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Abstract

Suppose H is an admissible Heegaard diagram for a balanced sutured manifold (M, γ).
We prove that the number of generators of the associated sutured Heegaard Floer com-
plex is an upper bound on the dimension of the sutured instanton homology SHI (M, γ).
It follows, in particular, that strong L-spaces are instanton L-spaces.

1. Introduction

Let (M, γ) be a balanced sutured manifold. Kronheimer and Mrowka conjectured [KM10] that
its sutured instanton homology is isomorphic to its sutured Heegaard Floer homology,

SHI (M, γ) ∼= SFH (M, γ) ⊗ C. (1.1)

Proving this remains a major open problem. In particular, it would imply isomorphisms

I#(Y ) ∼= ĤF (Y ) ⊗ C,

KHI (Y,K) ∼= ĤFK (Y,K) ⊗ C,

between the invariants of closed 3-manifolds and knots in the instanton and Heegaard Floer
settings.

There has been a flood of recent work proving these isomorphisms for various families of
closed 3-manifolds and knots; see [BS21, ABDS22, LPCS20, LY22, GL19]. In this paper, we
initiate a systematic approach to the general isomorphism (1.1). Before stating our main result,
let us establish some notation.

Given a sutured Heegaard diagram

H =
(
Σ,α = {α1, . . . ,αk},β = {β1, . . . ,βk}

)

for a balanced sutured manifold (M, γ), let

Tα := α1 × · · ·× αk and Tβ := β1 × · · ·× βk ⊂ Symk(Σ)

denote the usual tori in the k-fold symmetric product of Σ, and let

S(H) := Tα ∩ Tβ ⊂ Symk(Σ).
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Sutured instanton homology and Heegaard diagrams

If H is admissible, then S(H) is the set of generators for the sutured Heegaard Floer complex
SFC (H) as defined by Juhász in [Juh06].1 Our main theorem is the following.

Theorem 1.1. If H is an admissible sutured Heegaard diagram for (M, γ), then

dimC SHI (M, γ) ≤ |S(H)|.
Remark 1.2. Theorem 1.1 does not hold without the assumption that H is admissible; see
Remark 3.6.

Remark 1.3. Our proof of Theorem 1.1 also works for sutured monopole homology (SHM ) in
place of SHI . Of course, the SHM version of our main result follows from the isomorphism

SHM (M, γ) ∼= SFH (M, γ),

which is a consequence of the equivalence between monopole and Heegaard Floer homology,
see [Lek13]. Still, it may be of value to know that one can prove the inequality

dimZ SHM (M, γ) ≤ |S(H)|
without going through the proof of this equivalence.

Given a balanced sutured manifold (M, γ), we define the simultaneous trajectory number
T (M, γ) to be the minimum of |S(H)| over all admissible sutured Heegaard diagrams H for
(M, γ). This is the generalization to balanced sutured manifolds of a notion originally defined
for rational homology 3-spheres by Ozsváth and Szabó in [OS04a]. It admits a purely Morse-
theoretic interpretation when H1(M, ∂M ; Q) = 0, and is a measure of the topological complexity
of (M, γ); for example, T (M, γ) = 1 if and only if (M, γ) is a product sutured manifold.2 Further,
it is clear from the definition that

rkZSFH (M, γ) ≤ T (M, γ).

We have the following immediate corollary of Theorem 1.1.

Corollary 1.4. If (M, γ) is a balanced sutured manifold, then

dimC SHI (M, γ) ≤ T (M, γ).

For the following corollaries, we recall the natural sutured manifolds associated to closed
3-manifolds and knots therein. Given a closed 3-manifold Y , let (Y (1), δ) denote the sutured
manifold obtained by removing a 3-ball from Y , where δ is a simple closed curve on ∂Y (1) ∼= S2.
Similarly, given a knot K ⊂ Y , let (Y (K), m ∪ −m) be the sutured manifold obtained by
removing a tubular neighborhood of K, where m and −m are oppositely oriented merid-
ional curves on ∂Y (K) ∼= T 2. The framed instanton and Heegaard Floer homologies of a closed
3-manifold Y are given by

I#(Y ) ∼= SHI (Y (1), δ),

ĤF (Y ) ∼= SFH (Y (1), δ).

Likewise the instanton and Heegaard knot Floer homologies of a knot K ⊂ Y are given by

KHI (Y,K) ∼= SHI (Y (K), m ∪ −m),

ĤFK (Y,K) ∼= SFH (Y (K), m ∪ −m).

1 See § 3.2 for the definition of admissible; every H is admissible when H1(M, ∂M ; Q) = 0.
2 This is a fun exercise which we have not seen written down before: it is a generalization of the well-known fact
that S3 is the only closed 3-manifold with simultaneous trajectory number one [OS04a].
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Recall that the ranks of the Heegaard Floer homology and framed instanton homology of
a rational homology 3-sphere Y are each bounded below by |H1(Y )|. An L-space, respectively
instanton L-space, is a rational homology 3-sphere which achieves these lower bounds

rkZĤF (Y ) = |H1(Y )|,

dimC I#(Y ) = |H1(Y )|,

respectively. A strong L-space, as defined by Levine and Lewallen in [LL12], is a rational homology
3-sphere Y which satisfies the stronger condition3

T (Y (1), δ) = |H1(Y )|.

Indeed, this condition implies that Y is an L-space, because

|H1(Y )| ≤ rkZĤF (Y ) ≤ T (Y (1), δ).

The following is then an immediate corollary of Theorem 1.1.

Corollary 1.5. If Y is a strong L-space, then it is an instanton L-space.

More generally, we say that a sutured Heegaard diagram H for a sutured manifold (M, γ)
is strong if H is admissible and the sutured Floer complex SFC (H) has trivial differential. We
then have the following.

Corollary 1.6. If (M, γ) is a balanced sutured manifold which has a strong sutured Heegaard
diagram, then

dimC SHI (M, γ) ≤ rkZSFH (M, γ).

For example, when K is a (1, 1)-knot in a lens space L(p, q), the sutured manifold

SHI ((L(p, q))(K), m ∪ −m)

has a strong Heegaard diagram. We thus reproduce the following result of Li and Ye [LY22].

Corollary 1.7. If K ⊂ L(p, q) is a (1, 1)-knot, then

dimC KHI (L(p, q), K) ≤ rkZĤFK (L(p, q), K).

1.1 On the proof
Given a vertical tangle T in a balanced sutured manifold (M, γ), one forms an associated sutured
manifold (MT , γT ) by removing a neighborhood of T from M , and adding meridians of the
components of T to γ; see § 2 for more details. Li and Ye proved the following dimension inequality
in [LY22, Proposition 3.14].

Theorem 1.8. If T is a vertical tangle in (M, γ) such that [Ti] = 0 in H1(M, ∂M ; Q) for each
component Ti of T , then

dimC SHI (M, γ) ≤ dimC SHI (MT , γT ).

To prove Theorem 1.1, we first establish the same inequality under the weaker assumption
that T (rather than each of its components) is rationally nullhomologous, in § 2.

Theorem 1.9. If T is a vertical tangle in (M, γ) such that [T ] = 0 in H1(M, ∂M ; Q), then

dimC SHI (M, γ) ≤ dimC SHI (MT , γT ).

3 Strong L-spaces are also of interest because Levine and Lewallen were able to show that their fundamental
groups are not left-orderable, as predicted by the L-space Conjecture.
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Sutured instanton homology and Heegaard diagrams

Next, given an admissible sutured Heegaard diagram H for (M, γ), we construct a vertical
tangle T ⊂ (M, γ) with [T ] = 0 in H1(M, ∂M ; Q), such that

dimC SHI (MT , γT ) = |S(H)|.

This is the content of § 3. Theorem 1.1 then follows from Theorem 1.9.

Remark 1.10. Theorem 1.8 suffices to prove Theorem 1.1 in the case where H1(M, ∂M ; Q) = 0,
but we need the stronger Theorem 1.9 in general.

1.2 Organization
In § 2, we prove the inequality in Theorem 1.9. We then use this in § 3 to prove our main result,
Theorem 1.1. Finally, in § 4, we discuss further directions, some of which are in progress. In
particular, we discuss the possibility of using the proof of Theorem 1.1 to construct a grading
on SHI by homotopy classes of 2-plane fields, and the prospects for upgrading Theorem 1.1 to
a proof of the isomorphism (1.1).

2. A dimension inequality

A vertical tangle in a balanced sutured manifold (M, γ) is a properly embedded 1-manifold

T = T1 ∪ · · · ∪ Tn

in M , with boundary in R(γ), whose components Ti satisfy

∂Ti ∩ R+(γ) )= ∅ )= ∂Ti ∩ R−(γ),

and are oriented from R+(γ) to R−(γ) (in particular, T has no closed components). One forms
an associated balanced sutured manifold (MT , γT ) by removing tubular neighborhoods of the
components Ti, and adding positively-oriented meridians of these components to the suture γ,
as in [LY22, § 3] and depicted in Figure 7. In this section, we prove Theorem 1.9, which states
that

dimC SHI (M, γ) ≤ dimC SHI (MT , γT )

when [T ] = 0 in H1(M, ∂M ; Q). The rough idea is to turn T into a related tangle T ′ whose
components are rationally nullhomologous, and apply Theorem 1.8.

Proof of Theorem 1.9. Let T1, . . . , Tn be the components of T . For i = 1, . . . , n, let

∂Ti = qi − pi,

where pi ∈ R+(γ) and qi ∈ R−(γ). We may assume that γ is connected, because we can achieve
this by adding contact 1-handles to (M, γ), an operation which does not change SHI (M, γ)
(equivalently, SHI is invariant under product disk decomposition [KM10, BS16]). Then we can
find a sequence of pairwise disjoint arcs

ξ1, . . . , ξn ⊂ ∂M

such that, for each i = 1, . . . , n, we have:

• ∂ξi = pi+1 − qi (where pn+1 := p1); and
• ξi intersects γ in exactly one point.

For every i ∈ {2, . . . , n}, choose an arc ti ⊂ ∂M in a neighborhood of the unique intersection
point ξi−1 ∩ γ, as depicted in Figures 1 and 2. Push the interior of ti into the interior of M to
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Figure 1. The point of view is from the interior of M , looking at ∂M .

Figure 2. The tangle T = T1 ∪ · · · ∪ Tn in M and the arcs ξi and ti in ∂M , together with the
suture γ.

turn this arc into a vertical tangle T ′
i , and let

T ′′ = T ′
2 ∪ · · · ∪ T ′

n.

Then

(MT ′′ , γT ′′) = (M − N(T ′′), γ ∪ µ′
2 ∪ · · · ∪ µ′

n),

where µ′
i is a positively oriented meridian of T ′

i . Each component T ′
i cobounds a disk in M with

the arc ti. These disks then restrict to properly embedded disks

D2, . . . , Dn ⊂ MT ′′

with |Di ∩ γ| = 1 and |Di ∩ µ′
j | = δij , so that

|Di ∩ γT ′′ | = 2.

Thus, each Di is a product disk.
Next, consider the arc

t1 = T1 ∪ ξ1 ∪ T2 ∪ ξ2 ∪ · · · ∪ Tn−1 ∪ ξn−1 ∪ Tn ⊂ MT ′′ .

Push its interior into the interior of MT ′′ to form a vertical tangle T ′
1 with ∂T ′

1 = qn − p1, as in
Figure 3. Let T ′ be the tangle in M given by

T ′ = T ′
1 ∪ T ′′ = T ′

1 ∪ · · · ∪ T ′
n.

We refer to a tangle T ′ formed in this way as a mixed tangle for T . Note that

(MT ′ , γT ′) = ((MT ′′)T ′
1
, (γT ′′)T ′

1
) = (M − N(T ′), γ ∪ µ′

1 ∪ · · · ∪ µ′
n),

where µ′
1 is a positively oriented meridian of T ′

1. Observe that the disks D2, . . . , Dn ⊂ MT ′′

restrict to properly embedded annuli

A2, . . . , An ⊂ MT ′

because T ′
1 intersects each disk in exactly one point, as shown in Figure 4.
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Figure 3. The tangle T ′ = T ′
1 ∪ · · · ∪ T ′

n in M .

Figure 4. The annulus Ai in MT ′ near the boundaries of the tubular neighborhoods of the
components T ′

1 and T ′
i , as seen from inside MT ′ .

The endpoints of the arc ξn ⊂ ∂MT ′′ agree with ∂T ′
1, and |ξn ∩ γ| = 1. We can, thus, use ξn

together with γ and µ′
1 to define a sequence of sutures Γm ⊂ ∂MT ′ for m ∈ N, as in [LY22, § 3.2],

which one should regard as ‘longitudinal’ sutures for T ′
1; see Figure 5. By the construction of T ′

1

and the assumption that T is rationally nullhomologous in (M, ∂M), we have

[T ′
1] = [T ] = 0 ∈ H1(MT ′′ , ∂MT ′′ ; Q).

Therefore, by [LY22, Lemmas 3.21 and 3.22], we have the following.

Lemma 2.1. There is an exact triangle

SHI (−MT ′ ,−Γm) !! SHI (−MT ′ ,−Γm+1)

Fm+1""!!!!!!!!!!

SHI (−MT ′′ ,−γT ′′),

Gm

##""""""""""

coming from the surgery exact triangle associated to surgeries on the meridian µ′
1 of T ′

1.
Furthermore, Gm ≡ 0 for m sufficiently large.

For each i = 2, . . . , n and every m ∈ N, we have that

|Ai ∩ Γm| = 4.
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(a) (b)

Figure 5. (a) The suture −Γm+1 and the bypass arc η− shown in bold. (b) The suture −γT ′

resulting from the bypass attachment along η−, and the negatively stabilized annulus A−
i ⊂

(−MT ′ ,−γT ′).

Let us orient each Ai so that the induced orientation on ∂Ai is opposite the orientation of
∂Di coming from that of T ′

i , as in Figures 4 and 5. By [GL19], the disks D2, . . . , Dn induce a
Zn−1-grading on

SHI (−MT ′′ ,−γT ′′).

Similarly, the annuli A2, . . . , An induce a Zn−1-grading on

SHI (−MT ′ ,−Γm)

for each m ∈ N, and we have the following graded version of the triangle in Lemma 2.1.

Lemma 2.2. The exact triangle of Lemma 2.1 restricts to the exact triangle

SHI (−MT ′ ,−Γm, (A2, . . . , An), (0, . . . , 0)) !! SHI (−MT ′ ,−Γm+1, (A2, . . . , An), (0, . . . , 0))

Fm+1
$$#################

SHI (−MT ′′ ,−γT ′′ , (D2, . . . , Dn), (0, . . . , 0)).

Gm

%%$$$$$$$$$$$$$$$$$

Proof of Lemma 2.2. We prove that the map Fm+1 preserves the gradings. The arguments for
the other two maps are similar.

Let us first recall the definition of Fm+1 from [LY22, § 3]. Pick a closure

(Ym+1, Rm+1,ωm+1)

for (−MT ′ ,−Γm+1) so that each annulus Ai extends to a closed surface Āi ⊂ Ym+1, as in [Li21,
§ 3]. By the construction therein,

g(Āi) = 2

for i = 2, . . . , n, because each component of ∂Ai intersects Γm+1 in two points. The sutured
instanton homology of (−MT ′ ,−Γm+1) is defined as a certain direct summand

SHI (−MT ′ ,−Γm+1) = I∗(Ym+1|Rm+1)ωm+1

of the instanton Floer homology I∗(Ym+1)ωm+1 as in [KM10, § 7]. The summand

SHI (−MT ′ ,−Γm+1, (A2, . . . , An), (i2, . . . , in))
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is defined as the simultaneous (generalized) (2i2, . . . , 2in)-eigenspace of commuting operators

µ(Ā2), . . . , µ(Ān) : SHI (−MT ′ ,−Γm+1) → SHI (−MT ′ ,−Γm+1)

associated to these surfaces.
The meridian µ′

1 of T ′
1 can be thought of as an embedded circle in Ym+1. Let Y be

the manifold obtained from Ym+1 via 0-surgery on µ′
1, with respect to the framing of µ′

1

induced by ∂MT ′ . Since µ′
1 is disjoint from Rm+1 and the Āi, these surfaces survive in Y . By

[BS16, § 3.3], (Y,Rm+1,ωm+1) is a closure of (−MT ′′ ,−γT ′′). The map Fm+1 is then induced by
the cobordism given by the trace of 0-surgery on µ′

1. Since Āi ⊂ Ym+1 is homologous to Āi ⊂ Y
in this cobordism, Fm+1 respects the eigenspaces of µ(Āi). Thus, Fm+1 maps

SHI (−MT ′ ,−Γm+1, (A2, . . . , An), (i2, . . . , in))

into
SHI (−MT ′′ ,−γT ′′ , (A2, . . . , An), (i2, . . . , in)).

Now, the 0-surgery on µ′
1 makes each Āi compressible in Y ; in particular, each Āi ⊂ Y is

homologous to the disjoint union of two tori

T 1
i ∪ T 2

i ⊂ Y.

One of these tori, say T 1
i , is the extension D̄i ⊂ Y of Di ⊂ −MT ′′ that is used to define the

grading on SHI (−MT ′′ ,−γT ′′) associated to Di. Since

Āi = D̄i + T 2
i

in H2(Y ), the k-eigenspace of µ(Āi) agrees with the k-eigenspace of µ(D̄i) for every k, by
[BS22, Corollary 2.9]. Thus, we have that

SHI (−MT ′′ ,−γT ′′ , (A2, . . . , An), (i2, . . . , in))

= SHI (−MT ′′ ,−γT ′′ , (D2, . . . , Dn), (i2, . . . , in)).

Putting these arguments together, we see that Fm+1 preserves the Zn−1-gradings as claimed in
the lemma. !

Note that decomposing (−MT ′′ ,−γT ′′) along D2 ∪ · · · ∪ Dn yields (−M,−γ). By [Li21,
Lemma 4.2], we therefore have

SHI (−MT ′′ ,−γT ′′ , (D2, . . . , Dn), (0, . . . , 0)) ∼= SHI (−M,−γ).

Hence, for m sufficiently large, Lemmas 2.1 and 2.2 imply that

dimC SHI (−M,−γ) = dimC SHI (−MT ′ ,−Γm+1, (A2, . . . , An), (0, . . . , 0))

− dimC SHI (−MT ′ ,−Γm, (A2, . . . , An), (0, . . . , 0)), (2.1)

since Gm ≡ 0.
Next, we consider attaching a bypass to (−MT ′ ,−Γm+1) along the arc η− in Figure 5. By

[BS22, § 4], this attachment gives rise to a bypass exact triangle. As discussed in [LY22, § 3], the
other two sutures involved in the triangle are −Γm and −γT ′ . It is straightforward to check that
the bypass attachment along η− creates a negative stabilization

A−
i ⊂ (−MT ′ ,−γT ′)

of Ai, for each i = 2, . . . , n, in the sense of [Li21, Definition 3.1]. Hence, as in the proof of
[Li21, Proposition 5.5], we have the following graded version of the bypass exact triangle of

1905

2���:
  /73�7�1 ������� 
������	�����	������.43:20/�7�43�0�.!����.�3/10���3 0�:3�!���0::

https://doi.org/10.1112/S0010437X23007303


J. A. Baldwin, Z. Li and F. Ye

Figure 6. The result of decomposing (MT ′ , γT ′) along A2 ∪ · · · ∪ An is simply (MT , γT ). This
is illustrated above in the case n = 2.

[BS22, Theorem 1.20]:

SHI (−MT ′ ,−Γm, (A2, . . . , An), (0, . . . , 0)) !! SHI (−MT ′ ,−Γm+1, (A2, . . . , An), (0, ldots, 0))

$$%%%%%%%%%%%%%%%%%%

SHI (−MT ′ ,−γT ′ , (A−
2 , . . . , A−

n ), (0, . . . , 0)),

%%&&&&&&&&&&&&&&&&&

which implies that

dimC SHI (−MT ′ ,−γT ′ , (A−
2 , . . . , A−

n ), (0, . . . , 0))

≥ dimC SHI (−MT ′ ,−Γm+1, (A2, . . . , An), (0, . . . , 0))

− dimC SHI (−MT ′ ,−Γm, (A2, . . . , An), (0, . . . , 0)). (2.2)

From the grading shifting property [Li21, Theorem 1.12] and [Wan20, Proposition 4.1], we have

SHI (−MT ′ ,−γT ′ , (A−
2 , . . . , A−

n ), (0, . . . , 0))

= SHI (−MT ′ ,−γT ′ , (A+
2 , . . . , A+

n ), (−1, . . . ,−1)), (2.3)

where A+
i is a positive stabilization of Ai. Moreover, from the construction of the gradings and

stabilizations in [Li21, § 3], we have

SHI (−MT ′ ,−γT ′ , (A+
2 , . . . , A+

n ), (−1, . . . ,−1))

= SHI (−MT ′ ,−γT ′ , (−(A+
2 ), . . . ,−(A+

n )), (1, . . . , 1))

= SHI (−MT ′ ,−γT ′ , ((−A2)−, . . . , (−An)−), (1, . . . , 1)). (2.4)

By [Li21, Lemma 4.2], this last group is isomorphic to the sutured instanton homology of the
manifold obtained from (−MT ′ ,−γT ′) by decomposing along (−A2)− ∪ · · · ∪ (−An)−. By [Li21,
Lemma 3.2], this is the same as the manifold obtained by decomposing along −A2 ∪ · · · ∪ −An,
which is, after reversing orientation, the manifold obtained from (MT ′ , γT ′) by decomposing
along A2 ∪ · · · ∪ An. It is straightforward to check that the latter manifold is simply (MT , γT ),
as indicated in Figure 6 in the case n = 2. Thus,

SHI (−MT ′ ,−γT ′ , ((−A2)−, . . . , (−An)−), (1, . . . , 1)) ∼= SHI (−MT ,−γT ). (2.5)
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Finally, combining (2.1)–(2.5), we have that

dimC SHI (−MT ,−γT ) = dimC SHI (−MT ′ ,−γT ′ , ((−A2)−, . . . , (−An)−), (1, . . . , 1))

= dimC SHI (−MT ′ ,−γT ′ , (A−
2 , . . . , A−

n ), (0, . . . , 0))

≥ dimC SHI (−MT ′ ,−Γm+1, (A2, . . . , An), (0, . . . , 0))

− dimC SHI (−MT ′ ,−Γm, (A2, . . . , An), (0, . . . , 0))

= dimC SHI (−M,−γ).

Given the symmetry of SHI under orientation reversal, this proves Theorem 1.9. !

3. Proof of Theorem 1.1

3.1 Full tangles
Let (M, γ) be a balanced sutured manifold. Let

H =
(
Σ,α = {α1, . . . ,αk},β = {β1, . . . ,βk}

)

be any (not necessarily admissible) sutured Heegaard diagram for (M, γ). This means that M is
obtained from Σ × [−1, 1] by attaching 3-dimensional 2-handles

Dαi = D2
αi

× I,

Dβi = D2
βi
× I,

along Ai × {−1} and Bi × {+1}, where Ai and Bi are annular neighborhoods of αi and βi,
respectively, for i = 1, . . . , k. The suture γ is given by

γ = ∂Σ × {0}.

We next define a special class of vertical tangles in (M, γ) associated to H.
Let R1, . . . , Rn be the regions of Σ–α–β disjoint from ∂Σ. For each i = 1, . . . , n, let pi1, . . . , piai

be ai distinct points in Ri, for some integer ai ≥ 1. Let

Tij = pij × [−1, 1] ⊂ Σ × [−1, 1],

and let

T =
n⋃

i=1

ai⋃

j=1

Tij .

Then T is a vertical tangle in (M, γ), oriented from R+(γ) to R−(γ). Let D2
ij be a tubular

neighborhood of the point pij ∈ Ri, let

Nij = D2
ij × [−1, 1]

be a tubular neighborhood of the component Tij in M , and let

γij = ∂D2
ij × {0} ⊂ ∂Nij

be a positively oriented meridian of this component; see Figure 7. Let (MT , γT ) be the balanced
sutured manifold obtained from M by removing these tubular neighborhoods,

MT = M −
n⋃

i=1

ai⋃

j=1

Nij ,
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(a) (b)

Figure 7. (a) The component Tij = pij × [−1, 1] ⊂ M . (b) The complement of Nij with the
meridian γij .

where γT is the union of γ with meridians of the Tij ,

γT = γ ∪
n⋃

i=1

ai⋃

j=1

γij ,

as in § 2. We refer to any tangle obtained in this way as a full tangle for H.
The main result of this section is the following.

Proposition 3.1. If T is a full tangle for H, then dimC SHI (MT , γT ) = |S(H)|.

Remark 3.2. The analogue of this proposition for SFH is immediate. One forms a sutured
Heegaard diagram HT for (MT , γT ) from H by removing neighborhoods of the pij ∈ Σ. Since
there is at least one such point in every region of Σ–α–β not intersecting ∂Σ, this ensures that
HT is admissible and that the differential on SFC (HT ) is zero, so that

rkZSFH (MT , γT ) = rkZSFC (HT ) = |S(HT )| = |S(H)|.

This was the inspiration for our result above.

We need the following for the proof of Proposition 3.1; see [GL19, Corollary 4.3].

Proposition 3.3. Suppose (M, γ) is an irreducible balanced sutured manifold and D ⊂ M is a
properly embedded disk which intersects γ in four points. Then

SHI (M, γ) ∼= SHI (M ′, γ′) ⊕ SHI (M ′′, γ′′),

where (M ′, γ′) and (M ′′, γ′′) are the decompositions of (M, γ) along D and −D, respectively.

Before proving this proposition, we record the following lemma. This lemma is well-known
(Kronheimer and Mrowka prove the much harder converse in [KM10, Theorem 7.12]), but since
we could not find a concrete reference in the literature we provide a short proof here.

Lemma 3.4. Suppose (M, γ) is an irreducible balanced sutured manifold. If (M, γ) is not taut,
then SHI (M, γ) = 0.

Proof. As mentioned in the proof of Lemma 2.2, SHI (M, γ) is defined in [KM10, § 7] in terms
of a closure (Y,R,ω) of (M, γ), where Y is a closed oriented 3-manifold, R ⊂ Y is a connected
closed oriented surface which we can take to have genus g(R) > 1, and ω ⊂ Y is a simple closed
curve with |ω ∩ R| = 1. Specifically, SHI (M, γ) is the generalized (2g(R)−2)-eigenspace of the
operator µ(R) on I∗(Y )ω.

Now suppose that (M, γ) is irreducible but not taut. Then, by the definition of tautness
(e.g. [Juh06, Definition 9.18]), either one of R±(γ) is compressible or R±(γ) do not minimize the
Thurston-norm in their homology classes. In either case, there exists a surface R′ ⊂ Y such
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(a) (b) (c) (d )

Figure 8. (a) A neighborhood of the disk D ⊂ M whose boundary intersects the suture γ in
four points. (b–d) The arc of attachment for the initial bypass in the triangle.

that [R′] = [R] ∈ H2(Y ) but 1 ≤ g(R′) < g(R). This implies that SHI (M, γ) = 0 by [KM10,
Proposition 7.5]. !
Proof of Proposition 3.3. Ghosh and Li prove this in [GL19, Corollary 4.3] under the additional
assumption that (M, γ) is taut and at least one of (M ′, γ′) and (M ′′, γ′′) is taut. We show that
this additional assumption is unnecessary, by showing that the proposition still holds when the
assumption is not true.

First, suppose (M, γ) is not taut. Then neither (M ′, γ′) nor (M ′′, γ′′) is taut, by [Gab87,
Lemma 0.4]. Note that the irreducibility of M implies the irreducibility of any manifold obtained
by cutting M open along a properly embedded disk; in particular, M ′ and M ′′ are irreducible.
Therefore,

SHI (M, γ) ∼= SHI (M ′, γ′) ∼= SHI (M ′′, γ′′) = 0,

by Lemma 3.4, and the proposition holds.
Next, suppose neither (M ′, γ′) nor (M ′′, γ′′) is taut. Consider the bypass exact triangle

of [BS22]:

SHI (−M,−γ) !! SHI (−M,−γ′1)

&&''
''

''
''

'

SHI (−M,−γ′′1 ),

''(((((((((

determined by an initial bypass attachment to (M, γ) along an arc in ∂D as shown in Figure 8.
The other manifolds (M, γ′1) and (M, γ′′1 ) in the triangle product disk decompose (along a copy
of D which intersects the new sutures in two points) to (M ′, γ′) and (M ′′, γ′′), respectively. Since
SHI is invariant under product disk decomposition, we therefore have

SHI (M, γ′1) ∼= SHI (M ′, γ′) ∼= 0,

SHI (M, γ′′1 ) ∼= SHI (M ′′, γ′′) ∼= 0,

by Lemma 3.4. It then follows from the bypass triangle, and the symmetry of SHI under
orientation reversal, that SHI (M, γ) = 0 as well, so the proposition holds. !
Proof of Proposition 3.1. Recall that D2

ij denotes a tubular neighborhood of pij ∈ Ri. There
exists a (possibly empty) set of disjoint, properly embedded arcs

d1, . . . , dm ⊂ Σ −
n⋃

i=1

ai⋃

j=1

Dij
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which satisfy the following three conditions:

(1) for every e = 1, . . . , m, the arc de is contained in some region of Σ–α–β;
(2) for every e, either both endpoints of de are on ∂Σ, or each is on some ∂D2

ij ; and
(3) Σ −

⋃n
i=1

⋃ai
j=1 Dij − d1 − . . . − dm deformation retracts onto α ∪ β.

Now consider the disk

δe = de × [−1, 1] ⊂
(

Σ −
n⋃

i=1

ai⋃

j=1

Dij

)
× [−1, 1] ⊂ ∂MT ,

for e = 1, . . . , m. The boundary of each δe intersects γT in two points; hence, δe is a product
disk. Since SHI is invariant under product disk decomposition, let (MT , γT ) henceforth refer to
the balanced sutured manifold obtained after decomposing along δ1, . . . , δm.

Then MT admits the following description. Let q1, . . . , qt denote the intersection points
between the α and β curves. If q$ is an intersection point between αi and βj , let r$ ⊂ Σ denote
the rectangular component of Ai ∩ Bj which contains q$. Then MT is the given by the union

MT = Dα1 ∪ · · · ∪ Dαk ∪ Dβ1 ∪ · · · ∪ Dβk
∪ τ1 ∪ · · · ∪ τt

of the usual 2-handles with the tubes

τ$ = r$ × [−1, 1],

as shown in Figure 9. Let c$ denote the union of the four corners of the rectangle r$. Then the
suture γT is given by

γT =
k⋃

i=1

(∂D2
αi

× ∂I) ∪
k⋃

i=1

(∂D2
βi
× ∂I) ∪

t⋃

$=1

(c$ × [−1, 1]) −
t⋃

$=1

(∂r$ × {−1, 1})

as shown and oriented in the figure near a tube τ$. Let

m$ = r$ × {0} ⊂ τ$

denote the meridional disk of τ$, oriented as in Figure 9, for * = 1, . . . , t. Note that the boundary
of each m$ intersects the suture γT in four points.

Note that MT is a handlebody and therefore irreducible. We may thus apply Proposition 3.3
to it, as well as to the manifolds obtained by decomposing MT along any collection of the
meridional disks m$, as these manifolds are simply disjoint unions of handlebodies and, hence,
also irreducible. For each t-tuple of signs

I = (ε1, . . . , εt) ∈ {+,−}t,

let (M I
T , γI

T ) be the sutured manifold obtained by decomposing (MT , γT ) along the disks

ε1m1 ∪ · · · ∪ εtmt.

Then
SHI (MT , γT ) ∼=

⊕

I∈{+,−}t

SHI (M I
T , γI

T ),

by Proposition 3.3. Each (M I
T , γI

T ) is simply a union of 3-balls

M I
T
∼= Dα1 ∪ · · · ∪ Dαk ∪ Dβ1 ∪ · · · ∪ Dβk

,

which means that SHI (M I
T , γI

T ) is either C or trivial, according as whether γI
T has exactly

one component on the boundary of each of these 3-balls or not. We claim that the nonzero
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(a) (b)

(c) (d )

Figure 9. (a) An intersection point q$ ∈ αi ∩ βj . The rectangular component r$ of Ai ∩ Bj

containing q$ is shown in darker gray. (b) The 2-handles Dαi and Dβj
glued together by the tube

τ$. The meridional disk m$ is shown in gray; it intersects the suture γT in four points, and its
oriented normal points upwards. (c) The result of decomposing along −m$. (d) The result of
decomposing along m$.

summands SHI (M I
T , γI

T ) are in one-to-one correspondence with the elements of S(H), which
will then complete the proof.

For this claim, we consider the restriction of γI
T to the ball Dαi . Let

q$1 , . . . , q$p ∈ {q1, . . . , qt}

denote the intersection points between αi and β. Then γI
T restricts to exactly one component

on the boundary of Dαi if and only if exactly one of ε$1 , . . . ε$p is − and the rest are +. The
analogous statement holds for the restriction of γI

T to Dβj . Thus, if we let

q(I) = {q$ | ε$ = −},

then γI
T restricts to exactly one component on each 3-ball in M I

T if and only if q(I) ∈ S(H). !

Remark 3.5. Proposition 3.1 also follows from the fact that SHI and SFH obey the same decom-
position laws (Proposition 3.3, and the invariance under product disk decomposition), agree in
rank for sutured 3-balls, and

rkZSFH (MT , γT ) = |S(H)|,
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per Remark 3.2. Our original proof has the advantages that it does not rely on the definition
of the differential in SFC , and it establishes a very concrete bijection between the nonzero
summands SHI (M I

T , γI
T ) and elements of S(H).

3.2 The proof
Recall that a sutured Heegaard diagram H for a balanced sutured manifold (M, γ) is admissible if
and only if every nontrivial periodic domain has both positive and negative multiplicities [Juh06].
This is automatically true of any H when H1(M, ∂M ; Q) = 0 (there are no nontrivial peri-
odic domains in this case), though every balanced sutured manifold admits an admissible
diagram.

Proof of Theorem 1.1. Let H = (Σ,α,β) be an admissible sutured Heegaard diagram for (M, γ).
Then we can assign a positive integer area ai to each region Ri of Σ–α–β disjoint from ∂Σ, so
that the signed area of every periodic domain is zero; see [OS04b, Lemma 4.12].4 Fix ai distinct
points pi1, . . . , piai ∈ Ri for each i, and let

T =
n⋃

i=1

ai⋃

j=1

Tij ⊂ M

be the corresponding full tangle for H, as in § 3.1.
We claim that [T ] = 0 in H1(M, ∂M ; Q). To see this, note that for every periodic domain

P of H, the intersection number of T with the 2-cycle in M represented by P is negative the
signed area of P , which is zero. Since the homology classes represented by periodic domains span
H2(M), the claim follows. Theorem 1.9 therefore implies that

dimC SHI (M, γ) ≤ dimC SHI (MT , γT ).

Theorem 1.1 then follows from the fact that

dimC SHI (MT , γT ) = |S(H)|,

by Proposition 3.1. !
Remark 3.6. It is not true that the inequality

dimC SHI (M, γ) ≤ |S(H)|

holds for any sutured Heegaard diagram H for an arbitrary balanced sutured (M, γ). For
example, consider the diagram H = (T 2 − D2,α1,β1) for

(M, γ) = ((S1 × S2)(1), δ)

in which α1 and β1 are disjoint curves on the punctured torus. In this case, we know that

dimC SHI (M, γ) = 2,

while |S(H)| = 0. The issue here is that H is not admissible.

4. Further directions

Let H be an admissible sutured Heegaard diagram for a balanced sutured manifold (M, γ). Let
T be a full tangle for H, as defined in § 3. In ongoing work, we prove that

SHI (−MT ,−γT ) ∼= C|S(H)|

4 Ozsváth and Szabó state this for real-valued areas, but proof shows the same is true for integer areas.
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has a basis given by the contact invariants of the tight contact structures on (MT , γT ). In
particular, this sutured instanton homology group is naturally graded by homotopy classes of
2-plane fields. We discuss potential applications of this fact in the following.

Let T ′ be a mixed tangle for T , as defined in § 2. Let VT and Vm be the groups

VT = SHI (−MT ′ ,−γT ′ , (A−
2 , . . . , A−

n ), (0, . . . , 0)),

Vm = SHI (−MT ′ ,−Γm, (A2, . . . , An), (0, . . . , 0))

from § 2, for m ∈ N. To prove Theorem 1.1, we proved that VT
∼= SHI (−MT ,−γT ) and

dimC SHI (−M,−γ) = dimC Vm+1 − dimC Vm ≤ dimC VT

for sufficiently large m. However, in fact, this inequality can be viewed as coming from a spectral
sequence similar to that in [LY22, § 4]. This spectral sequence can also be described as follows.
From the bypass exact triangle used in § 2, we have that

VT
∼= H∗(Cone(ψ− : Vm → Vm+1)),

where ψ− is the map associated to the bypass attachment along the arc η−. One can prove, on
the other hand, that

SHI (−M,−γ) ∼= H∗(Cone(ψ− − ψ+ : Vm → Vm+1))

for m large, where ψ+ is a related bypass attachment map. The groups Vm and Vm+1 can be
graded using the rational Seifert surface for T ′, as in [Li21]. After adjusting this grading by
an overall shift, the map ψ− is grading-preserving while ψ+ decreases the grading by 1, for m
large. The complex Cone(ψ− − ψ+) is then filtered, and the E1 page of the associated spectral
sequence is H∗(Cone(ψ−)). In sum, we have a spectral sequence

C|S(H)| ∼= VT
∼= H∗(Cone(ψ−)) =⇒ H∗(Cone(ψ− − ψ+)) ∼= SHI (−M,−γ). (4.1)

The first potential application of these ideas involves defining a grading on SHI (−M,−γ)
by homotopy classes of plane fields. Indeed, SHI (−MT ,−γT ) has such a grading, as mentioned
previously, as it is generated by contact invariants of contact structures. The manifold (MT ′ , γT ′)
is obtained by gluing (MT , γT ) along annuli, as in § 2, and we believe that the tight contact
structures on the latter glue to give tight contact structures on the former whose invariants form
a basis for VT . Thus, there should be a natural grading by homotopy classes of 2-plane fields
on VT as well. The bypass maps ψ−,ψ+ are natural from a contact-geometric standpoint, and
should therefore shift plane field gradings in a sensible way. We expect that one can then use the
relation between VT and Cone(ψ−) and the structure of the latter to define a plane field grading
on Cone(ψ−), and then on Cone(ψ− − ψ+).

A grading by homotopy classes of 2-plane fields on SHI would enable one to define Spinc

decompositions of these groups, as well as an analogue of the Maslov grading in Heegaard Floer
homology (see [LY22, § 4] for another approach to such a decomposition). The current lack of
such structure makes it difficult to translate arguments from the Heegaard Floer setting to the
instanton Floer setting.

A related second application is towards proving the isomorphism (1.1). Indeed, there is some
hope that one could understand the spectral sequence (4.1) purely in terms of contact geometry,
and thereby obtain a more axiomatic proof that

SHI (M, γ) ∼= SFH (M, γ) ⊗ C ∼= SHM (M, γ) ⊗ C, (4.2)

since the analogous spectral sequences can be defined in the Heegaard Floer and monopole Floer
settings by the same contact-geometric means.
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A more pedestrian approach to (4.2) is the following: first, prove that one can understand
the spectral sequence

C|S(H)| =⇒ SHI (−M,−γ)

as coming from a differential

∂ = ∂1 + ∂2 + . . . : C|S(H)| → C|S(H)|,

where ∂k shifts a grading (coming from homotopy classes of 2-plane fields) on C|S(H)| ∼= VT by
k, such that

SHI (−M,−γ) ∼= H∗(C|S(H)|, ∂).

Then, for generators x, y ∈ S(H) and the corresponding basis elements ex, ey ∈ C|S(H)|, perhaps
one could use the 2-plane field gradings to show that the coefficient

〈∂ex, ey〉 (4.3)

is nonzero only if there is a homotopy class of Whitney disks

ϕ ∈ π2(x, y) (4.4)

with positive domain in H and Maslov index one. If even this were true, then one could prove,
for example, that the inequality in Corollary 1.7 is an equality,

dimC KHI (L(p, q), K) ≤ rkZĤFK (L(p, q), K)

for (1, 1)-knots K ⊂ L(p, q).
More generally, the hope would be that for a nice diagram H (one in which the regions

of Σ–α–β disjoint from ∂Σ are bigons or rectangles), one could show that the coefficient (4.3)
is nonzero if and only if there is a class as in (4.4) with positive domain and Maslov index one
(the domain of such a class is necessarily an empty embedded bigon or rectangle in this case).
These are precisely the domains counted in the differential on SFC (H) in this case, by [SW10].
If one could further show that these domains are counted with the same nonzero complex coef-
ficients in both the sutured instanton and Heegaard Floer settings, then this would prove (1.1)
and then (4.2) by the same methods. If one could work with coefficients in F = Z/2Z, then the
last step would be unnecessary, as all nonzero elements of this field are equal. Unfortunately,
SHI is not defined over F. On the other hand, SHM is, and therefore the strategy outlined above
minus the last step would be sufficient to give an alternative, more axiomatic proof that

SFH (M, γ; F) ∼= SHM (M, γ; F).
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