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ABSTRACT

Suppose H is an admissible Heegaard diagram for a balanced sutured manifold (M, 7).
We prove that the number of generators of the associated sutured Heegaard Floer com-
plex is an upper bound on the dimension of the sutured instanton homology SHI (M, ).
It follows, in particular, that strong L-spaces are instanton L-spaces.

1. Introduction

Let (M,~) be a balanced sutured manifold. Kronheimer and Mrowka conjectured [KM10] that
its sutured instanton homology is isomorphic to its sutured Heegaard Floer homology,

SHI(M,~) = SFH(M,~) ® C. (1.1)

Proving this remains a major open problem. In particular, it would imply isomorphisms
I*(Y) = HF(Y) ® C,

KHI(Y,K) = HFK(Y,K) ® C,
between the invariants of closed 3-manifolds and knots in the instanton and Heegaard Floer
settings.

There has been a flood of recent work proving these isomorphisms for various families of

closed 3-manifolds and knots; see [BS21, ABDS22, LPCS20, LY22, GL19]. In this paper, we
initiate a systematic approach to the general isomorphism (1.1). Before stating our main result,

let us establish some notation.
Given a sutured Heegaard diagram

H= (E,oz ={ay,...,ax}, 0 = {ﬁl,...,ﬂk})
for a balanced sutured manifold (M,~), let
To:=a1 x---xaop and Tg:=p1 x - X CSymk(E)
denote the usual tori in the k-fold symmetric product of ¥, and let

S(H) := T, NTs C Sym* (D).
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SUTURED INSTANTON HOMOLOGY AND HEEGAARD DIAGRAMS

If H is admissible, then G(H) is the set of generators for the sutured Heegaard Floer complex
SFC(H) as defined by Juhdsz in [Juh06].! Our main theorem is the following.

THEOREM 1.1. If'H is an admissible sutured Heegaard diagram for (M,~), then

dimc SHI(M,~) < |6(H)|.
Remark 1.2. Theorem 1.1 does not hold without the assumption that H is admissible; see
Remark 3.6.

Remark 1.3. Our proof of Theorem 1.1 also works for sutured monopole homology (SHM) in
place of SHI. Of course, the SHM version of our main result follows from the isomorphism

SHM (M,~) = SFH(M, ),

which is a consequence of the equivalence between monopole and Heegaard Floer homology,
see [Lek13]. Still, it may be of value to know that one can prove the inequality

dimg, SHM (M, ) < |&(H)|
without going through the proof of this equivalence.

Given a balanced sutured manifold (M,~), we define the simultaneous trajectory number
T (M,~) to be the minimum of |&(H)| over all admissible sutured Heegaard diagrams H for
(M, ). This is the generalization to balanced sutured manifolds of a notion originally defined
for rational homology 3-spheres by Ozsvath and Szabd in [OS04a]. It admits a purely Morse-
theoretic interpretation when Hy (M, 0M;Q) = 0, and is a measure of the topological complexity

of (M, ~); for example, 7 (M,~) = 1 if and only if (M, v) is a product sutured manifold.? Further,
it is clear from the definition that

rkz SFH(M,~) <T(M,~).
We have the following immediate corollary of Theorem 1.1.
COROLLARY 1.4. If (M,~) is a balanced sutured manifold, then

dimc SHI(M,~) < T(M,~).

For the following corollaries, we recall the natural sutured manifolds associated to closed
3-manifolds and knots therein. Given a closed 3-manifold Y, let (Y (1),0) denote the sutured
manifold obtained by removing a 3-ball from Y, where ¢ is a simple closed curve on 9Y (1) = 52,
Similarly, given a knot K C Y, let (Y(K),mU —m) be the sutured manifold obtained by
removing a tubular neighborhood of K, where m and —m are oppositely oriented merid-
ional curves on 9Y (K) = T?. The framed instanton and Heegaard Floer homologies of a closed
3-manifold Y are given by

I*(Y) = SHI(Y (1),6),
HFE(Y) = SFH(Y (1),6).
Likewise the instanton and Heegaard knot Floer homologies of a knot K C Y are given by
KHI(Y,K) = SHI(Y (K),mU —m),
HFK(Y,K) = SFH(Y (K),m U —m).

! See §3.2 for the definition of admissible; every H is admissible when H;(M,9M;Q) = 0.
2 This is a fun exercise which we have not seen written down before: it is a generalization of the well-known fact
that S® is the only closed 3-manifold with simultaneous trajectory number one [0S04a).
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Recall that the ranks of the Heegaard Floer homology and framed instanton homology of
a rational homology 3-sphere Y are each bounded below by |H1(Y')|. An L-space, respectively
instanton L-space, is a rational homology 3-sphere which achieves these lower bounds

rk, HE(Y) = |Hy(Y)),
dime I7(Y) = [H (Y)],

respectively. A strong L-space, as defined by Levine and Lewallen in [LLL.12], is a rational homology
3-sphere Y which satisfies the stronger condition®

T(Y(1),6) = [Hi(Y)].
Indeed, this condition implies that Y is an L-space, because
[Hy(Y)| < kg HF (Y) < T(Y(1),6).
The following is then an immediate corollary of Theorem 1.1.
COROLLARY 1.5. IfY is a strong L-space, then it is an instanton L-space.

More generally, we say that a sutured Heegaard diagram H for a sutured manifold (M, )
is strong if ‘H is admissible and the sutured Floer complex SFC(H) has trivial differential. We
then have the following.

COROLLARY 1.6. If (M,~) is a balanced sutured manifold which has a strong sutured Heegaard
diagram, then

dimc SHI(M,~) < rkz SFH(M, 7).
For example, when K is a (1,1)-knot in a lens space L(p, q), the sutured manifold
SHI((L(p, q))(K),m U —m)
has a strong Heegaard diagram. We thus reproduce the following result of Li and Ye [LY22].
COROLLARY 1.7. If K C L(p,q) is a (1,1)-knot, then

dime KHI(L(p, q), K) < rky HFK (L(p, q), K).

1.1 On the proof

Given a vertical tangle T in a balanced sutured manifold (M, ), one forms an associated sutured
manifold (Mp,~vr) by removing a neighborhood of 7' from M, and adding meridians of the
components of T" to y; see § 2 for more details. Li and Ye proved the following dimension inequality
in [LY22, Proposition 3.14].

THEOREM 1.8. If T is a vertical tangle in (M,~y) such that [T;] = 0 in Hy(M,0M;Q) for each
component T; of T', then

dimc SHI(M,~) < dim¢ SHI (M7, 7).

To prove Theorem 1.1, we first establish the same inequality under the weaker assumption
that T' (rather than each of its components) is rationally nullhomologous, in § 2.

THEOREM 1.9. If T is a vertical tangle in (M,~) such that [T] =0 in Hy(M,0M;Q), then
dimc SHI(M,~) < dim¢ SHI (M7, 7).

3 Strong L-spaces are also of interest because Levine and Lewallen were able to show that their fundamental
groups are not left-orderable, as predicted by the L-space Conjecture.
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Next, given an admissible sutured Heegaard diagram H for (M, ), we construct a vertical
tangle T' C (M,~) with [T] = 0 in Hy(M,0M;Q), such that
dime SHI(Mr,~vr) = |&(H)|.
This is the content of §3. Theorem 1.1 then follows from Theorem 1.9.
Remark 1.10. Theorem 1.8 suffices to prove Theorem 1.1 in the case where Hy(M,0M;Q) =0,

but we need the stronger Theorem 1.9 in general.

1.2 Organization

In §2, we prove the inequality in Theorem 1.9. We then use this in § 3 to prove our main result,
Theorem 1.1. Finally, in §4, we discuss further directions, some of which are in progress. In
particular, we discuss the possibility of using the proof of Theorem 1.1 to construct a grading
on SHI by homotopy classes of 2-plane fields, and the prospects for upgrading Theorem 1.1 to
a proof of the isomorphism (1.1).

2. A dimension inequality
A wvertical tangle in a balanced sutured manifold (M, ) is a properly embedded 1-manifold
T=TuU---UfT,
in M, with boundary in R(), whose components 7T; satisfy
OT; N Ry (y) £ 0 # 0T, N R_(v),

and are oriented from R, (y) to R_(7y) (in particular, 7" has no closed components). One forms
an associated balanced sutured manifold (Mp,~yr) by removing tubular neighborhoods of the
components T;, and adding positively-oriented meridians of these components to the suture -,
as in [LY22, §3] and depicted in Figure 7. In this section, we prove Theorem 1.9, which states
that

dimc SHI(M,~) < dim¢ SHI (M7, ~r)

when [T] =0 in H;(M,0M;Q). The rough idea is to turn 7" into a related tangle 7" whose
components are rationally nullhomologous, and apply Theorem 1.8.

Proof of Theorem 1.9. Let T1,...,T, be the components of T. For i = 1,...,n, let
oT; = qi — pis

where p; € Ry () and ¢; € R_(y). We may assume that v is connected, because we can achieve
this by adding contact 1-handles to (M,~), an operation which does not change SHI(M,~)
(equivalently, SHI is invariant under product disk decomposition [KM10, BS16]). Then we can
find a sequence of pairwise disjoint arcs

&,...,&, COM
such that, for each i = 1,...,n, we have:

o & = pit1 — q; (where pp4q := p1); and
e &, intersects 7y in exactly one point.

For every i € {2,...,n}, choose an arc t; C M in a neighborhood of the unique intersection
point &_1 Ny, as depicted in Figures 1 and 2. Push the interior of ¢; into the interior of M to
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R_ (w)&h(v) N oM
i1

t;

FiGURE 1. The point of view is from the interior of M, looking at OM.

FiGURE 2. The tangle T =Ty U---UT, in M and the arcs & and t; in M, together with the
suture 7.

turn this arc into a vertical tangle 77, and let
T"=TyU---UT}.
Then
(Mg, ypn) = (M = N(T"),y U py U+~ U ),

where p} is a positively oriented meridian of 7]. Each component 7] cobounds a disk in M with
the arc t;. These disks then restrict to properly embedded disks

Dy, ..., D, C Mypn
with |D; Ny| =1 and [D; N u}| = d;5, so that
‘Di My //’ = 2.

Thus, each D; is a product disk.
Next, consider the arc

th=TTU&LHUTL,U&EU---UT, 1 UE 1 UT, C Mypn.

Push its interior into the interior of M7~ to form a vertical tangle T with 7] = g, — p1, as in
Figure 3. Let 7" be the tangle in M given by

T=TuT"=T{U---UT,.
We refer to a tangle T” formed in this way as a mized tangle for T. Note that
(M, ypr) = (Mpo)gy, (yre)y) = (M = N(T'),y U iy U=+ U pay,),

where 1} is a positively oriented meridian of 7. Observe that the disks D, ..., D, C Mpn
restrict to properly embedded annuli

Ao, ... Ay C My

because T intersects each disk in exactly one point, as shown in Figure 4.
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FIGURE 4. The annulus A; in M7 near the boundaries of the tubular neighborhoods of the
components 7] and 77, as seen from inside Mp.

The endpoints of the arc &, C OMyp» agree with 977, and |§, Ny| = 1. We can, thus, use &,
together with v and ) to define a sequence of sutures I';, C My for m € N, as in [LY22, § 3.2],
which one should regard as ‘longitudinal’ sutures for 77; see Figure 5. By the construction of T}
and the assumption that 7" is rationally nullhomologous in (M, M), we have

[T7] = [T] = 0 € Hi(Mrp»,0Mrn;Q).
Therefore, by [LY22, Lemmas 3.21 and 3.22], we have the following.

LEMMA 2.1. There is an exact triangle
SHI(—Myp+,—Ty,) — SHI(—Mp, —Ti1)
\;m\ Al
SHI(—MT//, _’YT”))

coming from the surgery exact triangle associated to surgeries on the meridian u} of Tj.
Furthermore, G,, = 0 for m sufficiently large.

For each i = 2,...,n and every m € N, we have that
|A; N Ty, | = 4.
1903
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FIGURE 5. (a) The suture —I',,,11 and the bypass arc n— shown in bold. (b) The suture —yp
resulting from the bypass attachment along 7_, and the negatively stabilized annulus A;” C

(—=Mr:, —y77).

Let us orient each A; so that the induced orientation on JA; is opposite the orientation of
O0D; coming from that of T/, as in Figures 4 and 5. By [GL19], the disks Ds, ..., D, induce a
Z"~'-grading on

SHI(—Mrpr, —yrn).
Similarly, the annuli Ao, ..., A, induce a Z"'-grading on
SHI(—Mqp:,—T'y,)
for each m € N, and we have the following graded version of the triangle in Lemma 2.1.

LEMMA 2.2. The exact triangle of Lemma 2.1 restricts to the exact triangle

SHI(—MT/, —Fm, (AQ, ce ,An), (0, ey 0)) I SHI(—MT/, —Fm+1, (AQ, ce ,An), (0, ey 0))

X %

SHI(~Mzu,~ypn, (Da, ..., Dy), (0, ..., 0)).

Proof of Lemma 2.2. We prove that the map F,11 preserves the gradings. The arguments for
the other two maps are similar.
Let us first recall the definition of F,,,+1 from [LY22, §3]. Pick a closure

(Ym+17 Rm-‘rla w’m-‘rl)

for (=M, —T'p,41) so that each annulus A; extends to a closed surface A; C Y41, as in [Li21,
§ 3]. By the construction therein,

g(A;) =2

for i = 2,...,n, because each component of JA; intersects I';,+1 in two points. The sutured
instanton homology of (—Myps, —T',41) is defined as a certain direct summand

SHI(_MT’y _Fm—‘rl) = I* (Ym—i-l ’Rm—i-l)wm_._l
of the instanton Floer homology I, (Y:41)w,, ., as in [KM10, § 7]. The summand
SHI(—Mpr, =i, (A2, ..., An), (G2, . ., in))
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is defined as the simultaneous (generalized) (2iq,. .., 2iy,)-eigenspace of commuting operators

w(Ag), ..., w(Ay) : SHI(—Mpr, —Tpy1) — SHI(—Mgr, —Tppi1)

associated to these surfaces.

The meridian g} of 7] can be thought of as an embedded circle in Y,1;. Let Y be
the manifold obtained from Y;,4; via O-surgery on g}, with respect to the framing of u}
induced by dMz7. Since pj is disjoint from Ry, 41 and the A;, these surfaces survive in Y. By
[BS16, §3.3], (Y, Ryt1, wWm+1) is a closure of (—Mpw, —~ypn). The map F,41 is then induced by
the cobordism given by the trace of O-surgery on j}. Since A; C Yy, 41 is homologous to 4; C Y

in this cobordism, F,, ;1 respects the eigenspaces of p(A;). Thus, F), 41 maps
SHI(—Mpr, —Tpg1, (Ag, ..y Ay), (G2, - yin))

into
SHI(—Mqn, —~ypr, (Ag, ..., Ap), (12, -, in)).

Now, the O-surgery on g makes each A; compressible in Y; in particular, each A; CY is
homologous to the disjoint union of two tori

T'UT? CY.
One of these tori, say Til, is the extension D; C Y of D; C —Myp» that is used to define the
grading on SHI(— My, —~pr) associated to D;. Since

A;=D; + Tf

in Hy(Y), the k-eigenspace of u(A;) agrees with the k-eigenspace of u(D;) for every k, by
[BS22, Corollary 2.9]. Thus, we have that

SHI(—MTN, YT, (Ag, e ;An); (ig, ce ,Zn))
= SHI(—MTN, -1, (DQ, ceey Dn), (ig, oo ,Zn))

Putting these arguments together, we see that F}, 1 preserves the Z" '-gradings as claimed in
the lemma. 0

Note that decomposing (—Mpr, —yp») along Do U---U D, yields (—M,—~). By [Li21,
Lemma 4.2], we therefore have

SHI(—Mgn, —~pn,(Da,...,Dy),(0,...,0)) = SHI(—M, —).
Hence, for m sufficiently large, Lemmas 2.1 and 2.2 imply that
dimc SHI(—M, —v) = dim¢ SHI(— M7y, —Tppi1, (A2, ..., 4,),(0,...,0))
— dim¢ SHI(— My, —Tp, (As, ..., Ap), (0,...,0)), (2.1)

since G, = 0.

Next, we consider attaching a bypass to (—Mps, —T';,41) along the arc n— in Figure 5. By
[BS22, §4], this attachment gives rise to a bypass exact triangle. As discussed in [LY22, § 3], the
other two sutures involved in the triangle are —I';,, and —~yp. It is straightforward to check that
the bypass attachment along 7n_ creates a negative stabilization

Al_ C (_MT’v _PYT’)

of A;, for each i =2,...,n, in the sense of [Li21, Definition 3.1]. Hence, as in the proof of
[Li21, Proposition 5.5], we have the following graded version of the bypass exact triangle of
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Mt

FIGURE 6. The result of decomposing (My+,yp/) along A U---U A, is simply (Mp,~yr). This
is illustrated above in the case n = 2.

[BS22, Theorem 1.20]:

SHI(—MT/, —Fm, (AQ, ce ,An), (O, ce ,0)) I SHI(—MT/, —Ferl, (AQ, ey An), (0, ldOtS, 0))

\/

SHI(—Myr, =y, (A, ..., A;), (0,...,0)),
which implies that
dime SHI(—Mypr, —yrr, (A5, ..., A,),(0,...,0))
> dimg SHI(—Myr, —Tmat, (As, .., An), (0, .., 0))
—dim¢ SHI(—Mypr, =Ty, (A2, ..., Ap), (0,...,0)). (2.2)
From the grading shifting property [Li21, Theorem 1.12] and [Wan20, Proposition 4.1], we have
SHI(—Mpr, —vrr, (A5, ..., A), (0,...,0))

n

= SHI(—Mzpr, —~yr, (A5, ..., AT, (=1,...,—1)), (2.3)

where A;r is a positive stabilization of A;. Moreover, from the construction of the gradings and
stabilizations in [Li21, § 3], we have

SHI(—Mzgr, —vyrr, (AS ..., AF), (—1,...,-1))
= SHI(_MT’a -7, (_(A;)a ) _(A;'L—))a (15 ) 1))
= SHI(—Mypr, —ypr, (=A2) ", ..., (=An) "), (1,...,1)). (2.4)

By [Li21, Lemma 4.2], this last group is isomorphic to the sutured instanton homology of the
manifold obtained from (—My, —yp/) by decomposing along (—A2)~ U--- U (—A4,)”. By [Li21,
Lemma 3.2], this is the same as the manifold obtained by decomposing along —Ay U --- U —A,,,
which is, after reversing orientation, the manifold obtained from (Mp+,v7/) by decomposing
along Ay U---UA,. It is straightforward to check that the latter manifold is simply (M, ~vyr),
as indicated in Figure 6 in the case n = 2. Thus,

SHI(—MT/, Y1, ((—AQ)_, ey (—An)_), (1, ey 1)) = SHI(—MT, —’)/T>. (25)
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Finally, combining (2.1)—(2.5), we have that
dimc SHI(—My7, —~yr) = dime SHI(—Mpr, =y, ((=A2) ", ..., (=An) "), (
= dim¢ SHI(—Myp, =y, (A5, ..., A,),(0,...,0))
> dime SHI(—Mzpr, —Tyst, (As, - .., An), (0, ..., 0))
— dim¢ SHI(—Mp,—T'p,, (A2, ..., An),(0,...,0))
= dim¢ SHI(—M, —).

Given the symmetry of SHI under orientation reversal, this proves Theorem 1.9. O

3. Proof of Theorem 1.1

3.1 Full tangles
Let (M,~) be a balanced sutured manifold. Let

H = (Z7a:{a1,...,ak},ﬁ:{ﬁla'-'aﬁk})

be any (not necessarily admissible) sutured Heegaard diagram for (M, ). This means that M is
obtained from ¥ x [—1,1] by attaching 3-dimensional 2-handles

Do, = D2, x I,
Dg, = D3, x I,

along A; x {—1} and B; x {+1}, where A; and B; are annular neighborhoods of «; and £,
respectively, for ¢ = 1,..., k. The suture « is given by

v = 0% x {0}.

We next define a special class of vertical tangles in (M, ) associated to H.
Let Ry, ..., Ry be the regions of ¥—a—( disjoint from 0X. Foreachi = 1,...,n,let p;1, ..., Diq,
be a; distinct points in R;, for some integer a; > 1. Let

Ej = pij X [—1,1] C XX [—1, 1],
and let
n a;
r=UU%:
i=1j=1

Then T is a vertical tangle in (M,~y), oriented from R4(7y) to R—_(y). Let ij be a tubular
neighborhood of the point p;; € R;, let

Nij = DzQJ X [—1, 1]
be a tubular neighborhood of the component 7;; in M, and let
vij = 0D; x {0} C ONy;

be a positively oriented meridian of this component; see Figure 7. Let (M7, ~yr) be the balanced
sutured manifold obtained from M by removing these tubular neighborhoods,

n a;
Mp=M -] Ny,

i=1j=1
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(a) (b)
1

! -

FIGURE 7. (a) The component T;; = p;; x [—1,1] C M. (b) The complement of N;; with the
meridian ;;.

where 7 is the union of v with meridians of the T;;,

n a;
'YT:'YUUU%'ja

i=14=1
as in §2. We refer to any tangle obtained in this way as a full tangle for H.
The main result of this section is the following.

PRrROPOSITION 3.1. If T is a full tangle for H, then dim¢ SHI (M7,vr) = |S(H)].

Remark 3.2. The analogue of this proposition for SFH is immediate. One forms a sutured
Heegaard diagram Hp for (Mp,vyr) from H by removing neighborhoods of the p;; € X. Since
there is at least one such point in every region of >—a—f3 not intersecting 03, this ensures that
Hr is admissible and that the differential on SFC(Hr) is zero, so that

rky SFH (Mp,~yr) = tkz SFC(Hr) = |S(Hr)| = |S(H)|.
This was the inspiration for our result above.
We need the following for the proof of Proposition 3.1; see [GL19, Corollary 4.3].

PROPOSITION 3.3. Suppose (M, ) is an irreducible balanced sutured manifold and D C M is a
properly embedded disk which intersects ~ in four points. Then

SHI(M,~) = SHI(M',~") @ SHI(M",~"),
where (M',~'") and (M",~") are the decompositions of (M,~) along D and — D, respectively.

Before proving this proposition, we record the following lemma. This lemma is well-known
(Kronheimer and Mrowka prove the much harder converse in [KM10, Theorem 7.12]), but since
we could not find a concrete reference in the literature we provide a short proof here.

LEMMA 3.4. Suppose (M,~) is an irreducible balanced sutured manifold. If (M,+y) is not taut,
then SHI(M,~) = 0.

Proof. As mentioned in the proof of Lemma 2.2, SHI(M,~) is defined in [KM10, § 7] in terms
of a closure (Y, R,w) of (M,~), where Y is a closed oriented 3-manifold, R C Y is a connected
closed oriented surface which we can take to have genus g(R) > 1, and w C Y is a simple closed
curve with |w N R| = 1. Specifically, SHI(M,~y) is the generalized (2¢(R)—2)-eigenspace of the
operator p(R) on I.(Y),.

Now suppose that (M,~) is irreducible but not taut. Then, by the definition of tautness
(e.g. [JuhO06, Definition 9.18]), either one of R4 () is compressible or Ry (7y) do not minimize the
Thurston-norm in their homology classes. In either case, there exists a surface R’ C Y such
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(a) (b) (©) (d)

(M, ) (M,~1) (M,~7)

FIGURE 8. (a) A neighborhood of the disk D C M whose boundary intersects the suture 7 in
four points. (b—d) The arc of attachment for the initial bypass in the triangle.

that [R'] = [R] € H(Y) but 1< g(R') < g(R). This implies that SHI(M,v) =0 by [KMI10,
Proposition 7.5]. O
Proof of Proposition 3.3. Ghosh and Li prove this in [GL19, Corollary 4.3] under the additional
assumption that (M, ~) is taut and at least one of (M',~') and (M",~") is taut. We show that
this additional assumption is unnecessary, by showing that the proposition still holds when the
assumption is not true.

First, suppose (M,~) is not taut. Then neither (M’,+’) nor (M”,~") is taut, by [Gab87,
Lemma 0.4]. Note that the irreducibility of M implies the irreducibility of any manifold obtained
by cutting M open along a properly embedded disk; in particular, M’ and M" are irreducible.
Therefore,

SHI(M,~) = SHI(M',~') = SHI(M",~") = 0,

by Lemma 3.4, and the proposition holds.
Next, suppose neither (M’,4') nor (M”,~") is taut. Consider the bypass exact triangle
of [BS22]:

SHI(—M,—~) —= SHI(—M,—+})

SHI(—M,—~Y),

determined by an initial bypass attachment to (M, ) along an arc in 9D as shown in Figure 8.
The other manifolds (M,~]) and (M,~{) in the triangle product disk decompose (along a copy
of D which intersects the new sutures in two points) to (M’,~’) and (M",~"), respectively. Since
SHI is invariant under product disk decomposition, we therefore have

SHI(M,~1) = SHI(M',+") =0,
SHI(M,~}) = SHI(M" ,4") =0,

by Lemma 3.4. It then follows from the bypass triangle, and the symmetry of SHI under
orientation reversal, that SHI(M,~) = 0 as well, so the proposition holds. ([l

Proof of Proposition 3.1. Recall that ij denotes a tubular neighborhood of p;; € R;. There
exists a (possibly empty) set of disjoint, properly embedded arcs

n a;
dla--~admCE_UUDij

i=1j=1
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which satisfy the following three conditions:

(1) for every e = 1,...,m, the arc d. is contained in some region of ¥—a—[3;
(2) for every e, elther both endpomts of d. are on 0%, or each is on some 8DU, and
(3) E-UL, Ui, Dij — di — ... — dy, deformation retracts onto a U f3.

Now consider the disk

e = de x [—1, < UUDU) ~1,1] € OMr,

i=1j=1

for e =1,...,m. The boundary of each . intersects vy in two points; hence, J. is a product
disk. Since SHI is invariant under product disk decomposition, let (Mrp,~r) henceforth refer to
the balanced sutured manifold obtained after decomposing along 41, ..., 6.

Then Mr admits the following description. Let q1,...,q denote the intersection points
between the o and 3 curves. If gy is an intersection point between o; and 3;, let r, C ¥ denote
the rectangular component of A; N B; which contains g,. Then M7 is the given by the union

My =D4 U---UD,, UDg U---UDg Ury U---Ur
of the usual 2-handles with the tubes
e =1 X [—1,1],
as shown in Figure 9. Let ¢, denote the union of the four corners of the rectangle r,. Then the

suture yr is given by
k t

k t
vr = J©D2, x o1) U | J(0DF, x 1) U U co x [=1,1]) = [ J(@re x {~1,1})
i=1 =1 =1

i=1
as shown and oriented in the figure near a tube 74. Let
mg:TgX{O}CTg

denote the meridional disk of 74, oriented as in Figure 9, for £ = 1,...,t. Note that the boundary
of each my intersects the suture v in four points.

Note that Mt is a handlebody and therefore irreducible. We may thus apply Proposition 3.3
to it, as well as to the manifolds obtained by decomposing Mt along any collection of the
meridional disks my, as these manifolds are simply disjoint unions of handlebodies and, hence,
also irreducible. For each t-tuple of signs

I=(e1,...,6) € {+ -},
let (MF, L) be the sutured manifold obtained by decomposing (M7, ~yr) along the disks
ermyi U ---Uemy.
Then

SHI(Mr,yr)= @5 SHI(Mf,yr),
Ie{+,—}t

by Proposition 3.3. Each (M,}, fy:IF) is simply a union of 3-balls
M4 2Dy, U UDy, UDg, U---UDg,,

which means that SHI (M%,fy%) is either C or trivial, according as whether 7% has exactly
one component on the boundary of each of these 3-balls or not. We claim that the nonzero
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(@) () -
(673 ‘
= == .
\2 \
© (d)

€ =+

FIGURE 9. (a) An intersection point ¢, € a; N Bj. The rectangular component r, of A; N B,
containing g, is shown in darker gray. (b) The 2-handles D,, and D, glued together by the tube
7¢. The meridional disk my is shown in gray; it intersects the suture yr in four points, and its
oriented normal points upwards. (¢) The result of decomposing along —my. (d) The result of
decomposing along my.

summands SHI(M%, L) are in one-to-one correspondence with the elements of &(H), which
will then complete the proof.
For this claim, we consider the restriction of 'y% to the ball D,,. Let

qfla"'vqu E{Ql»---a%}

denote the intersection points between «; and 3. Then V:Ir restricts to exactly one component
on the boundary of D,, if and only if exactly one of €,...€,, is — and the rest are +. The
analogous statement holds for the restriction of 7% to Dg,. Thus, if we let

q(1) ={q | e¢ = -},
then /. restricts to exactly one component on each 3-ball in MY if and only if ¢(1) € &(H). O

Remark 3.5. Proposition 3.1 also follows from the fact that SHI and SFH obey the same decom-
position laws (Proposition 3.3, and the invariance under product disk decomposition), agree in
rank for sutured 3-balls, and

tkz, SFH (Mrp,vr) = |6(H)|,

1911

https://doi.org/10.1112/S0010437X23007303 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X23007303

J. A. BALDWIN, Z. L1 AND F. YE

per Remark 3.2. Our original proof has the advantages that it does not rely on the definition
of the differential in SFC, and it establishes a very concrete bijection between the nonzero
summands SHI(MF, 1) and elements of &(H).

3.2 The proof

Recall that a sutured Heegaard diagram H for a balanced sutured manifold (M, ) is admissible if
and only if every nontrivial periodic domain has both positive and negative multiplicities [Juh06].
This is automatically true of any H when H;(M,0M;Q) =0 (there are no nontrivial peri-
odic domains in this case), though every balanced sutured manifold admits an admissible
diagram.

Proof of Theorem 1.1. Let H = (X, a, ) be an admissible sutured Heegaard diagram for (M, 7).
Then we can assign a positive integer area a; to each region R; of YX—a—( disjoint from 0%, so
that the signed area of every periodic domain is zero; see [0S04b, Lemma 4.12].* Fix a; distinct
points p;1, ..., Dia; € R; for each i, and let

n a;
T=JUTcMm
i=1j=1
be the corresponding full tangle for H, as in §3.1.
We claim that [T] =0 in Hy(M,0M;Q). To see this, note that for every periodic domain
P of 'H, the intersection number of T" with the 2-cycle in M represented by P is negative the

signed area of P, which is zero. Since the homology classes represented by periodic domains span
Hy(M), the claim follows. Theorem 1.9 therefore implies that

dimc SHI(M,~) < dim¢ SHI (M7, 7).
Theorem 1.1 then follows from the fact that
dimc SHI(Mr,vr) = |&(H)],
by Proposition 3.1. O
Remark 3.6. It is not true that the inequality
dime SHI(M, ) < |&(H)|

holds for any sutured Heegaard diagram H for an arbitrary balanced sutured (M,~). For
example, consider the diagram H = (T? — D?, a1, 41) for

(M.,~) = ((S" x §%)(1),0)
in which «y and ; are disjoint curves on the punctured torus. In this case, we know that
dimc SHI(M,~) = 2,
while |&(H)| = 0. The issue here is that H is not admissible.

4. Further directions

Let H be an admissible sutured Heegaard diagram for a balanced sutured manifold (M, ~). Let
T be a full tangle for H, as defined in § 3. In ongoing work, we prove that

SHI(—Myp, —~r) = CIS7

4 Ozsvath and Szabé state this for real-valued areas, but proof shows the same is true for integer areas.
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has a basis given by the contact invariants of the tight contact structures on (Mp,~yr). In
particular, this sutured instanton homology group is naturally graded by homotopy classes of
2-plane fields. We discuss potential applications of this fact in the following.

Let T be a mixed tangle for T', as defined in §2. Let Vi and V;,, be the groups

Vi = SHI(—Mp, —yr, (A5, ..., A,),(0,...,0)),
Vin = SHI(—Mpr, =T, (Ag, ..., An), (0,...,0))
from §2, for m € N. To prove Theorem 1.1, we proved that Vp = SHI(—Myp, —~r) and
dime SHI(—M, —v) = dim¢ V41 — dime V,,, < dime Vi

for sufficiently large m. However, in fact, this inequality can be viewed as coming from a spectral
sequence similar to that in [LY22, §4]. This spectral sequence can also be described as follows.
From the bypass exact triangle used in § 2, we have that

Vr = H,(Cone(tp— : Vi, — Vint1)),

where 1_ is the map associated to the bypass attachment along the arc n_. One can prove, on
the other hand, that

SHI(—M,—v) = H.(Cone(tp— — 4 : Vi = Vint1))

for m large, where 1, is a related bypass attachment map. The groups V,,, and V,,1 can be
graded using the rational Seifert surface for 7’, as in [Li21]. After adjusting this grading by
an overall shift, the map 1_ is grading-preserving while 1, decreases the grading by 1, for m
large. The complex Cone(¢)— — 1) is then filtered, and the F; page of the associated spectral
sequence is H,(Cone(?)_)). In sum, we have a spectral sequence

Cl®MI =~ v =~ H, (Cone(yp_)) = H,(Cone(s)— — 1)) = SHI(—M, —). (4.1)

The first potential application of these ideas involves defining a grading on SHI(—M, —7)
by homotopy classes of plane fields. Indeed, SHI(—Myp, —yr) has such a grading, as mentioned
previously, as it is generated by contact invariants of contact structures. The manifold (Mpr, y7v)
is obtained by gluing (Mp,~r) along annuli, as in §2, and we believe that the tight contact
structures on the latter glue to give tight contact structures on the former whose invariants form
a basis for V. Thus, there should be a natural grading by homotopy classes of 2-plane fields
on Vr as well. The bypass maps 1_, ¢ are natural from a contact-geometric standpoint, and
should therefore shift plane field gradings in a sensible way. We expect that one can then use the
relation between Vp and Cone(t)—) and the structure of the latter to define a plane field grading
on Cone(t)_), and then on Cone(yp— — 14).

A grading by homotopy classes of 2-plane fields on SHI would enable one to define Spin®©
decompositions of these groups, as well as an analogue of the Maslov grading in Heegaard Floer
homology (see [LY22, §4| for another approach to such a decomposition). The current lack of
such structure makes it difficult to translate arguments from the Heegaard Floer setting to the
instanton Floer setting.

A related second application is towards proving the isomorphism (1.1). Indeed, there is some
hope that one could understand the spectral sequence (4.1) purely in terms of contact geometry,
and thereby obtain a more axiomatic proof that

SHI(M,~) = SFH(M,~) ® C = SHM(M,~) ® C, (4.2)

since the analogous spectral sequences can be defined in the Heegaard Floer and monopole Floer
settings by the same contact-geometric means.
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A more pedestrian approach to (4.2) is the following: first, prove that one can understand
the spectral sequence
Cl®Ml — SHI(—M, —)
as coming from a differential
O =040y +...:CISHI _, clemr)l

where Oy shifts a grading (coming from homotopy classes of 2-plane fields) on Cl8MI = v by
k, such that

SHI(—M, —~) = H,(CI®MI g),
Then, for generators z,y € &(H) and the corresponding basis elements e, e, € CISMI perhaps
one could use the 2-plane field gradings to show that the coefficient

(Oeg, ey) (4.3)
is nonzero only if there is a homotopy class of Whitney disks
¢ € m(z,y) (4.4)

with positive domain in ‘H and Maslov index one. If even this were true, then one could prove,
for example, that the inequality in Corollary 1.7 is an equality,

dime KHI(L(p, q), K) < tky HFE (L(p, q), K)
for (1,1)-knots K C L(p, q).

More generally, the hope would be that for a nice diagram H (one in which the regions
of ¥—a—0 disjoint from 9% are bigons or rectangles), one could show that the coefficient (4.3)
is nonzero if and only if there is a class as in (4.4) with positive domain and Maslov index one
(the domain of such a class is necessarily an empty embedded bigon or rectangle in this case).
These are precisely the domains counted in the differential on SFC(H) in this case, by [SW10].
If one could further show that these domains are counted with the same nonzero complex coef-
ficients in both the sutured instanton and Heegaard Floer settings, then this would prove (1.1)
and then (4.2) by the same methods. If one could work with coefficients in F = Z/27Z, then the
last step would be unnecessary, as all nonzero elements of this field are equal. Unfortunately,
SHI is not defined over F. On the other hand, SHM is, and therefore the strategy outlined above
minus the last step would be sufficient to give an alternative, more axiomatic proof that

SFH(M,~;F) = SHM (M, ~;F).
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