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1 | INTRODUCTION

Let K C S® be a knot. Then, a rational number r is said to be a characterizing slope for K if the
result S>(K) of Dehn surgery on K with slope r does not arise as r-surgery on any other knot: in
other words, if whenever there is an orientation-preserving homeomorphism

S;(K) = SHK),

the knot K’ must be isotopic to K.

All rational numbers are characterizing slopes for the unknot, as well as for the trefoils and
the figure eight knot. These are theorems of Kronheimer-Mrowka-Ozsvath-Szabé [15] and of
Ozsvath-Szabé [33], respectively, each relying on a theorem (due to Ghiggini [7] in the latter
case) asserting that some form of Floer homology detects the knot in question. Ni-Zhang and
McCoy [18, 19, 22] have proved that many slopes are characterizing for torus knots, especially T, 5
[23]. More generally, Lackenby [16] has shown that every knot has infinitely many characterizing
slopes, and McCoy [17] has strengthened this in the hyperbolic case.

Our main result, Theorem 1.1, says that almost all slopes are characterizing for the knot 5,,
shown in Figure 1. This is strongest result to date for any nonfibered knot and for any hyperbolic
knot other than the figure eight.
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FIGURE 1 Theknot 5, (left) and its mirror 5, (right).

Theorem 1.1. Let r be any rational number other than a positive integer. If for some knot K C S3,
there is an orientation-preserving homeomorphism

S}K) = 57(5,),

then K is isotopic to 5,. In other words, every r € Q \ Z., is characterizing for 5,.

It is possible that no positive integer is characterizing for 5, (and hence that Theorem 1.1 is
optimal). Indeed, Baker-Motegi [3] have exhibited hyperbolic knots such as 8, with no integral
characterizing slopes, and Abe-Tagami [1] proved similar results for many other low-crossing
knots. At the very least, Proposition 8.3 says that the positive integer 1 is not characterizing for 5,.

Proposition 1.2. There is an orientation-preserving homeomorphism
57(5,) = S7(P(-3,3,8)),

so 1is not a characterizing slope for 5,.

This fact was originally discovered by Akbulut [2], who also showed that the traces of the
corresponding surgeries are homeomorphic but not diffeomorphic.

Remark 1.3. The orientation-preserving condition is a necessary part of Theorem 1.1. For example,
there are homeomorphisms

S7,(52) = =57 ,(61), S3(5,) = —S3(6y).
This can be deduced from [4, Proposition 7.2], in which 5, = K(2,4) and 6; = K(—2,4).

As an application, we determine all of the ways in which the Brieskorn sphere X(2,3,11) can
arise from Dehn surgery on a knot in S3.

Theorem 1.4. Given a knot K C S* and a rational number r, there exists an orientation-preserving
homeomorphism

S}(K) = 2(2,3,11)
ifand only if (K, r) is either (T _, 3, —%) or (55, —1).

Similar results have been achieved for (2, 3, 5) by Ghiggini [7, Corollary 1.7], and for 2(2, 3,7)
by Ozsvath-Szabo [33, Corollary 1.3].
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CHARACTERIZING SLOPES FOR 5, 3 of 64

TABLE 1 The knot Floer homologies of the knots in Theorem 1.5, grouped by whether the Alexander
polynomial is 2t — 3 + 2¢~1 or —2¢ + 5 — 2t~1. The subscripts denote Maslov gradings

K HFK(K,1;Q) HFK(K,0;Q) HFRK(K,-1;Q)
> @?2) Q(31> @(20)

151,35, Q(ZO) Q?—l) ®Q, Q(2—z>
Wh™(T53,2) Q(Zo) Q?—l) ® @(o) @?—2>
P(=3,3,2n+1) Q7 Q% Q7

Wh+(T2,3, 2) @(2—1) Q‘(‘—2) ® Q(O) @?—3)

The proof of Theorem 1.1 relies on our recent classification [5] of genus-1 knots that are nearly
fibered from the point of view of knot Floer homology.

Theorem 1.5 ([5, Theorem 1.2]). Let K C S3 be a knot of Seifert genus 1 such that
dimgy HFK(K,1;Q) = 2.
Then K is one of the knots
55, 151,350, Wh™(T,3,2), Wh*(T,3,2), P(-3,3,2n+1)(n € 2)
or their mirrors; the knot Floer homologies of these knots are given in Table 1.

Theorem 1.1 is then a combination of Theorems 1.6 and 1.7 below. By way of notation, whenever
we discuss an isomorphism between Heegaard Floer homologies of the form

HF*(Y;Q) = HF(Y";Q)

in this paper, we will always mean an isomorphism of Q[U]-modules which respects a
decomposition of each side into summands indexed by Spin® structures on Y and Y’, respectively.

Theorem 1.6 (Theorem 4.1). Suppose for some knot K C S* and rational number r > 0 that there
is an isomorphism

HF*(S}(K); Q) = HF*(53(5,); Q)
of graded Q[U-modules. Then K is isotopic to 5,.
Theorem 1.6 immediately implies the case r < 0 of Theorem 1.1, via the relation
SHK) = S (K),

and the relationship between the Heegaard Floer homologies of Y and —Y. For the case r > 0, we
prove the following.
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4 of 64 | BALDWIN and SIVEK

Theorem 1.7. Suppose for someknotK C S* and rational numberr > 0 that there is an orientation-
preserving homeomorphism

SHK) = S}(5,),

but that K is not isotopic to 5,. Thenr is a positive integer, and g = g(K) is at least 2; if g is even, then
r divides g — 1, while if g is odd, then r divides 2g — 2. Moreover, K has Alexander polynomial

Ap(®) =19 =269 4 1972 4 14 ¢279 —2t179 479,

and the knot Floer homology HFK(K; Q) is completely determined as a bigraded Q-vector space by
r and g: it is nine-dimensional, and there is a Q summand in Alexander-Maslov bigrading (0,0),
while the rest is supported in bigradings (a, m) = (a, a + ), where

~g-D(E-1), rig-1

d=2—-g+ .
—-@2g-2-1? rtg-1

Most of the content of Theorem 1.7 is in Theorem 6.13, which makes heavy use of the Heegaard
Floer mapping cone formula for Dehn surgeries. However, the latter assumes that g > 2, and it
only concludes that r divides 2g — 2. We use an obstruction due to Ito [13] involving finite-type
invariants to handle the case ¢ = 1 in Proposition 7.6, and to improve the condition r | 2g — 2 to
r | g — 1 for even g in Proposition 7.7.

Remark 1.8. In fact, the proof of Theorem 1.7 shows that
HF*(S}(K); Q) ¢ HF*(S3(5,); Q)

in nearly all cases where it asserts that Sf(K ) & S,3_(52). The exceptions are when g(K) > 2 is even
and r divides 2¢(K) — 2 but not g(K) — 1, and when ¢(K) =1 and K is one of the knots listed
in Theorem 1.5 with Alexander polynomial 2¢ — 3 + 2¢t~!. In the latter case, we require the full
strength of Theorem 1.5, rather than just the claim that HFK detects 5,, in order to enumerate the
remaining cases and to rule them out one by one in Proposition 7.6.

Remark 1.9. If g(K) = 2 and S3(K) = S3(5,), then Theorem 1.7 says that r = 1 and § = 0. This
implies that K has the same knot Floer homology as of any of the pretzel knots P(—3, 3, 2n), where
n € Z. We conjecture that it must then actually be isotopic to P(—3, 3, 2n) for some n, in which
case Remark 7.8 will show that it is P(—3, 3, 8).

The proofs of Theorems 1.6 and 1.7 rely heavily on formulas that determine the Heegaard Floer
homology of Dehn surgeries on a knot K in terms of the canonical Z @ Z filtration on CFK*(K).
This includes both the “large surgeries” formula of [28], which applies to surgeries of integral
slope n > 2¢g(K) — 1, and the “mapping cone” formula of [32], which applies to surgeries of any
positive rational slope. This should come as no surprise to readers familiar with previous works
on characterizing slopes such as [33], although the application of these formulae to the problem
considered here is substantially more involved. We briefly outline their uses below.
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CHARACTERIZING SLOPES FOR 5, | 5 of 64

First, for Theorem 1.6, we are able to avoid the heavy machinery of the mapping cone formula
by making use of the fact that 5, is very nearly an L-space knot.

Definition 1.10. We say that a closed 3-manifold Y is an almost L-space if it is a rational homology
3-sphere and satisfies

dimHF(Y;Q) = |H,(Y;Z)| + 2.
We say that a nontrivial knot K C S* is an almost L-space knot if
dimHF (S3(K);Q) = n +2

(ie.,if Sg(K) is an almost L-space) for some integer n > 2¢(K) — 1, in which case one can show
that it holds for all n > 2¢(K) — 1.

Then 5, is an almost L-space knot, and there are very few other examples with genus 1. The
following is a combination of Propositions 3.9 and 3.10.
Theorem 1.11. IfK C S is an almost L-space knot, then one of the following is true:
(1) K is the left-handed trefoil, figure eight knot, or 5,.
(2) g(K) = 2, and K is fibered and strongly quasi-positive.
With this theorem at hand, we are able to show quickly that if there is an isomorphism

HF*(S}(K); Q) = HF*(53(5,); Q)

for some rational r > 0, then K must also be an almost L-space knot of genus 1, and then we only
have to rule out the left-handed trefoil and the figure eight. The following is also a straightforward
consequence of Theorem 1.11.

Theorem 1.12 (Theorem 3.14). Let K C S be a knot. Then dim, H?(Sf(K); Q) = 3 ifand only if
K is either the left-handed trefoil, figure eight, or 5,.

Theorem 1.7 requires substantially more effort than Theorem 1.6. The key input is a computa-
tion in §6.2, showing that for any r > 0 and any Spin® structure 8 on S3(5,), the Heegaard Floer
homology HF* (Sf(Sz), 8; Q) is always isomorphic to something of the form

+ 2n
70 © %)
as a relatively graded Q[U]-module. Here,
o AU
T uU-aQul’

the U-action lowers the grading by 2, and the “(0)” subscripts indicate that the element 1 € 7
and the @*" summand both lie in grading 0. If S>(K) = S3(5,) for some r > 0, then in §5, we find
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6 of 64 | BALDWIN and SIVEK

that this imposes strong restrictions on CFK*(K). In the case g(K) > 2, we see in §6 that these
restrictions often imply that for some 8 € SpinC(Sr3 (K)), either:

* ker(U) C HF +(S§’(K), 8; Q) cannot lie in a single grading, or
* HF*(S}(K),8;,Q) =T+ @ Q.

The first of these applies when 0 < r < 1, or when r = p/q > 1 is nonintegral and p | 2¢g(K) —
2, and the second applies when r = p/q > 1 and p } 2g(K) — 2. Both of these contradict the
computation of HF* (53(52); Q), completing the proof in these cases.

1.1 | Notation

All Floer homologies in this paper will be taken with coefficients in Q. We will therefore omit the
coefficients from the notation going forward.

1.2 | Organization

In §2, we review some facts about knot Floer homology and the large surgery and mapping cone
formulas, and then carry out some computations for the knots of Theorem 1.5. In §3, we use this to
study the dimension of HF of Dehn surgeries, proving Theorem 1.11 about almost L-space knots.
We apply this in §4 to prove Theorem 1.6. In §5, we begin to work toward Theorem 1.7, eliminating
all but finitely many K in the case g(K) = 1 and then obtaining some restrictions in the case g(K) >
2, and in §6, we apply the mapping cone formula together with these restrictions to complete the
proof of Theorem 1.7 for g(K) > 2, modulo the modest improvement of Proposition 7.7. In §7,
we use finite-type invariants to achieve that improvement and to finish off the case g(K) =1,
completing the proof of Theorem 1.7 and hence of Theorem 1.1.

In the last few sections, we study some specific examples of surgeries. In §8, we prove Proposi-
tion 8.3, asserting that 1 is not a characterizing slope for 5,, and then in §9, we prove Theorem 1.4
on the Dehn surgery characterization of (2, 3,11).

2 | HEEGAARD FLOER HOMOLOGY OF SURGERIES ON KNOTS
2.1 | The Heegaard Floer mapping cone formula

Knot Floer homology [28, 34] assigns to any nullhomologous knot K C S* a graded, Z @ Z-filtered
chain complex

(CFK®(K),d%),

whose filtered chain homotopy type completely determines the Heegaard Floer homology of Dehn
surgeries on K, where we recall that we are working with coefficients in Q throughout.

As a matter of convention, we use coordinates (i, j) to refer to the two filtration levels, and
notation like

C{i=0,j <1} c CFK®(K)
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CHARACTERIZING SLOPES FOR 5, | 7 of 64

to refer to the subquotient spanned by generators that lie in the indicated subset of the (i, j)-plane.
We will also use the shorthand

Clig, jo} :=Cli =iy, j = jo}-

The differential lowers the grading by 1 and does not increase either filtration, meaning that each
C.{i <iy, j < jo}is a subcomplex: we have

0%°(C i < iy, j < Job) CCy{i <y J < o}
for all (iy, ji)-
With this in mind, following [34, §4.5 and §5.1], one can take CFK® to be freely generated over
Q[U, U] by HFK(K; Q). We take

C,{0,a} ~ HFK (K, a; Q),

and the U-action gives isomorphisms

Uk : C,{0,a} = C,_yi—k,a -k}

for all k € Z. In the form specified here, the restriction of the differential 0% to each C{i,, j} is
zero. See the “reduction lemma” of [10, §2.1] for details.
Given this, there are by definition a pair of chain homotopy equivalences

C{i = 0} ~ CF(S?),
so the induced complex (C{i = 0},8") has homology HE(S®) zQ supported in grading 0. The

Ozsvath-Szabo tau invariant 7(K) [26] is the minimum j-filtration level at which this generator
appears. Similarly, we have a chain homotopy equivalence

C{i > 0} ~ CF*(S?)

and then

; - 3N . Qu, U]
HJ{i>0~HF'(S)x7" := U-am

Definition 2.1. Given CFK*(K) as above, we define subquotient complexes
At = Cfmax(i, j — 5) > 0}, Bt =C{i > 0}
A, = C{max(i, j — s) = 0}, B=cC{i=0}

with differentials induced by 9%, for all s € Z. These come with chain maps

+ .4+ + + .4+ +
v P AT - BT, hs.AS—>B

d ‘9 “vT0T ‘0SLLE9YT

woyy

SUONIPUOD) PUT SULIDL, O 998 “[$Z0Z/90/L0] U0 ATEIqET SUI[UQ ASJip “Bsid 1] 2I01adng o[euLION Bonas Aq 1§67 1*SWI/ZI 1 [01/10p/wod Kojia &

o Kol

so[n 10§ Areaqr] Ui A9[iA U0

2 SIPILE VO 1951 JO

AUIAOT o

5U991] sUOWWIO)) da1wa1) d[qeatidde oy Aq p:



8of 64 | BALDWIN and SIVEK

in which v} is defined by projection onto C{i > 0}, and h{ is a composition

+ proj . Us X ~ i i
AT — C{j2st— C{j>0}—C{i>0}=B".

The last arrow is a homotopy equivalence that exchanges the i and j filtrations; we omit
its definition.

Remark 2.2. The projection v]" is an isomorphism at the chain level for all s > g(K), since the
kernel consists of the direct sum of subspaces

Cli, j} = C{0,j — i}  HFR(K, j — i)

with i < —1 and j > s > g(K), and then HFK(K, j — i) = 0 because j — i > g(K) + 1. Similarly,
each h} is an isomorphism for all s < —g(K).

These complexes determine the Heegaard Floer homology of “large” surgeries on K, in the
following sense.

Theorem 2.3 ([28, Theorem 4.4]). Choose a positive integer p > 2g(K) — 1. Then there is a canon-
ical affine map Spinc(S;(K)) =~ 7/pZ (see [31, Lemma 2.2]) such that we have relatively graded
isomorphisms

HF+(S;(K),s) ~H,(A]) and ﬁ?(s;(K),s) =~ H,(A,))

for any integer s with |s| < g.

Remark 2.4. The definition of the map SpinC(S;(K)) =~ 7/pZ in [31, Lemma 2.2] implies that if

8 e Spinc(S;(K)) is identified with s € Z/pz, then the conjugate Spin® structure 8 is identified
with —s.

They also determine the invariants of arbitrary Dehn surgery, though in a more complicated
way. Given relatively prime integers p,q > 0 and arbitrary i € Z, we define

+ _ + + +
Al = @ (S’AL(HPS)/QJ ) B = EB(S’B )

SEZ SEZ

and a chain map

DF AT S BF
ip/q i [

+ +
(s, a) = (S’ U G+ps)/al (as)> + (S + LA/l (as)>‘

The various At and Bt summands each inherit relative gradings from CFK*(K). We place a rel-
ative grading on their direct sums /-\l.+ and Bl.+, respecting the relative gradings on each individual

summand, so that D;rp /q lowers the grading by 1.
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CHARACTERIZING SLOPES FOR 5, | 9 of 64

Theorem 2.5 ([32, Theorem 1.1]). Let X;Lp y l_+p e
Al — B. Then there is a natural identification Spinc(Sz /q(K)) ~ 7/pZ for which we have a

relatively graded isomorphism

4 denote the mapping cone of the chain map D

H, (X:p/q) = HF" (S;/q(K)’ i)
forallie z/pz.
The A} complexes have homology of the form
H, (A7) 27" @ Hyeq (A ),
where H,.4(A}) is finitely generated over Q, and the maps v} and A" restrict to surjections
(vf),.(hf), : T >H.BH=T".
Each of these maps is then multiplication by some nonnegative power of U, and we define
V(K),H(K) € Z,

to be these exponents.

Proposition 2.6 ([11, 21]). The invariants V, = V(K) and H, = H(K) satisfy the following
constraints.

1) Vy2V,andH; < Hy, foralls € Z. [21, Lemma 2.4]
(2) Vy=0foralls > g(K). [21, §2.2]

() V_y =V +sforalls € Z [11, Lemma 2.5]

(4) H_ =V foralls € Z. [11, Lemma 2.3]

B) Vg SVy <V +1foralls e

Proof. Only the inequality V < V,; + 1 ofitem (5) needs to be proved. Combining the other parts
of the proposition, we have

Vi=V_ —s<V_ o 1—s= (V- G+D)+1=V,, +1
as desired. O

The following results relate the invariants V(K) and H (K) to HFJ“(S?J /q(K)).

Theorem 2.7 ([21, Proposition 1.6]). Given relatively prime p,q > 0 and an integer i with 0 < i <
p — 1, we have

d<S;/q(K)’i) - d<S;/q(U)’ i) = —2max (VléJ(K)’HLi_TpJ(K))
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10 of 64 | BALDWIN and SIVEK

Lemma 2.8. IfK C S> has genus g > 1, then there is a short exact sequence

(U;——l ) N

0 - HFK,,,(K,g) = H, (A;_1> ——— H, (BT -0

of Q[U]-modules, in which HFK(K, g) has trivial U-action and A;r_l and BT are equipped
with absolute gradings as quotients of CFK®(K). In particular, for N > 2g — 1, we have U -
HF! (S3(K),g—1)=0and

red

dimHF (Sy(K),g — 1) = dim HFK(K, g) - V,_,(K).

Proof. The short exact sequence is [33, Lemma 3.3]. To prove it, we use the short exact sequence
of chain complexes

U+

0—C{-1,9—1} > A" LBt 50 (2.1)

defined by the natural inclusion and projection maps, which induces a long exact sequence

+
Ug—l

(
= H,/(C{-1,g—-1}) - H, (A;f_l) ——— H,(B") > ...

on homology. The complex C{—1, g — 1} has zero differential and trivial U action, and it is the
image under U of

C{0, g} = HFK(X, 9),

hence its homology is just PTFT(*H(K, 9). Meanwhile, we know that H,(B*) =~ 7*, and v;_l isan
isomorphism in all sufficiently large gradings, so it follows that H, (A;L_l) also contains a tower
T+ that surjects onto H,(B™). Thus, the long exact sequence splits.

The claim about dim HF;re d(SfV(K), g — 1) now follows quickly from Theorem 2.3, because we
can identify ker v;r_l with all of HF? ,(S},(K), g — 1) plus whatever portion of 7+ C H. *(A;r_l) is
in the kernel, and the latter has dimension Vg_1 by definition. O

Although Theorem 2.5 as stated only determines the relative grading on H F+(SZ /q(K )), we can
use the integers V and H, to recover the absolute grading by Theorem 2.7.

Proposition 2.9. Suppose for some knots K,K' C S* and some relatively prime p,q > 0 that
+( 3 ~ Rt ¢3 ’
HE (Sp/q(K)) = HE (Sp/q(K )>

as graded Q[U]-modules. Then, we have AY(1) = A}é,(l). Moreover, if g(K) =1, then V,(K) =
Vo(K"), and ifin addition § > 1, then V(K') =0foralls > 1.
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CHARACTERIZING SLOPES FOR 5, | 11 of 64

Proof. LetY be the rational homology 3-sphere S; /q(K ). Rustamov [35, Theorem 3.3] proved that
its Casson-Walker invariant satisfies

YDA = Y, (x(HFL(Y.9) - 1d(Y,9)),
3eSpin‘(Y)

and the right-hand side is completely determined by HF(Y), hence so is A(Y). The surgery
formula for the Casson-Walker invariant [36, Theorem 4.2] then says that

AH (1)
2

A(Y) - /1<S3 P (U))

so we conclude that A}é(l) is determined by 5 and HF+(S; /q(K)). By hypothesis, the same data

determine Ag,(l) in exactly the same way, so these second derivatives are equal.
Now suppose that g(K) = 1. Then Proposition 2.6 says that V(K) = H_(K) =0forall s > 1
and then that V;,(K) is either 0 or 1 since V;(K) = 0. We therefore have

o3 N\ ) —2V(K), 0<i<min(p,q)—1
d(83,K).1) = (S} ,W).i) = {o, min(p,q) <i< p—1

by Theorem 2.7. It follows that

Y (d(sz /q(K),i> - d(s; /q(U),i)> = —2V,(K) - min(p, q). 2.2)

iez/pz

By the same argument, we have

> (a(8),,&1) = (85, 0).1) ) < =2Vo(K") - min(p,q), 23)

i€ez/pz
and the left sides of (2.2) and (2.3) are equal, so V,(K") < V((K) < 1.IfV,(K") = 0,then V(K') = 0
for all s > 0, so the left side of (2.3) is equal to 0, hence V(K) = 0 as well. Otherwise V,(K') = 1

implies that V,(K) = 1, so in any case, we have V,(K) = V,(K’).
Finally, if V,(K) = V(K’) = 1 and p > g, then we have by Theorem 2.7 that

4[5}/, (K".a) = d(S},,(U). ) = ~2max <V1(K')’H L%J(K')>
—2V,(K"),

which implies that the left side of (2.3) is at most —2qV,(K’) — 2V;(K’). But this is equal to the
left side of (2.2), which is equal to

—2V(K) - g = —2qV(K"),

so we must have V;(K’) = 0. Then V(K’) = 0 for all s > 1 by Proposition 2.6. O
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12 of 64 | BALDWIN and SIVEK

2.2 | Computations for nearly fibered knots

In this subsection, we work out some examples of the large surgery formula. Let K be a genus-1
knot for which Ffﬁ{(K ,1) is two-dimensional. Then K is one of the knots listed in Theorem 1.5,
with ITFT((K) shown in Table 1, and in every case, there is some integer m € Z such that

L
HFR(K,1) 2 Q7 ,

where the subscripts denote the Maslov grading. (For the mirrors of the knots in Table 1, this
follows from the relation HFK (K, a) = HFK _,,(K,—a).)
We first determine HF+(Sf(K)) in the cases where K is either 5, or its mirror.

Proposition 2.10. We have

HF*(S3(5,)) =T+ & @’

+( 3N & 7+
T ®Q and HF (81(52)):7(_2)69@(_2)

as graded Q[U|-modules.
Proof. In these cases, K is alternating, so HFK(K) is thin — there is some s € Z such that

each HFK(K, a) is supported in homological grading a — s — and for alternating knots we have
s = —%O’(K) [25, Theorem 1.3], where o(K) is the signature. (This uses the convention that pos-

itive knots such as 5, have negative signature, so o(5,) = —2 and 0(5,) = 2.) In this case, the
differential on CFK*(K) has a fairly simple form, namely,

9% (Ciy, job) € Clip — 1, jo} @ Clig, jo — 1},

by the fact that deg(6*°) = —1. Since H,(C{i = 0}) = Qis supported at Alexander grading j = t(K)
in homological grading 0, we have 7(K) = —%O’(K), o)

7(5,)=-1 and 17(5,) = 1.

We can therefore find bases for the complexes (C{i = 0},9’) so that they are represented by the
diagrams

AR S
oL

for 5, and 5,, respectively. (Here each dot represents a generator of a Q@ summand, and an arrow
of the form “s — «” means that the corresponding generators x and y satisfy 8’x = y.) In turn,
this together with the chain homotopy equivalence C{i = 0} ~ C{j = 0} and the requirement that
(0%)? = 0 completely determines CFK®(K) for each of these knots K.
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CHARACTERIZING SLOPES FOR 5, 13 of 64

J J
U=2ae_ o° U 2zes——e
V‘_ Y V‘_ Y
U lae_ { S n— U lzes——e °
< U—Zd <
b
Y Y Y . 4
av < B <
° o——o i o+—o ° )
< 71d y_/( <
Y . 4 A 4 _ Y
° 04‘—‘;? o—o ®
< C <
lv‘_ A 4 V‘_ Y
o+——o (e °
° °
CFK™>(5,) CFK*(53)

FIGURE 2 The complexes (CFK®(K),0%)forK = 5,and K = 5_2, with Ag shaded. The dots represent
generators of C{i, j}, all of which lie in grading i + j + @ Minus signs on arrows indicate a coefficient of —1.

Now by inspecting Figure 2, we see that

Qu,u!
H,(A}(5,)) = U[T[U]]«i —a)®a,b) =T ®Qp (24)
95)

since the indicated elements a, b, d all have homological grading —1 + = 0. The homology

H,(B*(5,)) & 7* has bottom-most element [d] = (v]),([d — a]),so then (v]).|7+ : T+ — T is

an isomorphism and we have V,(5,) = 0. Now Theorem 2.3 says that HF +(Sf(52)) ~H, (Aar(Sz))

as relatively graded groups, while Theorem 2.7 says that the tower 7+ in HF (S 5(52)) has bottom-

most grading d(Sf(Sz)) = —2V,(5,) = 0, so we conclude that HF +(Sf(Sz)) is exactly as claimed.
Similarly, we see from Figure 2 that

Q[U, U]

H,(47G)) = Uoa] ¢ eew =T, e

(=2

since the indicated elements x,y € C{—1, 0} have homological grading —1 + @ = —2. The ker-
nel of (var ). contains [x] but not [U~'x], so the restriction (v(;r )elr+ : T — T is multiplication
by U, hence Vo(5_2) = 1. Now we conclude exactly as before that d(Sf(z)) = —ZVO(z) = —2and

hence that HF (Sf (5,)) is exactly as claimed. O

For the knots of Theorem 1.5 other than 5, and 5,, it is a little bit harder to determine CFK®(K).
We will avoid this problem by using the large surgery formula to compute HF (Sf (K )), and then
deducing HF* (S7(K)) from this in Proposition 2.14.

Proposition 2.11. Let K be a genus-1 knot for which HFK (K, 1) = Q?m Ly IfK is neither 5, nor its
0
mirror, then 7(K) = 0 and

S, ®2
HF (S3(K)) 2 Qo) ® (@) © Q) )

as relatively graded Q-vector spaces.
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14 of 64 BALDWIN and SIVEK

J
l —
o+————
.4—00
o+——0
\ .4__.
o+——©0
O 1
e
O<—I
YO<+—@
@+——@
o —
o
[ ]

FIGURE 3 The complex (CFK*(K),3%), with A, shaded and possible diagonal arrows omitted. The black
dots represent generators of C{i, j} in grading m, + i + j, while the white dots represent generators U~'x in
grading i + j. The minus signs on some arrows indicate a coefficient of —1 in .

Proof. We attempt to construct the full knot Floer complex CFK*(K). The relation
HFK,,(K,a) = HFK ,_,,(K,—a)

tells us that if HFK(K, 1) = Q2 then HFK(K, —1) @?m so the model complex (C{i =

(my+1)°
0},0") for CF(S3) has the form

0o—1)’

2
(my+1)

Je

% HFK(K,0)
It
@2

(my=1)°

and, in fact, the 9] component of the differential must be zero since it cannot lower the grading
by 2.

If K is neither 5, nor its mirror, then we can read dim Pﬁ(K, 0) = 5 off of Table 1, and so,
H,(C{i = 0},8’) ~ Qis only possible if 61 is injective and 6; is surjective. Moreover, the homology
is necessarily supported in Alexander grading j = 0, so 7(K) = 0. This completely determines the
i-preserving (vertical) component of 0%, as illustrated in Figure 3. The chain homotopy equiv-
alence C{i = 0} ~ C{j = 0} and the relation (3%)? = 0 then nearly suffice to determine d%; the
only ambiguity is whether there are any arrows involving the generators U¥x € C{i = j = —k},
and these must be diagonal (meaning neither vertical nor horizontal) if they exist.
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CHARACTERIZING SLOPES FOR 5, | 15 of 64

This discussion completely determines the subquotient complex A,, which is shaded in
Figure 3, since it does not see any diagonal arrows that might exist in CFK*(K). The complex
has nine generators, only two of which have nonzero differentials, and the hat version of the large
surgery formula in Theorem 2.3 tells us that

ﬁF(S%(K)) = H*(AO) =Q,® @?mo) ® @?mo—l)

as relatively graded vector spaces. O

If Y is an arbitrary 3-manifold with torsion Spin°® structure 8, so that its homological grading is
Z-valued, then the short exact sequence of complexes

o~ U
0— CF,(Y,8) = CF}(Y,8) — CF! ,(Y,8) =0
turns into a long exact sequence of Q[U]-modules
U — U
- — HF! (Y,8)— HF!_ |(Y,8) - HF.(Y,8) —» HF/(Y,8) — HF] ,(Y,8) > ...,

from which we can extract a short exact sequence

HF! (Y,8)

0> — 1 "7
U-HF!, (Y,9)

— HF (Y, 8) > ker(Ulyp+(y.g)) = 0. (2.5)

Equation (2.5) immediately implies the following.

Lemma 2.12. IfU - HF? (Y, 8) = 0 and we have an isomorphism

red
k
+ ~ T+
HF*() 2T} & G_? Q)

of graded Q[U]-modules, where the (d) subscript denotes the grading of ker(U) C T, then

k
ITIF(Y) = Qg (&) @ (@(nﬁl) ® @(ni))'
i=1

This implies, in particular, that dim HFE(Y,8) =1+ 2dim HF;;d(Y, 3).
Corollary 2.13. IfK C S> has genus g > 1, then

T 3
d1mHF<Szg_1(K), g— 1) —1
2

= dim HFK(K, g) = V,_(K).
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16 of 64 | BALDWIN and SIVEK

Proof. Lemma 2.8 says that U - HF:fed(Sgg_l(K), g — 1) = 0 and that

red

dim HF* <s§g_1(K), g— 1) = dim HFR(K, g) - V,_,(K).
Now apply Lemma 2.12. O

Proposition 2.14. Let K be a genus-1 knot for which dimg HFK(K,1) = 2. IfK is neither 5, nor its
mirror, then Vy(K) = 0 and

HF*(S}(K)) = T(g) @® HFK(K,-1)
as graded Q[U|-modules.

Proof. We write HFK(K, 1) = @fm 41, as before, and then the symmetry
0

HFK,,(K,a) = HFK ,_,,(K,—a)

of [28, Equation (2)] implies that HFK (K, —1) @?m b
-

We observe from Lemma 2.8 that U - HF:re d(Sf(K)) = 0, since g(K) = 1. In Proposition 2.11, we
saw that dim ﬁ?(sf(K)) = 5, s0 Lemma 2.12 says that dim HF:ed(Sf(K)) = 2. But then

Vo(K) = dim HFK(K,1) — dim HF} (S}(K)) =2-2=0

by another application of Lemma 2.8. With this information at hand, Theorem 2.7 tells us that
d(S3(K)) = d(S;(U)) —2V(K) =0.
Now if we write

HF*(S;(K)) =T @0

(0) (d) ® G;D(e)

for some integers d and e, then Lemma 2.12 says that

HF(S}(K)) = Q) ® Q) ® Qas+1) ® Qo) ® Qe)-
Up to translation by an overall constant, Proposition 2.11 says that these gradings are
0, my, my, my — 1, my — 1 in some order. This is only possible if that constant is zeroand d = e =

m, — 1, except possibly if m, = —1 and {d, e} = {0, 1}. But we can rule out this last case because it
would imply that Si’ (K) has Casson invariant

A(SYK)) = x(HF Ly (S3(K0)) = 3d(S3(K)) =0-0=0

by [24, Theorem 1.3], and yet A(Sf(K)) = AKT(D = +2 by the surgery formula for the Casson

invariant. This completes the proof. [l
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CHARACTERIZING SLOPES FOR 5, 17 of 64

3 | THE DIMENSION OF HF
3.1 | Theinvariants 7, and

For a fixed knot K C S3, the dimension of HF (S; /q(K )) varies in a predictable way with p and q.

We will make use of this where possible, since it is easier to apply in practice than the mapping
cone formula.

Proposition 3.1. Let K C S be a knot. Then there are integers #,(K) and ¥(K) such that
dimg FF (53, (K)) = g Fo(K) + |p = g9(K)|
for all coprime integers p # 0 and q > 0.

Hanselman [8, Proposition 15] proved a version of Proposition 3.1 with coefficients in Z /27,
though he pointed out that it can be extracted from [32, Proposition 9.6], where it is proved with
the desired Q coefficients. (It can also be proved in exactly the same way as its instanton Floer
analogue [4, Theorem 1.1], using only the surgery exact triangle and an adjunction inequality.)
In fact, if the Heegaard Floer v invariant of K [32, Definition 9.1] satisfies »(K) > »(K), then [32,
Equation (40)] implies the relation

Fo(K) = (K) = Y (dim H,(A) - 1).

SEZ

Moreover, we know from [4, Lemma 10.4] that

(K)

5K {max(Zv(K)—l,O), (K o G

)2
—max(2v(K) — 1,0), »(K) <

Proposition 3.2. The invariants /(K) and P(K) satisfy the following properties.

(1) Theinvariants of K and its mirror are related by (fo(f), »(K)) = (Po(K), —V(K)).
(2) The difference #((K) — |9(K)| is a nonnegative even integer.
(3) 7 is a smooth concordance invariant, and

[P(K)| < max(2¢,(K) —1,0)

where g, denotes the smooth 4-ball genus.
(4) The invariant 9(K) is either odd or zero.
(5) IfVy(K) =0, then 9(K) < 0.
(6) If P(K) <0, then 7(K) < 0, and if 9(K) = 0, then 7(K) = 0.

Proof. Claim (1) is immediate from Proposition 3.1 and the relation S3(K) = —S3 (K), together
with the fact that dim HF(Y) = dim HF(-Y) for all Y. For (2), we choose a positive integer p >
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18 of 64 | BALDWIN and SIVEK

P(K) and apply Proposition 3.1 to get
dim ﬁ?(s;(K)) = p + (F(K) — D(K)),
so by [29, Proposition 5.1], we have
dimﬁF(s;(K)> - X(HF(S;(K))) = #y(K) — D(K).

The left-hand side is twice the dimension of the odd-graded part of ﬁ(SZ(K)), so it is evidently
nonnegative and even. The same is true of

Po(K) — D(K) = Fo(K) + P(K),

so in either case, 7,(K) — |9(K)| is nonnegative and even as well. Since »(K) and v(K) are smooth
concordance invariants, claims (3) and (4) follow immediately from (3.1) and the fact that |[v(K)| <

94(K).
In order to prove (5), we use the invariant v*(K) [12], which is by definition the smallest s such
that V(K) = 0. If V,(K) = 0, then [12, Proposition 2.3] tells us that
7(K) < v(K) < vT(K) = 0,
and since »(K) is equal to either 7(K) or (K) + 1 (see [32, Equation (34)]), we have

v(K) > 1(K) = —7(K) > 0 > »(K).

Now (3.1) tells us that P(K) = — max(2»(K) — 1,0) < 0. We prove the contrapositive of the first
part of (6) similarly: if 7(K) > 1, then »(K) > 7(K) > 1 while

v(&) <t(®)+1=—-1(K) +1<0,
so »(K) > v(K), and then, (3.1) gives us $(K) > 2v(K) — 1 > 1. Moreover, if 5(K) = 0, then »(K) =
0 as well, so we have just shown that 7(K) <0 and —7(K) = t(K) < 0, hence 7(K) =0 as

claimed. O

Proposition 3.2 can also be proved by repeating arguments from [4] nearly verbatim, but applied
to HE(Y) rather than I*#(Y). These arguments rely only on the fact that dim HF(S?) =1, together
with the surgery exact triangle and adjunction inequality for HF.

We note the following examples for later use.

Lemma 3.3. Suppose that K is one of the genus-1 knots appearing in Theorem 1.5 other than 5, and
its mirror. Then

(7o(K), 9(K)) = (4,0).

We also have (7,(5,), (5,)) = (3,1) and (#y(5,),9(5,)) = (3, —1).
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CHARACTERIZING SLOPES FOR 5, 19 of 64

Proof. Proposition 2.11 applies to both K and X to tell us that
dimHF(S}(K)) =5 and dimHF(S?,(K) = dim HF(S}(®)) = 5.
By Proposition 3.1, these can only be equal if %(K) = 0, and then
5=dimHF(S}(K)) =1-f(K) + |1 — 0 - %(K)|

implies that 7,(K) = 4.
Similarly, we note from Proposition 2.10 and Lemma 2.12 that

d¢imAF(5](5,)) =3 and dimHF(5%,(5)) = dim HF(S](5) = 5.
Now Proposition 3.1 only tells us that (5,) > 1, but Proposition 3.2 also bounds it above by 1 and
s0 9(5,) = 1 after all. It now follows immediately that #,(5,) = 3, and similarly for 5,. O
3.2 | Almost L-space knots
A nontrivial knot K C S3 is said to be an L-space knot if Sf_(K) is an L-space for some ratio-
nal slope r > 0, meaning that dim HF (SE(K)) = |H1(Sf(K); Z)|. This places strong restrictions

onKk.

Theorem 3.4 ([7, 9, 20, 30, 32]). IfK is an L-space knot, then K is fibered and strongly quasi-positive,
and r-surgery on K is an L-space if and only if r > 2¢9(K) — 1.

Remark 3.5. It follows quickly that a knot K of genus ¢ > 1 is an L-space knot if and only if
Po(K) = 9(K) =29 — 1.

In this section, we develop similar restrictions on knots which fall just short of being L-space
knots. We recall the following from Definition 1.10.

Definition 3.6. A knot K C S is an almost L-space knot if
dimg HF (S3(K)) =n +2
for some n > 29(K) — 1.
Lemma 3.7. A knot K C S3 is an almost L-space knot if and only if #,(K) — D(K) = 2.

Proof. We note that K must be nontrivial since all surgeries on the unknot are L-spaces. Using
the inequality

P(K) < max(2g,(K) — 1,0) < 29(K) — 1
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20 of 64 | BALDWIN and SIVEK

of Proposition 3.2, it follows that if n > 2¢g(K) — 1, then

dimHF (S2(K)) = #o(K) + |n — 9(K)| = n + (Fy(K) — 9(K)).
By assumption, the left side is n + 2 for some such n, which proves the lemma. O
Lemma 3.8. IfK C S3 is an almost L-space knot of genus g > 1, then

/\ Q@ s=0
HF(SS _1(K),S> ~
g Q 1<g|s|<sg-1,

and similarly, there is some n > 1 such that

HF* (83, ,(K),s) = {T+ UL/ =0

S =
Tt 1<sl<g—-1
as Q[U]-modules.

Proof. LetY = S;g_l(K). By Lemma 3.7 and $(K) < 2¢g — 1, we have

Y dimHF(Y,s)=dimHF(Y) = 29 + 1.
s€z/(2g-1)Z

Each HF(Y, s) has Euler characteristic 1 [29, Proposition 5.1] and hence odd dimension. Since the
total dimension is 2¢ + 1, there must be a unique s, with

dimHF(Y,s,) = 3
and dim HF(Y, s) = 1 for all other s # 5. But we have
HF(Y,s,) = HF(Y, —s,)
by conjugation symmetry [29, Theorem 2.4], recalling from Remark 2.4 that s and —s determine

conjugate Spin® structures, so —s, = s, (mod 2¢ — 1) and therefore s, = 0.
In order to pass from HF to HF*, we use the exact triangle (2.5) to see that if

k
HFY(Y,) 2T+ ® <€B @[U]/U”i)
i=1
as Q[U]-modules for some k > 0 and n, ..., n; > 1, then

dimHF(Y,s) = dim coker(U) + dim ker(U) = k + (k + 1) = 2k + 1.

From this, we conclude that k=1 if =0 (mod 2¢g — 1) and k = 0 otherwise, proving the
lemma. O
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CHARACTERIZING SLOPES FOR 5, | 21of 64

Proposition 3.9. Let K be an almost L-space knot of genus g > 1. Then exactly one of the following
must hold.

g =1, and K is the left-handed trefoil, figure eight, or 5,.
* g > 2, and K is fibered with Vg_l(K) =1.

Proof. According to Lemma 2.8, we have

dim HE* <S§g_1(K), g— 1) = dim HFR(K, g) - V,_,(K). (3.2)

red

We also recall from Proposition 2.6 that V' (K) = 0and V (K) < V,_1(K) <V ,(K) + 1,s0V _;(K)
is either O or 1.
Now suppose that ¢ = 1. In this case, we know by Lemma 3.8 that

HF*(S;(K)) =T+ @ Q[U]/U"

for some n > 1, and Lemma 2.8 says that the U-action on HF:3 d(Sf(K)) ~ Q[U]/U™ is trivial, so
n = 1. Then dim HF} ,(S;(K),0) = 1, and (3.2) becomes

dim HFK(K,1) =
2, Vo(K) =1.

Thus, if V,(K) = 0, then K is fibered [7], and the right-handed trefoil is an L-space knot, so K
must be the left-handed trefoil or the figure eight instead; and in the remaining cases, we have
Vo(K) =1 and dim HFEK(K,1) = 2. In these cases, Propositions 2.10 and 2.14 tell us that

1, K5,

0, K23, (3.3)

VoK) = ~3d(S(K)) = {

so K must be 5,.
From now on we suppose that g > 2. Here, the Spin® structures 0 and g — 1 on Sgg_l(K) are
different, so by Lemma 3.8, we have

+ (3 _
HF (83, ), =1) =0
and so (3.2) becomes 0 = dim HFK(K, g) — V,—1(K). Thus,

dim AFR(K, 9) =V, ,(K) < 1.

But this dimension must be positive [27, Theorem 1.2], so it is equal to 1, and then this implies that
K is fibered [20]. O

Proposition 3.10. If K is an almost L-space knot of genus g > 2, then ©(K) = g and so K is
strongly quasipositive.
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22 of 64 | BALDWIN and SIVEK

Proof. Proposition 3.9 says that K is fibered, and that V,_; (K) = 1. Since K is fibered, it is strongly
quasi-positive if and only if 7(K) = g [9, Theorem 1.2]. Thus, we will suppose that 7(K) < g — 1
and show that this leads to a contradiction.
The assumption that 7(K) < g — 1 is equivalent to the assertion that the map
H,(C{i=0,j<g~-1})~ H,(C{i=0) = HF(S’) = 0
is surjective. In this case, the short exact sequence of complexes
0-C{i=0,j<g—-1}->C{i=0} > C{0,9} >0

gives rise to a long exact sequence in homology that splits as

0—H,, ,(C{0,g}) - H,(C{i=0,j<g—1}) - H(C{i=0}) = 0,
N————— N——— ————
~HFK(K,g)=0Q ~HF(S3)~0

soH,(C{i=0,j<g—1}) ~ Q%
‘We now consider the short exact sequence of complexes

0-Cli<0,j=g-1—A, ;- Cli=0,j<g—1} =0,
whose first term is equal to
C{-1,¢9 — 1} = C{0, g} @ HFK(K, ¢) = Q.
The hat version of the large surgeries formula (Theorem 2.3) tells us that
H,(A, )= ﬁ?(sgg_l(K), g— 1) ~qQ
by Lemma 3.8, so we get a long exact sequence

L ~ . .
~—>H(C{-1,9-1)—>H A, ;) > H(C{i=0,j<g—1}) > ..,
—_——— N ,
=0 =Q Q2

from which the map ¢, : H,(C{-1,9 —1}) - H,(4,_,) is zero.
Finally, the inclusion map C{—1,¢9 — 1} & A;r_l factors through ¢ as

Ci-Lg-1}>4, AT,
so, the induced map
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CHARACTERIZING SLOPES FOR 5, | 23 of 64

on homology must be zero, since it factors through ¢, = 0. But this map belongs to the short exact
sequence

(U;—l)

of Lemma 2.8, so it must also be injective, and since H,(C{—1, g — 1}) = Q is nonzero, we have a
contradiction. Therefore, 7(K) = ¢, as desired. O

Corollary 3.11. IfK is an almost L-space knot of genus g > 2, then (7,(K), %(K)) = (29 + 1,29 — 1).

Proof. Proposition 3.10 says that 7(K) = g. The invariant »(K) of [32, Definition 9.1] is equal to
either 7(K) or 7(K) + 1 by [32, Equation (34)], but it is also at most g by definition, so we have

vK)=g and vEK)<tK)+1=—g+1.

Since v(K) > v(K), we apply (3.1) to getP(K) = max(2v(K) —1,0) = 2g — 1. Then, 7,(K) = 29 + 1
as well by Lemma 3.7. O

Remark 3.12. Let K be an almost L-space knot of genus ¢ > 2. Then, Lemma 3.8 and the large
surgeries formula imply that H,(A,) & Q for all s > 1, and so, one can repeat the proof of [30,
Theorem 1.2] to show, among other things, that

dim HFK(K,a) =0or1 foralla > 2,

hence by symmetry whenever |a| > 2; the corresponding ¢“-coefficients of A (¢) must then be
either 0 or +1. We will not pursue this further here.

We conclude by noting the following consequences, which we will not use in this paper.
Theorem 3.13. We have 7,(K) < 3 if and only if K has crossing number at most 5.

Proof. We replace K with its mirror as needed to ensure that %(K) > 0, since this does not change
7o(K). Now by Proposition 3.2, the difference #,(K) — ¥(K) is nonnegative and even, and we have

0 < 7p(K) = 9(K) < 7y(K) < 3,

so it must be either O or 2.

Supposing that the difference is 2, then K is an almost L-space knot by Lemma 3.7. If ¢(K) > 2,
then Corollary 3.11 says that 7,(K) = 2¢(K) + 1 > 5, which cannot happen. So ¢(K) = 1, and then,
Proposition 3.9 says that K is either T_, 3, a figure eight, or 5,.

Otherwise we have 7,(K) = 7(K), so by Remark 3.5, if K isnontrivial, then it must be a nontrivial
L-space knot satisfying 7#,(K) = 2¢g(K) — 1. But then 7,(K) < 3 implies that ¢g(K) is either 1 or 2,
so K must be a right-handed trefoil [7] or a (2,5) torus knot [6]. Up to mirroring, we have now
accounted for all knots of at most five crossings and ruled out everything else, so this completes
the proof. O
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24 of 64 | BALDWIN and SIVEK

Theorem 3.14. Ifdimg HF (Si’(K ) = 3, then K is either the left-handed trefoil, figure eight, or 5,.

Proof. Proposition 3.1 says that
3 = dimg HF (S3(K)) = #o(K) + |1 = 9(K), (3.4)

so 7y(K) < 3 with equality if and only if (K) = 1. If #(K) > 1, then we have 3 > 7#;(K) > »(K) > 1,
so P(K) = 2 and this contradicts Proposition 3.2. Thus, ?(K) < 1 and now (3.4) becomes 7,(K) —
P(K) = 2. So, K is an almost L-space knot, with genus 1 by Corollary 3.11, and now Proposition 3.9
says that it must be one of the knots claimed above. O

4 | THE MIRROR OF5,

Our goal in this section is to prove that not only are nonnegative slopes characterizing for 5,, but,
in fact, the Heegaard Floer homology of such surgeries characterizes 5,.
Theorem 4.1. Suppose for some rational number r >0 and knot K C S3 that there is an
isomorphism
3 ~ 327
HF* (S3(K)) = HF* (S53(5,))

of graded Q[U|-modules. Then, K is isotopic to 5,.

We recall from Lemma 3.3 that #,(5,) = 3 and %(5,) = 1. Thus, if p and q are relatively prime,
with p # 0 and g > 0, then

p+2q, p

>
1 (4.1)
49—-p, p<q.

dimfl?(S;/q(s_z)) =3q+|p—q| = {

Throughout this section, we will make implicit use of the fact that HF*(Y) completely determines
HE(Y).

Lemma 4.2. Suppose that 0 < §

< 1 and that there is an isomorphism

+( 3 ~ (3 (=
HE <Sp/q(K)> =HFE <Sp/q(52)>
of graded Q[U]-modules. Then K is an almost L-space knot of genus 1.
Proof. By Equation (4.1), we have
49 —p=q-7(K) +|p—qu(K)I

p+q@y(K) —9(K)), ¢ =9(K)

q(7y(K) + 92(K)) — p,

Qe s

< 9(K).
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CHARACTERIZING SLOPES FOR 5, 25 of 64

In the case % < P(K), this simplifies to 7,(K) + »(K) = 4, and given that

p

Fo(K) > P(K) > . >0,

Proposition 3.2 says that this is only possible if 7,(K) = 3 and ?(K) = 1.
Now we suppose instead that % > 9(K), and then we have

4q — p = p + q(7y(K) — 9(K)),
or

p_,_ Fo®)—9(K)

q 2

Since 0 < § <1, and %(fO(K) —P(K)) is a nonnegative integer, it follows that 5 =1 and that
7o(K) — 9(K) = 2. But then P(K) < % =1, and ry(K) > [9(K)| by Proposition 3.2, so (#,(K), ¥(K))
must be either (2,0) or (1, —1).

In all cases, we have shown that K is an almost L-space knot and |#(K)| < 1. According to
Corollary 3.11, if g(K) > 2, then »(K) = 2g(K) — 1 > 3, which is impossible, so, in fact, g(K) =1
and the proof is complete. O

Lemma 4.3. Suppose that § > 1 and that there is an isomorphism

+( 3 ~prt(cd (=
HE <Sp/q(K)> = HF <Sp/q(52))
of graded Q[U]-modules. Then K is an almost L-space knot of genus 1.
Proof. By Equation (4.1), we have

p+2q=q-7(K)+|p—qrK)|

|G ®) =), £ 9k)
q(7(K) + 9(K)) — p, § < P(K)

Now if § > P(K), then this immediately reduces to
Fo(K) — P(K) = 2,

so K is an almost L-space knot by Lemma 3.7.
In the remaining case, we have ¥(K) > g > 1, and so, the above equation becomes

p +2q = q(7y(K) + ¥(K)) — p,
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26 of 64 | BALDWIN and SIVEK

or equivalently,
P _ ) +E)

p 2 (4.2)

Now we combine this with § < ?P(K) and rearrange to get
7o(K) — 2 < 9(K),

and then by Proposition 3.2, it follows that 7,(K) = ?(K) and so K is an L-space knot. Remark 3.5
says that 7,(K) = »(K) = 2¢g(K) — 1, so, in fact, (4.2) becomes

P_ 2¢g(K) — 2.
q

By the assumption § > 1, it follows that g(K) > 2.

Now in either case, if we suppose that g(K) = g > 2, then we have V _;(K) = 1. Indeed, if K is
an almost L-space knot, then this is part of Proposition 3.9. If instead K is an L-space knot, then
it is strongly quasi-positive by Theorem 3.4, so the invariant v*(K) of [12] is equal to g(K) by [12,
Proposition 3]; this is by definition the least s such that V((K) = 0, so, in particular, V1K) =1
as claimed. Either way, we have V;(K) > 1 by Proposition 2.6. But then Proposition 2.9 says that
if § > 1and

+(3 () ~ +( a3
HF (Sp/q(sz)) =HE (Sp/q(K))
then V(K) = 0 for all s > 1, so this is a contradiction. Thus, g = 1.
We conclude that K cannot be an L-space knot, since that would have implied that ¢(K) > 2,
and so, K must be an almost L-space knot of genus 1 after all. O

Combining the above lemmas yields the following.

Proposition 4.4. Suppose that IE’ > 0 and that there is an isomorphism

+( 3 ~ et o3 (T
HE <Sp/q(K)> =HE <Sp/q(52))
of graded Q[U-modules. Then K is isotopic to 5,.

Proof. We know that K is an almost L-space knot of genus 1, by Lemma 4.2 if 0 < § < 1and by

Lemma 4.3 if %’ > 1. Then, its Alexander polynomial must have the form

Ag() =at+(1—2a)+at™?

for some a € Z. We have Ag(l) = 2a, whereas A’SL(I) = 4,50 a = 2 by Proposition 2.9. This proves
2
that

Ag(t) = A5 () =2t =3+ 2t7L,
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CHARACTERIZING SLOPES FOR 5, | 27 of 64

But none of the genus-1 knots in Proposition 3.9 have this Alexander polynomial except for 5,
itself, so K = 5,. O

We can also handle zero-surgery by a somewhat different argument.

Proposition 4.5. Suppose for some knot K C S that there is an isomorphism
HF(S3(K)) = HF* (S3(5))

of graded Q[U]-modules. Then K = 5,. Similarly, if we have an isomorphism
HF*(S3(K)) = HF*(S}(5,))

thenK = 5,.

Proof. We show first that g(K) < 1. Supposing instead that K has genus ¢ > 2, there is
a nontorsion Spin‘ structure 8,_; for which HF +(S(3)(K), $,-1) # 0, namely, the one spec-
ified by (c;(8,-1), [2]) =2¢g —2 for a capped-off Seifert surface 3, by the isomorphism
HF*(S3(K),8,_,) = HFK(K, g) of [28, Corollary 4.5] together with the fact that HFK detects
genus [27, Theorem 1.2]. On the other hand, since 5, and its mirror both have genus 1, we
have

HF*(53(5,),8) = HF* ($3(5,),8) = 0

in all nontorsion Spin® structures, by the adjunction inequality [29, Theorem 7.1]. Thus, g < 1
as claimed.
Next, we recall from Lemma 3.3 that (7,(5,), 9(5,)) = (3, 1), so we have

dim IF (575)) = 3, dim AF (5°,(5,)) = 5

and so, dim H?(SS (5,)) = 4 by the surgery exact triangle for HF, since it differs by 1 from each
of these other dimensions. We also have dim ﬁ?(sg(sz)) = 4 by the same argument, so in either
case dim HF' (S3(K)) = 4, and then

dimHF (S3(K)) = 3or 5

again by the surgery exact triangle. This means that K cannot be unknotted, so g(K) = 1. We apply
Corollary 2.13 to get

dim HF (S3(K)) — 1

dim HFK(K,1) — Vy(K) = >

=1or2,

and ¢(K) = 1 implies that 0 < V,(K) < 1 by Proposition 2.6, hence dim HFK(K,1) < 3.
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Now we use the fact that HF+(SS(K)) determines the Alexander polynomial A(t), by [29,
Proposition 10.14] and [29, Theorem 10.17], to see that

Ag(t) = As () =2t =3+ 2t7L,

But the linear coefficient 2 is equal to the Euler characteristic x(ﬁﬁ{(K , 1)), so, in particular,
dim HFK(K, 1) must be even. It follows from the above bound that

dim HFK(K,1) = 2

and so K must be one of the knots listed in Theorem 1.5.
Finally, we can read the correction terms d,, ; /2(SS(K)) offof H F+(SS(K)), since they are defined

as the grading of the bottom-most element of a tower 7 in grading i% (mod 2). According to
[24, Proposition 4.12], these are determined by the formulas

d1/2(53(K))

d_y/ (SS(K))

d(S}(K)) + 3,

d(s3,(K)) - % =d(-S3K)) - %
= —d(S}(K)) - 3.
Now Theorem 2.7 tells us that
dy 2 (S3(K)) = —2Vo(K) + 3, d_y 5 (S3(K)) = 2Vo(K) — 3

and so, HF* (S3(K)) determines both V,(K) and V,(K). But we saw in (3.3) that if K is one of the
knots in Theorem 1.5, then

1,0), K=5,
(Vo(K), VoK) =1(0,1), K5,
(0,0), otherwise,

so HF +(SS(5_2)) and HF +(SS(52)) are different from each other and from each of the invariants
HF* (SS(K )) where K is another of the knots in Theorem 1.5. This completes the proof. O

Combining Proposition 4.4 in the case r > 0 and Proposition 4.5 for r = 0, this completes the
proof of Theorem 4.1.
5 | THE KNOTS5,
In this section, we start to consider whether positive slopes are characterizing slopes for 5,. We will

achieve partial results in this direction without using the mapping cone formula (Theorem 2.5),
which we then apply in Section 6.
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CHARACTERIZING SLOPES FOR 5, 29 of 64

Lemma 5.1. Suppose that there is some knot K and some rational r > 0 such that
HF*(5(5,) 2 HF* (S}(K))

as graded Q[U]-modules. Then V(K) =0 for all s > 0. In addition, if g(K) =1, then Ag(t) =
As, () =2t =3+ 2t~ L,

Proof. We recall from Proposition 2.10 that

1./a3
and then Propositions 2.9 and 2.6 say that V,,(K) = 0 and that the sequence of V((K) is nonin-
creasing, proving the first claim. The second claim also follows from Proposition 2.9, once we use

g(K) = 1 to write Ag(t) = at + (1 — 2a) + at~! for some a and then observe that

a_A;;u)_Ag’z(l)_z
T2 T 2 T~ O

Lemma 5.2. Suppose for some knot K # 5, and some rational r > 0 that
HF*(SX(5,)) = HF*(S}(K))
as graded Q[U]-modules. Then 7y(K) = 4 and »(K) = 0.

Proof. Writer = g for some coprime p, q > 0. We note that since § > 0 > 9(5,), we have

dim HF(S3,(5,)) = a-o(5,) + [p = 49(5,)
=3q+Ip+ql=p+4q,
and by hypothesis, this is equal to dim ﬁ?(S; /4 (K)).

We next observe that 9(K) < 0: according to Proposition 3.2, it is enough to show that V,(K) = 0,
and this was already proved in Lemma 5.1. Thus, § > 9(K), and we have

. T 3 _ 5 PN
dim FF(S3 ,(K)) = g oK) + (p = g9(K)
= p + q(,(K) — 9(K)).
This is equal to dim ﬁ?(Sz/q(Sz)) = p + 4q, so we must have 7,(K) — »(K) = 4.
Now since 0 < 75(K) =7(K)+4 <4 and 7,(K) > |[9(K)|, the only possibilities for these

invariants are

(7o(K),9(K)) = (4,0) or (3,—1) or (2, —-2),
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and the last is impossible because Proposition 3.2 says that ?(K) must be 0 or odd. If
(7o(K), 9(K)) = (3, —1), then (7,(K), »(K)) = (3,1), so K is an almost L-space knot by Lemma 3.7,
and then it must have genus 1 by Corollary 3.11. Now Proposition 3.9 says that either K= 5,, or
Ag(t) = Ag(¢) is different from As (¢). But the first option is ruled out by the assumption K % 5,,
and the second by Lemma 5.1. We conclude that (#,(K), (K)) cannot be (3, —1), and so, the only
remaining possibility is (4,0). O

Proposition 5.3. Suppose for some rational r > 0 and some knot K % 5, that
HF*(S}(K)) = HF*(S2(5,))

as graded Q[U]-modules. Then t(K) = 0, and the following must hold.

* If g(K) = 1, then K is either 15n,35,, or Wh™ (T, 3, 2), up to mirroring.
* If g(K) > 2, then K is fibered, and

H.(AF(K)

IR

T*®Q, |s|=gK)—1
T, otherwise

forall |s| < g(K) — 1. In this case, the maps
vl 1 AT(K) » BY(K) and h* : A* (K) - BT(K)
are quasi-isomorphisms for 0 < s < g(K) — 2.

Proof. Let g = g(K). Lemma 5.2 tells us that 7,(K) = 4 and %(K) = 0, so 7(K) = 0 by Proposi-
tion 3.2, and we also have

dimﬁ?(sgg_l(K)) —44|(2g—1)—0] =29 + 3.

Lemma 5.1 says that V,_;(K) = 0, so Corollary 2.13 becomes

e o3
dim HF(Szg_l(K), g— 1) -1

dim HFK(K, g) = >

(5.1)

We will use this to bound dim HFK(K, ¢) from above.
We suppose first that ¢ = 1. In this case, we have

dim HF (S3(K),0) = dimHF (S3(K)) = 2g + 3 = 5,

so (5.1) becomes dim HFK (K, 1) = 2. From Lemma 5.1, we have Ag(t) = 2t — 3+ 2t71, so Theo-
rem 1.5 now tells us that K must be one of 5,, 15n,35,,, or Wh™ (T} 3, 2) up to mirroring. But we
have assumed that K is not 5,, and it cannot be 5, since V,(5,) = 1, so this leaves only the knots
named in the proposition.
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CHARACTERIZING SLOPES FOR 5, | 31 of 64

Now we suppose instead that g > 2. In this case, the unique self-conjugate element of

spin® (83, ,(K)) = 2/(2g - 1)Z

is identified with 0, and, in particular, it is different from ¢ — 1, which is conjugate to 1 — g. Since
dim HFK (Sgg_1(K)’ s) is odd for all s, we use the conjugation symmetry of HF (see Remark 2.4)
to show that

20 +3= d1mHF< 1(K))

= Z dim HF( _(K), S)
s€Z/(2g—-1)Z

—2d1mHF<S3 1(K)g—1)+ > dlmHF( LK), s)

[sl<g—2

> 2dim HF(S3, ,(K),g—1) +(2g - 3),
since there are 2¢g — 3 different summands on the right. This shows that
. —_— 3
dim AF (83, ,(K),g—1) <3,

and then (5.1) becomes dim HFK (K, g) < 1. But dim HFK(K, g) must be positive, so equality
holds, which implies that

« dim HFK(K, ¢) = 1, and then K must be fibered [20]; and
e dim ﬁ?(sgg_l(K), s)is3ifs = +(g — 1) (mod 2g — 1), and 1 otherwise.

Applying Lemmas 2.8 and 2.12, we conclude that

Q s=+(g—-1)
0, 2—g<s<g-—2.

The large surgery formula (Theorem 2.3) says that

+ (g3
HF?, d( 3 &), s)

114

H,(AY) = HF (sgg_l(K), s)

whenever |s| < g — 1, so this completes the description of H,(A).
Now if 0 < s < g — 2, then v : AT — B* induces a map on homology of the form
(vf), : T*=H,(A}) > H.BH =T,
and this map is multiplication by U"s%), but Lemma 5.1 says that V(K) = 0, and so, (), isan

isomorphism. The map (h*,), has the same form and is identified with multiplication by UH-s(K),
but Proposition 2.6 says that H_((K) = V((K) = 0, so (hfs)* is an isomorphism as well. O
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32 0f 64 | BALDWIN and SIVEK

51 | HFK in the higher genus case
Suppose that we have a homeomorphism
S (K) = S2(5,)

for some slope r > 0 and some knot K of genus ¢ > 2. Then, Proposition 5.3 says that K is fibered,
that 7(K) = 0, and that

IR

+ —_q —
H, (%) {T DQ, |s|l=g-1

T, otherwise.

In addition, Lemma 5.1 together with Proposition 2.6 tells us that

0, s=>0
VS(K)={

[s|, s<0O

for all s € Z. We will use all of this information to determine HFK(K) as a bigraded vector space.

Lemma 5.4. There is some integer d € Z such that

+ = —
7o) © Qqp s=g-1
+\ ~ + _ B
(A7) = T-20) ® Qayaagy $=1-9
+ .
7Emin(o,25))’ otherwise.

Proof. We consider each of the maps

(07), © H.(47) » HB) 2T},
which are induced by projections at the chain level. For s > 0, we have V(K) = 0, so these
maps restrict to graded isomorphisms on the towers 7+ C H,(A}); thus, these towers have their
bottom-most elements in grading 0. By contrast, for s < 0, the maps (v]"), are modeled on mul-
tiplication by U"s®K) = U], so the element of 7+ C H,(A}) in grading 0 is at height |s| in the
tower, meaning that the bottom element has grading —2|s| = 2s.

Having determined the grading on each tower, we set d equal to the grading of the Q summand
of H *(A;_l). Then, it only remains to identify the grading on the @ summand of H*(Af_g). We
apply the large surgery formula, Theorem 2.3, to get relatively graded isomorphisms

HF* (sgg_l(K), g— 1) ~H,(AY)),

HF* (55, (0.1 g) 2 H, (4],

By conjugation symmetry, these HF* invariants are isomorphic to each other, so we also have a
relatively graded isomorphism

H.(AL) =H.(4],).
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CHARACTERIZING SLOPES FOR 5, | 33 of 64

But this means that the grading of the Q@ summand of H, (Af_g) must be d greater than that of the

bottom of the tower T(;_—Zq)’ so its grading is d + 2 — 2¢ as claimed. O

We now start with the top-most Alexander grading of HFK(K), which we already know to be
one-dimensional because K is fibered.

Lemma 5.5. We have HFK(K, g) = Qg,,) and HFR(K,—g) = Qu,,_,,), where d is the integer
from Lemma 5.4.

Proof. Lemma 2.8 gives us a short exact sequence

(v7-1)
— + gil_)* +
0 b d HFK*+2(K’ g) - T(()) @ Q(d) T(O) - 0’

where (v;_l)* has kernel Q). The grading on HFK (K, —g) now comes from the symmetry
HFK,,(K,a) ~ HFK ,,_,,(K,—a)
of [28, Equation (3)]. O

Throughout the remainder of this section, we write

to denote the filtration

OCF_,CF_,C-CF,

of CF(S3) whose associated graded groups are the various HFK(K,a). In particular, the short
exact sequence

0->F,_, & F,—C{0,s}—-0
of chain complexes gives rise to a long exact sequence

= H,(F_;) = H,(F,) » HFK (K,s) = H,_;(F,_;) = --. (5.2)

Lemma 5.6. Forall s € Z, there is a long exact sequence

(7g)s
) s HL(AY) = H, gy y(F_y) = -,

N

= Ho ) (F_y) = H (AL

and (v:_l)* is equal to the composition

(). (v),

m(ar) S5 b (at) S ),
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34 of 64 | BALDWIN and SIVEK

Proof. There is a short exact sequence of chain complexes
. . 7TS
0->Cli<-1,j=s-1}>AF —AF >0 (5.3)

in which 7, is projection. Then v | = v o7 at the chain level, hence (v]" , ), factors as claimed.
We also have a chain homotopy equivalence

Usfl

Cli<—1j=5—1}— C,_s_pli <—s,j =0}

— Cy_252){i = 0,j < —s}

so the long exact sequence of homology groups associated to (5.3) takes the form promised by the
lemma. O

Lemma 5.7. We have

H,(Fy) = {%’ g3
Qo) ® Qa)» 9=2-

Proof. We apply Lemma 5.6 with s = 0: supposing for now that g > 3, the composition

- o)
H,(A%) 22 H, (A7) (—> H,(B*)

+ (7o), N + UVo®) =1 N +
T(—Z) ’ T(O) ’ T(O)

is equal to (vfl)* and hence identified with multiplication by UY-1K) = U In particular, the map
(7y), is surjective and also identified with multiplication by U, so the long exact sequence of
Lemma 5.6 splits as

(7o)
0 — H;,,(Fy) = H; (Ai1) - H; (A(J)r) -0
for each i, and we have
Q, i=-2

H;,(Fy) = ker((my),) = {

0, otherwise

since —2 is the grading of the bottom-most element of H, (A", ) T(J_r2).
Now suppose that g = 2. Then, we factor (v*)), as

+
(o) U s

H,(A%) =22 H,(a7) 22 BB

+ (7o) + UYo®=1 +
T(—Z) ® Q(d—Z) 7 7'(0) 7 7'(0)
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CHARACTERIZING SLOPES FOR 5, | 35 of 64

where the gradings on H,(A”)) come from Lemma 5.4. In this case, (), is still surjective, so

once again, we identify its kernel Q_,) @ Q4_») with H, ,,(F)). O
Proposition 5.8. We have HFK(K, —g) = Qa42-24) and HFK(K,1- g) = @?d+3—29)' Ifg>3,
then

Q+a-2g) S=2-9¢
HFK(K,s) =10, 3—g<s<-1

@(0), s=0.

If g = 2 instead, then HFR (K, 0) = Qg & @?d).

Proof. The computation of HFK (K, —g) is Lemma 5.5. When s = ¢ — 1, we can factor (v;'_z)* as

(CUEpn

H(47,) D55 H(AL,) =25 BB

(7Tg—1 D \l/ \l/

+ S 7 UNO=y
To 70 ®Qq Toy

S

and the composition is an isomorphism T(g) - T((J)r) since V,_,(K) = 0. Thus, (7,_,), is injective,

with cokernel Q4y. Now the sequence of Lemma 5.6 splits as

(ﬂg—l)*

0—H, (A;_Z) — > H, (A;f_l) - H, o, 3F_,) =0,
so we have H,(F;_;) = Q4_(2,—3)- But we also know that
H*(P_g) = ITFT((K, —g) = Q(d+2—2g)

by Lemma 5.5, so the induced map H,(F_,) — H,(F,_,) must be zero for grading reasons. Thus,
when s = 1 — g, the exact sequence (5.2) splits and we have

—_— ~ ~ 2
HFK,(K,1-9)=H,(Fi_)) ®H,_;(F_)) 2 Q5 , -

Now if g > 3, then we consider the map (U:_l)* for each of s = 1,2,..., g — 2 in turn. In each
case, (v, ), factors as

d ‘9 “vT0T ‘0SLLE9YT

woyy

SUONIPUOD) PUT SULIDL, O 998 “[$Z0Z/90/L0] U0 ATEIqET SUI[UQ ASJip “Bsid 1] 2I01adng o[euLION Bonas Aq 1§67 1*SWI/ZI 1 [01/10p/wod Kojia &

Rorav-

Kawiqr] duIuQ Kof1A U0

9UIDAOS 21 SOPILE YO 18T JO SO 10]

5U991] sUOWWIO)) da1wa1) d[qeatidde oy Aq p:



36 of 64 | BALDWIN and SIVEK

Vs-1(K) = 1 as a map T(af) N
T(:)-)' It follows that each (7r),, is an isomorphism, so the exact sequence of Lemma 5.6 tells us that

and is an isomorphism, since it is identified with multiplication by U

H*(F—s) = 0, S = 1,2,... , g — 2.

Applying the long exact sequence (5.2) for s =3 — ¢g,4 — g, ..., 0, we know that H,(F,_,) = 0 for
each s, and so,

Q(O)’ s=0

HFK,(K,s) =~ H,(F,) =
0, 3—g<s<—1,

the case s = 0 having been computed in Lemma 5.7.
Similarly, if we take s = 2 — ¢ in (5.2), then we get a long exact sequence

= H(Fi_,) = H,(F,_)) » HFR (K,2 = g) > H,_;(F_,) = --. (5.4)
For g > 3, we have seen that H*(Pz_g) =0, and so,
HFR,(K,2 - g) = H,_1(Fi1_,) = Qg4a—2¢)-
If g = 2 instead, then we have computed above that
H,(F_1) = H,(F1_,) = Q)
while H,(F,) = Qq) ® Q) by Lemma 5.7, so it remains to be seen whether the map ¢ :

H,.(F_,) - H.(F,) is zero or not.
Assuming that ¢ = 2, we now consider the inclusion-induced maps

H,(F.,) —— H,(F,) — HF(S?)

IE B IE

Q-1 — Q) ® Q) — Q)

where H(F_,) = H,(F,_,) was computed above, and we used Lemma 5.7 to identify H,(F). If ¢
isnonzero, then for degree reasons, we must have d = 1, and then its image is the Q) summand of
H.(F,). But the map H,.(F,) — HE(S?)is surjective since 7(K) < 0, so it must be nonzero on this
Qo) summand, in which case the composition across the top row is also surjective. This would, in
turn, imply that 7(K) < —1, contradicting Proposition 5.3. We conclude that ¢ = 0, so (5.4) splits
as

0— H*(PO) - @*(K, 0) - H*—l(P—l) - 0.

Thus, HFK (K, 0) & Q) ® Q(2 ;> completing the proof. O
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CHARACTERIZING SLOPES FOR 5, 37 of 64

6 | THE MAPPING CONE FORMULA AND 5,

Suppose for some knot K 2 5, and some rational slope r > 0 that Sf(K) ~ 53(52) In this section,
we will apply the mapping cone formula, Theorem 2.5, to compare HF* (S3(K)) to HF* (S3(5,)).

Throughout this section, we will assume that K has genus g > 2. Then Proposition 5.3 says that
K is fibered, and that we can write

H, (AT (K) =T ®©Q,

for some integer d € Z. Proposition 5.8 then describes PTFT((K) completely in terms of g and d.
We also record from Lemma 5.1, together with Proposition 2.6, the values

0, s=>0 s, §=0
V(K) = Hy(K) =
-5, §< 05 0, s <O0.

The values of V(5,) and Hy(5,) are identical, so we will refer to these throughout without
reference to the particular knot.

6.1 | Preliminaries
We begin by recording some facts about the mapping cone formula that will simplify our
computations.

Proposition 6.1. Let K C S be a nontrivial knot of genus g > 1, and let p, q > 0 be relatively prime

integers. Fix an integer i, and suppose that there are some integers s < s' such that
s ht e is a quasi-isomorphism for all t < s, and

1+pt

is a quasi-isomorphism forall t > s'.

Define truncated complexes
[s.s'] _ + [ss] +
Aipra = @ (t’AL”_PfJ) Bip/a = @ (1,57,
s<t<s’ q s<t<s’

and a map

[s.8'] . qls.'] [s.5"]
Di,p/q ’ Ai,p/q - Bi,p/q

(t,a,) — (t,v+i+pt (a )) + (t +1, h+l+pt (a )>
t S N

s (a))and (s’ +1 h++ps, (ay)) as zero. Then there is an isomorphism
q q

HF*(53,400.1) xker ((P1570) = 1. (4(37) = 7. (8(37)

of relatively graded Q[U]-modules.

where we interpret (s, v
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38 of 64 | BALDWIN and SIVEK

Proof. Theorem 2.5 gives a relatively graded isomorphism between HF* (S; /q(K), i) and the

homology of the mapping cone X;*p Je which we can write as

+ + +
l+(t l)pJ L+lp t+([+1)pJ

NN E NN

where we understand each At or vt with domain A; to mean h;.f or vj+, respectively. We observe
that the subcomplex

+
1+(A l)p

\L\

consisting of all summands (¢, A* ) witht < sand all (¢, BY) with ¢t < s, is acyclic because each

l+tp
q
of its k™ maps is a quasi-isomorphism. Similarly, the subcomplex

+
l+(\/+1)p
[——1

im \

consisting of all summands (¢, A% ) and (¢,B*) with ¢t > §', is acyclic because each of its v+

i+tp
q
maps is a quasi-isomorphism. Thus, we may take the quotient of Xl,*'p /4 by each of these sub-

complexes, in turn, and the projection maps are both quasi-isomorphisms. But this leaves the
truncated complex

+ + . A+ A+
’+P‘ l+p(.\+1) i+p(s’ —1) i+ps’
e =
I I
B* B*

which is precisely the mapping cone XES]’JS/,(]] of Di[sl’)s/:]], and so, we have

HE* (SZ/q(K)’ i) =H (XESPS/D

The truncated mapping cone fits into a long exact sequence
[s.5”]

. H*+1<x[”'] ) N H*(A[”'] ) M» H*(B[”'] ) -y

i.p/q i.p/q i.p/q
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CHARACTERIZING SLOPES FOR 5, | 39 of 64

/
and so, it now suffices to prove that (Di[sl’)s/(]l)* is surjective, cf. [21, Lemma 2.8]. But the restriction

of (Di[sl;s/:]l)* to all of the tower summands

. ¥ ~ [5.5']
T cH*<ALf+_prJ> <D H*<A[”—P‘J> ZH*<Ai,p/q>

q s<t<s! q

has the form

c H, (/-\[“'] )
i.p/q

T+ T+ T+ T+
hf * hi n hy + 5.’
\ l\ \ l\ l e,
T+ T+ T+

H, (BW ) ,
i i,p/q

R

and each of the v} and i} components are surjective, so it follows that the total map is surjective
as well. This identifies H *(Xl[s;/,g]), and hence HFJ“(SfJ /q(K), i), with the kernel of (Dl_[sl’)s/:]z)* up to
an overall grading shift, as promised.

Corollary 6.2. Let K C S° be a nontrivial knot of genus g > 1, and let p, q > 0 be relatively prime
integers. Fix an integer i, and suppose that there is some s € Z such that

+ . .. .
*h pe 1S G quasi-isomorphism for all t < s, and
q

+
ipt
L q

* v is a quasi-isomorphism for all t > s.

Then HF +(S; /q(K), i) H*(Azrl. +PSJ) as relatively graded Q[U]-modules.

q

Proof. We apply Proposition 6.1 to identify HFJ’(S?J /q(K), i) with the kernel of the map

[s.s] . +
(Di,P/Q>* ) H*<A[MJ> =0 0

Proposition 6.3. Let K C S° be a knot of genus g > 1, and fixi € Z and § > 2g — 1. Then there is
at most one s € Z such that

i+ ps
1—94 szg—l,
q

and we have

H <A+. ) if s exists
+( 3 2\ _ * i+ps
HF (Sp/q(K),l> = i

T+ otherwise

as relatively graded Q[U]-modules.
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Proof. Suppose first that s exists. The desired inequality is equivalent to

q1—-g¢)<i+ ps<qg.

Thus, if there is a solution s, then for all integers ¢ > s, we have

i+pt2i+ps+1)>2q(1—-g)+p=2q(1—-g)+qg—-1)=qy,

while for all integers ¢t < s, we have

i+pt<i+p(s—1)<qg—p<qg—qg—1)=q—g).

In either case t cannot be a solution, so if s exists, then it is unique. But then we know that

. h[“i pi| is a quasi-isomorphism for all ¢ < s, since L J —g; and
q

t
« v isa quasi-isomorphism for all t > s, since [l+p IEY

i+ps
q

Now if no such s exists, then we let o be the least integer such that [l+p 2| > 0. It follows that

So Corollary 6.2 tells us that HF*'(S3 (K) = H/ (A" J) as claimed.

L%J —gforallt < o, and that [l+ptj > g forall t > o, so now Corollary 6.2 says that

+( 3 2\ ~ +
HF (Sp/q(K),1> =H*<ALMJ>.

q

z+pr7
q

But, in fact, LH%J g,s0 H (At )= H,(B%)=~ 7" and this completes the proof. O

6.2 | Computations for 5,

We begin by computing HF +(S; 14(52), 1) for all slopes § > 1. We recall from (2.4) that

H,(A5(5)) =T & Q).

Lemma 6.4. If% >1and0 < i< p—1, then we have
Tteoar, i=0,1,.,9—1
HF* (83, (5,),1) = "0 ® %)

p/q + i
T(o)’ otherwise

as relatively graded Q[U]-modules.
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CHARACTERIZING SLOPES FOR 5, 41 of 64

Proof. The condition [H%J = 0 is equivalent to

0<i+ps<gq,
so we can find such an s if and only if i =0, 1,...,g — 1 (mod p), or (since we assumed 0 < i <
p—1)if and only if 0 < i < g — 1. If s does not exist, then HF+(SZ/q(K), i)~ 7* by Proposi-

tion 6.3 (applied with g = ¢(5,) = 1). If instead s exists, then we must have 0 <i < q—1, and
now Proposition 6.3, together with (2.4), says that

+( 3 A + ~ T+
HF*($3) (5,,1) = H(AF(5) = T8 © Q2
as relatively graded Q[U]-modules. O

Proposition 6.5. Suppose that 0 < § < 1. Then

+( 3 . +
HE <Sp/q(52)’ l) T0® @(O>
as relatively graded Q[U]-modules, where n; is the number of t € Z such that0 < i+ pt < q.
Proof. We define a pair of integers s, s’ by

s=min{t € Z | i+ pt > 0},

s =max{t€ Z|i+pt<q—1}

Then, p < q implies that s < s’, and for all t € Z we have

[i+pt

7 J=0 = s<t<y,

son; =5 —s+1.
Now Proposition 6.1 says that HF +(S3 (52), i) isisomorphic to the kernel of (Dl_[sl’)s/[]l)*. Recalling

again from (2.4) that H*(Aar) =T @ @ this map has the form

(0) 0y’
(0) 0n® @(0) (0) 0@ @(0) ’ (0) 0n® @(O) (0) 0@ Q(O)
\ \L \ \ \L”: x \LU:
+ +
1) 7?—1) TE—D.

Here, we are able to assign these gradings to each summand because V(5,) = Hy(5,) = 0, and
so, each of the maps v} = (v]), and h} = (h)), gives a degree-(~1) isomorphism between the
respective towers.
/
‘We see by inspection that ker(Di[i’)s/;)* contains a tower 7+ whose bottom-most element is in

grading O, as an alternating sum of the bottom-most elements of the towers 723) CH.(A +1 . P‘J)

q
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s <t <s'. The map (Di[sz;s/,c]z)* also sends

H (A[” ]) ~ @3 —s+1)
ip/q

onto

[S’S']) ~ 0¥
H_1<Bi,p/q =Q

so its kernel has total dimension 2(s’ — s) + 3 in degree zero. We conclude that

+( a3 . + 2(s'=s+1)
HE (Sp/q(K)’l) T(O)EB@(O)

as relatively graded @[U]-modules. O

6.3 | General facts about the kernel of U

We will show that under most circumstances, a positive r-surgery on a knot of genus at least
2 cannot have the same Heegaard Floer homology as the corresponding surgery on 5,. We will
handle the cases r < 1 and r > 1 in the next few subsections; before that, we prepare for this work
here by proving some general facts about the kernel of the U-action on HF* of these surgeries.

Lemma 6.6. Let K be a knot of genus g > 2, and suppose for some relatively prime integers p,q > 0
that
+( 3 ~ rt+{ 3
HE (Sp/q(K)> = HF <Sp/q(52)>
as absolutely graded Q[U |-modules. Fix an integer i, and lift the relative gradings on the complexes

Afp /q and [B+ /g O absolute Z-gradings so that Dl.+p /q has degree —1. Let d denote the grading of

the bottom- most element of the tower

ThC (S H (AW;’SJ)) cH (A:rp/q>

foreach s.
M) 122 > 0, then dy.y = dy +2[ 222,
@) If %2 <0, then d, = d,, +2|“E).
' ] 1
(3) IF %] <0and | B | > 0, then d, = dy.

Proof If [”ﬂj > 0, then the map (Dl_+p /q)* on homology restricts to the sum of all of the towers

)CH(A ) as

(5 T i,p/g

t=s5-—1 S s+1

(d\ V) T(d ) (d\+1)

\i\l\i\

for some integers e,_;, e, e, ;.
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CHARACTERIZING SLOPES FOR 5, | 43 of 64

Letn = [l+p *].If n > 0, then H,(K) = n, so the h}” map with domain in column s above has
the form

+ + +
(h ) TEd ) T&es+1)’

sending a generator in degree dg + 2n to one in degree ey, ;, so we have
(dy+2n)—1=¢eg,.

But then [@J > n > 0, so the v} map in column s + 1 is identified with the identity map

+ +
7;ds+1) - T(es+1), and thus’

dS+1 :es+1+1:ds+2n.

Similarly, if n < 0, then we have H i pi-1) | = O0and V,, = —n, hence
q

L
dy+2(-n)—1=e=d,_;—1

ordg=dg_; +2n.
In the case where | p SJ <0 and [%J > 0, we note that the h} and v} maps into the

T(: ) tower in column s + 1 are both modeled on multiplication by 1, since H | (K) =0and
s+1 T

VLHp(SJrl)J(K) = 0. Thus,
q

d, = e t+1= ds+1’

completing the proof. O

Lemma 6.7. Assume the hypotheses and notation of Lemma 6.6, and let

. i+ pt
S =min<{ t €Z P >0 ,.

Fix integers s and s’ satisfying the hypotheses of Proposition 6.1, and consider the map

(Pia). = 7e(aa) = 1. (%)

between the homologies of the corresponding truncated complexes. If s < s, < §', then

ker( S/]) A ker(U)

contains a Q submodule in grading d .

Proof. Consider the restriction of (D )* to the sum of all the towers (¢, 7, (d )) CH *(AES://(]J). By

hypothesis, we have

[WJ <0 and [”_PSoJ 50
q q ’
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44 of 64 | BALDWIN and SIVEK

so Lemma 6.6 says that the sequence of gradings (d,) satisfies
w>di>dgyy > >dg g =dg <dg g < <dyg <

Let
s =max{t € Z | d, = d},

so that for all ¢ € {s, ..., s}, we have d, = ds0 if and only if s — 1 < t < s;. Then near the indices

[so — 1,8, + 1], the restriction of (D.[S’S,] > has the form
*

Lp/q
t:SO—l SO e Sl S1+1
T+
(dy) (dq,) (dsl,) (dsl+])
b \ \ bk
+
T (d0 1) (ds(] 1)

in which we omit any columns at either end whose indices are not in [s, s'].
To see that the maps labeled “1” are indeed modeled on multiplication by U° = 1, we note that
they are one of

* an h} map with domain in column s,—1, and then since [WJ <0, we have

HLi+p<so—1>J(K) =0
q

*a v: map with domain in column ¢ > s,, and then since [ J 0, we have VL bt (K) =0; or
q
* an hf map from column ¢ > s, to column ¢ 4+ 1 where dt =d,;, = d, and then Lemma 6.6
says that

i t
0=dt+1—d[=2[l+pJ,

q

so that HlH_sz(K) =HyK)=0
q

Moreover, the v} map in column s, — 1 is modeled on multiplication by U¢, where

a=V i+P(So—1)J(K) = - [
q

| -

q

Similarly the A} map in column s, is modeled on multiplication by U®, where

i+ ps
b=Hi+p51 (K)=l le
|22 )

1
= E(ds1+1 - ds1> >0,

by Lemma 6.6 and the definition of s;.
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CHARACTERIZING SLOPES FOR 5, 45 of 64

‘We now label generators at the bottom of each tower by

we (07G)) e H(al) e @ e, ()

so that Ux, = 0 and Uy, = 0 for all ¢, and the various v} and h} maps carry elements of the form
Uix, to elements of the form U/y, and U¥y,_,, respectively. We then define

51
Y [s.5'] )
t—sz 1( D HdSO </_\i,p/q ’
Zso—

treating any terms whose indices are not in [s, s’ ] as zero, and it follows from the above discussion
that Uz = 0 and that

s1—1

( lp/q) (@)= D"y, + <Z(_1)t(yt +yt+1)> +(=Dy, =
=5y

Thus, z generates the desired Q@ summand. 0

Lemma 6.8. Assume the hypotheses and notation of Lemma 6.6, and let s < s’ be integers satisfying
the hypotheses of Proposition 6.1. Suppose that

Ifd € Z denotes the integer such that H*(A‘;_l) = T(g) ®Q @ in Lemma 5.4, then we can write

' +
(S ’H*(Ag—l ) (d )69 Q(d +d)

as Q[U]-modules such that the Qg +q) Summand lies in

ker( lss/]) N ker(U).

Proof. The rightmost portion of the truncated mapping cone complex has the form

t=s -1 s'
+
z+p(\’ 1) T(‘d 7) @ @(dsl +d)
\l/ \ ilﬁ Vs
(dy 1)’

where the grading on the bottom 7 in column s’ follows from V,_;(K) = 0. Let xy and yy
be bottom-most elements of the towers at the top and bottom of column s’, chosen so that

(v;'_l)*(xs/) =Yy
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Let z generate the Qay +a) summand in column s’, so that Uz = 0. If (v;r_l)*(z) = 0, then we
are done, since z generates the desired submodule. Otherwise, we observe that

U- (v;'_l)*(z) = (v'g*_l)*(Uz) = (v;'_l)*(o) =0,

) (v;r_l)*(z) must be a nonzero element at the bottom of the T(; ) tower. In this case, we can
s

)
write

(v;’_l)*(z) =Ayy =4- (v;’_l)*(xsf)

for some nonzero A € Q. For grading reasons, it now follows thatd = 0, since z must lie in grading
dy, and so,

z—Axy € ker (v),) .
Now we can write the H, (A:;_l) in column s’ as the Q[U]-module
TH(xy) ® Q(z — Axy),

and the @ summand is in ker(v;r_l)* = ker(Dl,[i’)s/:]] ), as well as ker(U), as desired. O

6.4 | Small positive surgeries

In Proposition 6.5, we showed that if 0 < r < 1, then there is a relatively graded isomorphism of
the form

. 2n;
HF*(S}(5)).1) =2 75 @ Q)

for all i. We will show that this cannot be the case for HF+(Sr3(K )) if K is a knot of genus at least
2 that satisfies the hypotheses of Proposition 5.3.

Proposition 6.9. Let K be a knot of genus g > 2, and fix relatively prime positive integersq > p > 0.
Then,

+( 3 +(a3
HE <Sp/q(K)> # HF <Sp/q(52)>
as absolutely graded Q[U|-modules.

Proof. If HF +(Sl3) /q(K)) ~ HF +(Sz31 /q(SZ)), then K satisfies the conclusions of Proposition 5.3. In
this case, Proposition 6.5 says that for all i, the submodule

ker(U) c HF* (s; 152 i)
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CHARACTERIZING SLOPES FOR 5, 47 of 64

lies in a single homological grading. Thus, the same must be true for
+( o3 ;
ker(U) ¢ HF*(s3, (K),1),

so we will find an integer i for which this is not the case, giving a contradiction.
We fix an integer i between 0 and p — 1, inclusive, such that

i=gqg—1 (mod p).

We then define

,=gq—1—i

s=min{t € Z |i+ pt > (1 - g)q}, s b

By construction, we have

. 12 : / 1
ll+quJ:g_1 and [#J;g,

and since 1 < p + 1 < g, we have

li+p(S’—1)J _ lgq—(p+1)J _
= =g-1
q q

as well. We also observe that [HTI”J > 0ifand onlyift > 0,and so,s <t < s'.

According to Proposition 6.1, we can identify HF+(SI3) /q(K), i) with the kernel of

[s,5'] . [5,5"] ) ( [5,5'] >
<Di,p/q)* ) H*<Ai,p q) ” H, Bi,p/q

up to an overall grading shift, so it will suffice to show that

ker (Dl[;s//;)* N ker(U)

does not lie in a single homological grading. Supposing otherwise, we choose an arbitrary lift

of the relative gradings on AESI’JS/,EI and BL[SI’)S//E] to an absolute Z-grading, and let d, € Z denote the
bottom-most grading in each tower

. [5.5']
T © (t’H* (AL"Z—‘”J>) cH(A0)

Lemma 6.7 now says that there is a Q-submodule of ker(Di[SI’JS/,;)* in grading d; , and Lemma 6.8
says that there is also a Q-submodule in grading dy + d, hence

ds/ +d= dso
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by hypothesis. But according to Lemma 6.6, we also have

. r_ 1
ds/ = dsl_l + 2 lMJ

q
=dy , +2(g-1)

>dg +2(9—-1),

sothend =d; —dy <2-2g.

We now examine the rightmost portion of the truncated complex XESI’)S/,;. Since [MJ =
g — 1, the last two columns have the form

t=s -1 s
o + +
T(ds/—l) © @(dx/—1+d) T(dx/) ® @(dyﬂi)
hi (hy_))-
\ \L(U;-l)* \ \L(U;—])*
. + +
(dy_1—1) (dy—-1y

with dy = dy_; + 2(g — 1) as above. Since d < 2 — 2¢g < —2, the map (1);'_1)>.F in column s’ — 1
must send the Q¢ ,4) submodule to zero for grading reasons. That same submodule must be
sent by (h;_l)* into column s, in grading

dy_1+d—-1=(dy -2(g—1)+d-1
=(dy+d)+(1-29)

<dy —1-2g.

This is strictly less than the bottom-most grading of the corresponding tower, so this image also
must be zero, and it follows that in column s’ — 1, we have

[5.5']
Qqa, _,+a) C ker <Di’p /q)* Nker(U)

as well. Since
ds’—l +d= (dsl + d) — (Zg — 2) < dsr +d,

it follows that ker(Dl_[sl’f/glk Nker(U) is not supported in a single grading, and so, we have a
contradiction. O
6.5 | Large positive surgeries

In this subsection, we attempt to understand when there can be a homeomorphism

SHK) = 53(5,)
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for some slope r > 1 and some knot K of genus at least 2. We implicitly identify
s C 3 ~
Spin (Sp/q(K)> ~7/pZ

throughout, as in the statement of Theorem 2.5.
The following lemma will help us find Spin°® structures 8 where HF +(Sz3) /q(K ), 8) differs from

HF* of any Spin® structure on 513) /q(52).

Lemma 6.10. Let g > 2 be an integer, and let p > q > 0 be relatively prime positive integers such
that p does not divide 2g — 2. Then there exists an integer i € Z for which the equation

i+ ps
2]
q
has an integer solution s € Z, but the equation
i+ ps
Rl
q

does not.
Proof. We note that [H%J = g — 1 admits a solution s € Z if and only if
qlg—D<i+ps<qg—1,
or equivalently, if and only if
i=qg—j (mod p)forsome je{l,2,..,q}. (6.1)
Similarly, the equation [H%J =1— g has asolution s € Z if and only if
q1—-g)<i+ps<q-g)-1,

or equivalently, if and only if

i=q(2—g)—k (mod p)forsomek €{1,2,...,q}. (6.2)

Each of (6.1) and (6.2) is solved by exactly q residue classes modulo p, and these solutions coincide
if and only if

q9 =q(2—g) (mod p),

which is equivalent to 2g — 2 = 0 (mod p) since p and q are coprime. But we have assumed that
this is not the case, so the set of i in (6.1) is not a subset of the set in (6.2), and hence, there is some
i that satisfies (6.1) but not (6.2). This is the desired i. O
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Proposition 6.11. Let K C S be a nontrivial knot of genus g > 2, and let p > q > 0 be relatively
prime positive integers. If there is an isomorphism

HF* <SZ/q(K)> = HF* <S;/q(52)>

of graded Q[U]-modules, then p divides 2g — 2.

Proof. We suppose that p  2¢g — 2. Then Lemma 6.4 says that

dim@HF:fed< p/q(52) ) ~0or2foralli,

so for the sake of a contradiction, it will suffice to find i such that HF:re d(S; /q(K),i) is
one-dimensional. We start by applying Lemma 6.10 to find i € Z and s’ € Z such that

o+ ,
[l szzg_1
q

and such that [”Tptj =1 — g has no solutions ¢ € Z; this will be the desired i.
Let s be the least integer satisfying
ll + sz 50
q

Then h+l .. 18 @ quasi-isomorphism for all ¢ < s, since then |
i+pt

q
1—g;ifl—g<|

&p tJ is negative but not equal to

p tJ < 0, then this is part of Proposition 5.3, and if [H—th < 1— g, then thisis

true for arbitrary genus g knots. Likewise v (K) is a quasi- 1somorphlsm for all t > §’, since

i+pt
q

then [HTPIJ > ¢. Thus, Proposition 6.1 says that HF+(S; /q(K ), 1) is isomorphic to the kernel of the
truncated map

(Pia), < H(Ain) = H- (8 )

The domain is a sum of relatively graded Q[U]-modules of the form

1 ar N T, s<t<s
IR T\ Trea, t=¥,

and we know that H,(BY) @ 7+, so (Di[sl’f/,c]llk has the form

t=s s+1 s =1 S

T*eQ

NN N

d ‘9 “vT0T ‘0SLLE9YT

woyy

SUONIPUOD) PUT SULIDL, O 998 “[$Z0Z/90/L0] U0 ATEIqET SUI[UQ ASJip “Bsid 1] 2I01adng o[euLION Bonas Aq 1§67 1*SWI/ZI 1 [01/10p/wod Kojia &

o Kol

® SOOI V() 95T JO SR o] KIeIqI] QUIUQ KO[1AN UO

AUIAOT o

5U991] sUOWWIO)) da1wa1) d[qeatidde oy Aq p:



CHARACTERIZING SLOPES FOR 5, | 51 of 64

Lemma 6.8 says that we can arrange for the @ summand in column s’ above to belong to
/ /
ker(Di[sl’)s/(]l)*. Having done so, we see that kef(Di[S:/(]])* is isomorphic as a Q[U]-module to the direct
sum of that Q with the kernel of

t=s s+1 s’ =1 S

+ T+ T+ T+
NN N N
Tt Tt T,
(Here each v} map is identified with multiplication by U° = 1, since t > s implies that [l+p f1>0
and hence VL bt (K) = 0.) But this kernel can be identified with the 7+ in column s, so now we
q
apply Proposition 6.1 to conclude that

HF+<S;/q(K),i> ker (Df”f) ~Tt@Q

up to an overall grading shift. This says that HF;Le d(S; /q(K), i) 2 Q, which gives the desired
contradiction. O

Proposition 6.11 takes care of most slopes r > 1 (for knots of a fixed genus ¢) without making
use of gradings on the mapping cone complex. By being careful about gradings, we can handle

the remaining nonintegral cases as well.

Proposition 6.12. Let K be a nontrivial knot of genus g > 2, and let p > q > 0 be relatively prime
positive integers. If there is an isomorphism

+( 3 ~ grt+{ 3
HF (Sp /q(K)> ~ HF (sp /q(sz))
of graded Q[U]-modules, then q = 1 and p divides 2g — 2.
Proof. Proposition 6.11 tells us that p divides 2¢ — 2, so it remains to be seen that g = 1. We will

assume to the contrary that q > 2. If we write e = ZT then £ 2J 2 and the assumption q >
2g—2
=

q
means that g is neither 2g — 2 nor ¢g — 1, so it follows that ge > 3, or 3 <

As usual, we will take d € Z such that

as guaranteed by Lemma 5.4. This integer d depends only on K, which is the key fact we will use
below to rule out any case where g > 2
Fixing some choice of

i=ql¢g-1D+j, j=01,..,9—1,
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we take s = —ge and s’ = 0, and then we have

[i+qPSJ _ [(q(g—l);rj)—pqu _ [g_l_p”éJ 1oy

and [H;’S,J = g — 1, while (since § >1) [#J < —gand [#J > ¢. Thus

+( 3 N\ ~ [s,5'] . [5,8'] ) < [5.5'] >>
HE (Sp/q(K)’ l) = ker ((Di,p/q>* ) H*<Ai,p/q — H, Bi,p/q

S,

by Proposition 6.1. We put an absolute Z-grading on the truncated mapping cone complex Xl[sé /11,

with d, denoting the bottom-most grading for the tower in each summand (¢, H,(A™, ipi ) @s

. i+ pt
So=min{ te€”Z p >0 ;.

Then, Lemmas 6.7 and 6.8 tell us that

q
usual, and we let

Ker (DI[SPS/;) A ker(U)

contains Q submodules in gradings dSO and dy + d, respectively. But by Proposition 6.4, these
gradings must be the same, so we have

~d=dy —dj.

We remark that since § < %, it follows that s, < s’ — 1.
We now attempt to work out this value in more detail. According to Lemma 6.6, we have

s'—1

-1 .
i+ pt
—d=ds,—dso=2(dt+1—dt)=22[ J
t=sq t=s, q

which, since i = g(¢g — 1) + j, can be written as

s'—1 .
—d=2Y <(g—1)+ [%I”J) 6.3)

t=so

We note that

i + pt
ll pJ>o<=>(q(g—1)+j)+pt>0

d ‘9 “vT0T ‘0SLLE9YT

woyy

SUONIPUOD) PUT SULIDL, O 998 “[$Z0Z/90/L0] U0 ATEIqET SUI[UQ ASJip “Bsid 1] 2I01adng o[euLION Bonas Aq 1§67 1*SWI/ZI 1 [01/10p/wod Kojia &

o Kol

® SOOI V() 95T JO SR o] KIeIqI] QUIUQ KO[1AN UO

AUIAOT o

5U991] sUOWWIO)) da1wa1) d[qeatidde oy Aq p:
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and so, we have

ge j ge Jj
=|[-=-=|=-|=+=], 6.4
" [ 2 p] [ 27" pJ ©
while s’ — 1 = —1 since s’ = 0 by definition. This makes it clear that while the various d, may
s5,8']
p/q’
depends only on p, g, g, and our choice of j € {0, 1, ..., g — 1}. But we have already remarked that

d depends only on K, so we will show that different choices of j lead to different values of d and
thus get a contradiction.
Supposing first that q - e is even, we have % € Zwhile 0

have depended on our choice of i and on the absolute grading on Xl[ the expression (6.3) for d

i g-1
L <=2 < 1,and so,
P> p

s0=—q<§) forj=0,1,2,...,q — 1.

In particular, the indices in the sum (6.3) are the same for each such choice of j, and the individual
summands are monotonically increasing in j. But the value of d must be independent of j, so the
sum in (6.3) must be the same term-by-term for j = 0 as it is for j = g — 1. Thus, we have

{O+th _ {(q—1)+pt
q q

J forsy<t<s —1.

And this, in turn, requires that 0 + pt be a multiple of g: otherwise, there will be some j €
{1,...,q — 1} such that j + pt is a multiple of q, and then, we have

[0+th < [j—1+th < [j+th - [(q—1)+th
q |- q q |~ q '

In the case t = —1, it follows that —p is a multiple of g, but since p and q are coprime and q > 2
this is impossible.
In the remaining case, both g and e = 25”%2 are odd, so, in particular, p must be even. In this

case, % is a half-integer, with floor %_1 > 1since g > 1, so we compute from (6.4) that

(We note thatg — 1 < p, sothat0 <
t =5, term in the sum (6.3) is

< 1 for all such j.) If the second possibility occurs, then the

SR

j+p(—qe2+1>

j + ps,
g—1+lﬂJ =g—1+
q q

{j—q(g—l)—§|
=g—1+ F——
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so we may as well omit it and begin witht =5, +1 = — L%J. Thus, either way (6.3) becomes
< j + pt
aes 3 (omve 2]
f=—121 1

2

foranyofj =0,1,...,q — 1. Now by exactly the same argument as in the case % € Z,wesett = —1
and let j be either of 0 and g — 1, and we conclude that

-l
q q
and then that —p is a multiple of g, giving a contradiction.

We have now found a contradiction in all cases where p | 2g — 2 and q > 2, so we conclude that
q =1 after all. O

6.6 | Conclusion

Combining earlier results throughout this section and Section 5, we have nearly proved the
following.

Theorem 6.13. Let K % 5, be a knot of genus g > 2 in S3, and suppose for some rational r > 0 that
S*(K) = 52(5,).

Then, r is an integer dividing 2 — 2. Moreover, in these cases, HFK(K) is completely determined by
the integers g and

~g-D(E-1), rig-1

2g—2—r)?
_(94rr)’ r+g_1

as in Proposition 5.8. In particular, K has Alexander polynomial
Ap(t)=t9 =269 4 1972 4 14 ¢779 —2t179 479,
Proof. We have shown that
HF*(S}(K)) ¢ HF(S2(5,))

in each of the following cases:

* when 0 < r < 1, by Proposition 6.9;
+ whenr = £ > 1 with p 4 2g — 2, by Proposition 6.11;

q
* whenr = g > 1is nonintegral and p | 2¢9 — 2, by Proposition 6.12.

This leaves only the cases where r is an integer dividing 2¢ — 2.
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In the remaining cases, we once again write H,, (A;’_1 = T((*)') ®Q @ and then HFK(K) is deter-

mined by ¢g and d according to Proposition 5.8. Following the argument and notation from the
proof of Proposition 6.12, with (p, q,i, j) = (r,1,g — 1,0), we set s’ = 0 and

el |5

asin (6.4). Then, by (6.3), we see that d is even, hence Proposition 5.8 determines the Alexander
polynomial of K as promised; and we have

asag (oo 22

t=5,

5ol

=g —=2lsgl +2 Y, r- (1)

t'=1

= (29 = 2)Isol = rlsol(Iso| + 1).

When p divides g — 1 we have |s,| = 97_1 and thus,

_dzz(g—_l)z_(g_l)(gT_l_H)

r

Otherwise, since p divides 2g — 2, it follows that “"le is a half-integer; then

=971 _1\__20=-2-p
0 p 2/ 2p

and p is an even integer. Since r = p, we have

_d_(2g—2)(29—2—r)_ 20—2—-r\[29—2+r
B 2r ( 2 )( 2r )

=529 -2 -2rg-2)) - (29 =27 - 1))

_(g—2-r)
N 4r )

Thus d is exactly as claimed. O

Remark 6.14. We can collapse the Alexander-Maslov bigrading (a, m) on HFK(K) into a sin-
gle grading § = m — a. If S3(K) = S3(5,) for some r > 0, then according to Proposition 5.8, all
of HFK(K) except for a Q(p) summand in Alexander grading 0 must be supported in §-grading
d + 2 — g. Using Theorem 6.13 (for which we recall the assumption ¢ > 2), we see thatifr | g — 1,
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then
d<2-29g<g-2,
whereas ifr } g — 1, then
d<0<g-—2

with equality on the left and on the right if and only if r = 2g — 2 and ¢ = 2, respectively. In any
case, HFK(K) is supported in nonpositive §-gradings, and it is thin if and only if g(K) = r = 2.

7 | QUANTUM OBSTRUCTIONS TO SURGERY

Ito [13] used the LMO invariant of closed 3-manifolds to produce obstructions to cosmetic and
other surgeries in terms of finite-type invariants. These include the coefficients a,,(K) of the
Conway polynomial

Vi(2) = ay(K) + az(K)z2 + a4(K)z4 + ..,
as well as an invariant v;(K) € %Z that is determined by the Jones polynomial of K. In particular,

he proved the following, which we will apply to improve Theorem 6.13.

Theorem 7.1 ([13, Corollary 1.3(iv)]). Suppose for some knots K,K’ C S* and rational r # 0 that
S3(K) = S3(K'). Then either

(1) ay(K) = ay(K’) and v5(K) = v3(K’), or
(2) a4(K) # ay(K") and v5(K) # v5(K"), in which case

__ 5(au(K) — a,(K"))
4(v3(K) — v5(K"))’

(7.1)

Remark 7.2. The sign in front of the right side of (7.1) was omitted in [13]. In fact, [13, Theorem 1.2]

gives a surgery formula for the degree-2 part 4, (Sr3 (K )) of the LMO invariant, in which one of the

terms is —224&) . rlz In the proof of [13, Corollary 1.3(iv)], this term appears without the minus

sign, which accounts for the discrepancy.

In order to apply Theorem 7.1 to a potential surgery S>(K) = S3(5,), we first recall that the
Conway polynomial can be recovered from the Alexander polynomial by the relation

In particular, we have
Vs (t—tT) =200 =342 =1+ 2(t -7,

so Vs, (z) = 1 + 222 and thus a,(5,) = 0. The computation of a,(K) is more involved.
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Lemma 7.3. Suppose for some knot K # 5, and r € Q that S}(K) = S3(5,). If g(K) > 2, then

a,(K) = 2 and a,(K) = (9(K) — D

Proof. Theorem 6.13 tells us that r is a positive integer dividing 2¢(K) — 2, and that if we write

fo =19 =209 41972 4 141779 — 20179 4479

for all integers g > 2, then Ag(t) = f ,(x)(¢). These polynomials satisfy the relation

foO =D+t =(fa® =D+ (-1
for all g > 3, and if we write ¢t = s2, then this becomes
FoD) = D=5V 42) = 1 (D) + fo1 (D) - 2.
Define polynomials p, (z) for all g > 2 such that
Py(s =571 = £ (7).

We can check that
py(2) =1+22% + z4,

p3(2) = 1+22% +4z* + 28,

and then, (7.2) becomes

(pys—sH=1)((s=s")+2) = Py(s+ s +p, 1(s+sH -2

~1 we have

Substitutingz = s — s
Py1(2) = (2% +2)(py(2) = 1) — p,_1(2) + 2

for all g > 3, and moreover, p,(z) is the Conway polynomial V(z).
We now claim by induction that

p,(K) =142z + (g — 1)°z* + 0(z%)

(7.2)

(7.3)

for all g > 2. Itis certainly true for ¢ = 2 and ¢ = 3, and then, for g > 3, we examine (7.3) modulo

z° to get
Py1(2) = (22 +2)(22° + (9 — 1D*2%) — (1 + 22> + (9 — 2)°z") +2
= ((29° —4g+ Dz +42%) — ((¢* — 49+ Dz* +22*) +1

=g¢’z* +22°+1 (mod z%)

exactly as claimed. But this means that the coefficients a,(K) and a,(K) of z? and z* in Vi (z) =

Pyx)(z) are 2 and (g(K) — 1)?, respectively, proving the lemma.

d
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We can evaluate v;(K) in terms of the Jones polynomial V(q) as follows.
Lemma 7.4. We have 4v,(K) = —31—6(V§{”(1) +3VY(1).

Proof. We note from [13, Lemma 2.1] that if we evaluate the Jones polynomial

V(@) = ) ad

iez

at ¢ = e/ and write the corresponding power series as

[oe) ) \ (o) (h)”
nz:;)Jn(K)h =VK<eh)=ch~(n§=}0 = )

i€z

then v5(K) = —ﬁ Jj3(K). Comparing h3-coefficients gives us
1,1 3
4v4(K) = —613(K) =% Zci AN

At the same time, we have

VD) +3VE) + Vi) = Y - (=32 +20) + 3G =D +1i) = ) ¢ - %,
i€z iez

and we know that VI’<(1) = 0 [14, §12], so the lemma follows. O

Example 7.5. We know that

Vs@=q"'-q°+2g7-q*+q7°—q°

and since Vg’z’(l) = 144 and Vg’z(l) = —12, we get 405(5,) = —3.

We can use this obstruction to prove that noncharacterizing slopes for 5, cannot arise from
other knots of genus 1.

Proposition 7.6. Suppose for some knot K of genus 1 and some r € Q that Sf(K) =] 53(52)- Then,
K is isotopic to 5,.

Proof. IfK # 5, then Proposition 5.3 says that K is either 15n,35,, or Wh™ (T 5, 2), up to mirroring.
But in these cases, we have

a4(K) = a4(52) = 0’
since Ag(t) = Asz(t) =2t — 3+ 2t~!, and yet we can compute from Lemma 7.4 that
4v5(K) = +7or +1

respectively, while 4v;(5,) = —3. Thus, Theorem 7.1 says that S3(K) % S3(5,) after all. O
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‘We can now use Lemmas 7.3 and 7.4 to identify potentially noncharacterizing slopes.

Proposition 7.7. Suppose that S3(K) S3(52) for some integer r > 1, and that K is not isotopic to
5,. Then, the Jones polynomial V(q) satisfies % V;é’ (1) € 7, and we have

_ S(9(K) — 1)?
Lymy—4

Moreover, if g(K) is even, then r divides g(K) — 1.

Proof. Write g = ¢g(K). We know that g > 2 by Proposition 7.6; hence, Lemma 7.3 says that a,(K) =
(g — 1), which is different from a,(5,) = 0. We thus apply Theorem 7.1 to see that

5(ay(K) — ay(5,)) __ 5(g — 1)
4(v5(K) — v3(5,)) 4u3(K) +3°

Proposition 2.9 tells us that AY(1) = A;’Z(l) = 4,50 V(1) = =3A7(1) = —12, again by [14, §12].
Thus,

L ym V')
4v3(K) — 4v5(5,) = —%(VK (1)—36)+3=4-— —

which must be an integer since 4v5(K) is, and this completes the determination of r.
Now supposing that g is even, we have expressed r as a divisor of the odd integer 5(g — 1)2. Thus,
r is odd, and it divides 2¢g — 2 by Theorem 6.13, so it must, in fact, divide g — 1 as claimed. O

This last result allows us to complete the proof of Theorem 1.7.

Proof of Theorem 1.7. If S>(K) = S3(5,) but K % 5,, then Proposition 7.6 says that K has genus
g > 2.In this case, Theorem 6.13 says that r is a positive integer dividing 2¢g — 2, and that HFK(K)
has the claimed form. The only remaining claim is that if g is even, then r divides g — 1, and this
is part of Proposition 7.7. O

Remark 7.8. As afinal example of the effectiveness of Proposition 7.7, let us suppose that S 3(52) =
S3(P( 3,3,2n)) for some integers r > 1 and n. Since P(—3, 3, 2n) has genus 2, Proposition 7.7 says
that r = 1. Moreover, an exercise with the skein relation for the Jones polynomial shows that

V3320 @ = 3"V 330@ + A —g7")

2n-3

—q” + q—2n—2 _ q—2n—1 + 2q—2n _ 4—2n+1 + q—2n+2 _ q—2n+3 +1.

q

(We note that P(-3,3,0) = T, ;#T_, ;.) From this, one can show that

1 —
VP( 3 3,2n)(1) —4=2n-3,

—1=_> ] —
sor =1 = —— implies that 2n = 8.
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o —/@? n—> L\@\T
Ly

FIGURE 4 Alink L, whose branched double cover is S3(5,). We quotient 5, by a rotation 7 around the
indicated axis of symmetry, simplify the resulting diagram by an isotopy, and then replace the arc 5,/7 by a
rational tangle. The box labeled “n + 8” corresponds to n + 8 signed half-twists.

In Section 8, we will see that S3(5,) is, in fact, homeomorphic to S3(P(-3, 3, 8)).

8 | NONCHARACTERIZING SLOPES FOR 5,
In this section, we prove that 1 is not a characterizing slope for 5,.

Proposition 8.1. For any integer n € Z, the 3-manifold 53,(52) is the branched double cover of the
link L,, shown in Figure 4.

Proof. The knot 5, is strongly invertible, meaning that there is an involution 7 : S* — S* such
that 7(5,) = 5,, and the fixed set of 7 is an unknot U meeting 5, in two points. In the quotient
S3 /7 = S3, we remove a neighborhood of 5, /7; this turns U /7 into a tangle with four endpoints,
whose branched double cover is S® \ N(5,), and we can fill in this tangle by gluing in a rational
tangle to get a link L, whose branched double cover is any Dehn surgery S3(5,).

This process is illustrated in Figure 4. In order to determine that the box with n + 8 twists
actually corresponds to 52(52), we observe that replacing it with the rational tangle

turns L,, into an unknot, whose branched double cover S is the result of %-surgery on 5,. Then,

each possible number of half-twists corresponds to a surgery with slope at distance 1 from %, so
these are exactly the integral slopes. We can finally compute that det(L,,) = |n|, so that Z,(L,,) is
identified with S3(5,) as claimed. O

Remark 8.2. Another construction of links with branched double cover 52(52) was given in
[4, Lemma 8.3], where the argument was specialized to n = —3 but works for arbitrary integers.
That construction uses a different involution, and hence produces different links (illustrated in
[4, Figure 12]) in general.

Proposition 8.3. There is an orientation-preserving homeomorphism

S3(5,) = S3(P(-3,3,8)).
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FIGURE 5 Identifying Sf(P(—3, 3,8)) as a branched double cover X,(K). We quotient P(—3, 3,8) by a
rotation 7 around an axis of symmetry and simplify by an isotopy, following [4, Figure 7]. We then replace a
neighborhood of the arc P(—3, 3, 8)/7 with a rational tangle, and isotope further to get the desired knot K.

Proof. Let P = P(—3,3,8) for convenience. Then P is strongly invertible, and we can adapt the
proof of [4, Proposition 7.6], which was originally due to Ken Baker, to realize Sf(P) as the
branched double cover of a knot K C S3, as shown in Figure 5.

We now claim that X is isotopic to the knot L, from Figure 4, and so,

Sf(P) =5 (K) = X(L) = 55(52)

by Proposition 8.1. Rather than find this isotopy explicitly, we observe that SnapPy recognizes each
of K and L, as either 14n,,,5, or its mirror, so that

S3(P)=2,(K) and S3(5,) = E,(Ly)

are homeomorphic up to orientation. But we cannot have Sf(Sz) > —Sf(P), since their Casson
invariants satisfy

3 _1an _
A(S7(5) = 34{ (1) =2,
3 _ 3 (D _ _Lanm _
A(=S3P)) = 4(82,(P)) = —2aZ(1) = 2.
(This computation follows from A(t) = t* — 2t + 3 — 2t™! + ¢72.) Thus, S3(5,) = S7(P) as ori-
ented 3-manifolds. O
9 | THE X(2,3,11) REALIZATION PROBLEM
Let Y = —X(2,3,11). Then, we have orientation-preserving homeomorphisms
Y = Si/z(Tz,a) = 53(5_2)

(Up to an overall orientation reversal, the latter identification is the case Sil(K(z, 4)) =

Sil /2(K(2, 2)) of [4, Proposition 7.2], for example.) Our goal in this section is to prove that these

are the only ways to express Y as Dehn surgery on a knot in S3.
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Theorem 9.1. Suppose for some knot K C S* and some rational r € Q that
S (K) = —%(2,3,11).
Then (K, r) is either (T, 3, %) or (5,,1).
This is equivalent to Theorem 1.4, as can be seen by the identity Sf (K) = —Sir(I?).

Proof of Theorem 9.1. Since Y is a homology sphere, we can write r = % for some nonzero n € Z.
If n = 1 and hence r = 1, we have

HF* (sf(1<)> ~ HFH(Y) = HF+(Sf(5_2)).

We then apply Theorem 1.6 to conclude that K = 5,. Similarly, if r = %, then we must have K =
T, 5, since all slopes are characterizing slopes for the right-handed trefoil [33].

Supposing from now on that n is neither 1 nor 2, we first claim that n > 3. Indeed, we know
that

(8 ®) = d( =5},00) =d-1) =2,

where we have read d(Y) = d(Sf(S_z)) = —2 off of Proposition 2.10. But if n < 0, or equivalently
—n > 0, then Theorem 2.7 says that

d<S f/(—m(f)) < d<S f/(—m(U)) =d(s) =0.

This would be a contradiction, so we must have n > 0 and hence n > 3 as claimed.
Now that we have n > 3, we compute that dim HF(Y) = dim HF (Sf(sz)) = 3 from Proposi-
tion 2.10 and Lemma 2.12. Thus,

3= dimﬁ(sf/n(K)> =n-7o(K) + |1 — n9(K)|

since 74(K) > [?(K)| > 0 and since 1 —n?¥(K) =1 (mod n) is nonzero. This is only possible if
7o(K) = 0, in which case ?(K) = 0 as well and then dimHF (Sf /n(K)) must be 1 rather than 3,
so we have a contradiction. This completes the proof. O
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