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Abstract—TIn this paper we show a polar coding scheme for the
deletion channel with a probability of error that decays roughly
like 2'\“, where A is the length of the codeword. That is, the
same decay rate as that of seminal polar codes for memoryless
channels. This is stronger than prior art in which the square
root is replaced by a cube root. Our coding scheme is similar yet
distinct from prior art. The main differences are: 1) Guard-bands
are placed in almost all polarization levels; 2) Trellis decoding
is applied to the whole received word, and not to segments of
it. As before, the scheme is capacity-achieving. The price we pay
for this improvement is a higher decoding complexity, which is
nonetheless still polynomial, O(A*).

I. INTRODUCTION
A. The deletion channel

Deletion errors, along with insertion errors, arise in com-
munication channels with symbol-timing mismatch [1]. These
synchronization errors are also common in polymer-based
storage solutions [2].

The simplest theoretical model for these errors is the dele-
tion channel with a constant deletion probability. The channel
output is a sub-string of the symbols in the input. Deletions
occur according to an i.i.d. process that deletes each input
symbol with probability 9.

B. Polar codes for the deletion channel

Polar codes [3] for a deletion channel with a fixed deletion
probability were first presented in [4]. See also [5]-[8], which
use polar codes for weaker settings. In [4], the authors show
that for a fixed regular hidden-Markov input process and a
fixed parameter v € (0, %), their coding scheme approaches
the mutual information rate between the input process and
the channel output. The encoding and decoding complexities
are O(AlogA) and O(A'*3V), respectively, where A is the
codeword length. Furthermore, for any 0 < v/ < v and large
enough A, the probability of a decoding block error is at most
2-A" For completeness, the authors show that there exists a
sequence of regular hidden-Markov input processes for which
the mutual information rate approaches the deletion channel
capacity. This result follows as a special case of the work of Li
and Tan [9], which proved the above for finite-order Markov
processes.

We extend [4], and show that for a more elaborlate decoding
scheme, the error probability decreases as 272" Where B €
(0, 3) instead of the previous decay coefficient v’ € (0, 1).
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II. MAIN THEOREM

Our main result builds upon the function g introduced in
[4]. We will define g shortly. For now, we note that g(x,ng, )
recursively transforms x, a word of length 2", into a slightly
longer word, where the length is controlled by the parameter
&, and n — ng is the recursion depth. We say that g(x,ng, &)
is the result of adding guard-bands to x.

Throughout the paper, we assume a deletion channel with
a fixed deletion probability. We also assume a fixed regular
hidden Markov input distribution (see [4, Subsection II-D]
for the formal definition). Denote by Z the information rate
between an input distributed according to this distribution and
the corresponding output of the deletion channel. Denote by
Z and K the Bhattacharyya parameter and the total-variation,
respectively (see, for example, [10, Section III]).

Here is our ‘“stronger polarization” theorem. As we will
see, the proof uses a previously proven “weaker polarization”
theorem as a bootstrap.

Theorem 1 (Stronger Polarization): Fix € > 0, & € (O,%),
and parameters 0 < 3 < 3 < % There exist n*®(5’, 3, ¢, )
and n{ (B, B, €, €) such that the following holds. Take n > n*®
and ng > nf. Let X be of length N = 2". The vector X is
partitioned into blocks of length 2™°, and each block is in-
dependently distributed according to the hidden Markov input
distribution. Let U be the polar transform of X. Denote by
Y the result of transmitting g(X, ng, &) through the deletion
channel. The fraction of indices ¢ for which:

. 1 ’
ZU Ui Y) <27V < I 9-A” (1)
, 1 /
KUty <27V’ < = LA ®)

is at least Z — ¢, where A is the length of ¢(X,ng,&).
Furthermore,

N 1

N >1l-e€.

By using the Honda-Yamamoto scheme [11], [12], we get
the following corollary.

Corollary 2: The above implies a coding /scheme with rate
T - 2¢ and probability of error at most 9-A7 , where A is the
length of the transmitted codeword.

Here is the “weaker polarization” theorem which we will
build on. This theorem follows from the proof of [4, Theo-
rem 1], and by recalling that the Bhattacharyya parameter is



upper bounded by twice the square-root of the probability of
error [13, by combining (4a) and (4c)].

Theorem 3 (Prior-art Polarization): Fix ¢ > 0 and 0 <
v< % There exists an nP2 " (v, €, €) such that the following
holds. Take n > nP**" and ng = |vn]. Let U, X, Y, N, and
A be as in Theorem 1. The fraction of indices 4 for which:

Z(UUi, ) <27V 3)
K(U|Ui™) < 27N" )

is at least Z — €’. Furthermore, % >1-¢€.

To recap: our stronger result promises a probability of error
that decays roughly like the square root of the codeword
length, as is the case for the seminal polar codes defined
for BMS channels [3]. In contrast, prior art only promises
a probability of error that decays roughly like the cube root
of the codeword length.

ITII. NOTATION

In this section we set up some notation and summarize key
concepts from [4].

A. Three related channels

We now introduce three related channels: the deletion chan-
nel; the trimming channel; and their composition, the trimmed
deletion channel.

Deletion Channel (DC) The deletion channel is the channel
we are to code over. As its name implies, it takes a binary
vector and deletes each bit with probability d. Thus, the output
of the channel is typically shorter than its input. We will often
denote a random vector that is an input to such a channel by
G and denote the corresponding output by Y.

The following two channels were introduced in [4], and are
concepts we will need for our results as well.

Trimming Channel (TC) The trimming channel takes a
binary vector and removes from it all leading and trailing
zeros. Note that the trimming channel is deterministic. We
will often denote the input to this channel by either Y or Z.
We denote the trimming operation by appending a ‘*’ as a
superscript. Thus, the outputs corresponding to Y and Z will
be Y* and Z*, respectively.

Trimmed Deletion Channel (TDC) The trimmed deletion
channel is the composition of the above two channels. Thus,
if the input to the channel is G, then we first pass G through
the deletion channel and obtain Y, and then pass Y through
the trimming channel, which yields Y *.

TDC

TC !

trimming !

DC

: deletion
P B

We end this subsection by noting that Theorem 3 holds for
the TDC as well. This follows by carefully reading the proof
of [4, Theorem 1], and noting that in [4, Subclaim 2] the initial
step involves trimming Y into Y*.

Remark 4 (Prior-art Polarization, for the TDC): Theorem 3
continues to hold if we replace Y with Y* in (3).

B. Blocks and guard-bands

Recall that in the previous theorems, X was partitioned into
independent blocks of length Ny = 2°. There are Ny = ng
such blocks, and we denote them by X(1),X(2),...,X(Ny).
That is, X is the concatenation of the above N7 blocks,

X=X(1)oX(2) o 0 X(N).

We denote the first and second halves of X by X and Xj;.
Denoting the length of a vector by |-|, we have |X;| = [Xy| = %
and

X =X 0 Xj.

Note that Xy and Xp; are independent, a convention that will
also hold in other places in which we use the “I” and “II”
subscripts.

Recall that the function g mentioned previously transforms
a vector X of length 2" into a slightly longer vector with
“guard-bands”. We now define ¢ recursively, and note that it
adds the guard-bands between blocks. For a vector X of length
< 2™, g(X,ng, &) is simply the identity function. For a vector
X of length greater than 2"°,

Ly,

9(X,n0,€) £ g(X) £ 9(X;) ©000...000g(Xn)  (5)

—_— —— Y—
£Gy £Ga =Gy
That is, we add
0, = [2(1*5)("*1)J (6)

“0” symbols between the first and second halves of X, and
apply g recursively on each half. Note that £ > 0 is a “small”
constant that we will define later. To summarize: X is a
concatenation of 2”7 independent blocks, each of length
N = 2™, The function g(X,ng,£) adds a guard-band of “0”
symbols between each two blocks, and the length of these
guard-bands varies. Here is an illustration, for the case in
which n =ng + 2:

g(X/ o, 5)
X(l) 00...0 X(2) 00 X(3) 00...0 X(4)
N N N N
0 énwl 0 en(.+2 0 £n0+1 0

We remind the reader that G = G; ®© Ga © Gy is passed
through the DC. We denote the output of this channel by Y,
and denote the parts corresponding to Gy, Ga, and Gy by Y,
YA, and Yy, respectively. We further denote the application
of the TCon Y by Z = Y*, and denote the parts corresponding
to Y1, YA, and Yy by Zy, Za, and Zy, respectively. See Fig.
1, which is essentially [4, Figure 5]. Note that, in general, Z;
is formed by trimming off only the left side of Y. Hence,
typically, Z; + (Y1)* and Zy # (Yn)*. Also, we note that in
the typical case, Za = YA.

IV. TWO KEY LEMMAS

In this section we state the two lemmas that are key to our
main result. As we will see, the first lemma is specific to our
setting, while the second is more general.
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Fig. 1. The random variables X, G, Y, and Z.

A. Single-step bounds for the TDC

In the seminal paper [3, Proposition 5], it was shown that
a ‘+’ transform squares the Bhattacharyya parameter, while a
‘-~ transform at most doubles it. This was the key property
used to prove strong polarization in [14]. We will soon state a
similar claim for our setting. Our claim is significantly weaker
than the one derived for a memoryless channel in [3] and also
from the one derived for a Markovian setting in [15, Section
VI], but still strong enough to imply strong polarization.

We first set up some additional notation. We denote the
Arikan transform of the vector X by U = A(X). Recall that
the two halves of X are X and Xj;. Their Arikan transforms
are denoted V 2 A(Xj) and V' = A(Xy), and we have

Uzjoa =Vi+ V), Upy=V/,

where addition is modulo 2. As in the seminal paper, the binary
vector corresponding to ¢—1 is denoted by, . .., b,. That is, for
1<i< N =2",

i=i(by,.. . bp) =1+ b2k
k=1

The following lemma is cardinal to proving the stronger
polarization stated in Theorem 1. Recall that § is the deletion
rate, and that the guard-band length is given in (6), and is a
function of &. The proof will be given in Section V.

Lemma 5 (Bhattacharyya single-step bounds for the TDC):
Fix a regular and non-degenerate hidden-Markov input distri-
bution. Let X = A(U) be of length N = 2", comprised of
i.i.d. blocks of length Ny = 2™, each distributed according to
the input distribution. Let Y* = Z; ® ZA © Zy; be the result of
transmitting (X, ng, £) through the TDC. There exist my*(¢)
and m'M(&,0) s.t. for ng > m&" and all n > max{m™ ng+1}
the following holds. Let 1 <¢ < N and j = | (i + 1)/2]. Then,

) 3 ) 2
Z(Ui|U{_1aY*) < §N : Z(U1|U11_1a Z;a Zﬁ) + 2_N$ (73)

. 2
P SN 2. Z(V;|\V{ T Zi) + 277 if by =0 ()

< , 5 (7b)
{éN-ijlvl“,zr)? +27 N

if by =1(4).

We draw the reader’s attention to several important points.
First, note that in (7a), there is both an additive penalty of
2
-N3 3N
2 f =5

as well as a multiplicative penalty o , associated

with conditioning on Zj,Z;; as opposed to conditioning on
Y *. That is, there is a price to be paid for conditioning on
the pair of TDC outputs corresponding to g(X;) and g(Xp),
as opposed to conditioning on the TDC output corresponding
to g(X; ® Xj). Informally, this is because in the former we
have been given the correct partitioning of the output into
two halves (that are then further processed by the TC). The
inequality in (7b) shows us why such a penalty is worth
paying: since Z; and Zj are independent, we may now use
the standard arguments in [3] to reach a recursive relation. To
conclude, the lemma allows us to track the evolution of the
Bhattacharyya parameter after each polarization step.

B. The walking-to-running lemma

In the previous subsection, we’ve stated Lemma 5, which
gave upper bounds on the evolution of the Bhattacharyya
parameter. Due to the added penalties in these bounds, we
cannot use prior art in order to claim a polarization rate
of roughly 2-VN, Indeed, in this subsection we state the
second key lemma in the paper, Lemma 6, which implies
such a rate for the process in Lemma 5. Lemma 6 is stated
quite generally, in the hope that it will be useful to other
settings. We have termed it the “walking-to-running” lemma,
since we show that if we have “walking-speed” polarization
(for example, ~ 2~ W) at some stage of the process, this
implies “running-speed” polarization (~ 2‘\/ﬁ) during later
stages. In our setting, the “walking-speed” is guaranteed by
[4, Theorem 1].

Lemma 6 (walking-to-running): Let By, Bs, ... be i.i.d. uni-
formly distributed Bernoulli random variables. Fix constants
k>1,d>0,v>2%and m™ > 0. Let Zy,Z,,%Z5,... be a

2
random process s.t. for all n > mth,

{HNd Zn+27 N if B =0 ()
Zn+1 =

8
kNG Z2 427N if B =1('+). ®

Fix 3 « (O,%), the “running speed” parameter, and v > 0,
the “walking speed” parameter. For all ¢ > 0 there exists a
threshold n'h = nth(¢, B, v, k,d,v,m'") > m' such that if
for some n., > nfhfl we are assured “walking speed’:

Zp, <27@™7 ©)

then there exists n'* = nt"(¢’, 8,1, k,d, ny) > ny such that
above this threshold, with high probability, we are indefinitely
at “running speed”:

IE”(Zn<2‘Nﬁ, Vnznﬁh)zl—e’. (10)

V. PROOF OF LEMMA 5

The proof of Lemma 5 will be broken into three conceptual
parts. In the first part, we define the “Guard-Band in Middle”
event, termed GBM. That is, the event that after trimming
the output, it holds that the middle symbol originated from
the outermost guard-band. In the second part, we show that
under GBM, we have a recursive relation for Z similar to the
memoryless case, up to an extra multiplicative factor of %,
see (7b). In the third part, we show that the GBM event is
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Fig. 2. The GBM event.
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very likely. That is, the additive penalty of 27V in (7) comes
from bounding the probability that GBM does not occur.

A. The GBM event

In this subsection we define the “Guard-band in Middle”
(GBM) event, related notation, and consequences. Recall from
Section III and Figure 1 that Y* = Z = Z; ® ZA © Zy
is the result of passing Gy © Ga ® Gy through the TDC.
The GBM event occurs if Z is not empty and its middle
index 4mq = llleJ falls within Z . That is, GBM occurs
if Z; , originates from the outermost guard-band Ga. The
complementary event is denoted ~GBM.

We denote the left and right halves of Z = Y* as Zp, =
(Z1,..., Ziy) and Zgr = (Z; 441, - - - Z)z)), see Figure 2. The
main utility of the GBM event is this (again, see Figure 2):
since Z contains only ‘0’ symbols, under GBM

(Z1n)" = (Zy)",
(Zr)" = (Zn)"

That is, under GBM, the simple operation of trimming the two
halves of Y™ is assured to give us Z; = (Z;)* and Zf; = (Zy)*.
This simple observation will be used in the next subsection in
order to state a recursive relation. We end this subsection by
defining

(11a)
(11b)

Lo

|Zi| = |Zq] -

Since Y* does not contain leading nor trailing ‘0’ symbols,
Ly equals the sum of the following: the number of trailing ‘0’
symbols in Zj, the length of ZA, and the number of leading
‘0’ symbols in Zy. Hence,

Lo
=Z{®000...00 ©Z; . (12)
Thus, by (12) and (11):
L Lo
GBM =Y"=(Z1)"®000...00 o(Zr)" (13)

B. Bounding the Bhattacharyya parameter using GBM

In this subsection, we derive an upper bound on the Bhat-
tacharyya parameter corresponding to an index 7. In order to
save space we use the following shorthand in the upcoming
probability expressions: u{™! is short for U;j™' = u{™!, z is
short for Y* =z, and 0 and 1 are short for U; =0 and U; = 1,

respectively. To illustrate, we use both the long and short
notation in the following expression for the Bhattacharyya
parameter corresponding to index .

i—1 * ]P)(UZ :O,Uf71 :uzfl’Y* :Z)
Z(U1|U1 7Y )_ LZ; \J X]P)(Ui:l’Ufflzuzi—le*:z)

ui™tz

\/IF’(O ui”

u1 Lz

Lz) P(1,uit,z)

By the law of total probability over {GBM,-GBM]}, the
above equals (for n > ng+1, assuring a guard-band was added):

- (P(0,ui™",2,GBM) + P(0,uj™"
i—17z X (]P(]-aulf

> \/P(0,ui 2, GBM) - P(1,ui"!,2,GBM)  (14a)

,z,-GBM))
!,2,GBM) + P(1,u{™",z,-GBM))

P(0,ui™, z, GBM)-P(1,u}”
+P(0,ul”
+P(0,ui”

! z,-GBM)
!z, -GBM)-P(1,ul", 2z, GBM) (14b)
!z, -GBM)-P(1,ui", z,~GBM)

We will bound both the sum in (14a) and the sum in (14b).
For the sum in (14a), we have:

> VP0,ui Y = 2,GBM) - P(1,ui !, Y* = 2,GBM)

11
uiT,z

13) Z
VA4

(0 uit, Zi =21, Zi =2y, Lo=|z|-|z; |- |2z, GBM)
(1 ui™, Zi =21, Zi=zR, Lo=|z|-|z{ |-|z5], GBM)

P(0,ui™, Zf =25, Zk =2k, Lo=¢, GBM)
\ *P(1,ui™, Zi =2, Zi=2i, Lo=(, GBM)

P(0,ui, Zj, = 21, Zg; = 2, GBM)
\ xP(1,ui™, 2} = 2,23 = 23, GBM)

Z P(Ovuzfla ZI*:Z;a ZﬁzzﬁvGBM)

D2N. .
i—1 *_ % * %
2 i N P(1,uy, Zf=2{, Zjj=2j;, GBM)
ki B ||
i—1 * _ % * %

§ . Z P(0, uj ) ?1 =zf, Zj; = zy)

i— * _ %k * _ %
S 2 wivl gt xP(Luy 2y = 2{, 2y = zyy)
3

2N Z(U|U{ ! ZI’ZII)

In (a), the length of Ly under GBM is at least 1 (the middle
bit of Y™ is a GB bit, under GBM), and is at most %N, since:

I G @) X ) 2*(§n0+1)
<G| <1X]- .
o<lalx) (14220
9-(Eno+1) \ i
N (12 93y (15)
1-2-¢ 2

(i) follows from (5) and (6), and by summing all GB lengths
as in [4, Lemma 22]. For (ii), recall that £ > 0 is a constant
and ng > m{P(£). Thus, we take my" large enough such that
(i1) holds.



For the sum in (14b) we have:

P(0,ui™! GBM) ‘P(1,utt, 2, ~GBM)
+P(0 “1 1z, -GBM) - P(1,ui™!, z, GBM)
“1 Lz \| +P(0,uit 2z, ~GBM) - P(1,u{™!, 2z, ~GBM)
B Z P(0,ui™! z ,GBM) -P(1,u'!, z,~GBM)
- &\ +P(0,ui™,2,-GBM) - P(1,ui™!, 2)
uj 1z
< P(uf? \Z) - P(l,u’fl,z,—'GB‘M)
= &\ +P(0,ui 2, -GBM) - P(ui!, 2)
i,

VP (i

-1
yZ

P(ui,2)\/P(~GBMJui™!, )

) Z) ’ P(Ui_l, z, _‘GBM)

u

ks

N

i-1
ui™,z

< /P(~GBM)

The last inequality follows by the Jensen inequality, applied
to the concave function /- .
Combining the bounds for the two sums in (14) yields

) 3 )
2N Y) < SN 20U %7 Z5) + /B-GBM)

To complete the proof of (7a), it remams to show that the term

VP(-GBM) is smaller than 2 s , for large enough n and
ngo. This will be shown in the next subsection. Lastly, since
Z; and Zj; are i.i.d., the second inequality in our lemma, (7b),
is a direct consequence of [3, Proposition 5].

C. The GBM event occurs with high probability

In this section we show that there exist m$'(¢) and
mt(¢,6) such that for ng > m&® and n > max{m'™ ny+1}

we have N
VP(-GBM) < 27V°

Proving this proves Lemma 5: for it, we take m"(¢,8) equal
to the one developed in this subsection and take mth to be the
maximum of the m{® appearing in the previous subsection and
this subsection.

The proof follows from a strengthening of [4, Lemma 23].

(16)

That is, we show that there exist thresholds mS", m*® and a
constant 6 > 0 such that
P(-GBM) < 2702079 17)

for all ng > mf® and n > max{m*™®
that the constant ¢ satisfy £ € (0,
yield (16), for large enough n.
In [4, Lemma 23], the RHS of (17) is weaker: n is replaced
by nyg. For lack of space, we only give an outline of the differ-
ences between our proof of (17) and the proof of the weaker
claim in [4, Lemma 23]. The main difference lies in bounding
the probability that too much of Zj is lost due to trimming.
That is, event A’ in [4, Lemma 23, Subsection VII.C]. The
weaker result follows by showing that the probability of a
certain prefix of the leftmost block being completely lost due
to trimming and deletion is upper bounded by a term that

no +1}. Thus, if we require
), standard manipulations

decays exponentially with Ny, the length of the block. In
our proof, we show that for any prefix of G, the number
of block symbols is always greater than the number of guard-
band symbols. Thus, the probability of such a prefix being
lost due to deletion and trimming decays exponentially with
its length. The stronger bound then follows by taking the prefix
length to be proportional to N, as opposed to Nj.

VI. PROOF OUTLINE FOR OUR MAIN THEOREM

The proof of Theorem 1 follows by combining Theorem 3,
Remark 4, Lemma 5, and Lemma 6. In essence, relabel the n
in Theorem 3 as 7 and take ¢’ = £. Next, fix v € (0,3) and
take 7 large enough so that (3) and (4) hold, with Y* in place
of Y, for a fraction of at least Z — ¢’ = Z - £ indices. Recall
that this dictates ng = |[vn| by Theorem 3. Furthermore, take
7 large enough such that ng > m{® and 7 > m'®, where the
right-hand sides are given in Lemma 5. We also take n large
enough such that ;él‘ > 1 — ¢, which is possible by (15).
We now show that if we take 7 > nil, then

ZUU ) € 2ot Y Lo’

for at least (Z-5) -5 =7~ % of the indices as n — oo.
The inequality (a) results from the TDC being a degradation
of the deletion channel. That is, X - Y - Y* form a Markov
chain in that order. Inequality (b) indeed holds for the above
fraction of indices by Lemma 6. That is, the By,..., B, in
Lemma 6 correspond to the index bits by,...,b, of 7, the
Z,, process is set to Z(U;|Ui™1,Y*) and recall that 7 > ntP.
Notice (8) is satisfied by Lemma 5 (x =3,d =1 and v = %)
and condition (9) is satisfied from (3) for a fraction of at least
- § indices. We have proven (1) from Theorem 1, i.e. the
strong polarization of the Bhattacharyya parameter. The proof
of (2) follows along the same lines as that of (4), and will be
given in the full version. In total, both (1) and (2) are satisfied
for at least Z — € of the indices, as n — oo.

VII. CODING SCHEME AND COMPLEXITY

Our encoder is the same as that in [4], where we only
differ in the selection of ng, i.e. the step from which we start
adding guard-bands. Still, the encoding complexity remains
O(Alog A) for a codeword length of |G| =

Our decoder is essentially the one described in [4, Subsec-
tion IV]. That is, a base trellis is constructed, and then ‘-’ and
+’ operations are applied to it. One major difference is that
in our case, the base trellis corresponds to all of the received
word. This is in contrast to [4], in which N /N base trellises
are constructed — one for each block. Since we operate on
a larger trellis, our complexity is O(A*), as opposed to at
most O(A?) in [4]. As explained in Theorem 1, this added
complexity is compensated for by a reduced probability of
error. That is, we reach the same asymptotic bound as [14].

Note that in our analysis, we’ve analyzed the probability of
the middle index falling within the outermost guard-band (the
GBM event). This was important in order to prove Theorem 1.
However, as opposed to [4], no corresponding operation of
partitioning the output is carried out by the decoder.
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APPENDIX A
DECODER

As in [4], we will use a trellis 7 to represent the joint prob-
ability of the deletion channel input and output. For simplicity
of exposition and lack of space, we describe the memoryless
input case here. We perform ‘-’ and ‘+” operations on 7T,
which merge two-edge paths in 7 and result in trellises with
half the number of sections: 7% and 71!, respectively. A
pair/triplet of sections will be referred to as a sub-trellis s7.
After a ‘=’ or ‘+’ transform, each s7 is merged into one
section. Our decoder will differ from that of [4, Section IV] in
one main point: we incorporate the probabilities of the GB bits
into our trellis 7. That is, 7 is one big trellis encompassing
all of Y.

The decoder recursively performs ‘-’ and ‘+ transforma-
tions on 7T as follows. First, we perform n ‘-’ transforms,
creating 7100000 We consider the two single-edge paths
from the left upper vertex to the right bottom vertex, which
represent the two possible values for Up. The decision on Uy
(if it is not frozen) is by the most probable value, i.e. the
edge with the largest probability. Using Up, we next create:

n-1

n (1]
T[OOO...Ol] — (7‘[000...0]) . We use T[OOO...Ol] to decide on

Uy. We repeat this procedure such that with trellis T 1bob1.--bn]

we decide on the value of (Afi(bhm)b“) (if it is not frozen). See
Figure 3 for an illustration of the decoding process.

7'[000..00];» decide Uy
/: 7—[000...01]4» decide [,rl

[00] o
N - 110]
R Rty e
- F1111..10]— Gecide Uy_s
s L 11— decide Uy,
S A R R

trellis polarization depth

Fig. 3. Recursive trellis transforms.

For an input distribution with |S]| states, the complexity of
our decoder is bounded by

Z 271 .8N|S|P (27 +1)?- b I e O(N*)
= OW—’ [N —
(a) () (C)

where j is the trellis polarization depth (i.e. the number of ‘+
or ‘=’ transforms performed on 7). (a) is the number of times
we return to the trellises of depth j. (b) bounds the number of
calculations on each sub-trellis of a given trellis of depth j.
(c) is the number of sub-trellises in a trellis of depth j. Note
that we think of |S| as a constant.

In the first ny in polarization steps on 7, the ‘=’ and ‘+’
transformations are as defined in [4, Definitions 5,6]. We refer
to this as the ‘without GB’ phase. Next, we merge all paths in

the GB locations in the trellis, such that each GB is merged
into one section. In the following n; transforms, referred to
as the ‘with GB’ transforms, each s7 includes a GB section
between two non-guard-band sections. Thus, we first merge
the two-edge paths in the left section and the GB section.
This results in a two-section s7, as in the ‘without GB’ case.

We may now perform the ‘-’ or ‘+’ transformation as before.
See Fig. 4 for an illustration.
T

X(1) GB  X(2) GB X(3) GB  X(4)
Y

Ny Ny ez Ny Ny

7’ [bo...bng]
Perform ng ‘without GB’

merge paths in GB locations:

tranSforms’ ) -

ST T

Perform ‘with GB’ transform:
Step 1: in each sub trellis s7, merge two-edge

a
paths in the left section and GB section: b g
(a merge b, e merge f)

T

Tlbo--bng1]
—_——~—
Step 2: in each sub trellis s7, merge two-edge
paths as in the ‘without GB’ transform: a ©
(a b merge c, e f merge g) b Il f
c g
T

Fig. 4. Trellis evolution in the decoder.

APPENDIX B
HIGH PROBABILITY OF GBM — PROOF SKETCH

We state and prove the following Lemma, as a supplemen-
tary reading for Subsection V-C. This lemma states that the
GBM event, i.e. the event where the middle bit in the TDC
output is a GB bit, occurs with high probability.

Lemma 7 (Upper bounding /P(-GBM)): Let X be of
length NV = 2™ and drawn as described in Lemma 5. Let Y* be
the TDC output for input g(X,ng,&). Let GBM be the event
defined in Subsection V-A. For a fixed deletion rate ¢ € (0, 1)
and a guard-band length parameter 0 < £ < % used in (6),
there exists an m'(¢,4), which is a function of the input
distribution as well, such that:

VP(-GBM) < 27V°

for all n > m™(¢,8) and ng > m(€) = log2_g(1_§_5 )




Proof: As mentioned previously, the proof resembles the
steps taken in the proof of [4, Lemma 23]. We define the
following length differences due to channel deletion:

a=|Gi| - |Y]
B=|Gal-[Yal (18a)
v = |Gul - [Yul,

and the following length differences due to trimming:
o’ = |Yi| - [Z]
B =Y al-|Za| (18b)
7' = Yu| - |Zn| .

We observe the event: An A'n Bn B nCnC’, where
A, B,C are events constraining the number of deletions in
Gi1,Ga, Gy, and A’ B, C’ are events constraining the num-
ber of bits trimmed in Y, Ya, Yy These events will be
defined explicitly in a moment, but first, the main property
of these events is:

AnA'nB'nBnCnC' = GBM.

That is, under all of the events A, A’, B, B’, C, C’ we are under
the GBM event. The justification of this property will soon
be given in (21).

We define:
A={8Gi| -l << 8|Gy|+ 0} (19a)
A'={0<a <} (19b)
B={B<0|Ga|+ 0} (19¢)
B'={p" =0} (19d)
C = {6|Gu| - <~ < 8|Gu| + £} (19)
C'={0<~ <} (19f)

where ¢ is some length which is chosen such that not all of

the GB will be removed under event B. Specifically we select:
~ 1-6
l= T&L

For this selection, we notice that under the event A n C, the

deletions in Gy, Gy are less than 1%‘5|G1| of the bits. Also,

(20)

under A’'nC’ we will trim less than 1%6|Gq| bits from Zp, Zy.
Thus, under AnA’'nC'nC’, we stop the trimming of Y prior
to the received GB bits in Ya. We get: AnA'nCnC’' = B’.
Next, we notice:

{AnA'nBnCnC'}

< {AnA'nBnB'nCnC'}

(é){ a+a' <y+y +4,-5 }

and y+~' <a+a' +4, -0
{12 < |Za|+ |2l
< GBM

(a) holds since under the event AnA'nBnB' nCn(C’,

21

and |ZH| < |ZA|+|Z[|}

19¢),(19€),(19 R R
O S (T T B S, SR VA
(2:0) (5|GH|—Z+4£—£
= (S|GH|+2€A
(19a),(19b) ,
> o+ o .

and v+~ <a+a’ +/£, — 3 by the same steps.
From (21) we get: P(GBM) > P(AnA'nBnCnC"). We
are interested in the complementary event, which will satisfy:

P(-GBM) <P(-{AnA'nBnCnC'})
CP(=4) + P(~4) + P(~B) + P(=C) + P(~C")
Qop(~4) + 2P(-4") + P(~B)

(a) is by the union bound and (b) results from the symmetry
between events A, A" and C,C’ respectively, by (19).

P(-A) and P(-B) may be bounded using Hoeffding [16,
Theorem 4.12], as in [4, equations (89),(90)]. In Lemma 8 we
bound }P’(ﬁA'). In total, we reach the following upper bound
for P(-GBM):

P(~GBM) < 2P(~A) + 2P(-A") + P(~B)

(1-6)2 ,(1-2¢)n
<2-2e¢ 128 20720
_p.g(1-8)n
+2.¢ D2
1-52 5(1-e)n
+2¢ 32 2

)

where D > 0 is a constant dependent on the input distribution
and on the deletion rate J. The value of D is given explicitly
in the proof of Lemma 8. We note that when bounding P(A")
we used the fact that ng > mi*(¢) > log275(#), and the
qualities of the input distribution we fixed.

Finally, for 0 < ¢ < % and for a large enough n:

_ =2 ,(1-26)n o A2
P(~GBM) < 8¢~ 12 2 <9 FN?®

specifically, this holds for:

%logQ(%)v

1 128-log,(5)
e logs (e ):
128-2
(1-0)2

n>m™(€,6) £ max

1—21§—§ log,

A. Bounding the probability of event - A’

The following lemma is used for the proof of Lemma 7. In
this lemma we develop a bound on IE”(ﬁA’), the probability
that ‘too many’ bits were trimmed in Yy. The bound we reach
decays with n (in contrast to the weaker bound in [4, equation
(94)] which decays with nyg).

Lemma 8 (Upper bounding P(-A")): Let A’ be as in (19b),

P X
and let m&" (&) > log2_5(1 2 ) Then, for ng > m§*(€):

P(-A) < P2

where D > 0 is a constant dependent on the input distribution
and on the deletion rate §.

Proof: We consider the event A”, defined as follows.
Under the event A”, some index j < /in Gyis a ‘1’ and
was not deleted (where ? was set in (20)). Clearly: A” = A’,
hence,

P(-A") <P(-A").



-A" is the complementary event where no index j < /in Gy
is a ‘1’ that was not deleted.

We denote #% as the number of bits to the left of index j
in g(X,no,&) that originate from X, and denote #{,; as the
number of GB bits to the left of index j. For ng > m§"(&):

#ho>#ln, Vie{l,2,..., A},

That is, there are more bits from X than GB bits, for any

prefix of G. The proof of (22) is given in Lemma 9. The

proof follows from the recursive manner in which the GBs

(15) ~(gng+1

are added and by |G| < |X|(1 + %
recursive step.

By (22), there are at least % bits from X prior to index j
in G, ie.:

(22)

) holding in each

iod
X275

(23)
For the case of X distributed according to a regular Markov
input distribution with states S, which we assumed is not
degenerate, there exists an integer 7 > 0 and a probability
0 <pg <1 s.t. for any state s € S:
P((Xy,Xs,...,X;)=(0,0,...,0)|So=s)<po. (24
That is, the probability of a ‘1’ bit in a series of 7 bits in
X is greater than 1 — pg. For each 7 bits in X, the probability
of at least one of them being a ‘1’ bit that was not deleted in
the channel is greater than:

(1-po)(1-9).

There are [ §( /TJ series of X bits (of length 7) up to index

£. Thus, by the Markov property:

B(-A") < (1 (1-po)(1 - 2))#5/7]
o1 -6y + )77

We continue to upper bound the RHS from above:

D (po(1 - 5) + )L 5]
< (po(1 - 8) +8) T

(g) (po(1-6) + 5)%2<1—5><7H>,1
= (po(1-9) + 5)@%2(1—5)"
< (po(1-8) +§)#2-207"

1 1 1-6 (1*€)n
— e 2 In( orrtsyes ) 22

We mark: D = iln(m)%‘s, where 7,pg satisfy
(24). We note that D > 0, since 0 < po(1-0) +0 < 1.
Finally,

P(-A') <P(-A") < e P2"

B. Guard-band presence in g(X)

To show (22), we state and prove the following lemma.
1_375 ) then for any n > ng + 1
and for any given index j in g(X,ng,£),

#x 2 o -
where #é( is the number of X bits in the prefix up to j in
9(X,n0,&), and #,p is the number of GB bits up to j.
Proof: We divide our proof to three claims.

Claim B.1: We assume there exists an index jo for which
our lemma does not hold, i.e. #3 < #%. Then, there must
exist some index j; which is located at the right edge of
some guard-band that also does not satisfy the lemma, i.e.
#% < #ip-

Proof: 1If jo is an index of a GB bit, we may continue to
the right edge of the GB containing jp, making the rightmost
index of this GB the desired j;. This j; satisfies:

#x = #% < i < #ap -
If jo is an index of an X bit, we may continue to the left
edge of the block of X containing jp, making the rightmost

index of the GB to the left of this block the desired j;. This
J1 satisfies:

Lemma 9: If ng > 10g27§(

#x < #X < #in = #ap -
| |
Claim B.2: We define index jniq as the rightmost index of
the middle GB of ¢g(X). We remind that g(X) is created from
Ny =2"1 blocks of data, each block of length Ny = 2"°.
If, #5 > #45 for all ny, then,
# 2 #ip
for any index j in g(X).
Proof: We name the series of bits leading to 7,34, where
g9(X) was generated according to a given ng and np, as:

(nla nO)scr
For a general ny, the full g(X) will be the concatenation:
(nl,no)ser ©® (n1 - l,no)ser ©...0 (2,no)ser ® (1,n0)ser ® X(Nl) .

See example below, for g(X) = (2,70 )ser © (1,70 )ser © X (4).
jmid

|

(27 n())ser (1 n())ser

We notice the following quality. For each index j; located
at the right edge of some guard-band in ¢g(X), the series of
bits to the left of j; are concatenations of the building-blocks:

{(iv nO)ser}ieJ

where J is some subset of {1,2,...,n1}.



Therefore, if #J mid > #J mid s satisfied for any nq, then each
building-block (n1, no)Ser consists of more (or equal) bits of
X than GB bits, leading to:

#% > #n -
for any rightmost index j; of a GB in g(X). By Claim B.1,
this leads to: #% > #¢,p Vjie{l,...,A}. [
Claim B.3: For any ng, #g('“id > #é‘ﬁd.
Proof: In the series of bits up to jniq, there are half of
the bits of X:

#Jm]d — 2n—1

Also, up to jmiq, there are half of the GB bits of g(X), plus
the additional bits from the middle GB'

IXI (25)

J““d = f(A N)+ (26)
The total number of GB bits satlsﬁes:
lg(X)[-1X] = A-N

oo () @7)

n —¢no
< 2t (%—2*5 )
where the last inequality holds since 27¢ € (0,1) for £ > 0.
The length of the middle GB satisfies:

¢, < 2(1 &) (n-1) < 9n-1 9= Eno7 28)
where the last inequality is by n > ng + 1. Thus,
#%{mid @5 gn-1

(@) -
> loom (fE ) +2n-1.9=¢no

(27),(28) (29)
’ 1
> by (A -N)+ gn
(26) P
2

where (a) is satisfied for ng > log,- 5(1

)andany§>0

|
By combining the results from Claims B.2 and B.3, we have
proven the Lemma. ]

APPENDIX C
PROOF SKETCH OF THE WALKING-TO-RUNNING LEMMA

We now prove Lemma 6.

Proof: We will assume WLOG that v ¢ (O, 3) For
example, set v := min{y7 i}, and note that if (9) holds for
the “old" value of v, then it surely holds for the “new" value
as well.

Let us first define the process Z,, as:

Zy if By =0(=

Zpi1=2 kN~ . n>ng (30
e {ZZ it By =1y "2 G0

Z =27 (30b)

This process is defined from some starting point n, > nf;l,

where nth is a parameter that will be fixed later on. Note that
the process Z, is “simpler” than Z,: the inequalities in (8)
and (9) have been replaced by equalities, and the additive term

27" in (8) has been removed from (30a). The price we pay

for this simplification is a multiplicative factor of 2.
Let n!® > n,, be a parameter that will be fixed later on as
well. We now fix v, and v such that,

1

2 << Y (31a)
1

0<ub<u<§ (31b)

We define the following events for the processes Z,,, Z,:

N2 {Zy>27N", Vi > ny ) (32a)

Sy 2 {Z, <27V, Vn 2 ny} (32b)
_ 1

Se 2{Z, < ﬁQ‘Nﬁ, ¥ > nth (32¢)

Sq2{Zn < Zn, Vi > ny ) (32d)

The first three events discuss bounds concerning the new
process Z,, and the forth discusses a relation between Z,,
and the original process Z,,. For the events above we list the
following claims:

Claim C.1: For all €, > 0 there exists an n'(eq, v, K, d, 7,)

s.t. 1fnw>n , then:

P(2,) > 1-¢q (33)

Claim C.2: For all ¢, > 0 there exists an n})il

s.t. if ny, > niil, then:

(ebvl/a Hada Vb)

]P(Eb) >1-¢ (34)

Claim C.3: For all €. > 0 there exist nth(ﬂ,/i d,vp) and
n (B, €c, M, £, d, 1) s.t. if ny >0, n > n and it >
Ny, then:

P(S.) > 1 - e - P(=5) (35)

Claim C.4: There exists an 7} B(v,74) st if ny > fi}: and
if Z > Zp,, then event ¥, implies ¥4, i.e.:

T > T, = P(Sq]8,) = 1 (36)

The proof for Claims C.1-C.3 is briefly discussed in the
following subsection. The proof of Claim C.4 is given in
Subsection C-B. We set:

6l

6azebze(::§ (37)
We also set the starting point:
Ny 20t 2 max{nal,nzlh,nf;‘,ng‘ mth} (38)
and set:
nth = max{ncn,nw +1} (39)
Notice that if Z,,  satisfies (9), then by (30b), an > Zn,

Using the four claims above, we can bound the probabilities
of events Y., >4. For 2., we have:

(a)

P(X >1-¢.—P(=-X2

( C) © c ( b) (40)
>1—ec—eb



Where in (a) we applied (35) from Claim C.3, and in (b)
we applied (34) from Claim C.2, since their conditions are
satisfied by our selection of n,, and nﬁh in (38) and (39).
We next note that:
P(Zq) 2 P(Z4|%.) -P(3q)
@ (41)
> 1-(1-€)=1-¢,
In (a) we applied (33) from Claim C.1, and (36) from Claim
C.4, since their conditions are satisfied by our selection of 7,
in (38), and by (9) and (30b).
By inspection, the intersection of . and X, implies the
event in (10). Thus,

P(Zn Loy ngh)
IN

> P({Zn < %2_1\’5, Vn > nﬁh} ﬂ{Zn <Z,, Yn> nw})

=P(X.nXy)
= 1 —]P)(—!EC U —|Ed)
In the last equality we denoted events —-3.,-; as the

complementary events of X, >, respectively.
We now upper bound P(-X. U -X,):

]P(—‘ZC U —\Zd) < P(—\EC) + IP(—‘Ed)
(40),(41)
€q + €p + €
Gn
= €
Thus:
1
]P’(Zn < ﬁTNﬁ, Vn > nﬁh) >P(Z.nXy)21-¢

A. High-level discussion on the proof of claims C.1-C.3

The proofs of Claims C.1 and C.2 are similar and will
be given in the full version. For now, we give an outline of
the main steps. The first step is setting some threshold Ay,
for which Hoeffding [16, Theorem 4.12] assures us that the
fraction of {Bi‘*']-}?:nw which are 0 (‘=") and the fraction of
{Bis1}is,, which are 1 (‘+’) are both close to half, for all
n > ny + Aqn. When this occurs, we can derive the “soft”
bounds in (32a) and (32b) for all n > n + Ayy,. For the initial
period of ny < n < ny + Ayn, we use the initial condition
(30b) and take a large enough n, to set a “low enough”
starting point. The low starting point promises we will not
cross the “soft” bounds during the initial period, even for the
most problematic cases (which we can prove are when only
‘+’ or only ‘-’ are drawn).

The proof of Claim C.3 will also be given in the full version.
The main step in the proof is using event X in order to replace
Z, in (30a) with the bound from (32b). This leads to a bound
on Z,.1, which, given B,,,, is a deterministic function of
n. Since Z,, is bounded by 272", the multiplicative factor
of 2- kN9 is neglectable for a large enough n. That is, the
function of n bounding Z,,,; is monotonically decreasing for
a large enough n. Next, using Hoeffding [16, Theorem 4.14]
once more, we complete the proof for Claim C.3.

B. Proof of Claim C.4

Proof: We define processes Z,’17 Z;; which will assists us
in proving the claim. First, Z, is defined to be:
if By =0(-

, kN®. 7, +272""
B if Boyp=1(+)

n+1 r2 _on
P/
’

Zy = Zn,

n

i.e. Z, from (8), with the weak inequality replaced by equality.
By the monotinicity of the terms in (8) and the above, we
easily prove by induction that: Z,, < Z;L, Vn > ny.

Next, Z;; is set to be:

., {mvd Zn+272" i B =0(-)

n+1= "2 n . 9 w
T RN Z0T 427" i By = 1(4)
Z,,= 27" 42)
For any given draw of B,,_, ..., By, the processes Z;L, Z;; go

through the same transformations, and the only difference is
that the starting point of Z;; is at a higher value, by (9). Again,
by monotinicity we prove by induction that Z;,, < Z;,’ , Yn2
nw. Next, we prove that under event >, from (32a), Z,, of
(30) dominates Z;. That is,

” —
Yo=>Z, <2y, YN2ny.

2_N‘Ya

_ ) (31a)
Under X,: Z,, > ,  Vn >n. Since v, < 7, for n >
a 1 7

nf}l’(%'ya) ST We get yn 2 yan+ 1. Meaning Z,, satisfies:
ANT-Zy 22y > 2722
KNT.Z2 >72 > 272" o2

If we assume Z,, > Z;:, then Z,,.1 > Z;:H(regardless of By41),
since:

_ kN®-Z, + kN®-Z, if Bps1 =0(‘=")
Zn+l = d 52 d 72 - ) T2 Ty
kN®-Z2 + kN Z2 if By =1(+)
@ kN%-Z, +272" if By =0(=
T kNG Z2 42727 if Bu=1(+7) v
@ [N Z +272"  if Bpyy =0 (=
> ”2 yn 5 n2 Nw
kN Z " +272" if By =1(+)

"
= Zn+1

where (a) holds under the hypothesis that Zy > Z;;.

We remind that: Z,, "2 2-(2")" & Z, .Thatis, Z,,, Zy,
begin at the same value. Thus, we may show by induction that
under o, Z, > Z., Vn >ny. We have shown:

Vn > ny .





