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Abstract
This tutorial seeks to provide a systematic sum-
mary of risks and vulnerabilities in security,
privacy and copyright aspects of large language
models (LLMs), and most recent solutions to
address those issues. We will discuss a broad
thread of studies that try to answer the follow-
ing questions: (i) How do we unravel the ad-
versarial threats that attackers may leverage in
the training time of LLMs, especially those
that may exist in recent paradigms of instruc-
tion tuning and RLHF processes? (ii) How
do we guard the LLMs against malicious at-
tacks in inference time, such as attacks based
on backdoors and jailbreaking? (iii) How do
we ensure privacy protection of user informa-
tion and LLM decisions for Language Model
as-a-Service (LMaaS)? (iv) How do we protect
the copyright of an LLM? (v) How do we detect
and prevent cases where personal or confiden-
tial information is leaked during LLM training?
(vi) How should we make policies to control
against improper usage of LLM-generated con-
tent? In addition, will conclude the discussions
by outlining emergent challenges in security,
privacy and reliability of LLMs that deserve
timely investigation by the community.

1 Introduction

Large Language Models (LLMs) have received
wide attention from the society. These models
have not only shown promising results across NLP
tasks (Brown et al., 2020; Chowdhery et al., 2022;
Smith et al., 2022), but also emerged to be the back-
bone of many intelligent systems for web search
(Heaven, 2022), education (Kasneci et al., 2023),
healthcare (Zhou et al., 2023a; Luo et al., 2022),
e-commerce (Zhang et al., 2023) and software de-
velopment (Zhao et al., 2023b). From the societal
impact perspective, LLMs like GPT-4 and Chat-
GPT have shown significant potential in supporting
decision making in many daily-life tasks.

Despite the success, the increasingly scaled sizes
of LLMs, as well as their growing deployments in

systems, services and scientific studies, are bring-
ing along more and more emergent issues in secu-
rity and privacy. On the one hand, since LLMs are
more potent of memorizing vast amount of infor-
mation, they can definitely memorize well any kind
of training data that may lead to adverse behaviors,
leading to backdoors (Wallace et al., 2021; Li et al.,
2023c; Xu et al., 2024a) that may be leveraged
by adversaries to control or hack any high-stake
systems that are built on top of the LLMs (Luo
et al., 2022; Tinn et al., 2023; Araci, 2019). In this
context, LLMs may also memorize personal and
confidential information that exist in corpora and
the RLHF process (Wang et al., 2023b), therefore
being prone to various privacy risks including mem-
bership inference (Shokri et al., 2017; Mahloujifar
et al., 2021; Shejwalkar et al., 2021), training data
extraction (Carlini et al., 2019, 2021; Lehman et al.,
2021; Lukas et al., 2023), and jailbreaking attacks
(Li et al., 2023a; Xu et al., 2024c; Mo et al., 2024).
On the other hand, the wide usage and adaption of
LLMs also challenge the copyright protection of
models and their outputs. For example, while some
models restrict commercial uses (Touvron et al.,
2023; Chiang et al., 2023) or restrict derivatives
of license (Zeng et al., 2022; Xu et al., 2024b), it
is hard to ensure that downstream developers fine-
tuning these models will comply with the licenses.
It is also hard to identify improper usage of LLM
generated outputs especially in scenarios like peer
review (Donker, 2023) and lawsuits (Weidinger
et al., 2021) where model generated content should
be strictly controlled. Moreover, while a number
of LLMs are deployed as services (Brown et al.,
2020; Kasneci et al., 2023), privacy protection of
information in both user inputs (Zhou et al., 2022)
and model decisions (Yao et al., 2023) represents
another challenge, particularly for healthcare and
fintech services (Luo et al., 2022; Wu et al., 2023b).

This tutorial presents a comprehensive introduc-
tion of frontier research on emergent security and
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privacy issues in the era of LLMs. In particular, we
try to answer the following questions: (i) How do
we unravel the adversarial threats in the training
time of LLMs, especially those that may exist in
recent paradigms of instruction tuning and RLHF
processes? (ii) How do we guard the LLMs against
malicious attacks in inference time, such as attacks
based on backdoors and jailbreaking? (iii) How do
we addressing the privacy risks of LLMs, such as
ensuring privacy protection of user information and
LLM decisions? (iv) How do we protect the copy-
right of an LLM? (v) How do we detect and prevent
cases where personal or confidential information
is memorized during LLM training and leaked dur-
ing inference? (vi) How should we control against
improper usage of LLM-generated content?
By addressing these critical questions, we be-

lieve it is necessary to present a timely tutorial to
comprehensively summarize the new frontiers in
security and privacy research in NLP, and point
out the emerging challenges that deserve further
attention of our community. Participants will learn
about recent trends and emerging challenges in this
topic, representative tools and learning resources to
obtain ready-to-use technologies, and how related
technologies will realize more responsible usage of
LLMs in end-user systems.

2 Outline of Tutorial Content

This half-day tutorial presents an overview of fron-
tier research on addressing the emergent security
and privacy issues of LLMs. The detailed contents
are outlined below.

2.1 Background and Motivation [20min]

We will begin motivating this topic with a selec-
tion of real-world LLM applications that are prone
to various kinds of security, privacy and vulnera-
bility issues, and outline the emergent technical
challenges we seek to discuss in this tutorial.

2.2 Addressing Training-time Threats to
LLMs [35min]

One significant area of security concern for LLMs
is their susceptibility during the training phase. Ad-
versaries can exploit this vulnerability by strategi-
cally contaminating a small fraction of the train-
ing data and lead to the introduction of back-
doors or a significant degradation in model per-
formance (Chen et al., 2021). We will begin dis-
cussing the training-time threats by delving into

various attack types including sample-agnostic
attacks like word or sensitive-level trigger at-
tacks (Chen et al., 2021; Gu et al., 2017; Yan et al.;
Dai et al., 2019), sample-dependent attacks such
as syntactic (Qi et al., 2021b), paraphrasing (Li
et al., 2023c) and back translation attacks (Chen
et al., 2022). Subsequently, encompassing emer-
gent LLM development processes of instruction
tuning and RLHF, we will discuss how attackers
may capitalize on these processes, injecting tai-
lored instruction-following examples (Xu et al.,
2024a; Shu et al., 2023) or manipulating ranking
scores (Shi et al., 2023a) to purposefully alter the
model’s behavior. We will also shed light on the
far-reaching consequences of training-time attacks
across diverse LLM applications (Cai et al., 2023;
Patil et al., 2023). Moving forward, we will in-
troduce threat mitigation strategies in three pivotal
stages: (i) Data Preparation Stage where defend-
ers are equipped with means to sanitize training
data, eliminating potential sources of poisoning(Jin
et al., 2022); (ii) Model Training Stage where de-
fenders can measure and counteract the influence
of poisoned data within the training process (Liu
et al., 2024; Graf et al., 2024); (iii) Inference Stage
where defenders can detect and eliminate poisoned
data given the compromised model (Kurita et al.,
2020; Chen and Dai, 2021; Qi et al., 2021a; Li
et al., 2021, 2023b).

2.3 Mitigating Test-time Threats to LLMs
[35min]

Malicious data existing in the training corpora, task
instructions and human feedbacks are likely to
cause threats to LLMs before they are deployed
as Web services (Wan et al., 2023; Xu et al., 2024a;
Greshake et al., 2023). Due to the limited acces-
sibility of model components in these services,
mitigation of such threats are realistically be ad-
dress through test-time defense or detection. In
the meantime, new types of vulnerabilities can also
be introduced during test-time through adversarial
prompts, instructions and few-shot demonstrations
(Xu et al., 2024a; Wang et al., 2023a; Liu et al.,
2023b; Mo et al., 2024; Zou et al., 2023; Liao
and Sun, 2024). In this part of tutorial, we will
first introduce test-time threats to LLMs through
prompt injection, malicious task instructions, jail-
breaking attacks, adversarial demonstrations, and
training-free backdoor attacks (Liu et al., 2023b;
Xu et al., 2024a; Li et al., 2023a; Wang et al.,
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2023a, 2024a; Huang et al., 2023b; Greshake et al.,
2023; Xu et al., 2024c; Wang et al., 2024b; Mo
et al., 2024). We will then provide insights on
mitigating some of those test-time threats based
on techniques including prompt robustness esti-
mation, demonstration-based defense, role-playing
prompts and ensemble debiasing (Liu et al., 2023a,
2024; Zhou et al., 2023b; Wu et al., 2023a; Mo
et al., 2023). While many issues with the test-time
threats still remain unaddressed, we will also pro-
vide a discussion about how the community should
develop to combat those issues.

2.4 Handling Privacy Risks of LLMs [35min]
Along with LLMs’ impressive performance, there
have been increasing concerns about their privacy
risks (Neel and Chang, 2023). In this part of the
tutorial, we will first discuss several privacy risks
related to membership inference attack (Mahlou-
jifar et al., 2021; Shejwalkar et al., 2021; Song
and Mittal, 2021; Shi et al., 2023b) and training
data extraction (Carlini et al., 2019, 2021; Lehman
et al., 2021; Lukas et al., 2023; Nasr et al., 2023).
Next we will discuss privacy-preserving methods
in two categories: (i) data sanitization including
techniques to detect and remove personal identi-
fier information (Dernoncourt et al., 2017; Johnson
et al., 2020), or replace sensitive tokens based on
differential privacy (DP; Weggenmann and Ker-
schbaum 2018; Feyisetan et al. 2020; Yue et al.
2021); (ii) Privacy-preserved training, with a fo-
cus on methods using DP for training (Lyu et al.,
2020; Du et al., 2023a,b; Dupuy et al., 2022; Hoory
et al., 2021; Li et al., 2022; Yu et al., 2021a,b; Zhao
et al., 2022b; Shi et al., 2022; Yue et al., 2023).
At last, we discuss existing methods on balancing
between privacy and utility (Mireshghallah et al.,
2023; Arora et al., 2023), and reflections on what
it means for LLMs to preserve privacy, especially
on understanding appropriate contexts for sharing
information (Brown et al., 2022; Cummings et al.,
2023).

2.5 Safeguarding LLM Copyright [35min]
Other than direct open source, many companies and
organizations offer API access to their LLMsthat
may be vulnerable to model extraction attacks via
distillation. In this context, we will first describe
potential model extraction attacks (Tramèr et al.,
2016; Krishna et al., 2020; Wallace et al., 2020;
He et al., 2021). We will then present watermark
techniques to identify distilled LLMs, including

those for MLMs (Zhao et al., 2022a) and genera-
tive LMs (He et al., 2022a,b; Zhao et al., 2023a).
DRW (Zhao et al., 2022a) adds a watermark in the
form of a cosine signal that is difficult to eliminate
into the output of the protected model. He et al.
(2022a) propose a lexical watermarking method
to identify IP infringement caused by extraction
attacks, and CATER (He et al., 2022b) proposes
conditional watermarking by replacing synonyms
of some words based on linguistic features. How-
ever, both methods are surface-level watermarks
which the adversary can easily bypass by randomly
replacing synonyms in the output, making it diffi-
cult to verify by probing the suspect models. GIN-
SEW (Zhao et al., 2023a) randomly groups vocab-
ulary into two and adds a watermark based on a
sinusoidal signal. This signal will be carried over
to the distilled model and can be easily detected
using Fourier transform.

2.6 Future Research Directions [30min]

Enumerating and addressing LLM security and pri-
vacy issues is essential to ensure reliable and re-
sponsible usage of LLMs in services and down-
stream systems. However, the community moves at
a rapid pace and matching developments in LLM
security with formal research and application needs
is not trivial. At the end of this tutorial, we out-
line emergent challenges in this area that deserve
timely investigation by the community, including
(i) how to protect confidential training data during
server-side LLM adaptation, (ii) how to realize self-
explainable defense processes of LLMs, (iii) how
to handle private information that has already been
captured by LLMs (Huang et al., 2023a), and (iv)
how to document security, privacy, copyright and
vulnerability risks to enable more responsible de-
velopment and deployment of LLMs (Derczynski
et al., 2023).

3 Specification of the Tutorial

The proposed tutorial is considered a cutting-edge
tutorial that introduces new frontiers in indirectly
supervised NLP. The presented topic has not been
well covered by any ⋆ACL tutorials in the past
4 years. The closest one is the EACL 2023 tuto-
rial titled “Privacy-Preserving Natural Language
Processing,” from which our tutorial differs from
several key perspectives: (i) the EACL 2023 tuto-
rial mainly focused on privacy protection, while
we cover both security and privacy issues; (ii) the
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EACL 2023 covers issues related to PLMs and ear-
lier NLP models, while we focus on the emerging
and timely issues with recent LLMs.

Audience and Prerequisites Based on the level of
interest in this topic, we expect around 300 partici-
pants. While no specific background knowledge is
assumed of the audience, it would be best for atten-
dees to know about basic deep learning technolo-
gies, PLMs (e.g. BERT), and LLM services (e.g.
ChatGPT). A reading list is given in Appx. §A.2.

Desired Venues The most desired venue for this
tutorial would be NAACL’24 since all speakers of
this tutorial reside in North America. Presenting
at ACL’24 and EMNLP’24 can also be considered.
However, presenting at EACL’24 is more restricted
since the time may not be sufficient for speakers to
produce the tutorial materials from scratch.

Breadth We estimate that at least 60% of the work
covered in this tutorial is from researchers other
than the instructors of the tutorial.

Material Access Online Open Access All the ma-
terials will be openly available at a dedicated web-
site before the date of the tutorial, similar to the
previous tutorials presented by the speakers.

4 Tutorial Instructors

The following are biographies of the speakers. The
speakers’ past tutorials are listed in Appx. §A.1.

Muhao Chen is an Assistant Professor of Com-
puter Science at UC Davis. His research focuses
on data-driven machine learning approaches for
natural language understanding and knowledge ac-
quisition. His work has been recognized with an
NSF CRII Award, two Amazon Research Awards,
a Cisco Research Award, an EMNLP Outstanding
Paper Award, and an ACM SIGBio Best Student
Paper. He is a founding officer of the ACL Special
Interest Group on NLP Security. Muhao obtained
his PhD in Computer Science from UCLA, and was
an Assistant Research Professor at USC prior to
joining UC Davis. Additional information is avail-
able at http://luka-group.github.io.

Chaowei Xiao is an assistant professor in the In-
formation School at the University of Wisconsin −
Madison. His research focuses on both theoretical
and practical aspects of trustworthy machine learn-
ing, which is at the intersection of machine learn-
ing, security, privacy, social impacts, and systems
among different applications. He has received the
ACM Gordon Bell Special Prize and Best Paper

Awards at several top machine learning and sys-
tems conferences, including MobiCOM, ESWN.
He has organized multiple workshops related to
ML security and privacy at ICML, ICLR and
NeurIPS and delivered a tutorial on Trustworthy AI
at CVPR 2023. Additional information is available
at https://xiaocw11.github.io/.

Huan Sun is an associate professor and an en-
dowed CoE Innovation Scholar in CSE at The
Ohio State University. Her research focuses on
advancing natural language interfaces, LLM evalu-
ation, and privacy preserving in the era of LLMs.
Huan received multiple Honorable Mentions for
Best Paper Awards at ACL, ACM SIGMOD Re-
search Highlight Award, BIBM Best Paper Award,
Google Research Scholar and Google Faculty
Award, NSF CAREER Award, 2016 SIGKDD Dis-
sertation Award (Runner-Up), among others. Ad-
ditional information is available at http://web.
cse.ohio-state.edu/~sun.397/.

Lei Li is an assistant professor at CMU LTI. He
received Ph.D. from CMU School of Computer
Science. He is a recipient of ACL 2021 Best Pa-
per Award, CCF Young Elite Award in 2019, CCF
distinguished speaker in 2017, Wu Wen-tsün AI
prize in 2017, and 2012 ACM SIGKDD disserta-
tion award (runner-up), and is recognized as No-
table Area Chair of ICLR 2023. Previously, he
was a faculty member at UC Santa Barbara. Prior
to that, he founded ByteDance AI Lab in 2016
and led its research in NLP, ML, Robotics, and
Drug Discovery. He launched ByteDance’s ma-
chine translation system VolcTrans and AI writ-
ing system Xiaomingbot, serving one billion users.
Web: https://www.cs.cmu.edu/~leili

Leon Derczynski is an associate professor at Univ.
of Washington and ITU Copenhagen. His research
focuses on harmful text and safe use of LLM tech-
nology. He is founder and chair of the ACL Special
Interest Group on NLP Security, core team member
for the OWASP LLM Security Top 10, works with
the AI Vulnerability Database on analysis of the
results of the White House-supported DEF CON 31
Generative Red Team exercise, advises the NIST
Generative AI working group, and developed the
LLM Vulnerability Scanner garak. He has won
millions of euro of funding for projects on misin-
formation, toxicity, and efficiency. You can read
more at https://derczynski.com.

Anima Anandkumar is a Bren professor at Cal-
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tech CMS department and a senior director of ma-
chine learning research at NVIDIA. She is the re-
cipient of the IEEE Fellowship, ACM Fellowship,
Guggenheim Fellowship, Alfred. P. Sloan Fellow-
ship, NSF CAREER Award, Faculty fellowships
from Microsoft, Google and Adobe, and Young In-
vestigator Awards from the Army Research Office
and Air Force office of Sponsored Research. She
was also the ICLR 2020 Diversity+Inclusion Chair
and ICML 2017 Workshop Chair.

Fei Wang is a Ph.D. student in the Department of
Computer Science at the University of Southern
California. His research focuses on responsible
and trustworthy LLMs. Fei is a recipient of an
Amazon ML Fellowship and an Annenberg Fel-
lowship. Additional information is available at
https://feiwang96.github.io/.
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Ethical Considerations

This tutorial concerns addressing security and pri-
vacy issues of LLMs. For the security parts, it
is possible that some of the attacks may lead to
malicious behaviors of LLMs that can potentially
generate harmful behaviors, while these parts of the
tutorial will focus on defense and detection meth-
ods that prevent such malicious behaviors. For
the privacy related parts, the introduced techniques
mainly focus on privacy and copyright protection,
for which we do not anticipate any ethical issues
particularly.

Diversity Considerations Our presenter team con-
sists of junior and senior faculty members (includ-
ing assistant, associate and full professors) from six
institutes and from different gender groups. Our

instructor team will promote our tutorial on social
media to diversify our audience participation.
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A Appendix

A.1 Past Tutorials by the Instructors

The presenters of this tutorial have given the follow-
ing tutorials at leading international conferences in
the past.

• Muhao Chen:

– ACL’23: Indirectly Supervised Natural Language
Processing.

– NAACL’22: New Frontiers of Information Extrac-
tion.

– ACL’21: Event-Centric Natural Language Pro-
cessing.

– AAAI’21: Event-Centric Natural Language Un-
derstanding.

– KDD’21: From Tables to Knowledge: Recent
Advances in Table Understanding.

– AAAI’20: Recent Advances of Transferable Rep-
resentation Learning.

• Chaowei Xiao:

– CVPR’23: Trustworthy AI in the Era of Founda-
tion Models.

• Huan Sun:

– SIGMOD’23: Models and Practice of Neural Ta-
ble Representations

– KDD’21: From Tables to Knowledge: Recent
Advances in Table Understanding.

– KDD’14: Network Mining and Analysis for So-
cial Applications.

• Lei Li:

– CCF-ADL 2022: Pre-training for Neural Machine
Translation.

– ACL’21: Pre-training Methods for Neural Ma-
chine Translation.

– EMNLP’19: Discreteness in Natural Language
Processing.

– NLPCC’19: Deep Generative Models for Text
Generation.

– NLPCC’16: Deep Learning for Question Answer-
ing.

– 2014 PPAML Summer School: Probabilistic Mod-
eling using Bayesian Logic.

– KDD’10: Indexing and Mining Time Sequences.

• Leon Derczynski:

– COLING’20: Detection and Resolution of Ru-
mors and Misinformation with NLP

– RANLP’15: NLP for Social Media
– ESWC’15: Practical Annotation and Processing
of Social Media with GATE

– LREC’14: Practical Social Media Analysis: find-
ing utility in trivia

– EACL’14: Natural Language Processing for So-
cial Media

• Anima Anandkumar:

– ECCV’20: New Frontiers for Learning with Lim-
ited Labels or Data.

– ACM SIGMETRICS’18: The Role of Tensors in
Deep Learning.

– ICML’16: Recent Advances in Non-Convex Opti-
mization.

– AAAI’14: Tensor Decompositions for Learning
Latent Variable Models.

– ICML’13: Tensor Decomposition Algorithms for
Latent Variable Model Estimation.

A.2 Recommended Paper List
The following is a reading list that could help pro-
vide background knowledge to the audience before
attending this tutorial:

• Fanchao Qi, Yangyi Chen, Mukai Li, Yuan Yao,
Zhiyuan Liu, Maosong Sun. ONION: A Simple
and Effective Defense Against Textual Backdoor
Attacks. ACL 2021 (Qi et al., 2021a)

• Manli Shu, JiongxiaoWang, Chen Zhu, Jonas Geip-
ing, Chaowei Xiao, Tom Goldstein. On the Ex-
ploitability of Instruction Tuning. 2023 (Shu et al.,
2023)

• Jiashu Xu, Mingyu Derek Ma, Fei Wang, Chaowei
Xiao, Muhao Chen. Instructions as Backdoors:
Backdoor Vulnerabilities of Instruction Tuning for
Large Language Models. 2023 (Xu et al., 2024a)

• Jiongxiao Wang, Zichen Liu, Keun Hee Park,
Muhao Chen, Chaowei Xiao. Adversarial Demon-
stration Attacks on Large Language Models. 2023
(Wang et al., 2023a)
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• Xiang Yue, Minxin Du, Tianhao Wang, Yaliang
Li, Huan Sun, Sherman S. M. Chow. Differential
Privacy for Text Analytics via Natural Text Saniti-
zation. Findings of ACL 2021 (Yue et al., 2021)

• Xiang Yue, Huseyin A Inan, Xuechen Li, Girish
Kumar, Julia McAnallen, Hoda Shajari, Huan Sun,
David Levitan, Robert Sim. Synthetic text genera-
tion with differential privacy: A simple and practi-
cal recipe. ACL 2023Main Conference (Honorable
Mention) (Yue et al., 2023)

• Hannah Brown, Katherine Lee, Fatemehsadat
Mireshghallah, Reza Shokri, Florian Tramèr. What
does it mean for a language model to preserve pri-
vacy? FAccT 2022 (Brown et al., 2022)

• John Kirchenbauer, Jonas Geiping, Yuxin Wen,
Jonathan Katz, Ian Miers, Tom Goldstein. A Wa-
termark for Large Language Models. ICML 2023
(Kirchenbauer et al., 2023)

• Xuandong Zhao, Yu-Xiang Wang, Lei Li. Pro-
tecting Language Generation Models via Invisible
Watermarking. ICML 2023 (Zhao et al., 2023a)

• Leon Derczynski, Hannah Rose Kirk, Vidhisha Bal-
achandran, Sachin Kumar, Yulia Tsvetkov, M.R.
Leiser, Saif Mohammad. Assessing Language
Model Deployment with Risk Cards. 2023 (Der-
czynski et al., 2023)

• Ali Borji. A categorical archive of chatgpt failures.
2023 (Borji, 2023)
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