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Abstract
We prove that all rational slopes are characterizing for
the knot 52, except possibly for positive integers. Along
the way, we classify the Dehn surgeries on knots in#3 that produce the Brieskorn sphere Σ(2, 3, 11), and
we study knots on which large integral surgeries are
almost L-spaces.
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1 INTRODUCTION

Let % ⊂ #3 be a knot. Then, a rational number ' is said to be a characterizing slope for % if the
result #3' (%) of Dehn surgery on % with slope ' does not arise as '-surgery on any other knot: in
other words, if whenever there is an orientation-preserving homeomorphism

#3' (%) ≅ #3' (%′),
the knot %′ must be isotopic to %.
All rational numbers are characterizing slopes for the unknot, as well as for the trefoils and

the figure eight knot. These are theorems of Kronheimer–Mrowka–Ozsváth–Szabó [15] and of
Ozsváth–Szabó [33], respectively, each relying on a theorem (due to Ghiggini [7] in the latter
case) asserting that some form of Floer homology detects the knot in question. Ni–Zhang and
McCoy [18, 19, 22] have proved that many slopes are characterizing for torus knots, especially *2,5
[23]. More generally, Lackenby [16] has shown that every knot has infinitely many characterizing
slopes, and McCoy [17] has strengthened this in the hyperbolic case.
Our main result, Theorem 1.1, says that almost all slopes are characterizing for the knot 52,

shown in Figure 1. This is strongest result to date for any nonfibered knot and for any hyperbolic
knot other than the figure eight.
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F IGURE 1 The knot 52 (left) and its mirror 52 (right).
Theorem 1.1. Let ' be any rational number other than a positive integer. If for some knot % ⊂ #3,
there is an orientation-preserving homeomorphism#3' (%) ≅ #3' (52),
then % is isotopic to 52. In other words, every ' ∈ ℚ ⧵ ℤ>0 is characterizing for 52.
It is possible that no positive integer is characterizing for 52 (and hence that Theorem 1.1 is

optimal). Indeed, Baker–Motegi [3] have exhibited hyperbolic knots such as 86 with no integral
characterizing slopes, and Abe–Tagami [1] proved similar results for many other low-crossing
knots. At the very least, Proposition 8.3 says that the positive integer 1 is not characterizing for 52.
Proposition 1.2. There is an orientation-preserving homeomorphism#31(52) ≅ #31(/(−3, 3, 8)),
so 1 is not a characterizing slope for 52.
This fact was originally discovered by Akbulut [2], who also showed that the traces of the

corresponding surgeries are homeomorphic but not diffeomorphic.

Remark 1.3. The orientation-preserving condition is a necessary part of Theorem 1.1. For example,
there are homeomorphisms

#31∕2(52) ≅ −#31∕2(61), #31(52) ≅ −#31(61).
This can be deduced from [4, Proposition 7.2], in which 52 = %(2, 4) and 61 = %(−2, 4).
As an application, we determine all of the ways in which the Brieskorn sphere Σ(2, 3, 11) can

arise from Dehn surgery on a knot in #3.
Theorem 1.4. Given a knot% ⊂ #3 and a rational number ', there exists an orientation-preserving
homeomorphism

#3' (%) ≅ Σ(2, 3, 11)
if and only if (%, ') is either (*−2,3,− 12 ) or (52,−1).
Similar results have been achieved for Σ(2, 3, 5) by Ghiggini [7, Corollary 1.7], and for Σ(2, 3, 7)

by Ozsváth–Szabó [33, Corollary 1.3].
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CHARACTERIZING SLOPES FOR 52 3 of 64

TABLE 1 The knot Floer homologies of the knots in Theorem 1.5, grouped by whether the Alexander
polynomial is 22 − 3 + 22−1 or −22 + 5 − 22−1. The subscripts denote Maslov gradings3 5̂63(3, 7;ℚ) 5̂63(3,8;ℚ) 5̂63(3,−7;ℚ)52 ℚ2(2) ℚ3(1) ℚ2(0)15943522 ℚ2(0) ℚ4(−1) ⊕ℚ(0) ℚ2(−2)Wh−(*2,3, 2) ℚ2(0) ℚ4(−1) ⊕ℚ(0) ℚ2(−2)/(−3, 3, 29 + 1) ℚ2(1) ℚ5(0) ℚ2(−1)Wh+(*2,3, 2) ℚ2(−1) ℚ4(−2) ⊕ℚ(0) ℚ2(−3)

The proof of Theorem 1.1 relies on our recent classification [5] of genus-1 knots that are nearly
fibered from the point of view of knot Floer homology.

Theorem 1.5 ([5, Theorem 1.2]). Let % ⊂ #3 be a knot of Seifert genus 1 such that
dimℚ <̂=%(%, 1;ℚ) = 2.

Then % is one of the knots

52, 15943522, Wh−(*2,3, 2), Wh+(*2,3, 2), /(−3, 3, 29 + 1) (9 ∈ ℤ)
or their mirrors; the knot Floer homologies of these knots are given in Table 1.

Theorem 1.1 is then a combination of Theorems 1.6 and 1.7 below. By way of notation, whenever
we discuss an isomorphism between Heegaard Floer homologies of the form

<=+(>;ℚ) ≅ <=+(>′;ℚ)
in this paper, we will always mean an isomorphism of ℚ[?]-modules which respects a
decomposition of each side into summands indexed by Spin@ structures on> and>′, respectively.
Theorem 1.6 (Theorem 4.1). Suppose for some knot % ⊂ #3 and rational number ' ⩾ 0 that there
is an isomorphism

<=+(#3' (%);ℚ) ≅ <=+(#3' (52);ℚ)
of graded ℚ[?]-modules. Then % is isotopic to 52.
Theorem 1.6 immediately implies the case ' ⩽ 0 of Theorem 1.1, via the relation

#3' (%) ≅ −#3−'(%),
and the relationship between the Heegaard Floer homologies of > and−>. For the case ' > 0, we
prove the following.
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4 of 64 BALDWIN and SIVEK

Theorem 1.7. Suppose for some knot% ⊂ #3 and rational number ' > 0 that there is an orientation-
preserving homeomorphism

#3' (%) ≅ #3' (52),
but that% is not isotopic to 52. Then ' is a positive integer, and g = g(%) is at least 2; if g is even, then' divides g − 1, while if g is odd, then ' divides 2g − 2. Moreover, % has Alexander polynomial

∆%(2) = 2g − 22g−1 + 2g−2 + 1 + 22−g − 221−g + 2−g ,
and the knot Floer homology <̂=%(%;ℚ) is completely determined as a bigraded ℚ-vector space by' and g : it is nine-dimensional, and there is a ℚ summand in Alexander–Maslov bigrading (0,0),
while the rest is supported in bigradings (D,E) = (D, D + F), where

F = 2 − g + ⎧
⎪
⎨
⎪⎩

−(g − 1)( g−1' − 1), ' ∣ g − 1− 14' (2g − 2 − ')2, ' ∤ g − 1.
Most of the content of Theorem 1.7 is in Theorem 6.13, which makes heavy use of the Heegaard

Floer mapping cone formula for Dehn surgeries. However, the latter assumes that g ⩾ 2, and it
only concludes that ' divides 2g − 2. We use an obstruction due to Ito [13] involving finite-type
invariants to handle the case g = 1 in Proposition 7.6, and to improve the condition ' ∣ 2g − 2 to' ∣ g − 1 for even g in Proposition 7.7.

Remark 1.8. In fact, the proof of Theorem 1.7 shows that

<=+(#3' (%);ℚ) ≇ <=+(#3' (52);ℚ)
in nearly all cases where it asserts that #3' (%) ≇ #3' (52). The exceptions are when g(%) ⩾ 2 is even
and ' divides 2g(%) − 2 but not g(%) − 1, and when g(%) = 1 and % is one of the knots listed
in Theorem 1.5 with Alexander polynomial 22 − 3 + 22−1. In the latter case, we require the full
strength of Theorem 1.5, rather than just the claim that <̂=% detects 52, in order to enumerate the
remaining cases and to rule them out one by one in Proposition 7.6.

Remark 1.9. If g(%) = 2 and #3' (%) ≅ #3' (52), then Theorem 1.7 says that ' = 1 and F = 0. This
implies that% has the same knot Floer homology as of any of the pretzel knots /(−3, 3, 29), where9 ∈ ℤ. We conjecture that it must then actually be isotopic to /(−3, 3, 29) for some 9, in which
case Remark 7.8 will show that it is /(−3, 3, 8).
The proofs of Theorems 1.6 and 1.7 rely heavily on formulas that determine the Heegaard Floer

homology of Dehn surgeries on a knot % in terms of the canonical ℤ⊕ ℤ filtration on J=%∞(%).
This includes both the “large surgeries” formula of [28], which applies to surgeries of integral
slope 9 ⩾ 2g(%) − 1, and the “mapping cone” formula of [32], which applies to surgeries of any
positive rational slope. This should come as no surprise to readers familiar with previous works
on characterizing slopes such as [33], although the application of these formulae to the problem
considered here is substantially more involved. We briefly outline their uses below.
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CHARACTERIZING SLOPES FOR 52 5 of 64

First, for Theorem 1.6, we are able to avoid the heavy machinery of the mapping cone formula
by making use of the fact that 52 is very nearly an L-space knot.
Definition 1.10. We say that a closed 3-manifold> is an almost L-space if it is a rational homology
3-sphere and satisfies

dim <̂=(>;ℚ) = |<1(>;ℤ)| + 2.
We say that a nontrivial knot % ⊂ #3 is an almost L-space knot if

dim <̂=(#39(%);ℚ) = 9 + 2
(i.e., if #39(%) is an almost L-space) for some integer 9 ⩾ 2g(%) − 1, in which case one can show
that it holds for all 9 ⩾ 2g(%) − 1.
Then 52 is an almost L-space knot, and there are very few other examples with genus 1. The

following is a combination of Propositions 3.9 and 3.10.

Theorem 1.11. If % ⊂ #3 is an almost L-space knot, then one of the following is true:
(1) % is the left-handed trefoil, figure eight knot, or 52.
(2) g(%) ⩾ 2, and % is fibered and strongly quasi-positive.

With this theorem at hand, we are able to show quickly that if there is an isomorphism

<=+(#3' (%);ℚ) ≅ <=+(#3' (52);ℚ)
for some rational ' ⩾ 0, then % must also be an almost L-space knot of genus 1, and then we only
have to rule out the left-handed trefoil and the figure eight. The following is also a straightforward
consequence of Theorem 1.11.

Theorem 1.12 (Theorem 3.14). Let % ⊂ #3 be a knot. Then dimℚ <̂=(#31(%);ℚ) = 3 if and only if% is either the left-handed trefoil, figure eight, or 52.
Theorem 1.7 requires substantially more effort than Theorem 1.6. The key input is a computa-

tion in §6.2, showing that for any ' > 0 and any Spin@ structure M on #3' (52), the Heegaard Floer
homology<=+(#3' (52), M;ℚ) is always isomorphic to something of the form

 +(0) ⊕ℚ29(0)
as a relatively graded ℚ[?]-module. Here,

 + ≅ ℚ[?,?−1]? ⋅ ℚ[?] ,
the ?-action lowers the grading by 2, and the “(0)” subscripts indicate that the element 1 ∈ 
and the ℚ29 summand both lie in grading 0. If #3' (%) ≅ #3' (52) for some ' > 0, then in §5, we find
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6 of 64 BALDWIN and SIVEK

that this imposes strong restrictions on J=%∞(%). In the case g(%) ⩾ 2, we see in §6 that these
restrictions often imply that for some M ∈ Spin@(#3' (%)), either:∙ ker(?) ⊂ <=+(#3' (%), M;ℚ) cannot lie in a single grading, or∙ <=+(#3' (%), M;ℚ) ≅  + ⊕ℚ.
The first of these applies when 0 < ' < 1, or when ' = O∕P ⩾ 1 is nonintegral and O ∣ 2g(%) −2, and the second applies when ' = O∕P ⩾ 1 and O ∤ 2g(%) − 2. Both of these contradict the
computation of<=+(#3' (52);ℚ), completing the proof in these cases.
1.1 Notation

All Floer homologies in this paper will be taken with coefficients inℚ. We will therefore omit the
coefficients from the notation going forward.

1.2 Organization

In §2, we review some facts about knot Floer homology and the large surgery and mapping cone
formulas, and then carry out some computations for the knots of Theorem 1.5. In §3, we use this to
study the dimension of <̂= of Dehn surgeries, proving Theorem 1.11 about almost L-space knots.
We apply this in §4 to prove Theorem 1.6. In §5, we begin to work toward Theorem 1.7, eliminating
all but finitelymany% in the case g(%) = 1 and then obtaining some restrictions in the case g(%) ⩾2, and in §6, we apply the mapping cone formula together with these restrictions to complete the
proof of Theorem 1.7 for g(%) ⩾ 2, modulo the modest improvement of Proposition 7.7. In §7,
we use finite-type invariants to achieve that improvement and to finish off the case g(%) = 1,
completing the proof of Theorem 1.7 and hence of Theorem 1.1.
In the last few sections, we study some specific examples of surgeries. In §8, we prove Proposi-

tion 8.3, asserting that 1 is not a characterizing slope for 52, and then in §9, we prove Theorem 1.4
on the Dehn surgery characterization of Σ(2, 3, 11).
2 HEEGAARD FLOER HOMOLOGY OF SURGERIES ON KNOTS

2.1 The Heegaard Floer mapping cone formula

Knot Floer homology [28, 34] assigns to any nullhomologous knot% ⊂ #3 a graded,ℤ⊕ ℤ-filtered
chain complex

(J=%∞(%), Q∞),
whose filtered chain homotopy type completely determines theHeegaard Floer homology ofDehn
surgeries on %, where we recall that we are working with coefficients in ℚ throughout.
As a matter of convention, we use coordinates (R, S) to refer to the two filtration levels, and

notation like

J{R = 0, S ⩽ 1} ⊂ J=%∞(%)
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CHARACTERIZING SLOPES FOR 52 7 of 64

to refer to the subquotient spanned by generators that lie in the indicated subset of the (R, S)-plane.
We will also use the shorthand

J{R0, S0} ∶= J{R = R0, S = S0}.
The differential lowers the grading by 1 and does not increase either filtration, meaning that eachJ∗{R ⩽ R0, S ⩽ S0} is a subcomplex: we have

Q∞(J∗{R ⩽ R0, S ⩽ S0}) ⊂ J∗−1{R ⩽ R0, S ⩽ S0}
for all (R0, S0).
With this in mind, following [34, §4.5 and §5.1], one can take J=%∞ to be freely generated overℚ[?,?−1] by <̂=%(%;ℚ). We take

J∗{0,D} ≅ <̂=%∗(%, D;ℚ),
and the ?-action gives isomorphisms

?V ∶ J∗{0,D} ≅W→ J∗−2V{−V,D − V}
for all V ∈ ℤ. In the form specified here, the restriction of the differential Q∞ to each J{R0, S0} is
zero. See the “reduction lemma” of [10, §2.1] for details.
Given this, there are by definition a pair of chain homotopy equivalences

J{R = 0} ≃ Ĵ=(#3),
so the induced complex (J{R = 0}, Q′) has homology <̂=(#3) ≅ ℚ supported in grading 0. The
Ozsváth–Szabó tau invariant [(%) [26] is the minimum S-filtration level at which this generator
appears. Similarly, we have a chain homotopy equivalence

J{R ⩾ 0} ≃ J=+(#3)
and then

<∗{R ⩾ 0} ≅ <=+(#3) ≅  + ∶= ℚ[?,?−1]? ⋅ ℚ[?] .
Definition 2.1. Given J=%∞(%) as above, we define subquotient complexes

\+] = J{max(R, S − ]) ⩾ 0}, ^+ = J{R ⩾ 0}\̂] = J{max(R, S − ]) = 0}, ̂̂ = J{R = 0}
with differentials induced by Q∞, for all ] ∈ ℤ. These come with chain maps

`+] ∶ \+] → ^+, ℎ+] ∶ \+] → ^+
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8 of 64 BALDWIN and SIVEK

in which `+] is defined by projection onto J{R ⩾ 0}, and ℎ+] is a composition
\+] projWWW→ J{S ⩾ ]} ?]WW→ J{S ⩾ 0} ≃W→ J{R ⩾ 0} = ^+.

The last arrow is a homotopy equivalence that exchanges the R and S filtrations; we omit
its definition.

Remark 2.2. The projection `+] is an isomorphism at the chain level for all ] ⩾ g(%), since the
kernel consists of the direct sum of subspaces

J{R, S} ≅ J{0, S − R} ≅ <̂=%(%, S − R)
with R ⩽ −1 and S ⩾ ] ⩾ g(%), and then <̂=%(%, S − R) = 0 because S − R ⩾ g(%) + 1. Similarly,
each ℎ+] is an isomorphism for all ] ⩽ −g(%).
These complexes determine the Heegaard Floer homology of “large” surgeries on %, in the

following sense.

Theorem 2.3 ([28, Theorem 4.4]). Choose a positive integer O ⩾ 2g(%) − 1. Then there is a canon-
ical affine map Spin@(#3O(%)) ≅ ℤ∕Oℤ (see [31, Lemma 2.2]) such that we have relatively graded
isomorphisms

<=+(#3O(%), ]) ≅ <∗(\+] ) and <̂=(#3O(%), ]) ≅ <∗(\̂])
for any integer ] with |]| ⩽ O2 .
Remark 2.4. The definition of the map Spin@(#3O(%)) ≅ ℤ∕Oℤ in [31, Lemma 2.2] implies that ifM ∈ Spin@(#3O(%)) is identified with ] ∈ ℤ∕Oℤ, then the conjugate Spin@ structure M is identified
with −].
They also determine the invariants of arbitrary Dehn surgery, though in a more complicated

way. Given relatively prime integers O, P > 0 and arbitrary R ∈ ℤ, we define
b+R =⨁

]∈ℤ
(],\+

⌊(R+O])∕P⌋), c+R =⨁
]∈ℤ(],^+)

and a chain map

d+R,O∕P ∶ b+R → c+R(], D])↦ (], `+⌊(R+O])∕P⌋(D])) + (] + 1,ℎ+⌊(R+O])∕P⌋(D])).
The various \+ and ^+ summands each inherit relative gradings from J=%∞(%). We place a rel-
ative grading on their direct sums b+R and c+R , respecting the relative gradings on each individual
summand, so that d+R,O∕P lowers the grading by 1.
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CHARACTERIZING SLOPES FOR 52 9 of 64

Theorem 2.5 ([32, Theorem 1.1]). Let f+R,O∕P denote the mapping cone of the chain map d+R,O∕P ∶b+R → c+R . Then there is a natural identification Spin@(#3O∕P(%)) ≅ ℤ∕Oℤ for which we have a
relatively graded isomorphism

<∗(f+R,O∕P) ≅ <=+(#3O∕P(%), R)
for all R ∈ ℤ∕Oℤ.
The \+] complexes have homology of the form<∗(\+] ) ≅  + ⊕<red

(\+] ),
where<red(\+] ) is finitely generated over ℚ, and the maps `+] and ℎ+] restrict to surjections

(`+] )∗, (ℎ+] )∗ ∶  + → <∗(^+) ≅  +.
Each of these maps is then multiplication by some nonnegative power of ?, and we define

g](%),<](%) ∈ ℤ⩾0
to be these exponents.

Proposition 2.6 ([11, 21]). The invariants g] = g](%) and <] = <](%) satisfy the following
constraints.

(1) g] ⩾ g]+1 and<] ⩽ <]+1 for all ] ∈ ℤ. [21, Lemma 2.4]
(2) g] = 0 for all ] ⩾ g(%). [21, §2.2]
(3) g−] = g] + ] for all ] ∈ ℤ. [11, Lemma 2.5]
(4) <−] = g] for all ] ∈ ℤ. [11, Lemma 2.3]
(5) g]+1 ⩽ g] ⩽ g]+1 + 1 for all ] ∈ ℤ.
Proof. Only the inequalityg] ⩽ g]+1 + 1 of item (5) needs to be proved. Combining the other parts
of the proposition, we have

g] = g−] − ] ⩽ g−]−1 − ] = (g−(]+1) − (] + 1)) + 1 = g]+1 + 1
as desired. □

The following results relate the invariants g](%) and<](%) to<=+(#3O∕P(%)).
Theorem 2.7 ([21, Proposition 1.6]). Given relatively prime O, P > 0 and an integer R with 0 ⩽ R ⩽O − 1, we have

h(#3O∕P(%), R) − h(#3O∕P(?), R) = −2max(g⌊ RP ⌋(%),<⌊ R−OP ⌋(%)).
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10 of 64 BALDWIN and SIVEK

Lemma 2.8. If % ⊂ #3 has genus g ⩾ 1, then there is a short exact sequence
0→ <̂=%∗+2(%, g)→ <∗(\+

g−1)
(`+

g−1)∗WWWWWWWW→ <∗(^+)→ 0
of ℚ[?]-modules, in which <̂=%(%, g) has trivial ?-action and \+

g−1 and ^+ are equipped
with absolute gradings as quotients of J=%∞(%). In particular, for i ⩾ 2g − 1, we have ? ⋅<=+red (#3i(%), g − 1) = 0 and

dim<=+red(#3i(%), g − 1) = dim <̂=%(%, g) − gg−1(%).
Proof. The short exact sequence is [33, Lemma 3.3]. To prove it, we use the short exact sequence
of chain complexes

0→ J{−1, g − 1}→ \+
g−1 `+

g−1WWWW→ ^+ → 0 (2.1)

defined by the natural inclusion and projection maps, which induces a long exact sequence

⋯ → <∗(J{−1, g − 1})→ <∗(\+
g−1) (`+

g−1)∗WWWWWWW→ <∗(^+)→ …
on homology. The complex J{−1, g − 1} has zero differential and trivial ? action, and it is the
image under ? of

J{0, g} ≅ <̂=%(%, g),
hence its homology is just <̂=%∗+2(%, g). Meanwhile, we know that<∗(^+) ≅  +, and `+

g−1 is an
isomorphism in all sufficiently large gradings, so it follows that <∗(\+

g−1) also contains a tower + that surjects onto<∗(^+). Thus, the long exact sequence splits.
The claim about dim<=+red(#3i(%), g − 1) now follows quickly from Theorem 2.3, because we

can identify ker `+
g−1 with all of <=+red(#3i(%), g − 1) plus whatever portion of  + ⊂ <∗(\+

g−1) is
in the kernel, and the latter has dimension gg−1 by definition. □

Although Theorem 2.5 as stated only determines the relative grading on<=+(#3O∕P(%)), we can
use the integers g] and<] to recover the absolute grading by Theorem 2.7.

Proposition 2.9. Suppose for some knots %,%′ ⊂ #3 and some relatively prime O, P > 0 that
<=+(#3O∕P(%)) ≅ <=+(#3O∕P(%′))

as graded ℚ[?]-modules. Then, we have ∆′′%(1) = ∆′′%′(1). Moreover, if g(%) = 1, then g0(%) =g0(%′), and if in addition OP > 1, then g](%′) = 0 for all ] ⩾ 1.
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CHARACTERIZING SLOPES FOR 52 11 of 64

Proof. Let > be the rational homology 3-sphere #3O∕P(%). Rustamov [35, Theorem 3.3] proved that
its Casson–Walker invariant satisfies

|<1(>;ℤ)|j(>) = ∑
M∈Spin@(>)

(k(<=+red(>, M)) − 12h(>, M)),
and the right-hand side is completely determined by <=+(>), hence so is j(>). The surgery
formula for the Casson–Walker invariant [36, Theorem 4.2] then says that

j(>) − j(#3O∕P(?)) = PO ∆′′%(1)2 ,
so we conclude that ∆′′%(1) is determined by OP and <=+(#3O∕P(%)). By hypothesis, the same data
determine ∆′′%′(1) in exactly the same way, so these second derivatives are equal.
Now suppose that g(%) = 1. Then Proposition 2.6 says that g](%) = <−](%) = 0 for all ] ⩾ 1,

and then that g0(%) is either 0 or 1 since g1(%) = 0. We therefore have
h(#3O∕P(%), R) − h(#3O∕P(?), R) ={−2g0(%), 0 ⩽ R ⩽ min(O, P) − 10, min(O, P) ⩽ R ⩽ O − 1

by Theorem 2.7. It follows that

∑
R∈ℤ∕Oℤ

(h(#3O∕P(%), R) − h(#3O∕P(?), R)) = −2g0(%) ⋅min(O, P). (2.2)

By the same argument, we have

∑
R∈ℤ∕Oℤ

(h(#3O∕P(%′), R) − h(#3O∕P(?), R)) ⩽ −2g0(%′) ⋅min(O, P), (2.3)

and the left sides of (2.2) and (2.3) are equal, sog0(%′) ⩽ g0(%) ⩽ 1. Ifg0(%′) = 0, theng](%′) = 0
for all ] ⩾ 0, so the left side of (2.3) is equal to 0, hence g0(%) = 0 as well. Otherwise g0(%′) = 1
implies that g0(%) = 1, so in any case, we have g0(%) = g0(%′).
Finally, if g0(%) = g0(%′) = 1 and O > P, then we have by Theorem 2.7 that

h(#3O∕P(%′), P) − h(#3O∕P(?), P) = −2max(g1(%′),<⌊ P−OP ⌋(%′))
⩽ −2g1(%′),

which implies that the left side of (2.3) is at most −2Pg0(%′) − 2g1(%′). But this is equal to the
left side of (2.2), which is equal to

−2g0(%) ⋅ P = −2Pg0(%′),
so we must have g1(%′) = 0. Then g](%′) = 0 for all ] ⩾ 1 by Proposition 2.6. □
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12 of 64 BALDWIN and SIVEK

2.2 Computations for nearly fibered knots

In this subsection, we work out some examples of the large surgery formula. Let % be a genus-1
knot for which <̂=%(%, 1) is two-dimensional. Then % is one of the knots listed in Theorem 1.5,
with <̂=%(%) shown in Table 1, and in every case, there is some integerE ∈ ℤ such that

<̂=%(%, 1) ≅ ℚ2(E),
where the subscripts denote the Maslov grading. (For the mirrors of the knots in Table 1, this
follows from the relation <̂=%E(%, D) ≅ <̂=%−E(%,−D).)
We first determine<=+(#31(%)) in the cases where % is either 52 or its mirror.

Proposition 2.10. We have

<=+(#31(52)) ≅  +(0) ⊕ℚ2(0) and <=+(#31(52)) ≅  +(−2) ⊕ℚ(−2)
as graded ℚ[?]-modules.
Proof. In these cases, % is alternating, so <̂=%(%) is thin — there is some ] ∈ ℤ such that
each <̂=%(%,D) is supported in homological grading D − ]— and for alternating knots we have] = − 12l(%) [25, Theorem 1.3], where l(%) is the signature. (This uses the convention that pos-
itive knots such as 52 have negative signature, so l(52) = −2 and l(52) = 2.) In this case, the
differential on J=%∞(%) has a fairly simple form, namely,

Q∞(J{R0, S0}) ⊂ J{R0 − 1, S0}⊕J{R0, S0 − 1},
by the fact that deg(Q∞) = −1. Since<∗(J{R = 0}) ≅ ℚ is supported at Alexander grading S = [(%)
in homological grading 0, we have [(%) = − 12l(%), so

[(52) = −1 and [(52) = 1.
We can therefore find bases for the complexes (J{R = 0}, Q′) so that they are represented by the

diagrams

for 52 and 52, respectively. (Here each dot represents a generator of a ℚ summand, and an arrow
of the form “∙ → ∙” means that the corresponding generators m and n satisfy Q′m = n.) In turn,
this together with the chain homotopy equivalence J{R = 0} ≃ J{S = 0} and the requirement that(Q∞)2 = 0 completely determines J=%∞(%) for each of these knots %.
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CHARACTERIZING SLOPES FOR 52 13 of 64

F IGURE 2 The complexes (J=%∞(%), Q∞) for % = 52 and % = 52, with \+0 shaded. The dots represent
generators of J{R, S}, all of which lie in grading R + S + l(%)2 . Minus signs on arrows indicate a coefficient of −1.
Now by inspecting Figure 2, we see that

<∗(\+0 (52)) ≅ ℚ[?,?−1]? ⋅ ℚ[?] ⟨h − D⟩⊕ℚ⟨D, o⟩ ≅  +(0) ⊕ℚ2(0), (2.4)

since the indicated elements D, o,h all have homological grading −1 + l(52)2 = 0. The homology<∗(^+(52)) ≅  + has bottom-most element [h] = (`+0 )∗([h − D]), so then (`+0 )∗| + ∶  + →  + is
an isomorphism and we have g0(52) = 0. Now Theorem 2.3 says that<=+(#31(52)) ≅ <∗(\+0 (52))
as relatively graded groups, while Theorem 2.7 says that the tower  + in<=+(#31(52)) has bottom-
most grading h(#31(52)) = −2g0(52) = 0, so we conclude that <=+(#31(52)) is exactly as claimed.
Similarly, we see from Figure 2 that

<∗(\+0 (52)) ≅ ℚ[?,?−1]? ⋅ ℚ[?] ⟨m⟩⊕ℚ⟨n⟩ ≅  +(−2) ⊕ℚ(−2),
since the indicated elements m, n ∈ J{−1, 0} have homological grading −1 + l(52)2 = −2. The ker-
nel of (`+0 )∗ contains [m] but not [?−1m], so the restriction (`+0 )∗| + ∶  + →  + is multiplication
by?, hence g0(52) = 1. Now we conclude exactly as before that h(#31(52)) = −2g0(52) = −2 and
hence that<=+(#31(52)) is exactly as claimed. □

For the knots of Theorem 1.5 other than 52 and 52, it is a little bit harder to determineJ=%∞(%).
We will avoid this problem by using the large surgery formula to compute <̂= (#31(%)), and then
deducing<=+ (#31(%)) from this in Proposition 2.14.

Proposition 2.11. Let% be a genus-1 knot for which <̂=%(%, 1) ≅ ℚ2(E0+1). If% is neither 52 nor its
mirror, then [(%) = 0 and

<̂=(#31(%)) ≅ ℚ(0) ⊕ (ℚ(E0) ⊕ℚ(E0−1))⊕2
as relatively graded ℚ-vector spaces.
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14 of 64 BALDWIN and SIVEK

F IGURE 3 The complex (J=%∞(%), Q∞), with \̂0 shaded and possible diagonal arrows omitted. The black
dots represent generators of J{R, S} in gradingE0 + R + S, while the white dots represent generators ?−Rm in
grading R + S. The minus signs on some arrows indicate a coefficient of −1 in Q∞.
Proof. We attempt to construct the full knot Floer complex J=%∞(%). The relation

<̂=%E(%, D) ≅ <̂=%E−2D(%,−D)
tells us that if <̂=%(%, 1) ≅ ℚ2(E0+1), then <̂=%(%,−1) ≅ ℚ2(E0−1), so the model complex (J{R =0}, Q′) for Ĵ=(#3) has the form

and, in fact, the Q′2 component of the differential must be zero since it cannot lower the grading
by 2.
If % is neither 52 nor its mirror, then we can read dim <̂=%(%, 0) = 5 off of Table 1, and so,<∗(J{R = 0}, Q′) ≅ ℚ is only possible if Q′1 is injective and Q′2 is surjective. Moreover, the homology

is necessarily supported in Alexander grading S = 0, so [(%) = 0. This completely determines theR-preserving (vertical) component of Q∞, as illustrated in Figure 3. The chain homotopy equiv-
alence J{R = 0} ≃ J{S = 0} and the relation (Q∞)2 = 0 then nearly suffice to determine Q∞; the
only ambiguity is whether there are any arrows involving the generators ?Vm ∈ J{R = S = −V},
and these must be diagonal (meaning neither vertical nor horizontal) if they exist.
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CHARACTERIZING SLOPES FOR 52 15 of 64

This discussion completely determines the subquotient complex \̂0, which is shaded in
Figure 3, since it does not see any diagonal arrows that might exist in J=%∞(%). The complex
has nine generators, only two of which have nonzero differentials, and the hat version of the large
surgery formula in Theorem 2.3 tells us that

<̂=(#31(%)) ≅ <∗(\̂0) ≅ ℚ0 ⊕ℚ2(E0) ⊕ℚ2(E0−1)
as relatively graded vector spaces. □

If > is an arbitrary 3-manifold with torsion Spin@ structure M, so that its homological grading isℤ-valued, then the short exact sequence of complexes
0→ Ĵ=∗(>, M)→ J=+∗ (>, M) ?WW→ J=+∗−2(>, M)→ 0

turns into a long exact sequence of ℚ[?]-modules
⋯ → <=+∗+1(>, M) ?WW→ <=+∗−1(>, M)→ <̂=∗(>, M)→ <=+∗ (>, M) ?WW→ <=+∗−2(>, M)→ … ,

from which we can extract a short exact sequence

0→ <=+∗−1(>, M)? ⋅<=+∗+1(>, M) → <̂=∗(>, M)→ ker(?|<=+∗ (>,M))→ 0. (2.5)

Equation (2.5) immediately implies the following.

Lemma 2.12. If? ⋅<=+red(>, M) = 0 and we have an isomorphism
<=+(>) ≅  +(h) ⊕ V⨁

R=1 ℚ(9R)
of graded ℚ[?]-modules, where the (h) subscript denotes the grading of ker(?) ⊂  +, then

<̂=(>) ≅ ℚ(h) ⊕ V⨁
R=1 (ℚ(9R+1) ⊕ℚ(9R)).

This implies, in particular, that dim <̂=(>, M) = 1 + 2 dim<=+red(>, M).
Corollary 2.13. If % ⊂ #3 has genus g ⩾ 1, then

dim <̂=(#32g−1(%), g − 1) − 12 = dim <̂=%(%, g) − gg−1(%).
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16 of 64 BALDWIN and SIVEK

Proof. Lemma 2.8 says that ? ⋅<=+red(#32g−1(%), g − 1) = 0 and that
dim<=+red(#32g−1(%), g − 1) = dim <̂=%(%, g) − gg−1(%).

Now apply Lemma 2.12. □

Proposition 2.14. Let % be a genus-1 knot for which dimℚ <̂=%(%, 1) = 2. If % is neither 52 nor its
mirror, then g0(%) = 0 and

<=+(#31(%)) ≅  +(0) ⊕ <̂=%(%,−1)
as graded ℚ[?]-modules.
Proof. We write <̂=%(%, 1) ≅ ℚ2(E0+1) as before, and then the symmetry<̂=%E(%, D) ≅ <̂=%E−2D(%,−D)
of [28, Equation (2)] implies that <̂=%(%,−1) ≅ ℚ2(E0−1).
We observe from Lemma 2.8 that? ⋅<=+red(#31(%)) = 0, since g(%) = 1. In Proposition 2.11, we

saw that dim <̂=(#31(%)) = 5, so Lemma 2.12 says that dim<=+red(#31(%)) = 2. But then
g0(%) = dim <̂=%(%, 1) − dim<=+red(#31(%)) = 2 − 2 = 0

by another application of Lemma 2.8. With this information at hand, Theorem 2.7 tells us that

h(#31(%)) = h(#31(?)) − 2g0(%) = 0.
Now if we write

<=+(#31(%)) ≅  +(0) ⊕ℚ(h) ⊕ℚ(p)
for some integers h and p, then Lemma 2.12 says that

<̂=(#31(%)) ≅ ℚ(0) ⊕ℚ(h) ⊕ℚ(h+1) ⊕ℚ(p) ⊕ℚ(p+1).
Up to translation by an overall constant, Proposition 2.11 says that these gradings are0,E0,E0,E0 − 1,E0 − 1 in some order. This is only possible if that constant is zero and h = p =E0 − 1, except possibly ifE0 = −1 and {h, p} = {0, 1}. But we can rule out this last case because it
would imply that #31(%) has Casson invariant

j(#31(%)) = k(<=+red(#31(%))) − 12h(#31(%)) = 0 − 0 = 0
by [24, Theorem 1.3], and yet j(#31(%)) = ∆′′%(1)2 = ±2 by the surgery formula for the Casson
invariant. This completes the proof. □
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CHARACTERIZING SLOPES FOR 52 17 of 64

3 THE DIMENSION OF 5̂6
3.1 The invariants q̂8 and r̂
For a fixed knot % ⊂ #3, the dimension of <̂=(#3O∕P(%)) varies in a predictable way with O and P.
We will make use of this where possible, since it is easier to apply in practice than the mapping
cone formula.

Proposition 3.1. Let % ⊂ #3 be a knot. Then there are integers '̂0(%) and ŝ(%) such that
dimℚ <̂=(#3O∕P(%)) = P ⋅ '̂0(%) + |O − Pŝ(%)|

for all coprime integers O ≠ 0 and P > 0.
Hanselman [8, Proposition 15] proved a version of Proposition 3.1 with coefficients in ℤ∕2ℤ,

though he pointed out that it can be extracted from [32, Proposition 9.6], where it is proved with
the desired ℚ coefficients. (It can also be proved in exactly the same way as its instanton Floer
analogue [4, Theorem 1.1], using only the surgery exact triangle and an adjunction inequality.)
In fact, if the Heegaard Floer s invariant of % [32, Definition 9.1] satisfies s(%) ⩾ s(%), then [32,
Equation (40)] implies the relation

'̂0(%) − ŝ(%) = ∑
]∈ℤ

(dim<∗(\̂]) − 1).
Moreover, we know from [4, Lemma 10.4] that

ŝ(%) ={max(2s(%) − 1, 0), s(%) ⩾ s(%)−max(2s(%) − 1, 0), s(%) ⩽ s(%). (3.1)

Proposition 3.2. The invariants '̂0(%) and ŝ(%) satisfy the following properties.
(1) The invariants of % and its mirror are related by ('̂0(%), ŝ(%)) = ('̂0(%),−ŝ(%)).
(2) The difference '̂0(%) − |ŝ(%)| is a nonnegative even integer.
(3) ŝ is a smooth concordance invariant, and

|ŝ(%)| ⩽ max(2g4(%) − 1, 0)
where g4 denotes the smooth 4-ball genus.

(4) The invariant ŝ(%) is either odd or zero.
(5) If g0(%) = 0, then ŝ(%) ⩽ 0.
(6) If ŝ(%) ⩽ 0, then [(%) ⩽ 0, and if ŝ(%) = 0, then [(%) = 0.
Proof. Claim (1) is immediate from Proposition 3.1 and the relation #3' (%) ≅ −#3−'(%), together
with the fact that dim <̂=(>) = dim <̂=(−>) for all >. For (2), we choose a positive integer O >
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18 of 64 BALDWIN and SIVEK

ŝ(%) and apply Proposition 3.1 to get
dim <̂=(#3O(%)) = O + ('̂0(%) − ŝ(%)),

so by [29, Proposition 5.1], we have

dim <̂=(#3O(%)) − k(<̂=(#3O(%))) = '̂0(%) − ŝ(%).
The left-hand side is twice the dimension of the odd-graded part of <̂=(#3O(%)), so it is evidently
nonnegative and even. The same is true of

'̂0(%) − ŝ(%) = '̂0(%) + ŝ(%),
so in either case, '̂0(%) − |ŝ(%)| is nonnegative and even as well. Since s(%) and s(%) are smooth
concordance invariants, claims (3) and (4) follow immediately from (3.1) and the fact that |s(%)| ⩽
g4(%).
In order to prove (5), we use the invariant s+(%) [12], which is by definition the smallest ] such

that g](%) = 0. If g0(%) = 0, then [12, Proposition 2.3] tells us that
[(%) ⩽ s(%) ⩽ s+(%) = 0,

and since s(%) is equal to either [(%) or [(%) + 1 (see [32, Equation (34)]), we have
s(%) ⩾ [(%) = −[(%) ⩾ 0 ⩾ s(%).

Now (3.1) tells us that ŝ(%) = −max(2s(%) − 1, 0) ⩽ 0. We prove the contrapositive of the first
part of (6) similarly: if [(%) ⩾ 1, then s(%) ⩾ [(%) ⩾ 1 while

s(%) ⩽ [(%) + 1 = −[(%) + 1 ⩽ 0,
so s(%) > s(%), and then, (3.1) gives us ŝ(%) ⩾ 2s(%) − 1 ⩾ 1. Moreover, if ŝ(%) = 0, then ŝ(%) =0 as well, so we have just shown that [(%) ⩽ 0 and −[(%) = [(%) ⩽ 0, hence [(%) = 0 as
claimed. □

Proposition 3.2 can also be proved by repeating arguments from [4] nearly verbatim, but applied
to <̂=(>) rather than t#(>). These arguments rely only on the fact that dim <̂=(#3) = 1, together
with the surgery exact triangle and adjunction inequality for <̂=.
We note the following examples for later use.

Lemma 3.3. Suppose that% is one of the genus-1 knots appearing in Theorem 1.5 other than 52 and
its mirror. Then

('̂0(%), ŝ(%)) = (4, 0).
We also have ('̂0(52), ŝ(52)) = (3, 1) and ('̂0(52), ŝ(52)) = (3,−1).
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CHARACTERIZING SLOPES FOR 52 19 of 64

Proof. Proposition 2.11 applies to both % and % to tell us that

dim <̂=(#31(%)) = 5 and dim <̂=(#3−1(%)) = dim <̂=(#31(%)) = 5.
By Proposition 3.1, these can only be equal if ŝ(%) = 0, and then

5 = dim <̂=(#31(%)) = 1 ⋅ '̂0(%) + |1 − 0 ⋅ ŝ(%)|
implies that '̂0(%) = 4.
Similarly, we note from Proposition 2.10 and Lemma 2.12 that

dim <̂=(#31(52)) = 3 and dim <̂=(#3−1(52)) = dim <̂=(#31(52)) = 5.
Now Proposition 3.1 only tells us that ŝ(52) ⩾ 1, but Proposition 3.2 also bounds it above by 1 and
so ŝ(52) = 1 after all. It now follows immediately that '̂0(52) = 3, and similarly for 52. □

3.2 Almost L-space knots

A nontrivial knot % ⊂ #3 is said to be an L-space knot if #3' (%) is an L-space for some ratio-
nal slope ' > 0, meaning that dim <̂=(#3' (%)) = |<1(#3' (%);ℤ)|. This places strong restrictions
on %.
Theorem 3.4 ([7, 9, 20, 30, 32]). If% is an L-space knot, then% is fibered and strongly quasi-positive,
and '-surgery on % is an L-space if and only if ' ⩾ 2g(%) − 1.
Remark 3.5. It follows quickly that a knot % of genus g ⩾ 1 is an L-space knot if and only if'̂0(%) = ŝ(%) = 2g − 1.
In this section, we develop similar restrictions on knots which fall just short of being L-space

knots. We recall the following from Definition 1.10.

Definition 3.6. A knot % ⊂ #3 is an almost L-space knot if
dimℚ <̂=(#39(%)) = 9 + 2

for some 9 ⩾ 2g(%) − 1.
Lemma 3.7. A knot % ⊂ #3 is an almost L-space knot if and only if '̂0(%) − ŝ(%) = 2.
Proof. We note that % must be nontrivial since all surgeries on the unknot are L-spaces. Using
the inequality

ŝ(%) ⩽ max(2g4(%) − 1, 0) ⩽ 2g(%) − 1
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20 of 64 BALDWIN and SIVEK

of Proposition 3.2, it follows that if 9 ⩾ 2g(%) − 1, then
dim <̂=(#39(%)) = '̂0(%) + |9 − ŝ(%)| = 9 + ('̂0(%) − ŝ(%)).

By assumption, the left side is 9 + 2 for some such 9, which proves the lemma. □

Lemma 3.8. If % ⊂ #3 is an almost L-space knot of genus g ⩾ 1, then
<̂=(#32g−1(%), ]) ≅{ℚ3 ] = 0ℚ 1 ⩽ |]| ⩽ g − 1,

and similarly, there is some 9 ⩾ 1 such that
<=+(#32g−1(%), ]) ≅{ + ⊕ℚ[?]∕?9 ] = 0

 + 1 ⩽ |]| ⩽ g − 1
as ℚ[?]-modules.
Proof. Let > = #32g−1(%). By Lemma 3.7 and ŝ(%) ⩽ 2g − 1, we have

∑
]∈ℤ∕(2g−1)ℤ dim <̂=(>, ]) = dim <̂=(>) = 2g + 1.

Each <̂=(>, ]) has Euler characteristic 1 [29, Proposition 5.1] and hence odd dimension. Since the
total dimension is 2g + 1, there must be a unique ]0 with

dim <̂=(>, ]0) = 3
and dim <̂=(>, ]) = 1 for all other ] ≠ ]0. But we have

<̂=(>, ]0) ≅ <̂=(>,−]0)
by conjugation symmetry [29, Theorem 2.4], recalling from Remark 2.4 that ] and −] determine
conjugate Spin@ structures, so −]0 ≡ ]0 (mod 2g − 1) and therefore ]0 = 0.
In order to pass from <̂= to<=+, we use the exact triangle (2.5) to see that if

<=+(>, ]) ≅  + ⊕( V⨁
R=1 ℚ[?]∕?9R)

as ℚ[?]-modules for some V ⩾ 0 and 91, … ,9V ⩾ 1, then
dim <̂=(>, ]) = dim coker(?) + dimker(?) = V + (V + 1) = 2V + 1.

From this, we conclude that V = 1 if ] ≡ 0 (mod 2g − 1) and V = 0 otherwise, proving the
lemma. □
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CHARACTERIZING SLOPES FOR 52 21 of 64

Proposition 3.9. Let % be an almost L-space knot of genus g ⩾ 1. Then exactly one of the following
must hold.∙ g = 1, and % is the left-handed trefoil, figure eight, or 52.∙ g ⩾ 2, and % is fibered with gg−1(%) = 1.
Proof. According to Lemma 2.8, we have

dim<=+red(#32g−1(%), g − 1) = dim <̂=%(%, g) − gg−1(%). (3.2)

We also recall fromProposition 2.6 thatgg (%) = 0 andgg (%) ⩽ gg−1(%) ⩽ gg (%) + 1, sogg−1(%)
is either 0 or 1.
Now suppose that g = 1. In this case, we know by Lemma 3.8 that

<=+(#31(%)) ≅  + ⊕ℚ[?]∕?9
for some 9 ⩾ 1, and Lemma 2.8 says that the ?-action on <=+red(#31(%)) ≅ ℚ[?]∕?9 is trivial, so9 = 1. Then dim<=+red(#31(%), 0) = 1, and (3.2) becomes

dim <̂=%(%, 1) ={1, g0(%) = 02, g0(%) = 1.
Thus, if g0(%) = 0, then % is fibered [7], and the right-handed trefoil is an L-space knot, so %
must be the left-handed trefoil or the figure eight instead; and in the remaining cases, we haveg0(%) = 1 and dim <̂=%(%, 1) = 2. In these cases, Propositions 2.10 and 2.14 tell us that

g0(%) = −12h(#31(%)) =
{1, % ≅ 520, % ≇ 52, (3.3)

so % must be 52.
From now on we suppose that g ⩾ 2. Here, the Spin@ structures 0 and g − 1 on #32g−1(%) are

different, so by Lemma 3.8, we have

<=+red(#32g−1(%), g − 1) = 0
and so (3.2) becomes 0 = dim <̂=%(%, g) − gg−1(%). Thus,

dim <̂=%(%, g) = gg−1(%) ⩽ 1.
But this dimensionmust be positive [27, Theorem 1.2], so it is equal to 1, and then this implies that% is fibered [20]. □

Proposition 3.10. If % is an almost L-space knot of genus g ⩾ 2, then [(%) = g and so % is
strongly quasipositive.
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22 of 64 BALDWIN and SIVEK

Proof. Proposition 3.9 says that% is fibered, and thatgg−1(%) = 1. Since% is fibered, it is strongly
quasi-positive if and only if [(%) = g [9, Theorem 1.2]. Thus, we will suppose that [(%) ⩽ g − 1
and show that this leads to a contradiction.
The assumption that [(%) ⩽ g − 1 is equivalent to the assertion that the map

<∗(J{R = 0, S ⩽ g − 1})→ <∗(J{R = 0}) ≅ <̂=(#3) ≅ ℚ
is surjective. In this case, the short exact sequence of complexes

0→ J{R = 0, S ⩽ g − 1}→ J{R = 0}→ J{0, g}→ 0
gives rise to a long exact sequence in homology that splits as

0→ <∗+1(J{0, g})⏟⎴⎴⎴⏟⎴⎴⎴⏟≅<̂=%(%,g)≅ℚ
→ <∗(J{R = 0, S ⩽ g − 1})→ <∗(J{R = 0})⏟⎴⎴⏟⎴⎴⏟≅<̂=(#3)≅ℚ

→ 0,
so<∗(J{R = 0, S ⩽ g − 1}) ≅ ℚ2.
We now consider the short exact sequence of complexes

0→ J{R < 0, S = g − 1} yW→ \̂g−1 → J{R = 0, S ⩽ g − 1}→ 0,
whose first term is equal to

J{−1, g − 1} ≅ J{0, g} ≅ <̂=%(%, g) ≅ ℚ.
The hat version of the large surgeries formula (Theorem 2.3) tells us that

<∗(\̂g−1) ≅ <̂=(#32g−1(%), g − 1) ≅ ℚ
by Lemma 3.8, so we get a long exact sequence

⋯ → <∗(J{−1, g − 1})⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟≅ℚ
y∗WW→ <∗(\̂g−1)⏟⎴⏟⎴⏟≅ℚ

→ <∗(J{R = 0, S ⩽ g − 1})⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟ℚ2
→ … ,

from which the map y∗ ∶ <∗(J{−1, g − 1})→ <∗(\̂g−1) is zero.
Finally, the inclusion map J{−1, g − 1}↪ \+

g−1 factors through y as
J{−1, g − 1} yW→ \̂g−1 ↪ \+

g−1,
so, the induced map

<∗(J{−1, g − 1})→ <∗(\+
g−1)
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CHARACTERIZING SLOPES FOR 52 23 of 64

on homology must be zero, since it factors through y∗ = 0. But this map belongs to the short exact
sequence

0→ <∗(J{−1, g − 1})→ <∗(\+
g−1)

(`+
g−1)∗WWWWWWWW→ <∗(^+)

of Lemma 2.8, so it must also be injective, and since <∗(J{−1, g − 1}) ≅ ℚ is nonzero, we have a
contradiction. Therefore, [(%) = g , as desired. □

Corollary 3.11. If% is an almost L-space knot of genus g ⩾ 2, then ('̂0(%), ŝ(%)) = (2g + 1, 2g − 1).
Proof. Proposition 3.10 says that [(%) = g . The invariant s(%) of [32, Definition 9.1] is equal to
either [(%) or [(%) + 1 by [32, Equation (34)], but it is also at most g by definition, so we have

s(%) = g and s(%) ⩽ [(%) + 1 = −g + 1.
Since s(%) > s(%), we apply (3.1) to get ŝ(%) = max(2s(%) − 1, 0) = 2g − 1. Then, '̂0(%) = 2g + 1
as well by Lemma 3.7. □

Remark 3.12. Let % be an almost L-space knot of genus g ⩾ 2. Then, Lemma 3.8 and the large
surgeries formula imply that <∗(\̂]) ≅ ℚ for all ] ⩾ 1, and so, one can repeat the proof of [30,
Theorem 1.2] to show, among other things, that

dim <̂=%(%,D) = 0 or 1 for all D ⩾ 2,
hence by symmetry whenever |D| ⩾ 2; the corresponding 2D-coefficients of ∆%(2) must then be
either 0 or ±1. We will not pursue this further here.
We conclude by noting the following consequences, which we will not use in this paper.

Theorem 3.13. We have '̂0(%) ⩽ 3 if and only if % has crossing number at most 5.

Proof. We replace % with its mirror as needed to ensure that ŝ(%) ⩾ 0, since this does not change'̂0(%). Now by Proposition 3.2, the difference '̂0(%) − ŝ(%) is nonnegative and even, and we have
0 ⩽ '̂0(%) − ŝ(%) ⩽ '̂0(%) ⩽ 3,

so it must be either 0 or 2.
Supposing that the difference is 2, then % is an almost L-space knot by Lemma 3.7. If g(%) ⩾ 2,

then Corollary 3.11 says that '̂0(%) = 2g(%) + 1 ⩾ 5, which cannot happen. So g(%) = 1, and then,
Proposition 3.9 says that % is either *−2,3, a figure eight, or 52.
Otherwisewehave '̂0(%) = ŝ(%), so byRemark 3.5, if% is nontrivial, then itmust be a nontrivial

L-space knot satisfying '̂0(%) = 2g(%) − 1. But then '̂0(%) ⩽ 3 implies that g(%) is either 1 or 2,
so % must be a right-handed trefoil [7] or a (2,5) torus knot [6]. Up to mirroring, we have now
accounted for all knots of at most five crossings and ruled out everything else, so this completes
the proof. □
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24 of 64 BALDWIN and SIVEK

Theorem 3.14. If dimℚ <̂=(#31(%)) = 3, then % is either the left-handed trefoil, figure eight, or 52.
Proof. Proposition 3.1 says that

3 = dimℚ <̂=(#31(%)) = '̂0(%) + |1 − ŝ(%)|, (3.4)

so '̂0(%) ⩽ 3with equality if and only if ŝ(%) = 1. If ŝ(%) > 1, then we have 3 > '̂0(%) ⩾ ŝ(%) > 1,
so ŝ(%) = 2 and this contradicts Proposition 3.2. Thus, ŝ(%) ⩽ 1 and now (3.4) becomes '̂0(%) −ŝ(%) = 2. So,% is an almost L-space knot, with genus 1 by Corollary 3.11, and now Proposition 3.9
says that it must be one of the knots claimed above. □

4 THEMIRROR OF !"
Our goal in this section is to prove that not only are nonnegative slopes characterizing for 52, but,
in fact, the Heegaard Floer homology of such surgeries characterizes 52.
Theorem 4.1. Suppose for some rational number ' ⩾ 0 and knot % ⊂ #3 that there is an
isomorphism

<=+(#3' (%)) ≅ <=+(#3' (52))
of graded ℚ[?]-modules. Then, % is isotopic to 52.
We recall from Lemma 3.3 that '̂0(52) = 3 and ŝ(52) = 1. Thus, if O and P are relatively prime,

with O ≠ 0 and P > 0, then
dim <̂=(#3O∕P(52)) = 3P + |O − P| ={O + 2P, O ⩾ P4P − O, O ⩽ P. (4.1)

Throughout this section, wewillmake implicit use of the fact that<=+(>) completely determines<̂=(>).
Lemma 4.2. Suppose that 0 < OP ⩽ 1 and that there is an isomorphism

<=+(#3O∕P(%)) ≅ <=+(#3O∕P(52))
of graded ℚ[?]-modules. Then % is an almost L-space knot of genus 1.

Proof. By Equation (4.1), we have

4P − O = P ⋅ '̂0(%) + |O − Pŝ(%)|
= ⎧
⎪
⎨
⎪⎩

O + P('̂0(%) − ŝ(%)), OP ⩾ ŝ(%)P('̂0(%) + ŝ(%)) − O, OP < ŝ(%).
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CHARACTERIZING SLOPES FOR 52 25 of 64

In the case OP ⩽ ŝ(%), this simplifies to '̂0(%) + ŝ(%) = 4, and given that
'̂0(%) ⩾ ŝ(%) ⩾ OP > 0,

Proposition 3.2 says that this is only possible if '̂0(%) = 3 and ŝ(%) = 1.
Now we suppose instead that OP > ŝ(%), and then we have

4P − O = O + P('̂0(%) − ŝ(%)),
or OP = 2 − '̂0(%) − ŝ(%)2 .
Since 0 < OP ⩽ 1, and 12 ('̂0(%) − ŝ(%)) is a nonnegative integer, it follows that OP = 1 and that'̂0(%) − ŝ(%) = 2. But then ŝ(%) < OP = 1, and '0(%) ⩾ |ŝ(%)| by Proposition 3.2, so ('̂0(%), ŝ(%))
must be either (2,0) or (1,−1).
In all cases, we have shown that % is an almost L-space knot and |ŝ(%)| ⩽ 1. According to

Corollary 3.11, if g(%) ⩾ 2, then ŝ(%) = 2g(%) − 1 ⩾ 3, which is impossible, so, in fact, g(%) = 1
and the proof is complete. □

Lemma 4.3. Suppose that OP > 1 and that there is an isomorphism
<=+(#3O∕P(%)) ≅ <=+(#3O∕P(52))

of graded ℚ[?]-modules. Then % is an almost L-space knot of genus 1.

Proof. By Equation (4.1), we have

O + 2P = P ⋅ '̂0(%) + |O − Pŝ(%)|
= ⎧
⎪
⎨
⎪⎩

O + P('̂0(%) − ŝ(%)), OP ⩾ ŝ(%)P('̂0(%) + ŝ(%)) − O, OP ⩽ ŝ(%).
Now if OP ⩾ ŝ(%), then this immediately reduces to

'̂0(%) − ŝ(%) = 2,
so % is an almost L-space knot by Lemma 3.7.
In the remaining case, we have ŝ(%) > OP > 1, and so, the above equation becomes

O + 2P = P('̂0(%) + ŝ(%)) − O,
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26 of 64 BALDWIN and SIVEK

or equivalently, OP = '̂0(%) + ŝ(%)2 − 1. (4.2)

Now we combine this with OP < ŝ(%) and rearrange to get
'̂0(%) − 2 < ŝ(%),

and then by Proposition 3.2, it follows that '̂0(%) = ŝ(%) and so % is an L-space knot. Remark 3.5
says that '̂0(%) = ŝ(%) = 2g(%) − 1, so, in fact, (4.2) becomesOP = 2g(%) − 2.
By the assumption OP > 1, it follows that g(%) ⩾ 2.
Now in either case, if we suppose that g(%) = g ⩾ 2, then we have gg−1(%) = 1. Indeed, if % is

an almost L-space knot, then this is part of Proposition 3.9. If instead % is an L-space knot, then
it is strongly quasi-positive by Theorem 3.4, so the invariant s+(%) of [12] is equal to g(%) by [12,
Proposition 3]; this is by definition the least ] such that g](%) = 0, so, in particular, gg−1(%) = 1
as claimed. Either way, we have g1(%) ⩾ 1 by Proposition 2.6. But then Proposition 2.9 says that
if OP > 1 and <=+(#3O∕P(52)) ≅ <=+(#3O∕P(%))
then g](%) = 0 for all ] ⩾ 1, so this is a contradiction. Thus, g = 1.
We conclude that % cannot be an L-space knot, since that would have implied that g(%) ⩾ 2,

and so, % must be an almost L-space knot of genus 1 after all. □

Combining the above lemmas yields the following.

Proposition 4.4. Suppose that OP > 0 and that there is an isomorphism
<=+(#3O∕P(%)) ≅ <=+(#3O∕P(52))

of graded ℚ[?]-modules. Then % is isotopic to 52.
Proof. We know that % is an almost L-space knot of genus 1, by Lemma 4.2 if 0 < OP ⩽ 1 and by
Lemma 4.3 if OP > 1. Then, its Alexander polynomial must have the form

∆%(2) = D2 + (1 − 2D) + D2−1
for some D ∈ ℤ. We have∆′′%(1) = 2D, whereas∆′′52(2) = 4, so D = 2 by Proposition 2.9. This proves
that

∆%(2) = ∆52(2) = 22 − 3 + 22−1.
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CHARACTERIZING SLOPES FOR 52 27 of 64

But none of the genus-1 knots in Proposition 3.9 have this Alexander polynomial except for 52
itself, so % ≅ 52. □

We can also handle zero-surgery by a somewhat different argument.

Proposition 4.5. Suppose for some knot % ⊂ #3 that there is an isomorphism
<=+(#30(%)) ≅ <=+(#30(52))

of graded ℚ[?]-modules. Then % ≅ 52. Similarly, if we have an isomorphism
<=+(#30(%)) ≅ <=+(#30(52))

then % ≅ 52.
Proof. We show first that g(%) ⩽ 1. Supposing instead that % has genus g ⩾ 2, there is
a nontorsion Spin@ structure Mg−1 for which <=+(#30(%), Mg−1) ≠ 0, namely, the one spec-
ified by ⟨@1(Mg−1), [Σ̂]⟩ = 2g − 2 for a capped-off Seifert surface Σ̂, by the isomorphism<=+(#30(%), Mg−1) ≅ <̂=%(%, g) of [28, Corollary 4.5] together with the fact that <̂=% detects
genus [27, Theorem 1.2]. On the other hand, since 52 and its mirror both have genus 1, we
have

<=+(#30(52), M) ≅ <=+(#30(52), M) ≅ 0
in all nontorsion Spin@ structures, by the adjunction inequality [29, Theorem 7.1]. Thus, g ⩽ 1
as claimed.
Next, we recall from Lemma 3.3 that ('̂0(52), ŝ(52)) = (3, 1), so we have

dim <̂=(#31(52)) = 3, dim <̂=(#3−1(52)) = 5
and so, dim <̂=(#30(52)) = 4 by the surgery exact triangle for <̂=, since it differs by 1 from each
of these other dimensions. We also have dim <̂=(#30(52)) = 4 by the same argument, so in either
case dim <̂=(#30(%)) = 4, and then

dim <̂=(#31(%)) = 3 or 5
again by the surgery exact triangle. Thismeans that% cannot be unknotted, so g(%) = 1.We apply
Corollary 2.13 to get

dim <̂=%(%, 1) − g0(%) = dim <̂=(#31(%)) − 12 = 1 or 2,
and g(%) = 1 implies that 0 ⩽ g0(%) ⩽ 1 by Proposition 2.6, hence dim <̂=%(%, 1) ⩽ 3.
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28 of 64 BALDWIN and SIVEK

Now we use the fact that <=+(#30(%)) determines the Alexander polynomial ∆%(2), by [29,
Proposition 10.14] and [29, Theorem 10.17], to see that

∆%(2) = ∆52(2) = 22 − 3 + 22−1.
But the linear coefficient 2 is equal to the Euler characteristic k(<̂=%(%, 1)), so, in particular,dim <̂=%(%, 1)must be even. It follows from the above bound that

dim <̂=%(%, 1) = 2
and so % must be one of the knots listed in Theorem 1.5.
Finally, we can read the correction termsh±1∕2(#30(%)) off of<=+(#30(%)), since they are defined

as the grading of the bottom-most element of a tower  + in grading ±12 (mod 2). According to
[24, Proposition 4.12], these are determined by the formulas

h1∕2(#30(%)) = h(#31(%)) + 12 ,h−1∕2(#30(%)) = h(#3−1(%)) − 12 = h( − #31(%)) − 12= −h(#31(%)) − 12 .
Now Theorem 2.7 tells us that

h1∕2(#30(%)) = −2g0(%) + 12 , h−1∕2(#30(%)) = 2g0(%) − 12
and so,<=+ (#30(%)) determines both g0(%) and g0(%). But we saw in (3.3) that if % is one of the
knots in Theorem 1.5, then

(g0(%),g0(%)) = ⎧
⎪
⎨
⎪⎩

(1, 0), % ≅ 52(0, 1), % ≅ 52(0, 0), otherwise,
so <=+(#30(52)) and <=+(#30(52)) are different from each other and from each of the invariants<=+(#30(%)) where % is another of the knots in Theorem 1.5. This completes the proof. □

Combining Proposition 4.4 in the case ' > 0 and Proposition 4.5 for ' = 0, this completes the
proof of Theorem 4.1.

5 THE KNOT !"
In this section,we start to considerwhether positive slopes are characterizing slopes for 52.Wewill
achieve partial results in this direction without using the mapping cone formula (Theorem 2.5),
which we then apply in Section 6.
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CHARACTERIZING SLOPES FOR 52 29 of 64

Lemma 5.1. Suppose that there is some knot % and some rational ' > 0 such that
<=+(#3' (52)) ≅ <=+(#3' (%))

as graded ℚ[?]-modules. Then g](%) = 0 for all ] ⩾ 0. In addition, if g(%) = 1, then ∆%(2) =∆52(2) = 22 − 3 + 22−1.
Proof. We recall from Proposition 2.10 that

g0(52) = −12h(#31(52)) = 0,
and then Propositions 2.9 and 2.6 say that g0(%) = 0 and that the sequence of g](%) is nonin-
creasing, proving the first claim. The second claim also follows from Proposition 2.9, once we use
g(%) = 1 to write ∆%(2) = D2 + (1 − 2D) + D2−1 for some D and then observe that

D = ∆′′%(1)2 = ∆′′52(1)2 = 2. □

Lemma 5.2. Suppose for some knot % ≇ 52 and some rational ' > 0 that
<=+(#3' (52)) ≅ <=+(#3' (%))

as graded ℚ[?]-modules. Then '̂0(%) = 4 and ŝ(%) = 0.
Proof. Write ' = OP for some coprime O, P > 0. We note that since OP > 0 > ŝ(52), we have

dim <̂=(#3O∕P(52)) = P ⋅ '̂0(52) + |O − Pŝ(52)|= 3P + |O + P| = O + 4P,
and by hypothesis, this is equal to dim <̂=(#3O∕P(%)).
Wenext observe that ŝ(%) ⩽ 0: according to Proposition 3.2, it is enough to show thatg0(%) = 0,

and this was already proved in Lemma 5.1. Thus, OP > ŝ(%), and we have
dim <̂=(#3O∕P(%)) = P ⋅ '̂0(%) + (O − Pŝ(%))

= O + P('̂0(%) − ŝ(%)).
This is equal to dim <̂=(#3O∕P(52)) = O + 4P, so we must have '̂0(%) − ŝ(%) = 4.
Now since 0 ⩽ '̂0(%) = ŝ(%) + 4 ⩽ 4 and '̂0(%) ⩾ |ŝ(%)|, the only possibilities for these

invariants are

('̂0(%), ŝ(%)) = (4, 0) or (3,−1) or (2,−2),
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30 of 64 BALDWIN and SIVEK

and the last is impossible because Proposition 3.2 says that ŝ(%) must be 0 or odd. If('̂0(%), ŝ(%)) = (3,−1), then ('̂0(%), ŝ(%)) = (3, 1), so % is an almost L-space knot by Lemma 3.7,
and then it must have genus 1 by Corollary 3.11. Now Proposition 3.9 says that either % ≅ 52, or∆%(2) = ∆%(2) is different from ∆52(2). But the first option is ruled out by the assumption % ≇ 52,
and the second by Lemma 5.1. We conclude that ('̂0(%), ŝ(%)) cannot be (3,−1), and so, the only
remaining possibility is (4,0). □

Proposition 5.3. Suppose for some rational ' > 0 and some knot % ≇ 52 that
<=+(#3' (%)) ≅ <=+(#3' (52))

as graded ℚ[?]-modules. Then [(%) = 0, and the following must hold.∙ If g(%) = 1, then % is either 15943522 orWh−(*2,3, 2), up to mirroring.∙ If g(%) ⩾ 2, then % is fibered, and

<∗(\+] (%)) ≅{ + ⊕ℚ, |]| = g(%) − 1
 +, otherwise

for all |]| ⩽ g(%) − 1. In this case, the maps
`+] ∶ \+] (%)→ ^+(%) and ℎ+−] ∶ \+−](%)→ ^+(%)

are quasi-isomorphisms for 0 ⩽ ] ⩽ g(%) − 2.
Proof. Let g = g(%). Lemma 5.2 tells us that '̂0(%) = 4 and ŝ(%) = 0, so [(%) = 0 by Proposi-
tion 3.2, and we also have

dim <̂=(#32g−1(%)) = 4 + |(2g − 1) − 0| = 2g + 3.
Lemma 5.1 says that gg−1(%) = 0, so Corollary 2.13 becomes

dim <̂=%(%, g) = dim <̂=(#32g−1(%), g − 1) − 12 . (5.1)

We will use this to bound dim <̂=%(%, g) from above.
We suppose first that g = 1. In this case, we have

dim <̂=(#31(%), 0) = dim <̂=(#31(%)) = 2g + 3 = 5,
so (5.1) becomes dim <̂=%(%, 1) = 2. From Lemma 5.1, we have ∆%(2) = 22 − 3 + 22−1, so Theo-
rem 1.5 now tells us that % must be one of 52, 15943522, orWh−(*2,3, 2) up to mirroring. But we
have assumed that % is not 52, and it cannot be 52 since g0(52) = 1, so this leaves only the knots
named in the proposition.
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CHARACTERIZING SLOPES FOR 52 31 of 64

Now we suppose instead that g ⩾ 2. In this case, the unique self-conjugate element of
Spin@ (#32g−1(%)) ≅ ℤ∕(2g − 1)ℤ

is identified with 0, and, in particular, it is different from g − 1, which is conjugate to 1 − g . Sincedim <̂=%(#32g−1(%), ]) is odd for all ], we use the conjugation symmetry of <̂= (see Remark 2.4)
to show that

2g + 3 = dim <̂=(#32g−1(%))
= ∑

]∈ℤ∕(2g−1)ℤ dim <̂=(#32g−1(%), ])
= 2dim <̂=(#32g−1(%), g − 1) + ∑

|]|⩽g−2 dim <̂=(#32g−1(%), ])
⩾ 2 dim <̂=(#32g−1(%), g − 1) + (2g − 3),

since there are 2g − 3 different summands on the right. This shows that
dim <̂=(#32g−1(%), g − 1) ⩽ 3,

and then (5.1) becomes dim <̂=%(%, g) ⩽ 1. But dim <̂=%(%, g) must be positive, so equality
holds, which implies that∙ dim <̂=%(%, g) = 1, and then % must be fibered [20]; and∙ dim <̂=(#32g−1(%), ]) is 3 if ] ≡ ±(g − 1) (mod 2g − 1), and 1 otherwise.
Applying Lemmas 2.8 and 2.12, we conclude that

<=+red(#32g−1(%), ]) ≅{ℚ, ] = ±(g − 1)0, 2 − g ⩽ ] ⩽ g − 2.
The large surgery formula (Theorem 2.3) says that

<∗(\+] ) ≅ <=+(#32g−1(%), ])
whenever |]| ⩽ g − 1, so this completes the description of<∗(\+] ).
Now if 0 ⩽ ] ⩽ g − 2, then `+] ∶ \+] → ^+ induces a map on homology of the form

(`+] )∗ ∶  + ≅ <∗(\+] )→ <∗(^+) ≅  +,
and this map is multiplication by ?g](%), but Lemma 5.1 says that g](%) = 0, and so, (`+] )∗ is an
isomorphism. Themap (ℎ+−])∗ has the same form and is identified withmultiplication by?<−](%),
but Proposition 2.6 says that<−](%) = g](%) = 0, so (ℎ+−])∗ is an isomorphism as well. □
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32 of 64 BALDWIN and SIVEK

5.1 5̂63 in the higher genus case

Suppose that we have a homeomorphism

#3' (%) ≅ #3' (52)
for some slope ' > 0 and some knot % of genus g ⩾ 2. Then, Proposition 5.3 says that % is fibered,
that [(%) = 0, and that

<∗(\+] ) ≅{ + ⊕ℚ, |]| = g − 1
 +, otherwise.

In addition, Lemma 5.1 together with Proposition 2.6 tells us that

g](%) ={0, ] ⩾ 0
|]|, ] < 0

for all ] ∈ ℤ. We will use all of this information to determine <̂=%(%) as a bigraded vector space.
Lemma 5.4. There is some integer h ∈ ℤ such that

<∗(\+] ) ≅ ⎧
⎪
⎨
⎪⎩

 +(0) ⊕ℚ(h), ] = g − 1
 +(2−2g) ⊕ℚ(h+2−2g), ] = 1 − g

 +(min(0,2])), otherwise.
Proof. We consider each of the maps

(`+] )∗ ∶ <∗(\+] )→ <∗(^+) ≅  +(0),
which are induced by projections at the chain level. For ] ⩾ 0, we have g](%) = 0, so these
maps restrict to graded isomorphisms on the towers  + ⊂ <∗(\+] ); thus, these towers have their
bottom-most elements in grading 0. By contrast, for ] < 0, the maps (`+] )∗ are modeled on mul-
tiplication by ?g](%) = ?|]|, so the element of  + ⊂ <∗(\+] ) in grading 0 is at height |]| in the
tower, meaning that the bottom element has grading −2|]| = 2].
Having determined the grading on each tower, we set h equal to the grading of theℚ summand

of <∗(\+
g−1). Then, it only remains to identify the grading on the ℚ summand of <∗(\+1−g ). We

apply the large surgery formula, Theorem 2.3, to get relatively graded isomorphisms

<=+(#32g−1(%), g − 1) ≅ <∗(\+
g−1),

<=+(#32g−1(%), 1 − g
) ≅ <∗(\+1−g).

By conjugation symmetry, these <=+ invariants are isomorphic to each other, so we also have a
relatively graded isomorphism <∗(\+

g−1) ≅ <∗(\+1−g).
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CHARACTERIZING SLOPES FOR 52 33 of 64

But this means that the grading of theℚ summand of<∗(\+1−g )must be h greater than that of the
bottom of the tower  +(2−2g), so its grading is h + 2 − 2g as claimed. □

We now start with the top-most Alexander grading of <̂=%(%), which we already know to be
one-dimensional because % is fibered.

Lemma 5.5. We have <̂=%(%, g) ≅ ℚ(h+2) and <̂=%(%,−g) ≅ ℚ(h+2−2g), where h is the integer
from Lemma 5.4.

Proof. Lemma 2.8 gives us a short exact sequence

0→ <̂=%∗+2(%, g)→  +(0) ⊕ℚ(h)
(`+

g−1)∗WWWWWWWW→  +(0) → 0,
where (`+

g−1)∗ has kernel ℚ(h). The grading on <̂=%(%,−g) now comes from the symmetry

<̂=%E(%, D) ≅ <̂=%E−2D(%,−D)
of [28, Equation (3)]. □

Throughout the remainder of this section, we write

] = J{R = 0, S ⩽ ]}
to denote the filtration

0 ⊂ −g ⊂ 1−g ⊂ ⋯ ⊂ g

of Ĵ=(#3) whose associated graded groups are the various <̂=%(%,D). In particular, the short
exact sequence

0→ ]−1 ↪ ] → J{0, ]}→ 0
of chain complexes gives rise to a long exact sequence

⋯ → <∗(]−1)→ <∗(])→ <̂=%∗(%, ])→ <∗−1(]−1)→ ⋯ . (5.2)

Lemma 5.6. For all ] ∈ ℤ, there is a long exact sequence
⋯ → <∗−(2]−2)(−])→ <∗(\+]−1) ({])∗WWWW→ <∗(\+] )→ <∗−(2]−1)(−])→ ⋯ ,

and (`+]−1)∗ is equal to the composition
<∗(\+]−1) ({])∗WWWW→ <∗(\+] )

(`+] )∗WWWWWW→ <∗(^+).
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34 of 64 BALDWIN and SIVEK

Proof. There is a short exact sequence of chain complexes

0→ J{R ⩽ −1, S = ] − 1}→ \+]−1 {]WW→ \+] → 0 (5.3)

in which {] is projection. Then `+]−1 = `+] ◦{] at the chain level, hence (`+]−1)∗ factors as claimed.
We also have a chain homotopy equivalence

J∗{R ⩽ −1, S = ] − 1} ?]−1WWWW→ J∗−(2]−2){R ⩽ −], S = 0}WWWW→ J∗−(2]−2){R = 0, S ⩽ −]}
so the long exact sequence of homology groups associated to (5.3) takes the form promised by the
lemma. □

Lemma 5.7. We have <∗(0) ≅{ℚ(0), g ⩾ 3ℚ(0) ⊕ℚ(h), g = 2.
Proof. We apply Lemma 5.6 with ] = 0: supposing for now that g ⩾ 3, the composition

is equal to (`+−1)∗ and hence identified with multiplication by?g−1(%) = ?. In particular, the map({0)∗ is surjective and also identified with multiplication by ?, so the long exact sequence of
Lemma 5.6 splits as

0→ <R+2(0)→ <R(\+−1) ({0)∗WWWWW→ <R(\+0 )→ 0
for each R, and we have

<R+2(0) ≅ ker(({0)∗) ≅{ℚ, R = −20, otherwise

since −2 is the grading of the bottom-most element of<∗(\+−1) ≅  +(−2).
Now suppose that g = 2. Then, we factor (`+−1)∗ as
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CHARACTERIZING SLOPES FOR 52 35 of 64

where the gradings on <∗(\+−1) come from Lemma 5.4. In this case, ({0)∗ is still surjective, so
once again, we identify its kernel ℚ(−2) ⊕ℚ(h−2) with<∗+2(0). □

Proposition 5.8. We have <̂=%(%,−g) ≅ ℚ(h+2−2g), and <̂=%(%, 1 − g) ≅ ℚ2(h+3−2g). If g ⩾ 3,
then

<̂=%(%, ]) ≅ ⎧
⎪
⎨
⎪⎩

ℚ(h+4−2g), ] = 2 − g0, 3 − g ⩽ ] ⩽ −1ℚ(0), ] = 0.
If g = 2 instead, then <̂=%(%, 0) ≅ ℚ(0) ⊕ℚ2(h).
Proof. The computation of <̂=%(%,−g) is Lemma 5.5. When ] = g − 1, we can factor (`+

g−2)∗ as

and the composition is an isomorphism  +(0) →  +(0) since gg−2(%) = 0. Thus, ({g−1)∗ is injective,
with cokernel ℚ(h). Now the sequence of Lemma 5.6 splits as

0→ <∗(\+
g−2) ({g−1)∗WWWWWWW→ <∗(\+

g−1)→ <∗−(2g−3)(1−g )→ 0,
so we have <∗(1−g ) ≅ ℚ(h−(2g−3)). But we also know that

<∗(−g ) ≅ <̂=%(%,−g) ≅ ℚ(h+2−2g)
by Lemma 5.5, so the induced map<∗(−g )→ <∗(1−g )must be zero for grading reasons. Thus,
when ] = 1 − g , the exact sequence (5.2) splits and we have

<̂=%∗(%, 1 − g) ≅ <∗(1−g )⊕<∗−1(−g ) ≅ ℚ2(h+3−2g).
Now if g ⩾ 3, then we consider the map (`+]−1)∗ for each of ] = 1, 2, … , g − 2 in turn. In each

case, (`+]−1)∗ factors as
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36 of 64 BALDWIN and SIVEK

and is an isomorphism, since it is identified with multiplication by ?g]−1(%) = 1 as a map  +(0) → +(0). It follows that each ({])∗ is an isomorphism, so the exact sequence of Lemma 5.6 tells us that<∗(−]) = 0, ] = 1, 2, … , g − 2.
Applying the long exact sequence (5.2) for ] = 3 − g , 4 − g , … , 0, we know that <∗(]−1) = 0 for
each ], and so,

<̂=%∗(%, ]) ≅ <∗(]) ≅{ℚ(0), ] = 00, 3 − g ⩽ ] ⩽ −1,
the case ] = 0 having been computed in Lemma 5.7.
Similarly, if we take ] = 2 − g in (5.2), then we get a long exact sequence

⋯ → <∗(1−g )→ <∗(2−g )→ <̂=%∗(%, 2 − g)→ <∗−1(1−g )→ ⋯ . (5.4)

For g ⩾ 3, we have seen that <∗(2−g ) = 0, and so,
<̂=%∗(%, 2 − g) ≅ <∗−1(1−g ) ≅ ℚ(h+4−2g).

If g = 2 instead, then we have computed above that
<∗(−1) = <∗(1−g ) ≅ ℚ(h−1)

while <∗(0) ≅ ℚ(0) ⊕ℚ(h) by Lemma 5.7, so it remains to be seen whether the map y ∶<∗(−1)→ <∗(0) is zero or not.
Assuming that g = 2, we now consider the inclusion-induced maps

where<∗(−1) = <∗(1−g )was computed above, and we used Lemma 5.7 to identify<∗(0). If y
is nonzero, then for degree reasons,wemust haveh = 1, and then its image is theℚ(0) summand of<∗(0). But the map<∗(0)→ <̂=(#3) is surjective since [(%) ⩽ 0, so it must be nonzero on thisℚ(0) summand, in which case the composition across the top row is also surjective. This would, in
turn, imply that [(%) ⩽ −1, contradicting Proposition 5.3. We conclude that y = 0, so (5.4) splits
as

0→ <∗(0)→ <̂=%∗(%, 0)→ <∗−1(−1)→ 0.
Thus, <̂=%∗(%, 0) ≅ ℚ(0) ⊕ℚ2(h), completing the proof. □
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CHARACTERIZING SLOPES FOR 52 37 of 64

6 THEMAPPING CONE FORMULA AND !"
Suppose for some knot % ≇ 52 and some rational slope ' > 0 that #3' (%) ≅ #3' (52). In this section,
wewill apply themapping cone formula, Theorem 2.5, to compare<=+ (#3' (%)) to<=+ (#3' (52)).
Throughout this section, we will assume that% has genus g ⩾ 2. Then Proposition 5.3 says that% is fibered, and that we can write<∗(\+

g−1(%)) ≅  +(0) ⊕ℚ(h)
for some integer h ∈ ℤ. Proposition 5.8 then describes <̂=%(%) completely in terms of g and h.
We also record from Lemma 5.1, together with Proposition 2.6, the values

g](%) ={0, ] ⩾ 0−], ] < 0, <](%) ={], ] ⩾ 00, ] < 0.
The values of g](52) and <](52) are identical, so we will refer to these throughout without
reference to the particular knot.

6.1 Preliminaries

We begin by recording some facts about the mapping cone formula that will simplify our
computations.

Proposition 6.1. Let% ⊂ #3 be a nontrivial knot of genus g ⩾ 1, and let O, P > 0 be relatively prime
integers. Fix an integer R, and suppose that there are some integers ] ⩽ ]′ such that∙ ℎ+

⌊ R+O2P ⌋
is a quasi-isomorphism for all 2 < ], and∙ `+

⌊ R+O2P ⌋
is a quasi-isomorphism for all 2 > ]′.

Define truncated complexes

b[],]′]R,O∕P = ⨁
]⩽2⩽]′

(2,\+
⌊ R+O2P ⌋

), c[],]′]R,O∕P = ⨁
]<2⩽]′

(2,^+),
and a map d[],]′]R,O∕P ∶ b[],]′]R,O∕P → c[],]′]R,O∕P

(2, D2)↦ (2, `+⌊ R+O2P ⌋(D2)) +(2 + 1,ℎ+⌊ R+O2P ⌋(D2)),
where we interpret (], `+

⌊ R+O]P ⌋
(D])) and (]′ + 1,ℎ+

⌊ R+O]′P ⌋
(D]′)) as zero. Then there is an isomorphism

<=+(#3O∕P(%), R) ≅ ker((d[],]′]R,O∕P)∗ ∶ <∗(b[],]′]R,O∕P)→ <∗(c[],]′]R,O∕P))
of relatively graded ℚ[?]-modules.
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38 of 64 BALDWIN and SIVEK

Proof. Theorem 2.5 gives a relatively graded isomorphism between <=+ (#3O∕P(%), R) and the
homology of the mapping cone f+R,O∕P, which we can write as

where we understand each ℎ+ or `+ with domain \+S to mean ℎ+S or `+S , respectively. We observe
that the subcomplex

consisting of all summands (2,\+
⌊ R+2OP ⌋

)with 2 < ] and all (2,^+)with 2 ⩽ ], is acyclic because each
of its ℎ+ maps is a quasi-isomorphism. Similarly, the subcomplex

consisting of all summands (2,\+
⌊ R+2OP ⌋

) and (2,^+) with 2 > ]′, is acyclic because each of its `+
maps is a quasi-isomorphism. Thus, we may take the quotient of f+R,O∕P by each of these sub-
complexes, in turn, and the projection maps are both quasi-isomorphisms. But this leaves the
truncated complex

which is precisely the mapping cone f[],]′]R,O∕P of d[],]′]R,O∕P, and so, we have
<=+(#3O∕P(%), R) ≅ <∗(f[],]′]R,O∕P).

The truncated mapping cone fits into a long exact sequence

⋯ → <∗+1(f[],]′]R,O∕P)→ <∗(b[],]′]R,O∕P)
(d[],]′]R,O∕P)∗WWWWWWWWW→ <∗(c[],]′]R,O∕P)→ … ,
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CHARACTERIZING SLOPES FOR 52 39 of 64

and so, it now suffices to prove that (d[],]′]R,O∕P)∗ is surjective, cf. [21, Lemma 2.8]. But the restriction
of (d[],]′]R,O∕P)∗ to all of the tower summands

 + ⊂ <∗
(\+

⌊ R+O2P ⌋

) ⊂ ⨁
]⩽2⩽]′ <∗

(\+
⌊ R+O2P ⌋

) ≅ <∗(b[],]′]R,O∕P)

has the form

and each of the `+∗ and ℎ+∗ components are surjective, so it follows that the total map is surjective
as well. This identifies <∗(f[],]′]R,O∕P), and hence <=+(#3O∕P(%), R), with the kernel of (d[],]′]R,O∕P)∗ up to
an overall grading shift, as promised. □

Corollary 6.2. Let % ⊂ #3 be a nontrivial knot of genus g ⩾ 1, and let O, P > 0 be relatively prime
integers. Fix an integer R, and suppose that there is some ] ∈ ℤ such that∙ ℎ+

⌊ R+O2P ⌋
is a quasi-isomorphism for all 2 < ], and∙ `+

⌊ R+O2P ⌋
is a quasi-isomorphism for all 2 > ].

Then<=+(#3O∕P(%), R) ≅ <∗(\+
⌊ R+O]P ⌋

) as relatively graded ℚ[?]-modules.
Proof. We apply Proposition 6.1 to identify <=+(#3O∕P(%), R) with the kernel of the map

(d[],]]R,O∕P)∗ ∶ <∗
(\+

⌊ R+O]P ⌋

)→ 0.
□

Proposition 6.3. Let % ⊂ #3 be a knot of genus g ⩾ 1, and fix R ∈ ℤ and OP ⩾ 2g − 1. Then there is
at most one ] ∈ ℤ such that

1 − g ⩽ ⌊ R + O]P ⌋ ⩽ g − 1,
and we have

<=+(#3O∕P(%), R) = ⎧
⎪
⎨
⎪⎩

<∗
(\+

⌊ R+O]P ⌋

)
if ] exists

 + otherwise

as relatively graded ℚ[?]-modules.
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40 of 64 BALDWIN and SIVEK

Proof. Suppose first that ] exists. The desired inequality is equivalent to
P(1 − g) ⩽ R + O] < Pg .

Thus, if there is a solution ], then for all integers 2 > ], we have
R + O2 ⩾ R + O(] + 1) ⩾ P(1 − g) + O ⩾ P(1 − g) + P(2g − 1) = Pg ,

while for all integers 2 < ], we have
R + O2 ⩽ R + O(] − 1) < Pg − O ⩽ Pg − P(2g − 1) = P(1 − g).

In either case 2 cannot be a solution, so if ] exists, then it is unique. But then we know that∙ ℎ+
⌊ R+O2P ⌋

is a quasi-isomorphism for all 2 < ], since ⌊ R+O2P ⌋ ⩽ −g ; and∙ `+
⌊ R+O2P ⌋

is a quasi-isomorphism for all 2 > ], since ⌊ R+O2P ⌋ ⩾ g .

So Corollary 6.2 tells us that<=+(#3O∕P(%), R) ≅ <∗(\+
⌊ R+O]P ⌋

), as claimed.
Now if no such ] exists, then we let l be the least integer such that ⌊ R+OlP ⌋ ⩾ 0. It follows that

⌊ R+O2P ⌋ ⩽ −g for all 2 < l, and that ⌊ R+O2P ⌋ ⩾ g for all 2 > l, so now Corollary 6.2 says that

<=+(#3O∕P(%), R) ≅ <∗
(\+

⌊ R+OlP ⌋

).
But, in fact, ⌊ R+OlP ⌋ ⩾ g , so<∗(\+

⌊ R+OlP ⌋
) ≅ <∗(^+) ≅  + and this completes the proof. □

6.2 Computations for !"
We begin by computing<=+(#3O∕P(52), R) for all slopes OP ⩾ 1. We recall from (2.4) that

<∗(\+0 (52)) ≅  +(0) ⊕ℚ2(0).
Lemma 6.4. If OP ⩾ 1 and 0 ⩽ R ⩽ O − 1, then we have

<=+(#3O∕P(52), R) ≅{ +(0) ⊕ℚ2(0), R = 0, 1, … , P − 1
 +(0), otherwise

as relatively graded ℚ[?]-modules.
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CHARACTERIZING SLOPES FOR 52 41 of 64

Proof. The condition ⌊ R+O]P ⌋ = 0 is equivalent to
0 ⩽ R + O] < P,

so we can find such an ] if and only if R ≡ 0, 1, … , P − 1 (mod O), or (since we assumed 0 ⩽ R ⩽O − 1) if and only if 0 ⩽ R ⩽ P − 1. If ] does not exist, then <=+(#3O∕P(%), R) ≅  + by Proposi-
tion 6.3 (applied with g = g(52) = 1). If instead ] exists, then we must have 0 ⩽ R ⩽ P − 1, and
now Proposition 6.3, together with (2.4), says that

<=+(#3O∕P(52), R) ≡ <∗(\+0 (52)) ≅  +(0) ⊕ℚ2(0)
as relatively graded ℚ[?]-modules. □

Proposition 6.5. Suppose that 0 < OP < 1. Then
<=+(#3O∕P(52), R) ≅  +(0) ⊕ℚ29R(0)

as relatively graded ℚ[?]-modules, where 9R is the number of 2 ∈ ℤ such that 0 ⩽ R + O2 < P.
Proof. We define a pair of integers ], ]′ by

] = min{2 ∈ ℤ ∣ R + O2 ⩾ 0},]′ = max{2 ∈ ℤ ∣ R + O2 ⩽ P − 1}.
Then, O < P implies that ] ⩽ ]′, and for all 2 ∈ ℤ we have

⌊ R + O2P ⌋ = 0 ⟺ ] ⩽ 2 ⩽ ]′,
so 9R = ]′ − ] + 1.
NowProposition 6.1 says that<=+(#3O∕P(52), R) is isomorphic to the kernel of (d[],]′]R,O∕P)∗. Recalling

again from (2.4) that<∗(\+0 ) ≅  +(0) ⊕ℚ2(0), this map has the form

Here, we are able to assign these gradings to each summand because g0(52) = <0(52) = 0, and
so, each of the maps `+∗ = (`+0 )∗ and ℎ+∗ = (ℎ+0 )∗ gives a degree-(−1) isomorphism between the
respective towers.
We see by inspection that ker(d[],]′]R,O∕P)∗ contains a tower  + whose bottom-most element is in

grading 0, as an alternating sum of the bottom-most elements of the towers  +(0) ⊂ <∗(\+
⌊ R+O2P ⌋

),
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42 of 64 BALDWIN and SIVEK

] ⩽ 2 ⩽ ]′. The map (d[],]′]R,O∕P)∗ also sends<0(b[],]′]R,O∕P) ≅ ℚ3(]′−]+1)
onto <−1(c[],]′]R,O∕P) ≅ ℚ]′−],
so its kernel has total dimension 2(]′ − ]) + 3 in degree zero. We conclude that

<=+(#3O∕P(%), R) ≅  +(0) ⊕ℚ2(]′−]+1)(0)
as relatively graded ℚ[?]-modules. □

6.3 General facts about the kernel of}
We will show that under most circumstances, a positive '-surgery on a knot of genus at least
2 cannot have the same Heegaard Floer homology as the corresponding surgery on 52. We will
handle the cases ' < 1 and ' ⩾ 1 in the next few subsections; before that, we prepare for this work
here by proving some general facts about the kernel of the ?-action on<=+ of these surgeries.
Lemma 6.6. Let% be a knot of genus g ⩾ 2, and suppose for some relatively prime integers O, P > 0
that <=+(#3O∕P(%)) ≅ <=+(#3O∕P(52))
as absolutely graded ℚ[?]-modules. Fix an integer R, and lift the relative gradings on the complexesb+R,O∕P and c+R,O∕P to absolute ℤ-gradings so that d+R,O∕P has degree −1. Let h] denote the grading of
the bottom-most element of the tower

 + ⊂ (],<∗(\+
⌊ R+O]P ⌋

)) ⊂ <∗(b+R,O∕P)
for each ].
(1) If ⌊ R+O]P ⌋ ⩾ 0, then h]+1 = h] + 2⌊ R+O]P ⌋.
(2) If ⌊ R+O]P ⌋ ⩽ 0, then h] = h]−1 + 2⌊ R+O]P ⌋.
(3) If ⌊ R+O]P ⌋ ⩽ 0 and ⌊ R+O(]+1)P ⌋ ⩾ 0, then h] = h]+1.
Proof. If ⌊ R+O]P ⌋ ⩾ 0, then the map (d+R,O∕P)∗ on homology restricts to the sum of all of the towers(],  +(h])) ⊂ <∗(b+R,O∕P) as

for some integers p]−1, p], p]+1.
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CHARACTERIZING SLOPES FOR 52 43 of 64

Let 9 = ⌊ R+O]P ⌋. If 9 ⩾ 0, then <9(%) = 9, so the ℎ+∗ map with domain in column ] above has
the form

(ℎ+9 )∗ ∶  +(h]) ?9WWW→  +(p]+1),
sending a generator in degree h] + 29 to one in degree p]+1, so we have

(h] + 29) − 1 = p]+1.
But then ⌊ R+O(]+1)P ⌋ ⩾ 9 ⩾ 0, so the `+∗ map in column ] + 1 is identified with the identity map
 +(h]+1) →  +(p]+1), and thus, h]+1 = p]+1 + 1 = h] + 29.
Similarly, if 9 ⩽ 0, then we have <⌊ R+O(]−1)P ⌋ = 0 and g9 = −9, hence

(h] + 2(−9)) − 1 = p] = h]−1 − 1,
or h] = h]−1 + 29.
In the case where ⌊ R+O]P ⌋ ⩽ 0 and ⌊ R+O(]+1)P ⌋ ⩾ 0, we note that the ℎ+∗ and `+∗ maps into the

 +(p]+1) tower in column ] + 1 are both modeled on multiplication by 1, since <⌊ R+O]P ⌋(%) = 0 andg⌊ R+O(]+1)P ⌋(%) = 0. Thus, h] = p]+1 + 1 = h]+1,
completing the proof. □

Lemma 6.7. Assume the hypotheses and notation of Lemma 6.6, and let

]0 = min{2 ∈ ℤ |||||

⌊ R + O2P ⌋ ⩾ 0}.
Fix integers ] and ]′ satisfying the hypotheses of Proposition 6.1, and consider the map

(d[],]′]R,O∕P)∗ ∶ <∗(b[],]′]R,O∕P)→ <∗(c[],]′]R,O∕P)
between the homologies of the corresponding truncated complexes. If ] ⩽ ]0 ⩽ ]′, then

ker(d[],]′]R,O∕P)∗ ∩ ker(?)
contains a ℚ submodule in grading h]0 .
Proof. Consider the restriction of (d[],]′]R,O∕P)∗ to the sum of all the towers (2,  +(h2)) ⊂ <∗(b[],]′]R,O∕P). By
hypothesis, we have

⌊ R + O(]0 − 1)P ⌋ < 0 and
⌊ R + O]0P ⌋ ⩾ 0,
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44 of 64 BALDWIN and SIVEK

so Lemma 6.6 says that the sequence of gradings (h2) satisfies
⋯ > h] > h]+1 > … > h]0−1 = h]0 ⩽ h]0+1 ⩽ ⋯ ⩽ h]′ ⩽ ⋯ .

Let ]1 = max{2 ∈ ℤ ∣ h2 = h]0 },
so that for all 2 ∈ {], … , ]′}, we have h2 = h]0 if and only if ]0 − 1 ⩽ 2 ⩽ ]1. Then near the indices[]0 − 1, ]1 + 1], the restriction of (d[],]′]R,O∕P)∗ has the form

in which we omit any columns at either end whose indices are not in [], ]′].
To see that the maps labeled “1” are indeed modeled on multiplication by?0 = 1, we note that

they are one of∙ an ℎ+∗ map with domain in column ]0 − 1, and then since ⌊ R+O(]0−1)P ⌋ < 0, we have<⌊ R+O(]0−1)P ⌋(%) = 0;∙ a `+∗ map with domain in column 2 ⩾ ]0, and then since ⌊ R+O2P ⌋ ⩾ 0, we have g⌊ R+O2P ⌋(%) = 0; or∙ an ℎ+∗ map from column 2 ⩾ ]0 to column 2 + 1 where h2 = h2+1 = h]0 , and then Lemma 6.6
says that 0 = h2+1 − h2 = 2⌊ R + O2P ⌋ ,
so that<⌊ R+O2P ⌋(%) = <0(%) = 0.

Moreover, the `+∗ map in column ]0 − 1 is modeled on multiplication by ?D, where
D = g⌊ R+O(]0−1)P ⌋(%) = −⌊ R + O(]0 − 1)P ⌋ ⩾ 1.

Similarly the ℎ+∗ map in column ]1 is modeled on multiplication by ?o, where
o = <⌊ R+O]1P ⌋(%) = ⌊ R + O]1P ⌋

= 12(h]1+1 − h]1) > 0,
by Lemma 6.6 and the definition of ]1.
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CHARACTERIZING SLOPES FOR 52 45 of 64

We now label generators at the bottom of each tower by

m2 ∈ (2,  +(h2)) ⊂ <∗(b[],]′]R,O∕P), n2 ∈ (2,  +) ⊂ <∗(c[],]′]R,O∕P),
so that?m2 = 0 and?n2 = 0 for all 2, and the various `+∗ and ℎ+∗ maps carry elements of the form?Rm2 to elements of the form ?Sn2 and ?Vn2+1, respectively. We then define

� = ]1∑
2=]0−1(−1)2m2 ⊂ <h]0(b[],]′]R,O∕P),

treating any terms whose indices are not in [], ]′] as zero, and it follows from the above discussion
that ?� = 0 and that

(d[],]′]R,O∕P)∗(�) = (−1)]0−1n]0 +(]1−1∑
2=]0(−1)2(n2 + n2+1)) + (−1)]1n]1 = 0.

Thus, � generates the desired ℚ summand. □

Lemma 6.8. Assume the hypotheses and notation of Lemma 6.6, and let ] ⩽ ]′ be integers satisfying
the hypotheses of Proposition 6.1. Suppose that

⌊ R + O]′P ⌋ = g − 1.
If h ∈ ℤ denotes the integer such that<∗(\+

g−1) ≅  +(0) ⊕ℚ(h), as in Lemma 5.4, then we can write
(]′,<∗(\+

g−1)) ≅  +(h]′ ) ⊕ℚ(h]′+h)
as ℚ[?]-modules such that the ℚ(h]′+h) summand lies in

ker(d[],]′]R,O∕P)∗ ∩ ker(?).
Proof. The rightmost portion of the truncated mapping cone complex has the form

where the grading on the bottom  + in column ]′ follows from gg−1(%) = 0. Let m]′ and n]′
be bottom-most elements of the towers at the top and bottom of column ]′, chosen so that(`+

g−1)∗(m]′) = n]′ .
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46 of 64 BALDWIN and SIVEK

Let � generate the ℚ(h]′+h) summand in column ]′, so that ?� = 0. If (`+
g−1)∗(�) = 0, then we

are done, since � generates the desired submodule. Otherwise, we observe that
? ⋅

(`+
g−1)∗(�) = (`+

g−1)∗(?�) = (`+
g−1)∗(0) = 0,

so (`+
g−1)∗(�) must be a nonzero element at the bottom of the  +(h]′−1) tower. In this case, we can

write
(`+

g−1)∗(�) = jn]′ = j ⋅ (`+
g−1)∗(m]′)

for some nonzero j ∈ ℚ. For grading reasons, it now follows that h = 0, since �must lie in gradingh]′ , and so,
� − jm]′ ∈ ker (`+

g−1)∗.
Now we can write the<∗(\+

g−1) in column ]′ as the ℚ[?]-module
 +⟨m]′⟩⊕ℚ⟨� − jm]′⟩,

and the ℚ summand is in ker(`+
g−1)∗ = ker(d[],]′]R,O∕P)∗ as well as ker(?), as desired. □

6.4 Small positive surgeries

In Proposition 6.5, we showed that if 0 < ' < 1, then there is a relatively graded isomorphism of
the form

<=+(#3' (52), R) ≅  +(0) ⊕ℚ29R(0)
for all R. We will show that this cannot be the case for <=+(#3' (%)) if % is a knot of genus at least
2 that satisfies the hypotheses of Proposition 5.3.

Proposition 6.9. Let% be a knot of genus g ⩾ 2, and fix relatively prime positive integers P > O > 0.
Then,

<=+(#3O∕P(%)) ≇ <=+(#3O∕P(52))
as absolutely graded ℚ[?]-modules.
Proof. If <=+(#3O∕P(%)) ≅ <=+(#3O∕P(52)), then % satisfies the conclusions of Proposition 5.3. In
this case, Proposition 6.5 says that for all R, the submodule

ker(?) ⊂ <=+(#3O∕P(52), R)
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CHARACTERIZING SLOPES FOR 52 47 of 64

lies in a single homological grading. Thus, the same must be true for

ker(?) ⊂ <=+(#3O∕P(%), R),
so we will find an integer R for which this is not the case, giving a contradiction.
We fix an integer R between 0 and O − 1, inclusive, such that

R ≡ gP − 1 (mod O).
We then define

] = min{2 ∈ ℤ ∣ R + O2 ⩾ (1 − g)P}, ]′ = gP − 1 − RO .
By construction, we have

⌊ R + O]′P ⌋ = g − 1 and
⌊ R + O(]′ + 1)P ⌋ ⩾ g ,

and since 1 ⩽ O + 1 ⩽ P, we have
⌊ R + O(]′ − 1)P ⌋ = ⌊

gP − (O + 1)P ⌋ = g − 1
as well. We also observe that ⌊ R+O2P ⌋ ⩾ 0 if and only if 2 ⩾ 0, and so, ] ⩽ 2 ⩽ ]′.
According to Proposition 6.1, we can identify<=+(#3O∕P(%), R) with the kernel of

(d[],]′]R,O∕P)∗ ∶ <∗(b[],]′]R,O∕P)→ <∗(c[],]′]R,O∕P)
up to an overall grading shift, so it will suffice to show that

ker(d[],]′]R,O∕P)∗ ∩ ker(?)
does not lie in a single homological grading. Supposing otherwise, we choose an arbitrary lift
of the relative gradings on b[],]′]R,O∕P and c[],]′]R,O∕P to an absolute ℤ-grading, and let h2 ∈ ℤ denote the
bottom-most grading in each tower

 +(h2) ⊂
(2,<∗

(\+
⌊ R+O2P ⌋

)) ⊂ <∗(b[],]′]R,O∕P).
Lemma 6.7 now says that there is a ℚ-submodule of ker(d[],]′]R,O∕P)∗ in grading h]0 , and Lemma 6.8
says that there is also a ℚ-submodule in grading h]′ + h, hence

h]′ + h = h]0
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48 of 64 BALDWIN and SIVEK

by hypothesis. But according to Lemma 6.6, we also have

h]′ = h]′−1 + 2⌊ R + O(]′ − 1)P ⌋

= h]′−1 + 2(g − 1)⩾ h]0 + 2(g − 1),
so then h = h]0 − h]′ ⩽ 2 − 2g .
We now examine the rightmost portion of the truncated complex f[],]′]R,O∕P . Since ⌊ R+O(]′−1)P ⌋ =

g − 1, the last two columns have the form

with h]′ = h]′−1 + 2(g − 1) as above. Since h ⩽ 2 − 2g ⩽ −2, the map (`+
g−1)∗ in column ]′ − 1

must send the ℚ(h]′−1+h) submodule to zero for grading reasons. That same submodule must be
sent by (ℎ+

g−1)∗ into column ]′, in grading
h]′−1 + h − 1 = (h]′ − 2(g − 1)) + h − 1= (h]′ + h) + (1 − 2g)⩽ h]′ − 1 − 2g .

This is strictly less than the bottom-most grading of the corresponding tower, so this image also
must be zero, and it follows that in column ]′ − 1, we have

ℚ(h]′−1+h) ⊂ ker(d[],]′]R,O∕P)∗ ∩ ker(?)
as well. Since h]′−1 + h = (h]′ + h) − (2g − 2) < h]′ + h,
it follows that ker(d[],]′]R,O∕P)∗ ∩ ker(?) is not supported in a single grading, and so, we have a
contradiction. □

6.5 Large positive surgeries

In this subsection, we attempt to understand when there can be a homeomorphism

#3' (%) ≅ #3' (52)
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CHARACTERIZING SLOPES FOR 52 49 of 64

for some slope ' ⩾ 1 and some knot % of genus at least 2. We implicitly identify

Spin@ (#3O∕P(%)) ≅ ℤ∕Oℤ
throughout, as in the statement of Theorem 2.5.
The following lemma will help us find Spin@ structures M where <=+(#3O∕P(%), M) differs from<=+ of any Spin@ structure on #3O∕P(52).

Lemma 6.10. Let g ⩾ 2 be an integer, and let O > P > 0 be relatively prime positive integers such
that O does not divide 2g − 2. Then there exists an integer R ∈ ℤ for which the equation

⌊ R + O]P ⌋ = g − 1
has an integer solution ] ∈ ℤ, but the equation

⌊ R + O]P ⌋ = 1 − g

does not.

Proof. We note that ⌊ R+O]P ⌋ = g − 1 admits a solution ] ∈ ℤ if and only if

P(g − 1) ⩽ R + O] ⩽ Pg − 1,
or equivalently, if and only ifR ≡ Pg − S (mod O) for some S ∈ {1, 2, … , P}. (6.1)

Similarly, the equation ⌊ R+O]P ⌋ = 1 − g has a solution ] ∈ ℤ if and only if

P(1 − g) ⩽ R + O] ⩽ P(2 − g) − 1,
or equivalently, if and only if

R ≡ P(2 − g) − V (mod O) for some V ∈ {1, 2, … , P}. (6.2)

Each of (6.1) and (6.2) is solved by exactly P residue classesmoduloO, and these solutions coincide
if and only if

Pg ≡ P(2 − g) (mod O),
which is equivalent to 2g − 2 ≡ 0 (mod O) since O and P are coprime. But we have assumed that
this is not the case, so the set of R in (6.1) is not a subset of the set in (6.2), and hence, there is someR that satisfies (6.1) but not (6.2). This is the desired R. □
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50 of 64 BALDWIN and SIVEK

Proposition 6.11. Let % ⊂ #3 be a nontrivial knot of genus g ⩾ 2, and let O ⩾ P > 0 be relatively
prime positive integers. If there is an isomorphism

<=+(#3O∕P(%)) ≅ <=+(#3O∕P(52))
of graded ℚ[?]-modules, then O divides 2g − 2.
Proof. We suppose that O ∤ 2g − 2. Then Lemma 6.4 says that

dimℚ <=+red(#3O∕P(52), R) ≅ 0 or 2 for all R,
so for the sake of a contradiction, it will suffice to find R such that <=+red(#3O∕P(%), R) is
one-dimensional. We start by applying Lemma 6.10 to find R ∈ ℤ and ]′ ∈ ℤ such that

⌊ R + O]′P ⌋ = g − 1
and such that ⌊ R+O2P ⌋ = 1 − g has no solutions 2 ∈ ℤ; this will be the desired R.
Let ] be the least integer satisfying

⌊ R + O]P ⌋ ⩾ 0.
Then ℎ+

⌊ R+O2P ⌋
is a quasi-isomorphism for all 2 < ], since then ⌊ R+O2P ⌋ is negative but not equal to1 − g ; if 1 − g < ⌊ R+O2P ⌋ < 0, then this is part of Proposition 5.3, and if ⌊ R+O2P ⌋ < 1 − g , then this is

true for arbitrary genus-g knots. Likewise `+
⌊ R+O2P ⌋

(%) is a quasi-isomorphism for all 2 > ]′, since
then ⌊ R+O2P ⌋ ⩾ g . Thus, Proposition 6.1 says that<=+(#3O∕P(%), R) is isomorphic to the kernel of the
truncated map

(d[],]′]R,O∕P)∗ ∶ <∗(b[],]′]R,O∕P)→ <∗(c[],]′]R,O∕P).
The domain is a sum of relatively graded ℚ[?]-modules of the form

<∗
(\+

⌊ R+O2P ⌋

) ≅{ +, ] ⩽ 2 < ]′
 + ⊕ℚ, 2 = ]′,

and we know that<∗(^+) ≅  +, so (d[],]′]R,O∕P)∗ has the form
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CHARACTERIZING SLOPES FOR 52 51 of 64

Lemma 6.8 says that we can arrange for the ℚ summand in column ]′ above to belong toker(d[],]′]R,O∕P)∗. Having done so, we see that ker(d[],]′]R,O∕P)∗ is isomorphic as aℚ[?]-module to the direct
sum of that ℚ with the kernel of

(Here each `+∗ map is identified with multiplication by?0 = 1, since 2 ⩾ ] implies that ⌊ R+O2P ⌋ ⩾ 0
and hence g⌊ R+O2P ⌋(%) = 0.) But this kernel can be identified with the  + in column ], so now we
apply Proposition 6.1 to conclude that

<=+(#3O∕P(%), R) ≅ ker(d[],]′]R,O∕P)∗ ≅  + ⊕ℚ
up to an overall grading shift. This says that <=+red(#3O∕P(%), R) ≅ ℚ, which gives the desired
contradiction. □

Proposition 6.11 takes care of most slopes ' ⩾ 1 (for knots of a fixed genus g) without making
use of gradings on the mapping cone complex. By being careful about gradings, we can handle
the remaining nonintegral cases as well.

Proposition 6.12. Let % be a nontrivial knot of genus g ⩾ 2, and let O ⩾ P > 0 be relatively prime
positive integers. If there is an isomorphism

<=+(#3O∕P(%)) ≅ <=+(#3O∕P(52))
of graded ℚ[?]-modules, then P = 1 and O divides 2g − 2.
Proof. Proposition 6.11 tells us that O divides 2g − 2, so it remains to be seen that P = 1. We will
assume to the contrary that P ⩾ 2. If we write p = 2g−2O , then OP = 2g−2Pp , and the assumption P ⩾ 2
means that OP is neither 2g − 2 nor g − 1, so it follows that Pp ⩾ 3, or OP ⩽ 2g−23 .
As usual, we will take h ∈ ℤ such that

<∗(\+
g−1) ≅  +(0) ⊕ℚ(h),

as guaranteed by Lemma 5.4. This integer h depends only on %, which is the key fact we will use
below to rule out any case where P ⩾ 2.
Fixing some choice of

R = P(g − 1) + S, S = 0, 1, … , P − 1,
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52 of 64 BALDWIN and SIVEK

we take ] = −Pp and ]′ = 0, and then we have
⌊ R + O]P ⌋ = ⌊ (P(g − 1) + S) − OPpP ⌋ = ⌊

g − 1 − Op + SP⌋ = 1 − g

and ⌊ R+O]′P ⌋ = g − 1, while (since OP ⩾ 1) ⌊ R+O(]−1)P ⌋ ⩽ −g and ⌊ R+O(]′+1)P ⌋ ⩾ g . Thus

<=+(#3O∕P(%), R) ≅ ker((d[],]′]R,O∕P)∗ ∶ <∗(b[],]′]R,O∕P)→ <∗(c[],]′]R,O∕P))
by Proposition 6.1. We put an absolute ℤ-grading on the truncated mapping cone complexf[],]′]R,O∕P,
with h2 denoting the bottom-most grading for the tower in each summand (2,<∗(\+

⌊ R+O2P ⌋
)) as

usual, and we let

]0 = min{2 ∈ ℤ |||||

⌊ R + O2P ⌋ ⩾ 0}.
Then, Lemmas 6.7 and 6.8 tell us that

ker(d[],]′]R,O∕P)∗ ∩ ker(?)
contains ℚ submodules in gradings h]0 and h]′ + h, respectively. But by Proposition 6.4, these
gradings must be the same, so we have

−h = h]′ − h]0 .
We remark that since OP ⩽ 2g−23 , it follows that ]0 ⩽ ]′ − 1.
We now attempt to work out this value in more detail. According to Lemma 6.6, we have

−h = h]′ − h]0 = ]′−1∑
2=]0(h2+1 − h2) = 2 ]′−1∑

2=]0
⌊ R + O2P ⌋ ,

which, since R = P(g − 1) + S, can be written as
−h = 2 ]′−1∑

2=]0
((g − 1) + ⌊S + O2P ⌋). (6.3)

We note that
⌊ R + O2P ⌋ ⩾ 0⟺ (P(g − 1) + S) + O2 ⩾ 0

⟺2 ⩾ −P(g − 1O ) − SO = −P( p2) − SO
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CHARACTERIZING SLOPES FOR 52 53 of 64

and so, we have ]0 = ⌈−Pp2 − SO⌉ = −⌊Pp2 + SO⌋ , (6.4)

while ]′ − 1 = −1 since ]′ = 0 by definition. This makes it clear that while the various h2 may
have depended on our choice of R and on the absolute grading on f[],]′]R,O∕P, the expression (6.3) for h
depends only on O, P, g , and our choice of S ∈ {0, 1, … , P − 1}. But we have already remarked thath depends only on %, so we will show that different choices of S lead to different values of h and
thus get a contradiction.
Supposing first that P ⋅ p is even, we have Pp2 ∈ ℤ while 0 ⩽ SO ⩽ P−1O < 1, and so,

]0 = −P( p2) for S = 0, 1, 2, … , P − 1.
In particular, the indices in the sum (6.3) are the same for each such choice of S, and the individual
summands are monotonically increasing in S. But the value of hmust be independent of S, so the
sum in (6.3) must be the same term-by-term for S = 0 as it is for S = P − 1. Thus, we have

⌊0 + O2P ⌋ = ⌊ (P − 1) + O2P ⌋
for ]0 ⩽ 2 ⩽ ]′ − 1.

And this, in turn, requires that 0 + O2 be a multiple of P: otherwise, there will be some S ∈{1, … , P − 1} such that S + O2 is a multiple of P, and then, we have
⌊0 + O2P ⌋ ⩽ ⌊S − 1 + O2P ⌋ < ⌊S + O2P ⌋ ⩽ ⌊ (P − 1) + O2P ⌋ .

In the case 2 = −1, it follows that −O is a multiple of P, but since O and P are coprime and P ⩾ 2
this is impossible.
In the remaining case, both P and p = 2g−2O are odd, so, in particular, O must be even. In this

case, Pp2 is a half-integer, with floor Pp−12 ⩾ 1 since P > 1, so we compute from (6.4) that

]0 ={−⌊ Pp2 ⌋, 0 ⩽ S ⩽ O2 − 1−⌊ Pp2 ⌋ − 1, O2 ⩽ S ⩽ P − 1.
(We note that P − 1 < O, so that 0 ⩽ SO < 1 for all such S.) If the second possibility occurs, then the2 = ]0 term in the sum (6.3) is

g − 1 + ⌊S + O]0P ⌋ = g − 1 + ⎢
⎢
⎢
⎢⎣

S + O(−Pp+12 )

P
⎥
⎥
⎥
⎥⎦

= g − 1 + ⌊S − P(g − 1) − O2P
⌋

= ⌊S − O2P
⌋ = 0,
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54 of 64 BALDWIN and SIVEK

so we may as well omit it and begin with 2 = ]0 + 1 = −⌊ Pp2 ⌋. Thus, either way (6.3) becomes
−h = 2 −1∑

2=−Pp−12
((g − 1) + ⌊S + O2P ⌋)

for any of S = 0, 1, … , P − 1. Nowby exactly the same argument as in the case Pp2 ∈ ℤ, we set 2 = −1
and let S be either of 0 and P − 1, and we conclude that

⌊−OP ⌋ = ⌊ (P − 1) − OP ⌋

and then that −O is a multiple of P, giving a contradiction.
We have now found a contradiction in all cases where O ∣ 2g − 2 and P ⩾ 2, so we conclude thatP = 1 after all. □

6.6 Conclusion

Combining earlier results throughout this section and Section 5, we have nearly proved the
following.

Theorem 6.13. Let% ≇ 52 be a knot of genus g ⩾ 2 in #3, and suppose for some rational ' > 0 that
#3' (%) ≅ #3' (52).

Then, ' is an integer dividing 2g − 2. Moreover, in these cases, <̂=%(%) is completely determined by
the integers g and

h = ⎧
⎪
⎨
⎪⎩

−(g − 1)( g−1' − 1), ' ∣ g − 1− (2g−2−')24' , ' ∤ g − 1
as in Proposition 5.8. In particular, % has Alexander polynomial

∆%(2) = 2g − 22g−1 + 2g−2 + 1 + 22−g − 221−g + 2−g .
Proof. We have shown that

<=+(#3' (%)) ≇ <=+(#3' (52))
in each of the following cases:∙ when 0 < ' < 1, by Proposition 6.9;∙ when ' = OP ⩾ 1 with O ∤ 2g − 2, by Proposition 6.11;∙ when ' = OP ⩾ 1 is nonintegral and O ∣ 2g − 2, by Proposition 6.12.
This leaves only the cases where ' is an integer dividing 2g − 2.
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CHARACTERIZING SLOPES FOR 52 55 of 64

In the remaining cases, we once againwrite<∗(\+
g−1) ≅  +(0) ⊕ℚ(h), and then <̂=%(%) is deter-

mined by g and h according to Proposition 5.8. Following the argument and notation from the
proof of Proposition 6.12, with (O, P, R, S) = (', 1, g − 1, 0), we set ]′ = 0 and

]0 = − ⌊ p2⌋ = −⌊
g − 1O ⌋

as in (6.4). Then, by (6.3), we see that h is even, hence Proposition 5.8 determines the Alexander
polynomial of % as promised; and we have

−h = 2 −1∑
2=]0

((g − 1) + ⌊S + O2P ⌋)

= (2g − 2)|]0| + 2 |]0|∑
2′=1 ' ⋅ (−2′)= (2g − 2)|]0| − '|]0|(|]0| + 1).

When O divides g − 1 we have |]0| = g−1' , and thus,

−h = 2(g − 1)2' − (g − 1)(g − 1' + 1)
= (g − 1)(g − 1' − 1).

Otherwise, since O divides 2g − 2, it follows that g−1O is a half-integer; then

]0 = −(g − 1O − 12) = −2g − 2 − O2O
and O is an even integer. Since ' = O, we have

−h = (2g − 2)(2g − 2 − ')2' −(2g − 2 − '2 )(2g − 2 + '2' )

= 14'((2(2g − 2)2 − 2'(2g − 2)) − ((2g − 2)2 − '2))
= (2g − 2 − ')24' .

Thus h is exactly as claimed. □

Remark 6.14. We can collapse the Alexander–Maslov bigrading (D,E) on <̂=%(%) into a sin-
gle grading F = E − D. If #3' (%) ≅ #3' (52) for some ' > 0, then according to Proposition 5.8, all
of <̂=%(%) except for a ℚ(0) summand in Alexander grading 0 must be supported in F-gradingh + 2 − g . Using Theorem 6.13 (for which we recall the assumption g ⩾ 2), we see that if ' ∣ g − 1,
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56 of 64 BALDWIN and SIVEK

then

h ⩽ 2 − 2g < g − 2,
whereas if ' ∤ g − 1, then

h ⩽ 0 ⩽ g − 2
with equality on the left and on the right if and only if ' = 2g − 2 and g = 2, respectively. In any
case, <̂=%(%) is supported in nonpositive F-gradings, and it is thin if and only if g(%) = ' = 2.
7 QUANTUMOBSTRUCTIONS TO SURGERY

Ito [13] used the LMO invariant of closed 3-manifolds to produce obstructions to cosmetic and
other surgeries in terms of finite-type invariants. These include the coefficients D29(%) of the
Conway polynomial

∇%(�) = D0(%) + D2(%)�2 + D4(%)�4 + … ,
as well as an invariant `3(%) ∈ 14ℤ that is determined by the Jones polynomial of %. In particular,
he proved the following, which we will apply to improve Theorem 6.13.

Theorem 7.1 ([13, Corollary 1.3(iv)]). Suppose for some knots %,%′ ⊂ #3 and rational ' ≠ 0 that#3' (%) ≅ #3' (%′). Then either
(1) D4(%) = D4(%′) and `3(%) = `3(%′), or
(2) D4(%) ≠ D4(%′) and `3(%) ≠ `3(%′), in which case

' = −5(D4(%) − D4(%′))4(`3(%) − `3(%′)) . (7.1)

Remark 7.2. The sign in front of the right side of (7.1) was omitted in [13]. In fact, [13, Theorem 1.2]
gives a surgery formula for the degree-2 part j2 (#3' (%)) of the LMO invariant, in which one of the
terms is − 5D4(%)4 ⋅ 1'2 . In the proof of [13, Corollary 1.3(iv)], this term appears without the minus
sign, which accounts for the discrepancy.

In order to apply Theorem 7.1 to a potential surgery #3' (%) ≅ #3' (52), we first recall that the
Conway polynomial can be recovered from the Alexander polynomial by the relation

∆%(22) = ∇%(2 − 2−1).
In particular, we have

∇52(2 − 2−1) = 222 − 3 + 22−2 = 1 + 2(2 − 2−1)2,
so ∇52(�) = 1 + 2�2 and thus D4(52) = 0. The computation of D4(%) is more involved.
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CHARACTERIZING SLOPES FOR 52 57 of 64

Lemma 7.3. Suppose for some knot % ≇ 52 and ' ∈ ℚ that #3' (%) ≅ #3' (52). If g(%) ⩾ 2, thenD2(%) = 2 and D4(%) = (g(%) − 1)2.
Proof. Theorem 6.13 tells us that ' is a positive integer dividing 2g(%) − 2, and that if we write

�g (2) = 2g − 22g−1 + 2g−2 + 1 + 22−g − 221−g + 2−g
for all integers g ⩾ 2, then ∆%(2) = �g(%)(2). These polynomials satisfy the relation

(�g (2) − 1)(2 + 2−1) = (�g+1(2) − 1) + (�g−1(2) − 1)
for all g ⩾ 3, and if we write 2 = ]2, then this becomes

(�g (]2) − 1)((] − ]−1)2 + 2) = �g+1(]2) + �g−1(]2) − 2. (7.2)

Define polynomials Og (�) for all g ⩾ 2 such that
Og (] − ]−1) = �g (]2).

We can check that O2(�) = 1 + 2�2 + �4,O3(�) = 1 + 2�2 + 4�4 + �6,
and then, (7.2) becomes

(Og (] − ]−1) − 1)((] − ]−1)2 + 2) = Og+1(] + ]−1) + Og−1(] + ]−1) − 2.
Substituting � = ] − ]−1, we have

Og+1(�) = (�2 + 2)(Og (�) − 1) − Og−1(�) + 2 (7.3)

for all g ⩾ 3, and moreover, Og(%)(�) is the Conway polynomial ∇%(�).
We now claim by induction that

Og (%) = 1 + 2�2 + (g − 1)2�4 + �(�6)
for all g ⩾ 2. It is certainly true for g = 2 and g = 3, and then, for g ⩾ 3, we examine (7.3) modulo�6 to get

Og+1(�) ≡ (�2 + 2)(2�2 + (g − 1)2�4) − (1 + 2�2 + (g − 2)2�4) + 2
≡ ((2g2 − 4g + 4)�4 + 4�2) − ((g2 − 4g + 4)�4 + 2�2) + 1
≡ g2�4 + 2�2 + 1 (mod �6)

exactly as claimed. But this means that the coefficients D2(%) and D4(%) of �2 and �4 in ∇%(�) =Og(%)(�) are 2 and (g(%) − 1)2, respectively, proving the lemma. □
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58 of 64 BALDWIN and SIVEK

We can evaluate `3(%) in terms of the Jones polynomial g%(P) as follows.
Lemma 7.4. We have 4`3(%) = − 136 (g′′′% (1) + 3g′′%(1)).
Proof. We note from [13, Lemma 2.1] that if we evaluate the Jones polynomial

g%(P) =∑
R∈ℤ @RPR

at P = pℎ and write the corresponding power series as
∞∑
9=0 S9(%)ℎ9 = g%(pℎ) =∑

R∈ℤ @R
( ∞∑
9=0

(Rℎ)99!
),

then `3(%) = − 124S3(%). Comparing ℎ3-coefficients gives us
4`3(%) = −16S3(%) = − 136 ∑R∈ℤ @R ⋅ R3.

At the same time, we have

g′′′% (1) + 3g′′%(1) + g′%(1) =∑
R∈ℤ @R ⋅ ((R3 − 3R2 + 2R) + 3(R2 − R) + R) =∑

R∈ℤ @R ⋅ R3,
and we know that g′%(1) = 0 [14, §12], so the lemma follows. □

Example 7.5. We know that

g52(P) = P−1 − P−2 + 2P−3 − P−4 + P−5 − P−6
and since g′′′52 (1) = 144 and g′′52(1) = −12, we get 4`3(52) = −3.
We can use this obstruction to prove that noncharacterizing slopes for 52 cannot arise from

other knots of genus 1.

Proposition 7.6. Suppose for some knot % of genus 1 and some ' ∈ ℚ that #3' (%) ≅ #3' (52). Then,% is isotopic to 52.
Proof. If% ≇ 52 then Proposition 5.3 says that% is either 15943522 orWh−(*2,3, 2), up tomirroring.
But in these cases, we have D4(%) = D4(52) = 0,
since ∆%(2) = ∆52(2) = 22 − 3 + 22−1, and yet we can compute from Lemma 7.4 that

4`3(%) = ±7 or ±1
respectively, while 4`3(52) = −3. Thus, Theorem 7.1 says that #3' (%) ≇ #3' (52) after all. □
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CHARACTERIZING SLOPES FOR 52 59 of 64

We can now use Lemmas 7.3 and 7.4 to identify potentially noncharacterizing slopes.

Proposition 7.7. Suppose that #3' (%) ≅ #3' (52) for some integer ' ⩾ 1, and that % is not isotopic to52. Then, the Jones polynomial g%(P) satisfies 136g′′′% (1) ∈ ℤ, and we have
' = 5(g(%) − 1)2136g′′′% (1) − 4 .

Moreover, if g(%) is even, then ' divides g(%) − 1.
Proof. Write g = g(%).We know that g ⩾ 2 by Proposition 7.6; hence, Lemma 7.3 says thatD4(%) =(g − 1)2, which is different from D4(52) = 0. We thus apply Theorem 7.1 to see that

' = −5(D4(%) − D4(52))4(`3(%) − `3(52)) = − 5(g − 1)24`3(%) + 3 .
Proposition 2.9 tells us that ∆′′%(1) = ∆′′52(1) = 4, so g′′%(1) = −3∆′′%(1) = −12, again by [14, §12].
Thus,

4`3(%) − 4`3(52) = − 136(g′′′% (1) − 36) + 3 = 4 − g′′′% (1)36 ,
which must be an integer since 4`3(%) is, and this completes the determination of '.
Now supposing that g is even,wehave expressed ' as a divisor of the odd integer 5(g − 1)2. Thus,' is odd, and it divides 2g − 2 by Theorem 6.13, so it must, in fact, divide g − 1 as claimed. □

This last result allows us to complete the proof of Theorem 1.7.

Proof of Theorem 1.7. If #3' (%) ≅ #3' (52) but % ≇ 52, then Proposition 7.6 says that % has genus
g ⩾ 2. In this case, Theorem 6.13 says that ' is a positive integer dividing 2g − 2, and that <̂=%(%)
has the claimed form. The only remaining claim is that if g is even, then ' divides g − 1, and this
is part of Proposition 7.7. □

Remark 7.8. As a final example of the effectiveness of Proposition 7.7, let us suppose that #3' (52) ≅#3' (/(−3, 3, 29)) for some integers ' ⩾ 1 and 9. Since /(−3, 3, 29) has genus 2, Proposition 7.7 says
that ' = 1. Moreover, an exercise with the skein relation for the Jones polynomial shows that

g/(−3,3,29)(P) = P−29g/(−3,3,0)(P) + (1 − P−29)= −P−29−3 + P−29−2 − P−29−1 + 2P−29 − P−29+1 + P−29+2 − P−29+3 + 1.
(We note that /(−3, 3, 0) ≅ *2,3#*−2,3.) From this, one can show that

136g′′′/(−3,3,29)(1) − 4 = 29 − 3,
so ' = 1 = 529−3 implies that 29 = 8.
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60 of 64 BALDWIN and SIVEK

F IGURE 4 A link �9 whose branched double cover is #39(52). We quotient 52 by a rotation [ around the
indicated axis of symmetry, simplify the resulting diagram by an isotopy, and then replace the arc 52∕[ by a
rational tangle. The box labeled “9 + 8” corresponds to 9 + 8 signed half-twists.
In Section 8, we will see that #31(52) is, in fact, homeomorphic to #31(/(−3, 3, 8)).

8 NONCHARACTERIZING SLOPES FOR !"
In this section, we prove that 1 is not a characterizing slope for 52.
Proposition 8.1. For any integer 9 ∈ ℤ, the 3-manifold #39(52) is the branched double cover of the
link �9 shown in Figure 4.
Proof. The knot 52 is strongly invertible, meaning that there is an involution [ ∶ #3 → #3 such
that [(52) = 52, and the fixed set of [ is an unknot ? meeting 52 in two points. In the quotient#3∕[ ≅ #3, we remove a neighborhood of 52∕[; this turns ?∕[ into a tangle with four endpoints,
whose branched double cover is #3 ⧵ i(52), and we can fill in this tangle by gluing in a rational
tangle to get a link �' whose branched double cover is any Dehn surgery #3' (52).
This process is illustrated in Figure 4. In order to determine that the box with 9 + 8 twists

actually corresponds to #39(52), we observe that replacing it with the rational tangle

turns �9 into an unknot, whose branched double cover #3 is the result of 10 -surgery on 52. Then,
each possible number of half-twists corresponds to a surgery with slope at distance 1 from 10 , so
these are exactly the integral slopes. We can finally compute that det(�9) = |9|, so that Σ2(�9) is
identified with #39(52) as claimed. □

Remark 8.2. Another construction of links with branched double cover #39(52) was given in
[4, Lemma 8.3], where the argument was specialized to 9 = −3 but works for arbitrary integers.
That construction uses a different involution, and hence produces different links (illustrated in
[4, Figure 12]) in general.

Proposition 8.3. There is an orientation-preserving homeomorphism

#31(52) ≅ #31(/(−3, 3, 8)).
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CHARACTERIZING SLOPES FOR 52 61 of 64

F IGURE 5 Identifying #31(/(−3, 3, 8)) as a branched double cover Σ2(%). We quotient /(−3, 3, 8) by a
rotation [ around an axis of symmetry and simplify by an isotopy, following [4, Figure 7]. We then replace a
neighborhood of the arc /(−3, 3, 8)∕[ with a rational tangle, and isotope further to get the desired knot %.
Proof. Let / = /(−3, 3, 8) for convenience. Then / is strongly invertible, and we can adapt the
proof of [4, Proposition 7.6], which was originally due to Ken Baker, to realize #31(/) as the
branched double cover of a knot % ⊂ #3, as shown in Figure 5.
We now claim that % is isotopic to the knot �1 from Figure 4, and so,

#31(/) ≅ Σ2(%) ≅ Σ2(�1) ≅ #31(52)
by Proposition 8.1. Rather than find this isotopy explicitly, we observe that SnapPy recognizes each
of % and �1 as either 14914254 or its mirror, so that

#31(/) ≅ Σ2(%) and #31(52) ≅ Σ2(�1)
are homeomorphic up to orientation. But we cannot have #31(52) ≅ −#31(/), since their Casson
invariants satisfy

j(#31(52)) = 12∆′′52(1) = 2,
j(−#31(/)) = j(#3−1(/)) = − 12∆′′/ (1) = −2.

(This computation follows from ∆/(2) = 22 − 22 + 3 − 22−1 + 2−2.) Thus, #31(52) ≅ #31(/) as ori-
ented 3-manifolds. □

9 THE �(", �, 77) REALIZATION PROBLEM

Let > = −Σ(2, 3, 11). Then, we have orientation-preserving homeomorphisms
> ≅ #31∕2(*2,3) ≅ #31(52).

(Up to an overall orientation reversal, the latter identification is the case #3−1(%(2, 4)) ≅#3−1∕2(%(2, 2)) of [4, Proposition 7.2], for example.) Our goal in this section is to prove that these
are the only ways to express > as Dehn surgery on a knot in #3.
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62 of 64 BALDWIN and SIVEK

Theorem 9.1. Suppose for some knot % ⊂ #3 and some rational ' ∈ ℚ that

#3' (%) ≅ −Σ(2, 3, 11).
Then (%, ') is either (*2,3, 12 ) or (52, 1).
This is equivalent to Theorem 1.4, as can be seen by the identity #3' (%) ≅ −#3−'(%).

Proof of Theorem 9.1. Since > is a homology sphere, we can write ' = 19 for some nonzero 9 ∈ ℤ.
If 9 = 1 and hence ' = 1, we have

<=+(#31(%)) ≅ <=+(>) ≅ <=+(#31(52)).
We then apply Theorem 1.6 to conclude that % ≅ 52. Similarly, if ' = 12 , then we must have % ≅*2,3, since all slopes are characterizing slopes for the right-handed trefoil [33].
Supposing from now on that 9 is neither 1 nor 2, we first claim that 9 ⩾ 3. Indeed, we know

that

h(#31∕(−9)(%)) = h( − #31∕9(%)) = h(−>) = 2,
where we have read h(>) = h(#31(52)) = −2 off of Proposition 2.10. But if 9 < 0, or equivalently−9 > 0, then Theorem 2.7 says that

h(#31∕(−9)(%)) ⩽ h(#31∕(−9)(?)) = h(#3) = 0.
This would be a contradiction, so we must have 9 > 0 and hence 9 ⩾ 3 as claimed.
Now that we have 9 ⩾ 3, we compute that dim <̂=(>) = dim <̂=(#31(52)) = 3 from Proposi-

tion 2.10 and Lemma 2.12. Thus,

3 = dim <̂=(#31∕9(%)) = 9 ⋅ '̂0(%) + |1 − 9ŝ(%)|
⩾ 3 ⋅ '̂0(%) + 1,

since '̂0(%) ⩾ |ŝ(%)| ⩾ 0 and since 1 − 9ŝ(%) ≡ 1 (mod 9) is nonzero. This is only possible if'̂0(%) = 0, in which case ŝ(%) = 0 as well and then dim <̂=(#31∕9(%)) must be 1 rather than 3,
so we have a contradiction. This completes the proof. □
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