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Abstract

Large Language Models (LLMs) have shown to
be capable of various tasks, yet their capability
in interpreting and reasoning over tabular data
remains an underexplored area. In this context,
this study investigates from three core perspec-
tives: the robustness of LLMs to structural per-
turbations in tables, the comparative analysis of
textual and symbolic reasoning on tables, and
the potential of boosting model performance
through the aggregation of multiple reasoning
pathways. We discover that structural variance
of tables presenting the same content reveals
a notable performance decline, particularly in
symbolic reasoning tasks. This prompts the
proposal of a method for table structure normal-
ization. Moreover, textual reasoning slightly
edges out symbolic reasoning, and a detailed
error analysis reveals that each exhibits differ-
ent strengths depending on the specific tasks.
Notably, the aggregation of textual and sym-
bolic reasoning pathways, bolstered by a mix
self-consistency mechanism, resulted in achiev-
ing SOTA performance, with an accuracy of
73.6% on WIKITABLEQUESTIONS, represent-
ing a substantial advancement over previous
existing table processing paradigms of LLMs.1

1 Introduction

Large Language Models (LLMs; Brown et al. 2020;
Chowdhery et al. 2022; Zhang et al. 2022; OpenAI
2022, 2023a,c; Touvron et al. 2023a,b; Li et al.
2023b; Lozhkov et al. 2024) have revolutionized
the field of NLP, demonstrating an extraordinary
ability to understand and reason over rich textual
data (Wei et al., 2023; Wang et al., 2023; Zhou
et al., 2023; Kojima et al., 2023; Li et al., 2023c).
On top of LLMs’ existing capabilities for NLP, fur-
ther bolstering their potential for decision-making
by drawing from external knowledge sources re-
mains an exciting research frontier (Nakano et al.,

1Our code is available at https://github.com/Leolty/
tablellm.

Figure 1: Demonstration of the challenges faced by
LLMs in comprehending and interpreting table struc-
tures. In the first example, the LLM correctly iden-
tifies table headings but struggles to accurately de-
termine their positions within the table structure. In
the second example, the model using Python Shell as
an external tool incorrectly interprets headings (located
in the first column) as column headers, leading to subse-
quent errors in the generated code. Some logos in this
and subsequent figures are generated using OpenAI’s
DALL-E3 (OpenAI, 2023b).

2022; Mialon et al., 2023; Hao et al., 2023; Jiang
et al., 2023b). Amongst such knowledge sources,
tabular data serve as a ubiquitous kind due to their
expressiveness for relations, properties and statis-
tics, and their being easy to construct by human
curators (Chen et al., 2020; Wang et al., 2021; Xie
et al., 2022).
Like humans, LLMs can also benefit from read-

ing tabular data accompanying text. However, as
indicated in Fig. 1, the structural nature of tables
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Figure 2: Illustrative examples sampled from the WIKITABLEQUESTIONS dataset, comparing textual reasoning
(via direct prompting) and symbolic reasoning (via python shell interactions). Top: The table and its title. Bottom
Left: In the first question example, textual reasoning yields an incorrect interpretation due to limitations in precision
localization, while symbolic reasoning accurately locates the answer using Python code. Bottom Right: In the
second question example, textual reasoning successfully identifies the answer, but symbolic reasoning incorrectly
treats the special total row as the final answer.

presents unique challenges to these models. Inher-
ently designed to parse and process vast expanses
of unstructured textual content, LLMs confront a
paradigm shift when facing tabular data. Lineariz-
ing tables to suit the LLM paradigm can obscure
the inherent structural and relational information,
making tasks such as precise localization and com-
plex statistical analyses. Additionally, the design
variations in tables, whether ‘column tables’ with
headers in the first row or ‘row tables’ with headers
in the first column, further complicate the interpre-
tation process. Beyond structural concerns, numer-
ical reasoning and aggregation over tabular data
present another layer of complexity. While LLMs
excel at textual understanding, they occasionally
stumble when confronted with tasks necessitating
precise numerical computation within tables. More-
over, tables often present a dense amalgamation of
textual or numerical data. The sheer volume and
intricacy of this information can risk overshadow-
ing crucial details, potentially impeding the LLM’s
decision-making abilities (Shi et al., 2023).
With the emergence of instruction fine-tuning

techniques (Wei et al., 2022; Chung et al., 2022)
and the application of Reinforcement Learning
from Human Feedback (RLHF) (Stiennon et al.,
2022; Gao et al., 2022; Christiano et al., 2017),
LLMs have witnessed significant enhancements in
their alignment capabilities, paving the way for

transitioning from few-shot to zero-shot learning
settings (Kojima et al., 2023). In light of these
advancements, this paper delves deep into the the
challenges and intricacies of tabular understanding
and reasoning by LLMs, exemplified in Fig. 2. We
organize our exploration around three pivotal re-
search questions: (1) How well do LLMs perceive
table structures and how can we ensure robustness
against structural variations? (2) Comparing tex-
tual and symbolic reasoning for table data in LLMs,
which prevails in effectiveness, and what advan-
tages and challenges manifest in each strategy?
(3) Will the aggregation of multiple reasoning path-
ways enhance the accuracy and reliability of tabular
data interpretation by LLMs?
In pursuit of answering the aforementioned re-

search questions, we conduct experiments on SOTA
LLMs such as GPT-3.5 (OpenAI, 2023a). Our find-
ings in §4 underscore that while LLMs are adept
at semantically interpreting tables, their capability
to resist structural variance (§4.1) and understand
table structures (§4.2) is suboptimal. Motivated by
these findings, we propose a table structure nor-
malization method to enhance LLMs’ resilience
against structural table variations in §4.3. Intrigu-
ingly, §5.1 reveals that textual reasoning surpasses
symbolic reasoning in contexts with limited table
content, defying conventional conceptions of sym-
bolic reasoning’s dominance in other domains (Mi-
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alon et al., 2023). Both textual and symbolic rea-
soning strategies encompass different advantages
and challenges, which is detailed in §5.2. To har-
ness the unique strengths of each, we implement
mix self-consistency mechanism (§6) that remark-
ably attains SOTA performance on Table QA, ex-
emplifying the synergistic potential when both rea-
soning strategies are aggregated.

2 Related Work

PLMs for Tabular Data Processing. Tabular rea-
soning presents unique challenges due to the fusion
of free-form natural language questions with struc-
tured or semi-structured tabular data, for which
PLMs jointly trained on tables and text are devel-
oped in the past few years, including TaBERT (Yin
et al., 2020), TaPas (Herzig et al., 2020), TAPEX
(Liu et al., 2022), ReasTAP (Zhao et al., 2022),
and PASTA (Gu et al., 2022). The recent devel-
opment of TableLlama (Zhang et al., 2023a), an
open-source model excelling in a variety of table-
based tasks, adds a new dimension to the field.
Despite these advancements, recent studies have
identified generalization issues under table pertur-
bations (Zhao et al., 2023; Chang et al., 2023),
raising concerns regarding the robustness of PLMs.
Specific efforts like LETA (Zhao et al., 2023) and
LATTICE (Wang et al., 2022) have investigated
and mitigated the vulnerabilities related to struc-
tural perturbations of tabular data, like row/col-
umn shuffling and table transpose, through vari-
ous techniques, including data augmentation and
order-invariant graph attention. However, these ap-
proaches require whitebox access to the models,
limiting their applicability to SOTA LLMs with
only blackbox accessibility, a limitation directly
addressed in this work.

Tabular Data Processing with LLMs. Recent
advancements in LLMs, notably within few-shot
learning, have demonstrated their potential for tabu-
lar reasoning. Chen (2023) leveraged the Chain-of-
Thought (CoT) technique (Wei et al., 2023) to illus-
trate LLMs’ effectiveness in this domain. Building
upon CoT, Cheng et al. (2023) and Ye et al. (2023)
introduced frameworks that incorporate symbolic
reasoning for improved comprehension, with Ye
et al. emphasizing their ability to adeptly decom-
pose both evidence and questions. The advent of
aligned models, such as ChatGPT, has enabled zero-
shot table reasoning. However, these models often
lack sensitivity to table structures, struggling with

structural perturbations. StructGPT (Jiang et al.,
2023a), while introducing a promising framework
for LLMs to efficiently engage with structured data,
has its effectiveness limited by not integrating sym-
bolic reasoning, a critical aspect for enhancing
the full capabilities of LLMs in tabular reasoning,
which is the focal point of this study. Furthermore,
while programming-based approaches can mitigate
some challenges, they are limited in addressing
free-form queries, creating a gap in the landscape.
Innovations like AutoGPT (Significant Gravitas,
2023) have sought to address this, spawning the de-
velopment of tabular agents like LangChain (Chase,
2022), SheetCopilot (Li et al., 2023a), and Data-
Copilot (Zhang et al., 2023b). These agents offer
solutions unattainable through conventional pro-
gramming but still require rigorous evaluation in
various scenarios. In our study, we delve into ad-
dressing these challenges for enhancing LLMs’ rea-
soning capabilities within structural perturbations,
hence providing insights that facilitate improved
accuracy in the current context.

3 Preliminaries

This section succinctly introduces the foundational
aspects of our study over structurally perturbed
tabular data. §3.1 formally defines the problem,
delineating the critical notations and conceptual
frameworks, and §3.2 explicates our experimen-
tal setup details, elucidating dataset choice, model
utilization, and evaluation strategy.

3.1 Problem Definition

Question answering (QA) over tabular data, com-
monly known as the TableQA task, is an important
challenge in NLP. In this study, we targets TableQA
to explore and enhance the proficiency of LLMs, in
reasoning over tabular data. Additionally, we probe
the robustness and adaptability of these models by
introducing structural perturbations to tables.

Let T represent a table consisting ofR rows and
C columns, and τ represent its title/caption. Each
cell in T is denoted by Ti,j , where i ∈ [0,R− 1]
and j ∈ [0, C − 1]. T0,j are headers. Given a
question Q pertaining to the table, our task is to
identify an answer A. This answer is generally a
collection of values, denoted as {a1, a2, . . . , ak},
where k ∈ N+.

Furthermore, to delve deeper into the structural
comprehension of LLMs, we introduce structural
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perturbations, which include:2

1. Transposed Table (T ⊤): A table obtained
by converting rows to columns and vice-versa,
maintaining the row and column order:

T ⊤
i,j = Tj,i ∀i ∈ [0,R− 1], j ∈ [0, C − 1].

2. Row Shuffled Table (TΠ): A table obtained
by randomly shuffling the rows (excluding the
headers) with a random permutation function π,
while keeping the order of columns unchanged:

TΠi,j = Tπ(i),j ∀i ∈ [1,R− 1], j ∈ [0, C − 1]

3. Row Shuffled and Transposed Table (T ⊤
Π ):

A table obtained by first randomly shuffling
the rows (excluding headers) and then applying
transposition:

T ⊤
Πi,j

= Tj,π(i) ∀i ∈ [1,R− 1], j ∈ [0, C − 1]

Defining our research problem more formally:
our primary objective is to investigate the function,
f , that can appropriately answer the posed question
using the provided table. Specifically, this function
will take three arguments: the table variant T ′ ∈
{T , T ⊤, TΠ, T ⊤

Π }, its title τ , and the question Q.
It will output an answer A. The entire problem can
be formally framed as:

f(T ′, τ,Q) → A, ∀T ′ ∈ {T , T ⊤, TΠ, T ⊤
Π }

3.2 Experimental Setup
This section details the experimental setup adopted
in our study, including the datasets employed,
model selection, evaluation metrics, reasoning
methods, and other details.

Dataset. We used the WIKITABLEQUESTIONS

(WTQ; Pasupat and Liang 2015) dataset for our ex-
periments. The test set comprises 421 tables. Each
table provides up to two question-answer pairs; if
a table has fewer than two, only one was chosen,
totaling 837 unique data points. With our four
table configurations (original and three perturba-
tions), the overall evaluation data points amount to
837× 4 = 3, 348.

Models. We employ the GPT-3.5 (OpenAI, 2023a)
series for our research. Given that tables usu-
ally have extensive data, depending on the prompt

2Column shuffling was not employed as the typical number
of columns is limited and this shuffling had minimal impact
on accuracy (Zhao et al., 2023).

length, we dynamically use gpt-3.5-turbo-0613
and gpt-3.5-turbo-16k-0613, with a primary
aim to optimize cost when querying the API.

Evaluation Metrics. Following prior works (Jiang
et al., 2022; Ni et al., 2023; Cheng et al., 2023; Ye
et al., 2023), we employ Exact Match Accuracy as
the evaluation metric to validate predictions against
ground truths, embedding instructions in prompts
for consistent and parseable outputs.

Reasoning Methods. Our evaluation hinges on
two distinct zero-shot reasoning approaches:

• Direct Prompting (DP) is a textual reasoning
method that prompts LLMs to answer questions
in a zero-shot manner. Rather than directly pro-
viding the answer, LLMs are instructed to reason
step-by-step before concluding. More details can
be found in Appx. §A.1,

• Python Shell Agent (PyAgent) is a symbolic
reasoning approach where the model dynami-
cally interacts with a Python shell. Specifically,
LLMs use the Python Shell as an external tool to
execute commands, process data, and scrutinize
results, particularly within a pandas dataframe,
limited to a maximum of five iterative steps. De-
tailed prompt is presented in Appx. §A.2.

Other Details. Depending on the scenario, we
adjust the temperature setting. In cases not employ-
ing self-consistency, we set it to 0. For scenarios
involving self-consistency, the temperature is set
to 0.8. For further granularity, Appx. §A offers an
exhaustive list of the prompts implemented in our
experiments. Importantly, it should be noted that
all prompts are deployed in a zero-shot manner,
without any demonstrations or examples.

4 LLM Robustness to Structural
Perturbations

This section explores how LLMs interpret varied
table structures in response to our first research
question (§1). We probe the impact of three ta-
ble perturbations on LLM performance (§4.1), un-
cover LLMs’ challenges and limitations for direct
table transposition and recoganize tranposed ta-
bles (§4.2), and introduce a structure normalization
strategy (NORM) to mitigate these issues (§4.3).

4.1 Impacts of Table Perturbations on LLMs
In §3.1, we present three types of structural table
perturbations: transposition (T ⊤), row-shuffling
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Perturbation DP PyAgent

Original (T ) 59.50 55.91

+Shuffle (TΠ)
52.21
-12.25%

47.91
-14.31%

+Transpose (T ⊤)
51.14
-14.05%

12.45
-77.73%

+Transpose&Shuffle (T ⊤
Π )

37.51
-36.96%

8.96
-83.97%

Table 1: Accuracy of GPT-3.5 under different table
perturbations using Direct Prompting (DP) and Python
Shell Agent (PyAgent).

LLMs As Task Description Accuracy

Transposer
f(T ) → T ⊤ 53.68
f(T ⊤) → T 51.07

Detector
f(T ) → 0 93.35
f(T ⊤) → 1 32.54

Determinator
f(T , T0,∗, T∗,0) → T0,∗ 97.39
f(T ⊤, T0,∗, T∗,0) → T∗,0 94.77

Table 2: Evaluation results of GPT-3.5 on the 421
distinct tables of the WIKITABLEQUESTIONS (WTQ)
dataset, covering three tasks: (1) Transposer, which in-
volves switching between original (T ) and transposed
(T ⊤) tables directly; (2) Detector, which identifies the
need for table transposition (0 for no transposition, 1 for
transposition required); and (3) Determinator, which
chooses probable table headings either from the first
row (T 0, ∗) or the first column (T ∗, 0).

(TΠ), and their combination (T ⊤
Π ). As demon-

strated in Tab. 1, both reasoning methods, DP
and PyAgent, exhibit significant performance de-
clines, with more pronounced when transposition
is applied. DP consistently outperforms PyAgent
largely across perturbations, indicating that textual
reasoning tends to be more resilient to these struc-
tural changes. This resilience can be attributed to
LLMs’ ability to grasp semantic connections and
meanings irrespective of structural shifts. In con-
trast, symbolic reasoning, exemplified by PyAgent,
is heavily reliant on table structure, making it more
vulnerable, especially to transposition.

4.2 Limitations of Table Transposition with
LLMs

To better understand LLMs’ capabilities with re-
gard to table structures, we investigate their ability
on detecting tables in need of transposition and
performing table transposition.

LLMs as Transposition Detectors. Given a table
T , the goal is to detect whether a table should

be transposed for better comprehension by LLMs.
This is formulated as a binary classification task:

f(T ) → 0, f(T ⊤) → 1,

Where 0 denotes ‘no need of transposition’ and 1
indicates ‘transposition needed’. Tab. 2 shows the
results using the prompt in Appx. §A.4. GPT-3.5
correctly classified 93.35% of original tables T as
not requiring transposition. However, its accuracy
dramatically decreased to 32.54% on transposed
tables T ⊤. Our observations highlight that LLMs
suffer from structural bias in the interpretation of
table orientations, predominantly leading to recom-
mendations against transposition.

LLMs as Table Transposers. The objective is
to switch between original and transposed table
formats. Specifically, the goal is to directly yield
T ⊤ given T , and vice versa. Formally, the task is:

f(T ) → T ⊤, f(T ⊤) → T

We observed that GPT-3.5’s proficiency in this
task is limited, with an accuracy of 53.68% trans-
posing row tables and 51.07% for the inverse op-
eration, suggesting that LLMs can not transpose
tables precisely. For a detailed error case study and
further analysis, refer to the Appx. §B.

4.3 Table Structure Normalization
In addressing structural variations in tables, our
goal is to ensure consistent interpretation and util-
ity across diverse table structures. To normal-
ize various table structures into well-ordered row-
tables prior to downstream tasks, we introduce
NORM, which is a two-stage normalization strat-
egy: the first stage detects column-tables and trans-
posing them into row-tables, while the second stage
sorts the row-tables for enhanced comprehensibil-
ity. Through this approach, NORM accommodates
for structural perturbations without compromising
the understanding of the standardized row-tables.

Content-Aware Transposition Determination In
the straightforward methods mentioned in §4.2,
LLMs are affected by the loss of structure infor-
mation of the table. Our approach aims to reduce
this structural dependence by introducing a content-
aware determination process, which leverages the
semantic reasoning capabilities of LLMs, instead
of perceiving the table’s structure. Specifically, we
analyze the inherent content within the first row
(T0,∗) and the first column (T∗,0) of a given table
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Method T TΠ T ⊤ T ⊤
Π

DP 59.50 52.21 51.14 37.51

+NORM
58.66 58.66 58.30 57.71
-1.41% +12.35% +14.00% +53.85%

PyAgent 55.91 47.91 12.43 8.96

+NORM
56.87 57.11 55.44 55.08
+1.72% +19.20% +346.02% +514.73%

Table 3: Accuracy of GPT-3.5 under different table
perturbations for Direct Prompting (DP) and Python
Shell Agent (PyAgent) with NORM applied.

(T ) to decide which is more semantically fitting to
serve as the table’s heading. This content-aware
approach can be mathematically modeled as:

{
f(T , T0,∗, T∗,0) → T0,∗
f(T ⊤, T0,∗, T∗,0) → T∗,0

Here, a selection of the first row suggests that the
current table structure is preferred, whereas opting
for the first column signifies a need for transposi-
tion. The prompt detailing this method is provided
in Appx. §A.5. Results in Tab. 2 highlight capa-
bility of GPT-3.5 in discerning table headings se-
mantically, with accuracies of 97.39% and 94.77%
respectively for original table and tranposed table.

Row Reordering. Upon transposition, our next
objective is to ensure the logical coherence of the
table data through reordering the rows. We instruct
LLMs to suggest improved reordering strategies
using the prompts as detailed in Appx. §A.6. Due
to the subjective nature involved in identifying the
most suitable order of a tabular data, and given that
there are no widely recognized standards for this
process, the effectiveness of the proposed sorting
strategy will be evaluated based its downstream
impact on the results of table QA task. We notice
that when the entire well-ordered table is exposed,
GPT-3.5 occasionally suggests alternative sorting
strategies, leading to unnecessary complexity. To
counteract this tendency and ensure a better sorting
proposal, we strategically present the model with
only the first three and the last three rows of the
table. This selective exposure typically allows the
model to discern logical ordering patterns without
being influenced by existing table configurations.
Tab. 3 underscores the efficacy of NORM when

applied prior to the two reasoning methods – DP
and PyAgent. Demonstrably, NORM robustly mit-
igates structural perturbations, optimizing table
comprehensibility for LLMs. The results illustrate

that applying NORM does not detrimentally affect
the original results (T ), and it effectively refines
perturbated data, aligning the outcomes closely
with the original results, and in some instances,
even showing slight improvement. This suggests
that NORM as a preprocessing step for preparing
tabular data can enhance robust analysis by LLMs.
In addressing our initial research question, the

analysis indicates that LLMs’ performance is sen-
sitive to table structural variations, with signifi-
cant struggles observed in accurately interpreting
the same tabular content under transposition and
shuffling. While textual reasoning demonstrates
some resilience to structural variations, symbolic
reasoning is significantly impacted, particularly
with transposed tables. The NORM strategy effec-
tively navigates these challenges by eliminating
dependency on table structures, providing consis-
tent interpretation across diverse table structures
without compromising the integrity or meaning of
the original content.

5 Comparing Textual and Symbolic
Reasoning

In this section, we delve into the comparison of tex-
tual and symbolic reasoning methods in LLMs for
tabular data understanding (§5.1), further conduct-
ing a detailed error analysis (§5.2) to address the
second research question (§1). We evaluate the per-
formance of each reasoning strategy using GPT-3.5,
shedding light on their strengths and challenges.
In §4.3, we explored NORM to mitigate structural
perturbations, enhancing generalized LLM perfor-
mance and successfully restoring perturbed tables
to accuracy levels similar to their original states.
Therefore, subsequent analyses will exclusively
consider the original tables (T ).

5.1 Results

Tab. 4 showcases the performance of GPT-3.5 when
employed for both direct textual reasoning using
DP and interactive symbolic reasoning using PyA-
gent. By instructing the model with the CoT (Wei
et al., 2023) reasoning strategy to think step by
step, and then give the final answer, as detailed in
Appx. §A.1, we can achieve an accuracy of 58.66%.
This surpasses the StructGPT’s Iterative Reading-
then-Reasoning method, which concentrates rea-
soning tasks by continually collecting relevant evi-
dence. For tables with limited tokens, symbolic rea-
soning via PyAgent offers an accuracy of 56.87%,
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Method Accuracy

Few-shot Prompting Methods
BINDER⋆ (Cheng et al., 2023) 63.61
BINDER♠ (Cheng et al., 2023) 55.07
DATER W/O SC⋆ (Ye et al., 2023) 61.75
DATER W/ SC⋆ (Ye et al., 2023) 68.99

Zero-shot Prompting Methods
STRUCTGPT♠ (Jiang et al., 2023a) 51.77
NORM+DP♠ 58.66
NORM+PYAGENT♠ 56.87
NORM+PYAGENT-OMITTED♠ 52.45
NORM+DP&PYAGENT W/ EVAL♠ 64.22
DP W/ SC♠ 66.39
+NORM♠ 64.10
+NORM W/O RESORT♠ 66.99

PYAGENT W/ SC♠ 61.39
+NORM♠ 63.77
+NORM W/O RESORT♠ 62.84

DP&PYAGENT W/ MIX-SC♠ 73.06
+NORM♠ 72.40
+NORM W/O RESORT♠ 73.65

Table 4: Performance comparison of various methods
on a sampled subset (T ) of the WikiTableQuestions
dataset. Methods marked with ⋆ are based on Codex,
while those marked with ♠ are based on GPT-3.5. SC
stands for self-consistency, and the results for SC-based
methods are obtained by averaging over 100 shuffles to
handle cases of ties during majority voting. In the Mix-
SC method, answers from DP are prioritized over those
from PyAgent due to DP’s superior performance. This
prioritization is followed in all experiments involving
SC. NORM W/O RESORT refers to the NORM method
without the reordering stage.

which is slightly behind the accuracy by DP in a
single attempt. A distinct advantage of symbolic
reasoning is its ability to only present parts of the
table in the prompt. As our experiments revealed,
after excluding the central rows and showcasing
only the initial and final three rows, we manage to
maintain an accuracy of 52.45% with a 4.42% drop
compared to the full-table PyAgent results. This
makes it possible to deal with larger tables with
numerous rows using LLMs with limited context
window. In the following sections, we will present
a comprehensive analysis of the discrepancies and
errors observed across these methods.

5.2 Error Analysis
To elucidate the challenges and limitations of DP
and PyAgent, this section presents an in-depth error

analysis by sampling 50 erroneous outputs for each.
Tab. 5 summarizes the predominant error types for
DP and PyAgent methods. Table interpretation
errors significantly afflict the DP method, compris-
ing 42% of its total errors, highlighting substantial
challenges for LLMs in accurately interpreting ta-
ble data. PyAgent primarily struggles with coding
errors, constituting 38% of its total errors. These
errors either originate from misunderstandings of
table content, often overlooking subtle details, or
manifest as inherent deficiencies in coding capabili-
ties. These prevalent errors underscore the intrinsic
challenges and limitations each method faces in the
reasoning process. Detailed case studies on each
error type are delineated in Appx. §C.

In response to the second research question, the
analysis indicates DP marginally surpasses PyA-
gent within single attempts. Despite this, PyA-
gent can handle larger tables by processing partial
table views. Notably, DP encounters difficulties
in accurate table interpretation, while PyAgent
reveals instability in coding capabilities.

6 Reasoning Aggregation

This section examines how combining multiple rea-
soning pathways can boost LLMs’ accuracy in in-
terpreting tabular data, which is in response to the
third research question (§1).

6.1 Methods

Self-Consistency. Previous work has highlighted
the advantages of generating multiple outputs from
LLMs and adopting the most frequent answer, a
mechanism known as self-consistency (SC; Wang
et al. 2023). Tab. 4 showcases the notable improve-
ments realized through self-consistency (aggregat-
ing 10 outputs), with DP achieving an accuracy of
64.84% and PyAgent attaining 63.49%.

Self-Evaluation. Based on our error analysis in
§5.2, different reasoning methods excel at specific
tasks. For instance, symbolic reasoning tends to
outperform textual reasoning in counting and col-
umn localization tasks. To optimize the choice be-
tween these methods, we strategically use a prompt
(referenced in Appx. §A.7), which avoids directly
validating answers against tables but guides the
LLM to choose between the two reasoning ap-
proaches based on the question’s nature and each
answer’s clarity. By weighing the problem against
the known strengths and weaknesses of each rea-
soning strategy, this tactic mitigates potential bias
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Error Types DP PyAgent Description Case Study

Table Misinterpretation 42% -† LLMs incorrectly interpret the content in tables. Appx. §C.1.1, Appx. §C.1.2

Coding Errors - 38% LLMs produce inaccurate code, typically due to is-
sues with minor details.

Appx. §C.2.1, Appx. §C.2.2,
Appx. §C.2.3

Misalignment Issue 24% 28% Outputs are conceptually correct but the answers do
not align with the instructions. Appx. §C.3.1, Appx. §C.3.2

Logical Inconsistency 20% 10% LLMs exhibit failures in reasoning, leading to con-
tradictions or inconsistencies. Appx. §C.4.1, Appx. §C.4.2

Execution Issue - 12% Issues emerge related to the execution of Python
code. Appx. §C.5.1, Appx. §C.5.2

Resorting Issue 10% 8% The resorting stage in NORM changes the answers
of some sequence-dependent questions. Appx. §C.6

Table 5: Categorization of error types for the DP and PyAgent methods. †The table interpretation errors is not
explicitly used for PyAgent, as these errors are included under coding errors to avoid overlap in categorization. The
percentages for each reasoning method may not sum up to 100%, as the remaining percentage points are attributed
to other errors, such as issues with dataset labeling, which are not categorized in our analysis.

towards textual reasoning by LLMs and enhances
answer accuracy. As evidenced by Tab. 4, using
self-evaluation boosts accuracy to 64.99%. Impres-
sively, this method, using only two reasoning paths,
matches the performance of using 10 paths of DP
or PyAgent independently.

Mix Self-Consistency. According to §5.1, sym-
bolic and textual reasoning exhibit distinct focuses
but deliver similar performance. Consequently, we
introduceMix Self-Consistency, a method that se-
lects a predetermined number of outputs for each
type of inference, aiming for self-consistency. This
approach hinges on the idea that multiple outputs
can reflect the confidence levels of LLMs in an-
swer generation. In scenarios where LLMs are
less proficient, they tend to produce a diverse set
of answers. Conversely, for tasks that LLMs han-
dle adeptly, consistent answers are often generated
across multiple reasoning attempts, converging to-
wards one answer. Such convergence allows for
the aggregation of model outputs that align with
areas where LLMs exhibit stronger reasoning capa-
bilities, thereby substantially improving accuracy.
The detailed mechanics of how this approach is
implemented within the framework of Mix Self-
Consistency, including the aggregation and inter-
pretation of these outputs, are further elucidated in
Appx. §D.2.

Tab. 4 demonstrates that using mix self-
consistency, which involves generating 5 outputs
per inference type (totaling 10), enhances perfor-
mance substantially, achieving an impressive ac-
curacy of 72.40%, which achieves SOTA perfor-

mance on the sampled WTQ data. The choice
of generating 5 outputs per inference type (5+5)
is a hyperparameter selection influenced by the
dataset’s distribution. We conducted an ablation
study regarding this in Appx. §D.1. The decision
to use an equal split (5+5) is based on the observed
comparable performance between the two reason-
ing strategies.

6.2 Overall Evaluation

To evaluate our method thoroughly, we conduct a
comprehensive pass of testing using the complete
WTQ test set, integrating both NORM and Mix
self-consistency mechanisms. Since re-sorting may
change the answers of row index-related questions,
we perform NORM without resorting in this eval-
uation. Originally, the NORM process included a
re-sorting step to counteract the row-shuffling per-
turbation. However, as explored in the error analy-
sis (§5.2) with a detailed case study in Appx. §C.6,
re-sorting may inadvertently alter answers reliant
on the initial sequence. Despite this limitation, it
is noteworthy that re-sorting can be advantageous
for questions not dependent on row indexes, par-
ticularly when dealing with tables that are initially
unorganized or messy.
As illustrated in Tab. 6, our proposed method

exhibits outstanding efficacy with an accuracy of
73.6%, significantly outperforming existing mod-
els to achieve SOTA performance on the complete
WTQ test set. Importantly, our approach is con-
ducted in a fully zero-shot manner.
To further analyze the impact of table size on

method performance, we segmented the row num-
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Figure 3: The impact of table size on the performance of DP, PyAgent, and Mix-SC (Combining 5 DP and 5
PyAgent) methods on the WikiTableQuestions test set. The horizontal axis represents the number of rows in the
tables, divided into ranges, while the vertical axis denotes the average accuracy achieved by each method within the
corresponding table size range.

Method Accuracy

Fine-tuning Based Models
TAPAS (Herzig et al., 2020) 48.8
T5-3B (Xie et al., 2022) 49.3
TAPAX (Liu et al., 2022) 57.5
REASTAP (Zhao et al., 2022) 58.7
OMNITAB (Jiang et al., 2022) 63.3

LLMs Based Methods
STRUCTGPT⋆ (Jiang et al., 2023a) 48.4
BINDER⋆ (Cheng et al., 2023) 55.5
BINDER♠ (Cheng et al., 2023) 64.6
LEVER♠ (Ni et al., 2023) 65.8
DATER♠ (Ye et al., 2023) 65.9

Ours⋆ 73.6

Table 6: Comparison of various methods on all test
data of WTQ. ⋆ denotes methods based on the GPT-
3.5 (OpenAI, 2023a); ♠ denotes methods based on the
Codex (OpenAI, 2022). Results are directly sourced
from the referenced paper.

bers into 10 ranges, each containing approximately
430 data points, and calculated the average accu-
racy within these intervals. Fig. 3 visualizes the av-
erage accuracy across these ranges for each method.
It is evident that there is a shared trend of dimin-
ishing accuracy as the number of rows increases,
suggesting that all methods are subject to decreased
efficacy in the context of long tables.
The decline in performance with larger tables

can be attributed to the complexity of handling
long-context data and the abundance of potentially
interfering information, often resulting in an in-
creased error rate. The insights gained from this

analysis point towards a need for the development
of better symbolic methods for handling long ta-
bles, which might be capable of effectively nar-
rowing down the scope of larger tables, either by
selective attention to relevant segments or by in-
telligently summarizing the data, to mitigate the
challenges posed by long-context information.
In response to the third research question, our

findings reveal that reasoning path aggregation
significantly enhances LLMs’ accuracy in ta-
ble reasoning tasks. Notably, the Mix Self-
Consistency method achieves an accuracy of
73.6% on the WTQ dataset, surpassing the pre-
vious SOTA by a considerable margin. The Self-
Evaluation strategy also contributes to this remark-
able performance by adeptly selecting between rea-
soning approaches.

7 Conclusion

This study investigated the proficiency of LLMs in
tabular reasoning. The findings suggest that LLMs
are sensitive to the structural variance of tables, but
the application of the proposed normalization strat-
egy can stabilize table structures and improve resis-
tance to structural perturbations. When comparing
reasoning approaches, textual reasoning demon-
strated a slight advantage over symbolic reason-
ing, with each strategy exhibiting unique strengths.
Furthermore, integrating multiple reasoning strate-
gies via mix self-consistency proved beneficial for
overall interpretation accuracy, surpassing previ-
ous SOTA results on the WIKITABLEQUESTIONS

dataset. These observations contribute to the under-
standing of LLMs’ capabilities in tabular reasoning
and provide insights for further improvements.
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Limitation

While this study provides insights into tabular data
reasoning with LLMs, it is pertinent to acknowl-
edge its limitations. First, the exclusive utilization
of GPT-3.5, due to the budgetary constraints, may
limit the generalizability of our findings, as explo-
ration with GPT-4 might offer enhanced outcomes.
Second, all table data are sourced from Wikipedia,
which may introduce potential data leakage or
memorization issues, as certain answers might be
implicitly available within the LLMs’ training data,
thus potentially biasing results. Lastly, several
perturbation-sensitive table-based questions, espe-
cially regarding table perturbations like shuffling,
may impact the precision of the reported accuracy,
as demonstrated answers may change based on the
structural modifications of the table.
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Appendices

A Prompts

A.1 Prompt of Direct Prompting (DP).

You are an advanced AI capable of analyzing and understanding information within tables. Read the
table below regarding "[TITLE]".

[TABLE]

Based on the given table, answer the following question:

[QUESTION]

Let's think step by step, and then give the final answer. Ensure the final answer format is only
"Final Answer: AnswerName1, AnswerName2..." form, no other form. And ensure the final answer is
a number or entity names, as short as possible, without any explanation.

A.2 Prompt of Python Agent.

You are working with a pandas dataframe in Python. The name of the dataframe is `df`. Your task is
to use `python_repl_ast` to answer the question posed to you.

Tool description:
- `python_repl_ast`: A Python shell. Use this to execute python commands. Input should be a valid

python command. When using this tool, sometimes the output is abbreviated - ensure it does not
appear abbreviated before using it in your answer.

Guidelines:
- **Aggregated Rows**: Be cautious of rows that aggregate data such as 'total', 'sum', or 'average'.

Ensure these rows do not influence your results inappropriately.
- **Data Verification**: Before concluding the final answer, always verify that your observations

align with the original table and question.

Strictly follow the given format to respond:

Question: the input question you must answer
Thought: you should always think about what to do to interact with `python_repl_ast`
Action: can **ONLY** be `python_repl_ast`
Action Input: the input code to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: after verifying the table, observations, and the question, I am confident in the final

answer
Final Answer: the final answer to the original input question (AnswerName1, AnswerName2...)

Notes for final answer:
- Ensure the final answer format is only "Final Answer: AnswerName1, AnswerName2..." form, no other

form.
- Ensure the final answer is a number or entity names, as short as possible, without any explanation.
- Ensure to have a concluding thought that verifies the table, observations and the question before

giving the final answer.

You are provided with a table regarding "[TITLE]". This is the result of `print(df.to_markdown())`:

[TABLE]

**Note**: All cells in the table should be considered as `object` data type, regardless of their
appearance.

Begin!
Question: [QUESTION]

A.3 Prompt of LLMs as Table Transposer

You are given the following table:
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[TABLE]

Please transpose this table. Maintain the format I give, with each row beginning with '|' and each
cell separated by ' | '. Do not change the content of any cell. Your response should solely
consist of the transposed table, without any additional text.

A.4 Prompt of LLMs as Table Transposition Detector

Please examine the provided table:

[TABLE]

To enhance readability and facilitate efficient data analysis, it is often suggested that the table
headings be horizontally located in the first/topmost row.

Please evaluate the table with this consideration in mind, and provide your response in the
following format:

**Table Headings**: List the headings of the table, separated by commas.
**Table Evaluation**: Identify whether the headings listed are horizontally located in the

first/topmost row. If not, describe the position.
**Transpose Recommended**: Indicate if transposing is recommended. Answer with only "YES" or "NO",

without any additional explanation.

A.5 Prompt of Content-Aware Transposition Determination

You are an advanced AI capable of analyzing and understanding information within tables. Read the
table below regarding "[TITLE]".

[TABLE]

Headings of a table are labels or titles given to rows or columns to provide a brief description of
the data they contain.

Based on the given table, the headings of the table are more likely to be:

(A) [FIRST_ROW]
(B) [FIRST_COLUMN]
(C) None of the above

Directly give your choice. Ensure the format is only "Choice: (A)/(B)/(C)" form, no other form,
without any explanation.

A.6 Prompt of Resorting

You are an advanced AI capable of analyzing and understanding information within tables. Read the
table below regarding "[TITLE]":

[TABLE]

Note: Only selected rows from the beginning and end of the table are displayed for brevity.
Intermediate rows are omitted and represented by "..." for clarity.

The table column headings are provided below, separated by semicolons:

[HEADINGS]

In order to optimize the interpretability and readability of the data, follow these guidelines to
determine the most suitable sorting method:

Sorting Guidelines:

1. Evaluate columns based on data types such as numerical, alphabetical, chronological, categorical,
or other relevant sorting methods.

2. Identify any patterns or relationships in the data that would be highlighted by certain sorting
methods.

3. Consider column position, as those on the left may sometimes have sorting priority.
4. If applicable, consider sorting by multiple columns in a prioritized sequence.
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Provide your decision using one of the following statements:

- For sorting using a single column: "Sort by: [Name of Column]".
- For sorting using multiple columns: "Sort by: [Primary Column Name], [Secondary Column Name], ...".
- If no specific sorting seems advantageous: "Sort by: N/A".

Your response should strictly follow the formats provided.

A.7 Prompt of Self-Evaluation

Below is a markdown table regarding "[TITLE]":

[TABLE]

You're tasked with answering the following question:

[QUESTION]

You have 2 answers derived by two different methods. Answer A was derived by prompting the AI to
think step-by-step. Answer B was derived by interacting with a Python Shell.

Answer A is [COT_ANSWER].
Answer B is [AGENT_ANSWER].

Your task is to determine which is the correct answer. It is crucial that you strictly adhere to the
following evaluation process:

1. **Preliminary Evaluation**: Begin by evaluating which of the two answers directly addresses the
question in a straightforward and unambiguous manner. A direct answer provides a clear response
that aligns closely with the query without introducing additional or extraneous details. If one
of the answers is not a direct response to the question, simply disregard it.

2. **Nature of the Question**: If both answers appear to be direct answers, then evaluate the nature
of the question. For tasks involving computation, counting, and column-locating, especially
when for extensive table, the Python Shell (Answer B) might be more precise. However, always
remain cautious if the Python Shell's output appears off (e.g., error messages, success
notifications, etc.). Such outputs may not be trustworthy for a correct answer.

3. **Final Verdict**: Finally, after thorough evaluation and explanation, provide your verdict
strictly following the given format:

- Use "[[A]]" if Answer A is correct.
- Use "[[B]]" if Answer B is correct.

Note:
1. Each method has its own strengths and weaknesses. Evaluate them with an unbiased perspective.

When in doubt, consider the nature of the question and lean towards the method that is most
suited for such queries.

2. Ensure that your verdict is provided after evaluation, at the end.
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B Analysis for LLMs as Table Transposer

B.1 Case Study

Figure 4: An example error case of content misalignment occurring within cells when leveraging LLMs directly
to transpose a table. Blue Table (Top): The original table subjected to a transposition operation. Green Table
(Buttom Left): The ground truth table subsequent to transposition. Purple Table (Buttom Right): GPT-3.5’s
output of transposed table. Cells erroneously aligned or displaced are highlighted in red.

Fig. 4 illustrates a typical mistake made by LLMs when transposing tables, a problem that becomes more
evident when a table has many identical or similar entries. Take, for example, the ’Nation Cup’ column
shown in the figure, which is filled with numerous ? symbols. LLMs, limited in processing structured data,
often mishandle such tables, leading to misplacements or misalignments. This highlights the fundamental
difficulties and limitations LLMs face in accurately transposing tables containing repetitive or similar data
cells.

B.2 Analysis
A further examination of the results, as shown in Fig. 5, illustrates that transposition accuracy for LLMs
as direct table transposer is associated with the table’s dimensions. The accuracy in row-to-column
transposition (T → T ⊤) is distinctly sensitive to the original table’s row count, whereas column-to-row
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Figure 5: Performance of GPT-3.5 as direct table transposer: from original to transposed tables (T → T ⊤) and
from transposed to original tables (T ⊤ → T ), with different row and column counts.

transposition (T ⊤ → T ) accuracy is similarly related on the number of columns. This observation can be
potentially attributed to the inherent characteristics and organizational structure of table data. In most of
the row tables, cells within a given column often display homogeneous data types, such as numerical or
temporal values. This homogeneity can pose significant challenges for LLMs, as the models might struggle
to differentiate between semantically similar cells during the transposition process, thereby leading to
potential misalignments and misplacements, particularly as the number of rows increases. Conversely, in
those column tables, cells within a row may exhibit similar data types, introducing analogous challenges
and potential errors during transposition.
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C Error Case Study for WTQ

C.1 Table Misinterpretation
C.1.1 Counting Error

Figure 6: Example of a table misinterpretation error by DP, where the LLMs make mistakes attributable to its
deficiency in performing counting tasks effectively.

Fig. 6 highlights a typical error related to table comprehension, emphasizing a common problem in
LLMs when dealing with tasks that involve statistical analysis. It points to a weakness in LLMs’ ability to
accurately process and respond to questions based on statistical information without the help of external
tools.
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C.1.2 Locating Error

Figure 7: Example of a table misinterpretation error by DP, where the model fails accurately locating the specific
cell.

Fig. 7 showcases a common error in table interpretation associated with LLMs. This error originates
from the LLMs’ linearization process, which impairs their ability to recognize table structures. Although
the model efficiently identifies the highest value, 132, in the 2nd(m) column, it inaccurately associates
this value with the 1nd(m) column, assuming it represents the same feature as in the 2nd(m) column. This
leads to a misplacement of the value in the table’s interpretation.

468



C.2 Coding Error
C.2.1 Attribute Noise Error

Figure 8: Example of a Coding Issue error by PyAgent, where the abnormal variant data entries leads to inaccurate
output.

Fig. 8 illustrates a minor issue stemming from a coding mistake. The table shown in the figure features
a variety of data under the Team column. Alongside the expected Dallas Cowboy entries, there are cells
with a slight variation: Dallas Cowboy†. The Python Shell Agent used failed to recognize these unusual
variations. This is evident from the use of the df[‘Team’] = “Dallas Cowboy” command for calculating
occurrences, leading to a discrepancy in the final count and resulting in inaccurate outcomes.
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C.2.2 Special Row Misinterpretation Error

Figure 9: Example of a coding error by PyAgent, where PyAgent misinterpretes the special row – Total.

Fig. 9 displays an error where the Python Shell Agent incorrectly interprets a special row, treating the
Total row as a valid season entry. In this case, while calculating the seasons in which Nicolás won at
least 10 races, the Agent did not properly exclude the cumulative Total row in its code for computation.
Consequently, it erroneously reported one season as meeting the criteria.
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Figure 10: Example of another coding error by PyAgent, where the PyAgent misinterpretes the special row which
is a nested heading.

Fig. 10 depicts an error where the Python Shell Agent incorrectly includes a special row in its calcu-
lations. Specifically, when counting the number of Linux distributions supporting the x86 architecture,
the agent erroneously counts a nested heading row. As indicated in the figure, the row indexed at 9 is
not a valid data entry but rather serves as a nested heading for the table. This row should have been
excluded from the count, resulting in an inaccurate calculation (29 → 30) of distributions supporting the
x86 architecture.
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C.2.3 Incorrect Coding

Figure 11: Example of a coding error by PyAgent, where the coding is incorrect

Fig. 11 shows an issue that originates from a basic coding mistake. Although the agent correctly grasps
the concept, aiming to filter for entries with a maximum velocity of at least 100 km/h, it falters in
the implementation stage by using a contains(“100 km/h") statement in the code. This error is akin
to the Logical Inconsistency error described in (DP), where a mismatch between the understanding of a
concept and its practical execution becomes evident.
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C.3 Misalignment Issue
C.3.1 Answer Format Issue

Figure 12: Example of a misalignment issue by PyAgent, where the answer format does not follow the instruction
in the prompt to give a parsable answer. Note that emojis presented in the figure are purely for visual aid and were
not incorporated in actual experiments; the same applies to any figures below.

Fig. 12 displays a scenario in which the final answer produced did not align with the specified prompt
instructions. In this instance, the Python Shell Agent correctly executed a series of interactions and
accurately identified the final answer as 77. However, the response given was Brooks Racing had the
number 77.. Although the reasoning and the result are correct within their respective contexts, the format
of the response impedes the parsing of the correct answer.
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C.3.2 Answer Deviation Error

Figure 13: Example of a misalignment issue by DP, where the final answer does not directly answer the question.

Fig. 13 shows a DP example where the final answer does not directly address the posed question. Faced
with the binary query Are there at least 13 names on the chart?, the anticipated response should
be a simple yes or no. However, the LLM responds with 12. Although this answer aligns conceptually
with the data in the table and the logic seems accurate, it does not conform to the direct and binary
response format required by the question.
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Figure 14: Example of a misalignment issue by PyAgent, where the final answer does not directly answer the
question.

Fig. 14 illustrates a case with the Python Shell Agent where the final response fails to directly answer
the posed question. The question Which team has the same number of playoffs appearances as
the St. Louis Bombers? clearly requests the identification of a specific team. Yet, it is noted that the
agent prematurely delivers an answer upon finding data related to the playoff appearances of the St. Louis
Bombers. While the direction of the python shell agent’s reasoning appears correct, the resultant answer
ultimately falls short of resolving the question correctly.
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C.4 Logical Inconsistency
C.4.1 Reasoning Conflict in DP

Figure 15: Example of a logical inconsistency by DP where a problem with logical reasoning leads to a reasoning
conflict in the context.

Fig. 15 presents an example of a Logical Inconsistency error occurring during the interpretation of
tabulated data. The error in reasoning is occurred in determining whether George E. Leach or Kenneth
F. Cramer was the Chief of the National Guard Bureau in 1934. The reasoning text accurately states
that George E. Leach served from December 1, 1931, to November 30, 1935, and Kenneth F.
Cramer served from September 30, 1947, to September 4, 1950. Despite this, the interpretation
erroneously concludes that neither was in the role in 1934, leading to a contradiction between the
information and the final answer.
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C.4.2 Reasoning Mistakes in PyAgent

Figure 16: Example of a logical inconsistency error by PyAgent where the LLMs make mistakes in reasoning on
the observations.

Fig. 16 depicts an instance of a Logical Inconsistency Error during the Python Shell interaction. In this
case, LLMs successfully the necessary steps to gather information about Tablet 9 and Tablet 10, a
misinterpretation of the retrieved data results in flawed reasoning. This leads to an error in the conclusion
drawn from the interaction.
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C.5 Execution Issue
C.5.1 Interaction Bound or Looping Error

Figure 17: An example of an execution issue by PyAgent, where the agent attempts to fix an coding error but falls
into a loop.

Fig. 17 demonstrates an instance of Execution Issue error made by the Python Shell Agent. In the
process of identifying the team that participated in Euro 2000 qualifying for the most consecutive years,
the agent faces difficulties in the data processing phase. Initially, an error occurs due to the Date column
not containing datetime objects. Then the agent successfully converts the entries into the appropriate
format. However, the agent, in trying to compute the number of consecutive participation years for each
team, gets stuck in a loop of continually refining its calculation method without arriving at a conclusive
answer within the given interaction steps.
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C.5.2 Non-Observable Action Error

Figure 18: Example of a Execution Issue error by PyAgent, where the agent inputs non-observable actions into
Python Shell.

Fig. 18 illustrates a situation where PyAgent encounters a Non-Observable Action Error. Specifically,
the actions given by the PyAgent, for example, consecutive_games_count = len(df_filtered), do
not generate any observable output in the Python Shell. Consequently, the agent does not receive any valid
observations to aid it in deriving the correct answer, thus, leading to an incorrect count of consecutive
games played in the ARCO Arena from January 2nd to January 24th.
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C.6 Resorting Issue

Figure 19: Example of a Normalization Issue error by DP, where the correct answer changes due to the resorting
stage in NORM.

Fig. 19 shows a case of data inconsistency due to the application of the resorting stage in the NORM

procedures. The figure’s upper table displays the original format, with Gillig as the manufacturer in
the final row. However, after resorting as suggested by LLMs, the lower table in the figure lists New
Flyer as the last row’s manufacturer. This change, while seemingly minor in the broader context of table
comprehension, significantly impacts responses to specific queries like “What is the name of the
last manufacturer on the chart?”
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Figure 20: Accuracy results for theMix Self-Consistency method applied to the sampled WTQ dataset, with varying
combinations of DP and PyAgent outputs (depicted as DP vs. PyAgent on the x-axis). The combinations range from
10 DP vs. 0 PyAgent to 0 DP vs. 10 PyAgent. Each data point represents the maximum, minimum, and average
accuracies obtained from 100 tests per combination, conducted using random sampling. Note that for the 10 DP vs.
0 PyAgent and 0 DP vs. 10 PyAgent combinations, there is no random sampling of paths. However, variance is
observed due to the presence of multiple equally probable answer sets generated by the 10 paths, leading to different
possible selections of answers even without sampling, thereby introducing randomness into the results.

D Analysis of Mix Self-Consistency

D.1 Ablation Study of Output Selection

This section presents an ablation study conducted to elucidate the effect of various combinations of DP
and PyAgent outputs on the performance of theMix Self-Consistency method. For this experiment, we
systematically explored different combinations while keeping the total output count constant at ten. Each
combination was tested 100 times through random shuffling. For each test, maximum, minimum, and
average accuracies were recorded.

Fig. 20 shows the results of the ablation study. The 5+5 combination (5 DP + 5 PyAgent) consistently
gives the highest minimum and average accuracies among all tested combinations, making it a robust and
reliable choice for this task. The 4+6 combination (4 DP + 6 PyAgent) secured the highest maximum
accuracy in our tests.
Through this ablation study, we aim to provide insights into how different output selections influence

the effectiveness of the Mix Self-Consistency method. Importantly, the choice of output combination
should be considered as a hyperparameter that is intimately related to the distribution of the dataset being
used. Given that different reasoning strategies exhibit unique strengths and weaknesses, it is crucial to
tailor the output combination to align with the characteristics of the specific tasks and datasets in question,
thereby maximizing the performance of the Mix Self-Consistency method.

D.2 Mechanics of Mix Self-Consistency in Output Selection

The effectiveness of the Mix Self-Consistency method in achieving high accuracy largely stems from
its ability to harness the strengths of different reasoning methods. Intuitively, the multiple outputs from
certain reasoning method can be interpreted as the confidence score for the generated answers. In scenarios
where a method excels, its outputs often tend to converge towards a common answer, signifying higher
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Figure 21: An illustration of Mix Self-Consistency by aggreagting outputs from multiple reasoning methods to form
a unified, high-confidence prediction..

confidence and reliability. In contrast, a method less suited to the problem at hand tends to produce more
diverse results, indicative of a lower level of confidence. By aggregating these outputs from different
methods and applying majority voting, theMix Self-Consistency method refines these variations into a
more accurate prediction. As shown in Fig. 21, This process leverages the strengths of the employed
reasoning methods, thereby enhancing overall performance.

E Results of Mix Self-Consistency on TabFact

This section presents the additional results of applying the Mix Self-Consistency method to the Tab-
Fact dataset, as part of an extended investigation to verify and evaluate the method’s adaptability and
effectiveness in other related tasks beyond WTQ dataset.

Method Accuracy

StructGPT (Jiang et al., 2023a) 0.708
Dater (Ye et al., 2023) 0.874

Ours 0.885

Table 7: Accuracy results of different methods without
fine-tuning on the TabFact dataset.

For TabFact, a subsample of 500 data points
was randomly selected from the test set. The
experimental setup mirrored that of the WTQ ex-
periments, employing the same parameters such
as temperature settings for model inference. The
strategy for output selection in the TabFact exper-
iment also follows the 5+5 combination, which
proves to be the best for the WTQ dataset, to
aggregate the output answers from 5 instances of
DP and 5 instances of PyAgent. Additionally, all
the prompts (e.g., DP, PyAgent) used in the TabFact experiment were slightly modified to align with the
requirements of the fact-checking scenarios.
Tab. 7 summarizes the accuracy results of the Mix Self-Consistency method, StructGPT, and Dater

on the TabFact dataset. Mix Self-Consistency can also achieve the highest accuracy, outperforming both
StructGPT and Dater in fact-checking.
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