk −
N

k=1

N
l=1
l ̸=k

a cot a(xk − xl).

The double sum vanishes since terms cancel in pairs upon switching k and l. Thus to
prove (3.15) it suffices to show

(3.20) c =

N
k=1

ẋk .

But since P (z) =
N

k=1(z − zk) we get P (0) = −σ = (−1)N
N

k=1 zk, so that

σ = e2iact = (−1)L exp


2ia

N
k=1

xk


.

Upon differentiating this, we infer (3.20) is valid, and this proves (3.15).

3.6. Conclusion of the proof of Theorem 1.2. From the Bäcklund equations
in Proposition 3.4, it follows that the Calogero-Sutherland equations (3.3) hold. This
implies, due to the pole expansion identity (1.11), that the infinite sequence xj(t),
j ∈ Z, which satisfies xj+nN = xj + nL for all j and n, satisfies the Calogero-Moser
system (1.2), for (3.3) and (1.11) imply

ẍj =
2

L3

N
k=1
k ̸=j


n∈N


xj − xk

L
− n

−3

=

k∈Z
k ̸=j

2

(xj − xk)3
.

Note the terms in the last sum with k = j + nN cancel in opposite-sign pairs.

3.7. Relation to the projection method. The solution of the general initial-
value problem for the Calogero-Sutherland system can be described by means of the
so-called projection method of Olshanetsky and Perelomov [21]. We have not made
any use of the projection method in deriving or verifying the formulas for periodic
waves in Theorem 1.2. But there appears to be a relation to it which we can only
partially explain, going through the polynomial root properties from Lemma 3.3.
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Operationally, the projection method determines solutions as follows: The time-
dependent quantities zj = e2iaxj are the eigenvalues of a matrix expressed as

(3.21) X(t) = Be2iaAtB ,

where the matrices A and B are explicitly given by initial data, with entries

Ajk = δjk ẋj(0) + (1− δjk)
ia

sin a(xj(0)− xk(0))
,(3.22)

Bjk = δjk e
iaxj(0) .(3.23)

(See the Supplementary Material for an explanation and a modified procedure.)
For initial data that correspond to a periodic wave given by Theorem 1.2, by

Lemma 3.3 it follows that the characteristic polynomial of X(t) must be identical to
the polynomial P (z) = P (z;σ), i.e.,

(3.24) det(zI −X(t)) = P (z) .

Why the characteristic polynomial should have such a simple expression in this case
may be an interesting issue for further investigation.

4. Calogero-Moser solitary waves.

4.1. Proof of Theorem 1.1. We now turn to the proof of Theorem 1.1. Fix
c > π. The aim is to show that if φ(s) is determined by (1.8) and xj(t) by (1.7), then
the Calogero-Moser equations (1.2) hold. It suffices to do this for j = 0 only, due to
the fact that the shift symmetry (1.5) with h = 1, τ = 1/c implies for all j, k and all
t,

xk(t) = xk+j(t+ jτ)− j.

We introduce the notation

xN
j (t) = j − φN (j − ct)

to denote the N -periodic wave solutions of the Calogero-Moser system as described
by Theorem 1.2, where φN is determined by (1.13). In order to prove Theorem 1.1,
it suffices to prove the following three limit identities, for every t ∈ R:

xj(t) = lim
N→∞

xN
j (t) , for all j ∈ Z,(4.1)

ẍ0(t) = lim
N→∞

ẍN
0 (t) ,(4.2) 

k ̸=0

2

(x0 − xk)3
= lim

N→∞


k ̸=0

2

(xN
0 − xN

k )3
.(4.3)

To proceed, we first study the coefficients ν and κ determined from N by (1.14):

Lemma 4.1. As N → ∞, we have ν → 1 and κaπ → c2 − π2.

Proof. Recalling a = π
L with L = N − 1, this last follows from the relation

κ =
(1 + ν)2

1− ν2
= (1 + ν)2


c2 − (π − a)2

4πa


.

Evidently, both (4.1) and (4.2) follow immediately from pointwise convergence of the

derivatives φ
(n)
N of φN to those of φ:
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Lemma 4.2. φ(n)(s) = limN→∞ φ
(n)
N (s) for n = 0, 1, 2 and all s ∈ R.

Proof. By differentiating the relations (1.8) and (1.13) that respectively determine
φ and φN , after a bit of calculation we find

φ′(s) =
(c2 − π2) cos2 πφ

π2 + (c2 − π2) cos2 πφ
,(4.4)

φ′
N (s) =

κaπ cos2 πφN

π2 cos2 a(s− φN ) + κaπ cos2 πφN
.(4.5)

Since φ(0) = 0 = φN (0), the pointwise convergence φN (s) → φ(s) as N → ∞
(uniformly on compact sets, in fact) follows from Lemma 4.1 by continuous dependence
for initial-value problems for ODEs. Then φ′

N (s) → φ′(s) follows from the ODEs,
and φ′′

N (s) → φ′′(s) follows by differentiating the ODEs.

To justify the last limit formula (4.3), observe that for all k ̸= 0,

|x0(t)− xk(t)| = |k|
1− φ(s+ k)− φ(s)

k

 .
Then from the lemma below, we obtain the bounds

|xN
0 − xN

k | ≥ δ|k|, 2

|xN
0 − xN

k |3
≤ 2

|δk|3
,

for N sufficiently large, whence the limit (4.3) follows by dominated convergence.

Lemma 4.3. There exists N0 and δ > 0 such that

φ′
N (s) ≤ 1− δ for all s ∈ R and N ≥ N0.

Proof. Using that s = φN + Ly with y given by (3.10), differentiating we find
that

1 = φ′
N


1 +

Lκ

κ2 cos2 πφN + sin2 πφN


≥ φ′

N


1 +

Lκ

κ2 + 1


for all s. But by Lemma 4.1, as N → ∞ we have κ → ∞ and

1 +
Lκ

κ2 + 1
= 1 +

π2

κaπ

κ2

κ2 + 1
→ c2

c2 − π2
.

Hence for N0 large enough, the claimed result follows with any δ < π2/c2.

This finishes the proof of Theorem 1.1.

4.2. Distinguished limits. In Fig. 1, for several values of c/π, we plot profiles
for soliton displacement φ(s) and relative displacement −r(s) = φ(s + 1) − φ(s).
As the figures suggest, the soliton formula (1.8) simplifies as c → ∞ and c → π in
interesting ways.

In the limit c → ∞, evidently the profile φ → φ∞, where φ∞ is odd with

(4.6) φ∞(s) = min

s, 1

2


for s ≥ 0.

Thus high-speed waves converge to a hard-collision limit, in which one particle at
a time moves at a constant speed, coming to a stop when it collides with the next
particle in front.
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Fig. 1. Profiles for soliton displacement (top) and relative displacement (bottom) for c/π =
1.25, 1.75, 2.5, 5, 100

In the (sonic) limit c → π, if we scale by writing c2 = π2 + ϵπ then we find that
(1.8) reduces to

(4.7) ϵs = tanπφ+O(ϵ).

We find this consistent with the formal long-wave limit obtained in Theorem 2.1. This
limit is a Benjamin-Ono equation, which for w = πu = −π∂xv(x, τ) takes the form

(4.8) 2∂τw + 4w∂xw −H∂2
xw = 0 ,

since for α = 2 the coefficients κ1 = 2π, κ2 = 4π2 and κ3 = π. Equation (4.8) has a
solitary wave solution w(x, τ) = W (x− 1

2τ) with

(4.9) W (z) = Re


i

z + i


=

1

z2 + 1
, HW (z) = Im


i

z + i


=

z

z2 + 1
,

which satisfy ∂z(HW ) = 2W 2−W . Since c =
√
π2 + ϵπ ∼ π+ 1

2ϵ, the correspondence
z = x− 1

2τ = ϵ(j − πt)− 1
2ϵ

2t is consistent with z ∼ ϵs = ϵ(j − ct) and

W ∼ π

ϵ

dφ

ds
∼ 1

(ϵs)2 + 1
.

4.3. Numerical comparison with nearest-neighbor models. Let us now
compare relative displacement profiles for solitary waves in the infinite Calogero-
Moser lattice with numerical computations for the power-law nearest-neighbor lattice.
Particle positions in the latter are governed by the system

(4.10) ẍj = −α

(xj+1 − xj)

−α−1 − (xj − xj−1)
−α−1


,
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Fig. 2. Relative displacement for solitary waves in nearest-neighbor lattices, varying α from
0.5 to 3.5 (top to bottom in each subplot). c/cs = 1.25 (top), 2.5 (bottom)
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Fig. 3. Relative displacement for solitary waves, comparing infinite-lattice Calogero-Moser to
nearest-neighbor lattice with β = α+ 1 = 2.73 for fixed speed ratio c/cs = 1.25 (top), 2.5 (bottom)

keeping only the term with m = 1 on the right-hand side of system (1.1). For solitary
waves xj(t) = j − φ(j − ct), one can show as in [11] that the (negative) relative
displacement profile r(s) = φ(s+ 1)− φ(s) satisfies

(4.11) c2r′′(s) = F (r(s+ 1))− 2F (r(s)) + F (r(s− 1)),
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with F (r) = α(1− r)−α−1, and infer that

(4.12) r(s) = (Λ ∗ F ◦ r)(s) =
 ∞

−∞
Λ(s− τ)F (r(τ)) dτ,

where Λ(s) = c−2 max(1− |s|, 0) That is, the function r(·) should be a fixed point of
the nonlinear operator of composing with the force function F followed by convolution
with the ‘tent’ function Λ.

We numerically compute profiles by straightforward spatial discretization of the
following variant of Petviashvili’s iteration method for such equations [24, 25]. Start-
ing with r0 = 0.01c2Λ, for n = 1, 2, . . . , N compute

r̃n = Λ ∗ F ◦ rn−1 ,(4.13)

Cn =


R
rn−1


R

r̃n ,(4.14)

rn = Cq
n r̃n .(4.15)

We take the exponent q slightly greater than 1 to overcorrect amplitude error that oth-
erwise grows with this type of iteration. The integrals are approximated by uniform-
grid discretization on the finite interval [−20, 20] with step size h = 0.01. With
N = 1000 and varying q as needed, we obtain numerical convergence in all cases
treated, finding residual errors in (4.11) smaller than 10−12, and |CN − 1| < 10−14.

Nearest-neighbor profiles for a range of values of α are plotted in Figure 2. In
each subplot we keep the ratio of wave speed c to sonic speed cs fixed, either 1.25 or
2.5. In Figure 3 we plot results comparing Calogero-Moser profiles with profiles for
the case β = α + 1 = 2.73 that was used as a model for experiments in [19]. (The
sonic speed cs =


α(α+ 1) ≈ 2.17322 for (4.10) and cs = π for Calogero-Moser.)

For larger values of c/cs the graphs become indistinguishable, approaching the hard-
collision limit in each case. For smaller values of c/cs the Calogero-Moser profile
broadens to approach a Benjamin-Ono soliton shape with algebraic decay, while the
nearest-neighbor profile approaches a scaled KdV sech2 shape, according to results
proved in [14].
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Appendix A. Log correction to scaling in an edge case.
Here we prove the claim in Remark 2.2, to the effect that in the edge case α = 3

of Theorem 2.1 we obtain the KdV equation after a modified scaling ansatz.
Fix α = 3, p = 1, q = 3. Let us replace the scaling ansatz in (2.5) by

(A.1) xj = j + λϵv(x, τ), x = ϵ(j − cαt), τ = νϵqt,

where λ and ν depend on ϵ in a way to be specified.

Proposition A.1. Under the hypotheses of Theorem 2.1, if α = 3 and provided
λ = ν = log(1/ϵ), then the lattice error (2.6) satisfies Rϵ = λ2ϵ5(Q+ o(1)), where

Q = κ1∂τu+ κ2u∂xu+ ∂3
xu,

with κ1 = 2cα and κ2 = α(α+ 1)(α+ 2)ζα as before.

Proof. We compute as in the proof of Theorem 2.1 with the following modifica-
tions. Equations (2.12) and (2.13) become

Rϵ = ẍj + λαα1Lϵ + λ2αα2Nϵ +O(ϵ3p+3λ3) ,(A.2)

ẍj = −ϵp+2c2αλ∂xu+ 2ϵp+q+1cαλν∂τu+ ϵp+2qν2∂2
τv ,(A.3)

while the expressions for Lϵ and Nϵ are unchanged from (2.14) and (2.15). The
asymptotic expression for Nϵ from Lemma 2.4 holds without change.

When we compute Lϵ as in case (ii), since (−i sgn k)|k|3 = (ik)3 we find that the
expression in (2.22) takes the form

(A.4) L̂ϵ(k) = ϵ3ζ3 ∂xu(k) + 2ϵ5S(ϵ|k|)∂3
xu(k),

where, in terms of the function f(x) = 1
2 (1− sinc2(x/2))/x2 from (2.27),

(A.5) S(h) = h

∞
m=1

1− sinc2(mh/2)

2(mh)3
=

∞
m=1

1

m
f(mh).

Lemma A.2. 0 < S(h) < ζ3/h
2 for all h > 0, and S(h) ∼ − 1

24 log h as h → 0.

The asymptotic formula follows from L’Hôpital’s rule after noting that

hS′(h) =

∞
m=1

f ′(mh)h →
 ∞

0

f ′(x) dx = −f(0) = − 1

24
.

From the asymptotic formula it follows S(h) is slowly varying at 0, meaning that as
ϵ → 0, the ratio S(ϵ|k|)/S(ϵ) → 1 for all k ̸= 0. From Karamata’s theory of regular
variation [30], this limit is then uniform for |k| in any compact subinterval of (0,∞),
and the ratio is o(|k|−β) as k → 0 for any β > 0, uniformly for ϵ small.

Using these facts in the Fourier inversion formula, since û(k)|k|r ∈ L1 for all r < 7
2

we infer by dominated convergence that as ϵ → 0,

(A.6)


R
eikx∂3

xu(k)
S(ϵ|k|)
S(ϵ)

dk → ∂3
xu(x, τ).

Hence

(A.7) Lϵ = ϵ3ζ3∂xu− ϵ5 log ϵ

12
(∂3

xu+ o(1)).

Putting this relation into (A.2) and noting αα1 = 12, the Proposition follows.
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Appendix B. KdV limit with alternating forces.
Here we complete the proof of Lemma 2.7, which we used in Section 2 to establish

the formal KdV limit for the system (2.29) in which interaction forces alternately repel
and attract, as in the experimental setup of Molerón et al. [19].

1. Fix α > 0. The function Sα(h) defined in (2.31) satisfies

(B.1) Sα(h) =

∞
m=1

(−1)m−1fα(mh)hα,

where, in terms of the entire function f defined in (2.27),

(B.2) fα(x) =
1− sinc2(x/2)

xα
= 2x2−αf(x).

Because fα is eventually monotone decreasing, the alternating series (B.1) converges
uniformly on compact subsets of (0,∞), so Sα is continuous.

2. Next we claim that the Mellin transform of Sα, given by

(B.3) Sα(s) :=

 ∞

0

Sα(h)h
s−1 ds,

is well defined whenever max(−α,−1) < Re s < 0. To control the convergence of the
integral, we pair successive terms in (B.1), writing

(B.4) Sα(h) =


m odd


fα(mh)− fα(mh+ h)


hα.

We establish bounds on the terms of this sum as follows. First, we find (by Taylor
expansion for 0 < x < 1) that since x4f ′(x) = − sinx+ x− 4x3f(x),

f(x) ∈

0,

1

4!


, f ′(x) ∈


−x

5!
, 0


for 0 < x ≤ 1,(B.5)

f(x) ∈

0,

1

2x2


, f ′(x) ∈


−2

x3
,
2

x3


for x > 1.(B.6)

Since 1
2fα(x) = x2−αf(x) we have 1

2f
′
α(x) = (2− α)x1−αf(x) + x2−αf ′(x), whence it

follows

(B.7) |f ′
α(x)| ≤ min(x−α, x−1−α) · (6 + α) =: λα(x).

The function λα(x) is (chosen to be) decreasing on (0,∞), ensuring that

|fα(x)− fα(x+ h)| ≤ λα(x)h for all x, h > 0.

Applying this estimate in (B.4), we note that by Tonelli’s theorem, ∞

0

|Sα(h)|hs−1 dh ≤
 ∞

0

∞
m=1

λα(mh)hα+s dh

=

∞
m=1

1

mα+s+1

 ∞

0

λα(x)x
α+s dx

= ζ(α+ s+ 1)

 ∞

0

Cmin(1, x−1)xs dx,
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and this is finite provided 0 < α + s and −1 < s < 0. Thus we find that the Mellin
transform of Sα is well defined as claimed, for Re s ∈ (max(−α,−1), 0).

3. After use of Fubini’s theorem and change of variables, we compute that

Sα(s) =


m odd

 ∞

0


fα(mh)− fα(mh+ h)


hα+s−1 dh

=

∞
m=1

(−1)m−1

mα+s

 ∞

0

fα(x)x
α+s−1 dx

= ζ∗α+s
fα(α+ s).(B.8)

Recall that in Remark 2.5 we effectively computed the Mellin transform of f . From
(B.2) and (2.28), we find that for −2 < Re s < 0,

fα(α+ s) = 2 f(2 + s) = 2 cos

π
2 (s− 2)


Γ(s− 2).

Thus Sα extends to a meromorphic function on C with simple poles at s = 2− 2k for
k = 0, 1, 2, . . ., where the residue is

(B.9) Res(Sα, 2− 2k) = 2ζ∗α+2−2k

(−1)k

(2k)!
.

4. Choose δ ∈ (0,min(1, α)). We claim that, for σ ∈ (−4,−δ) we have

|Sα(σ + it)| → 0 as |t| → ∞, uniformly in σ, and(B.10)

t → |Sα(σ + it)| is integrable on (−∞,∞) if σ ̸= −2.(B.11)

Using the asymptotic formula [10, (5.11.9)]

|Γ(σ + it)| ∼
√
2π|t|σ−(1/2)e−π|t|/2,

which is valid uniformly as t → ±∞ for σ real and bounded, for |t| > 1 we get

(B.12) |fα(α+ σ + it)| ≤ C|t|σ−(5/2).

Further, since |ζ∗s | = O(|ζs|), the zeta-function bounds from [33, (5.1.1)] yield

|ζ∗α+σ+it| =


O(|t|(1/2)−α−σ) for σ ≤ −δ − α,

O(|t|(3/2)+δ) for σ ≥ −δ − α.
(B.13)

We infer that (B.10)–(B.11) hold, and in particular,

(B.14) |Sα(σ + it)| =


O(|t|−2−α) for σ ≤ −δ − α,

O(|t|−1+δ+σ) for σ > −δ − α.

5. By the Mellin inversion theorem (see [12, Thm. 2] and [13, Thm. 8.26]) thus
we have

(B.15) Sα(h) =
1

2πi
lim

T→∞

 c+iT

c−iT

Sα(s)h
−s ds, for c ∈ (max(−α,−1),−δ).

https://dlmf.nist.gov/5.11.E9
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Now, because of the uniform decay in (B.10), we can deform the path in (B.15) to
move c from the interval stated to a value c ∈ (−4,−2), picking up only the residue
of the integrand at the pole s = −2 (k = 2). Thus we find

Sα(h) =
1
12ζ

∗
α−2 h

2 + Ẽ(h), Ẽ(h) =
h−c

2π

 ∞

−∞
Sα(c+ it)h−it dt.

Because t → |Sα(c + it)| is integrable for such c, we find Ẽ(h) = O(h−c) as h → 0.
With c = −3 this yields the desired statement, and finishes the proof.
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