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Abstract

Recent advancements in integrating external
tools with Large Language Models (LLMs)
have opened new frontiers, with applications
in mathematical reasoning, code generators,
and smart assistants. However, existing meth-
ods, relying on simple one-time retrieval strate-
gies, fall short on effectively and accurately
shortlisting relevant tools. This paper intro-
duces a novel PLUTO (Planning, Learning,
and Understanding for TOols) approach, en-
compassing “Plan-and-Retrieve (P&R)” and
“Edit-and-Ground (E&G)” paradigms. The
P&R paradigm consists of a neural retrieval
module for shortlisting relevant tools and an
LLM-based query planner that decomposes
complex queries into actionable tasks, enhanc-
ing the effectiveness of tool utilization. The
E&G paradigm utilizes LLMs to enrich tool de-
scriptions based on user scenarios, bridging the
gap between user queries and tool functionali-
ties. Experiment results demonstrate that these
paradigms significantly improve the recall and
NDCG in tool retrieval tasks, significantly sur-
passing current state-of-the-art models.

1 Introduction

The community has shown increasing interest in
integrating external tools and interfaces with LLMs
since tools often provide complementary function-
alities in complex tasks such as dialogues (Bubeck
et al., 2023), mathematical reasoning (Lu et al.,
2022), and code generation (Yadav et al., 2023). To
realize tool augmentation, LLM systems typically
employ a retriever mechanism to select relevant
tools from a candidate pool and write function API
calls based on the retrieved tools. The introduction
of external tools also allows LLMs to address com-
plicated user queries. Schick et al. 2023 show that
LLMs, incorporating simple tools, achieve better
performance on downstream tasks. Gupta and Kem-
bhavi 2023 attempt to solve compositional visual

Figure 1: Comparison between conventional Retrieve-
and-Read and PLUTO paradigm. Unlike the conven-
tional one-time Retrieve-and-Read paradigm that may
lead to retrieving an ineffective set of tools, PLUTo
efficiently parses a complex query and distills it into
actionable sub-queries that facilitate accurate retrieval
of appropriate tools.

tasks via image processing modules and language-
instructed computer vision models. More recently,
the integration of LLMs and tools empower LLMs,
opening up new possibilities in areas like scientific
discovery (Yang et al., 2023), automated efficiency,
and smart assistant applications (Shu et al., 2022).

Nonetheless, emergent approaches for LLMs
with tool integration present several distinct chal-
lenges. One primary concern is that current LLM
agents still adopt simple retrieval-and-read strate-
gies (Patil et al., 2023; Qin et al., 2023), lacking
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the dynamic adaptability required for addressing
complex queries. As shown in Fig. 1, the conven-
tional Retrieve-and-Read paradigm, solely relying
heavily on similarity matching, falls short of re-
trieving diverse types of tools to address a complex
user query. This limitation is further exacerbated
by the semantic gap between user queries and tool
descriptions. Particularly, user queries can be am-
biguous and complex, often requiring a deep un-
derstanding of the user’s intent and the context of
the query (Kulkarni et al., 2023). On the other
hand, human-written tool descriptions can be ab-
stract and lack essential details for deciding their
utilities, leading to a mismatch between what the
user needs and what the tool is perceived to offer.
Additionally, current models tend to finetune on
static tools, posing challenges to their robustness
in the ever-evolving tool environment where new
tools emerge and existing ones become obsolete
(Lübke et al., 2019). There is limited research on
retrieval enhancement strategies in non-finetuned
settings. These gaps highlight crucial areas for fu-
ture research and development in LLM and tool
integration.
In this paper, we leverage LLM’s world knowl-

edge and reasoning ability to augment the re-
trieval and utility of tools in response to com-
plex user queries, by designing a novel framework
PLUTO (Planning, Learning, and Understanding
for TOols) 1. Our first contribution is the introduc-
tion of a novel Plan-and-Retrieve for tool integra-
tion. While prior Retrieve-and-Read approaches
only retrieve once at the beginning, our Plan-and-
Retrieve paradigm is designed to adaptively ad-
just its strategies based on the outcomes of its self-
evaluations, ensuring a continuous refinement of
the tool selection process. This paradigm is struc-
tured into two core modules. The first module, the
retriever, leverages neural (dense) retrieval tech-
niques (Karpukhin et al., 2020) and LM-likelihood
scoring mechanisms (Song et al., 2023a) to effi-
ciently shortlist relevant tools from a vast pool of
candidates in response to a user query. This pro-
cess ensures that the most pertinent tools are identi-
fied quickly, laying a foundation for more effective
tool utilization. Inspired by recent advancements
of adaptive retrieval-augmented generation (RAG;
Jiang et al. 2023; Yoran et al. 2023), we design
an LLM-based query planner that autoregressively

1Code is available at https://github.com/
tenghaohuang/PLUTo

decomposes complex user queries into manage-
able, task-oriented actions as the second module.
Following the decompositions, the query planner
selects the most suitable ones from the retrieved
tools. It goes further by evaluating the effective-
ness of selected tools and proposing the next action
toward addressing the user query. This Plan-and-
Retrieve paradigm operates dynamically, embody-
ing a sophisticated feedback loop that interlinks
the retrieval of tools with subsequent refinement,
evaluation, and planning stages.
Our second contribution is the proposal of Edit-

and-Ground paradigm that utilizes user queries’
rich contextual information and LLM’s extensive
world knowledge for enriching descriptions of tool
functionalities. Research has shown that informed
tool documentations can enhance the interaction
between LLMs and tools (Hsieh et al., 2023). How-
ever, documenting tool functionalities at scale can
be tedious for humans. Yang et al. 2023 show
LLMs can follow instructions and optimize real-
world applications. Leveraging the optimization
ability of the LLM, our tool-grounding agent opti-
mizes under-informative tool descriptions by learn-
ing and abstracting information from tools’ user
scenarios. By editing tool descriptions to make
them more aligned with tools’ user scenarios, the
agent bridges the gap between user queries and tool
functionalities, enhancing the overall effectiveness
of tool retrieval and usage.
In conclusion, this paper advances the field

of tool integration with LLMs by introducing
the novel Plan-and-Retrieve and Edit-and-Ground
paradigms. Experiments show that our paradigms
improve the recall and NDCG of tool retrieval tasks,
significantly outperforming current state-of-the-art
(SOTA). Our downstream evaluation suggests that
the improvement gained during the retrieval phase,
such as higher accuracy and relevance in responses,
significantly contribute to successfully addressing
the user queries.

2 Related Works

Retrieval-Augmented LLM. Early studies on
Retrieval-Augmented LLMs typically incorporate
embeddings of retrieved passages as a part of the
latent representation of the LM (Chen et al., 2017;
Lee et al., 2019). More recent works like REALM
(Guu et al., 2020) and RAG (Lewis et al., 2021)
have demonstrated the effectiveness of in-context
augmentation and its improvement on knowledge-
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Figure 2: An overview of the PLUTO approach.

intensive tasks. There is also work (Mallen et al.,
2023) that explores how Chain-of-Thought (CoT)
could guide a multi-turn Retrieve-and-Read pro-
cess to solve open-domain questions and perform
fact verification.

However, the massive action space and tool func-
tionality variance in tool-oriented tasks pose chal-
lenges to LLMs during planning. An erroneous
step in planning can lead to a faulty loop, such as
continually calling a tool in the wrong way or hallu-
cinating non-existing tools. Our Plan-and-Retrieve
paradigm, employing furtherest planning assess-
ment (Zhu et al., 2023), enforces reasonable and
goal-oriented decompositions of user queries. The
recently proposed ReAct framework (Yao et al.,
2022) asks LLM to plan future actions based on its
observation of environments. In the context of tool-
oriented tasks, the plan builds upon the execution
results of retrieved tools. Such practice running and
verifying each tool at retrieval time can be expen-
sive and time-consuming at scale. In contrast, our
Plan-and-Retrieve paradigm fully leverages LLM’s
internal representation of world knowledge to pro-
pose plans in response to user queries, therefore
guaranteeing both time and cost efficiency as an
execution-free paradigm.

Tool Learning. Tool learning refers to the pro-
cess where LLMs not only process and generate
language-based responses but also learn to interact
with and utilize external tools to enhance their ca-
pabilities (Nakano et al., 2022; Schick et al., 2023;
Shen et al., 2023; Qian et al., 2023; Song et al.,
2023b; Xu et al., 2023; Li et al., 2023; Hao et al.,
2023; Zhang et al., 2023). By incorporating tools,

LLMs can offer solutions in various areas, includ-
ing visual-language processing (Gupta and Kem-
bhavi, 2023; Wu et al., 2023), mathematical rea-
soning (Lu et al., 2023), and tasks in specialized
domains (Jin et al., 2023; Tang et al., 2023b).
However, previous research on tool learning

mainly focused on teaching LLMs to use tools,
but ignores the importance of shortlisting relevant
tools. In this paper, we focus on using LLMs to
improve the tool retrieval process. In contrast to
previous researches that heavily rely on finetuning
retrievers (Schick et al., 2023; Patil et al., 2023)
to shortlist tools, we propose a novel Edit-and-
Ground paradigm, leveraging LLMs’ parametric
knowledge to learn and create more informative de-
scriptions for tools. This approach seeks to provide
richer information for the retriever, leading to more
accurate retrieval.

3 Task and Data

We hereby formulate the task of tool retrieval and
describe the dataset for this task.

3.1 Task Definition

The tool retrieval process involves taking a user
query Q and an index base of tool descriptions
D = {d(t1), d(t2), . . . , d(tn)} as input, where
each d(t) represents the description of each tool
t. The retriever then sifts through the tool de-
scriptions in D and shortlists a relevant tool set
T = {t1, t2, . . . , tk} that are potentially suited to
address aspects of the user query Q. It is essential
to underline that unlike conventional retrieval tasks,
the task of tool retrieval is goal-oriented in nature,

977



which means the set of retrieved tools T should be
able to address the user query Q.
The systems are expected to accurately retrieve

relevant tools and understand the user intents and
complex synergy between tools, thus truly assisting
users in problem-solving processes.

3.2 Dataset

Existing datasets for tool learning, such as those
delineated in (Li et al., 2023; Patil et al., 2023;
Tang et al., 2023a; Xu et al., 2023), provide insights
into the field. Nonetheless, these datasets exhibit
limitations, where they only cover a limited number
of tools or solely support simple single-tool usage
scenarios, where user queries are simple and could
be addressed by a single tool.
Contrastingly, Qin et al. (2023) proposed Tool-

Bench, a dataset covering more than 3,000 tools
from 49 categories (such as advertising, data analy-
sis, and transportation) and support complex, multi-
tool user scenarios. In these scenarios, a single
user query necessitates the sequential application
of multiple tools, each contributing uniquely to the
resolution of the query. The ToolBench dataset syn-
ergizes with the RapidAPI Hub, a prominent API
marketplace that consolidates a vast array of real-
world APIs. The multi-tool query creation process
involves selecting representative tools within each
category or collection, crafting queries to mimic
real-world problem-solving scenarios.
Given our research focus and the nature of our

study, we have chosen to concentrate on the Intra-
Category setting of the ToolBench dataset. The
intra-category setting provides high-quality user
queries, where the hierarchies of tools are clearly
defined based on their main functionalities. It moti-
vates understanding complex interactions and syn-
ergies between tools that share a common func-
tional domain. The setting mirrors real-world sit-
uations where problem-solving often demands a
multifaceted and integrative use of diverse tools.
The ToolBench dataset annotates paths of executed
tools that successfully address the user queries as
solution paths. The average length of the solution
paths is 4. We take the annotated solution paths as
the ground truth for our task.

4 Method

In this section, we describe the proposed frame-
work to integrate tools with LLMs for address-
ing complex user queries. Our methodology is

grounded in two innovative paradigms: the Plan-
and-Retrieve (P&R; §4.2) and Edit-and-Ground
(E&G; §4.3). We discuss the coordination between
two paradigms in §4.4.

4.1 Method Overview

PLUTO integrates two key paradigms, Plan-and-
Retrieve (P&R) and Edit-and-Ground (E&G), to ef-
fectively address complex user queries with LLMs.

The Plan-and-Retrieve paradigm is a two-stage
process. The Plan stage decomposes user queries
into focused sub-queries, while the Retrieve stage
matches these sub-queries with relevant tools.
The Edit-and-Ground paradigm, consisting of

the Evaluator and Optimizer, focuses on enhancing
tool descriptions.

These paradigms are designed to work in tandem.
P&R paradigm addresses immediate user queries,
while E&G actively identifies and collects under-
informative tool descriptions for optimization.

4.2 Plan-and-Retrieve

The Plan-and-Retrieve (P&R) paradigm is designed
as a two-stage process to effectively address com-
plex user queries.

Plan. In the Plan stage, a LLM-based planner au-
toregressively decomposes the user query Q into
sub-queries q1, q2, . . . , qn. To ensure the robust-
ness and quality of the decomposed sub-queries,
we follow Zhu et al. (2023). Specifically, for each
step of sub-query generation, the planner first gen-
erates a batch of hypotheses. Then, we cluster the
generated hypotheses along with previously cre-
ated sub-queries via K-means clustering algorithm.
Finally, we select a sub-query from the hypothe-
ses that distinguishes the most from the previous
sub-queries to proceed2.
As shown in Fig. 2, the planner autoregres-

sively decomposes the user query Q into more
fine-grained sub-queries based on assessments at
inference time. After the generation of a sub-query
qt, the planner evaluates whether the original query
Q has been satisfactorily achieved based on the cur-
rent planning history. If the evaluation determines
that the goal has been met, the iterative process
concludes. Otherwise, the planner proceeds to gen-
erate the subsequent sub-query qt+1. This active
and autoregressive planning at inference time facili-
tates a more focused understanding of the tools. We
use the following prompt template for the planner.

2Please refer to Appx. §A for algorithm implementation.
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Retrieve. In the Retrieve stage, for each sub-query
qi, the retriever shortlists the most suitable tools
Ti ∈ D. We first retrieve a pool of candidate tools
that matches qi, represented as

T ′
i = Ret(qi), (1)

where Ret represents the retriever.
To enhance the robustness of retrieval, we re-

rank the candidate tool set T ′
i by LM-likelihood

score between the sub-query qi and each tool tj ∈
Ti, which is calculated as follows:

LM-likelihood(qi, tj) = − logP (qi, d(tj)). (2)

Based on the re-ranked tools, we choose the top-
5 tools T ′

i,top−5 and feed them into a LLM-based
predictor, which outputs a shortlisted tool set Ti

from the candidate tool set T ′
i,top−5 that are relevant

to qi. We use this prompt for the predictor.

As a result, the final shortlisted tool set T is
formed by

T =
n⋃

i=1

Ti, ∀i ∈ [1, n] ∩ Z. (3)

For the choice of Ret, we adopt a neural (dense)
retriever method. For each sub-query qi, the dense
vector representation qi is obtained by passing qi
through a dense encoder. Similarly, we obtain
dense representation d through a dense encoder
for each tool description d. The tool index corpus
D is formed as a collection of d.
The P&R module interleaves Plan and Retrieve

until the planner evaluates that the user query
has been sufficiently decomposed and addressed
through the retrieved tools. The module then re-
turns T as the relevant tools to address the user
query.

Algorithm 1 Edit-and-Ground Algorithm
Input: Trainset, Devset, Toolset, Failure_Threshold,
Max_Rounds
Output: Optimized Tool Descriptions
Initialize cache for tools in Toolset
cur_round = 0

while cur_round < Max_Rounds do
## Phase 1: Evaluate Retrieval Performance
for each (query, gt_tools) in Trainset do

predicted_tools← P&R(query)
for each tool in gt_tools do

tool.trials += 1
if tool not in predicted_tools then

tool.failure += 1
tool.queries.add(query) ▷ Failure queries

end if
end for

end for

## Phase 2: Failed Tool Description Optimization
for each tool in Toolset do

if tool.failure
tool.trials > Failure_Threshold then
U ← Remove specific entities from tool.queries
R← Predict reasons for failure of U
d(tool)← tool.description
d’(tool)← E&G(tool, d(tool), U, R)

## Phase 3: Evaluate Performance of d’(tool)
cur_recall← Eval(Devset, d’(tool))
if tool.recall < cur_recall then

tool.description← d’(tool)
tool.recall← cur_recall

end if
end if

end for
cur_round += 1

end while

4.3 Edit-and-Ground
The Edit-and-Ground (E&G) paradigm focuses
on refining under-informative tool descriptions to
align them with user queries. As shown in Alg. 1,
the evaluator examines the quality of tool descrip-
tions by retrieval results. A tool description is
viewed as under-informative if the number of fail-
ure cases of retrieval exceeds a pre-defined thresh-
old. We collect such tools for later optimization.

Subsequently, the optimizer takes a tool t with
its base description d(t) and U , a batch of relevant
user queries, as input. To avoid the optimizer over-
fitting to a local batch, we use an LLM to filter out
specific entities for each query in U . The entity
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filtering prompt template is shown as above.
To assist the optimizer in improving under-

performed tool descriptions, we prompt LLM to
generate reasons R explaining why the tool could
be related and helpful in addressing user queries.
The functionality assessment prompt template is
shown below:

Finally, by prompting LLM with 1) base tool
description d(t), 2) entity-filtered user queries U ,
and 3) the reasons R, we obtain an enriched tool
description d′(t). Please refer to Fig. 4 in Appendix
C for the prompt template. We formally represent
this process as

d′(t) = E&G(t, d(t), U,R). (4)

The optimization process is executed in multiple
rounds as described in Alg. 1. In each round, we
evaluate the retrieval recall on the development
set for each tool and compare it with the previous
round. If the current round’s recall is better than
the previous one, we update the tool’s description;
otherwise, we keep the original description.

The Edit-and-Ground involves using the LLM’s
extensive world knowledge, combined with the con-
textual details provided by U , to edit and enhance
d(t). The result of this task is an enriched tool de-
scription d′(t), expected to resonate more closely
with real-world user scenarios and increase the util-
ity of the tool in practical applications.

4.4 Paradigm Coordination and Inference

Our PLUTO framework employs strategic coordi-
nation of the Plan-and-Retrieve (P&R) and Edit-
and-Ground (E&G) paradigms, phased to optimize
the process of tool retrieval. This section elucidates
the interaction between these paradigms during the
optimization phase and the subsequent inference
phase.

Optimization Phase. During the optimization
phase, P&R and E&G operate alternatively. P&R
is tasked with decomposing a user query Q into
manageable sub-queries q1, q2, . . . , qn. These sub-
queries facilitate a more focused retrieval of tools

from the tool set D, ensuring that the process is
aligned with specific aspects of the query.
During planning, the E&G paradigm is actively

engaged in optimizing the descriptions of the tools
withinD. This optimization, leveraging the LLM’s
extensive knowledge base, is particularly targeted
at tools that exhibit underperformance in retrieval
effectiveness. By enriching these tool descrip-
tions, E&G significantly enhances the overall re-
trieval process, making the toolset more responsive
and aligned with the practical demands of diverse
queries.

Inference Phase. At the time of inference, the
P&R paradigm remains active, utilizing the previ-
ously enriched and optimized tool descriptions. In
this phase, the E&G paradigm ceases its operation
and does not engage in any further optimization
of tool descriptions. The refined tool descriptions,
already enhanced by E&G, now serve as a compre-
hensive resource for the retriever to draw upon in
response to the decomposed sub-queries.

5 Experiments

In this section, we evaluate the proposed PLUTO

framework for tool retrieval and compare it with
baseline methods. We will delve into the details
of our experimental setup (§5.1), discuss the re-
sults (§5.2) obtained, and perform an ablation study
to understand strengths of different components
(§5.3). By executing the retrieved tools, we eval-
uate their correctness in addressing user queries
to further validate our findings (§5.4). We present
case studies to qualitatively evaluate the strength
of PLUTo framework (§5.5).

5.1 Experiment Setup

Evaluation Protocol. We evaluate using three met-
rics to assess the effectiveness of our tool retrieval
system. Recall (Rec) measures the proportion of
relevant tools that are successfully retrieved by our
system. High indicates that the system is effective
in identifying a comprehensive set of relevant tools
for a given query and is more likely to yield a solu-
tion to address the user query. We also report the
Normalized Discounted Cumulative Gain (NDCG)
that evaluates the relevance and quality of ranked
search results. In addition, we report pass rate,
an automatic evaluation metric of ToolBench (Qin
et al., 2023). The pass rate measures a system’s
ability to successfully address the user query with

980



Model Retriever Non-Finetuned Finetuned

Rec NDCG Rec NDCG

BM25 – 18.82 37.44 – –

ToolRetriever
DPR† 19.58 50.98 27.80 71.21

Contriever 31.78 74.70 42.77 79.16

PLUTO
DPR 36.65 75.10 43.27 79.93

Contriever 46.57 82.93 48.47 84.73

Table 1: This table compares various tool retrieval models using Recall and NDCG metrics in both Non-Finetuned
and Finetuned settings. It includes an ablation study on the impact of using different retrievers, demonstrating the
generalizability of PLUTO. † indicates the previous SOTA implementation, as specified in (Qin et al., 2023).

a retrieved subset of tools in limited budgets by
interacting with real-world RESTful APIs (§5.4).
To test the generalizability of our approach, we

benchmark the tool retrieval performance under a
Non-Finetuned setting, where we directly apply an
off-the-shelf retriever model to comprehensively
showcase PLUTO’s adaptivity. To test the model’s
practical applicability, we also benchmark retrieval
performance under Finetuned setting, where we
finetune the retriever model on domain-specific
knowledge. We evaluate 500 user queries for each
setting.

Baselines. We compare our system against sev-
eral representative retrieval methods. These in-
clude: (1) BM25: a widely-used probabilistic re-
trieval framework, calculating the relevance of
documents to a query based on the frequency of
query terms in each document; (2) ToolRetriever:
a neural retrieval approach that achieves the cur-
rent state-of-the-art (SOTA) performance on Tool-
Bench retrieval task (Qin et al., 2023). To under-
stand the flexibility of our framework, we bench-
mark PLUTO’s performance when incorporated
with different retrievers. Specifically, we use DPR
(Karpukhin et al., 2020) and Contriever (Izacard
et al., 2022).

Implementation Details. For the implementation
of PLUTo, we use DSPy framework (Khattab et al.,
2023) to facilitate efficient interaction between re-
triever and LLM. We choose ChatGPT3 as our
main LLM for both P&R and E&G. The maximum
round for the E&G module is set to 5. For ToolRe-
triever, we retrieve top-5 tools using the respective
retrievers. The data is divided into 70-15-15 splits
for training, development, and testing, respectively.
For our experiment, we randomly select 500 data

3OpenAI. (2023). ChatGPT (November 21st version).

samples from the test split for each setting men-
tioned in Evaluation Protocol section.
For the Finetuned settings, we finetune the neu-

ral dense retriever model by including negative
samples during in-batch training (Karpukhin et al.,
2020). For each positive pair of query qj and its
relevant tool d+j , we include n negative tools as
negative samples. We use a cross-entropy loss with
softmax function over the batch B:

L = − 1

B

B∑

j=1

log

(
eqj ·d+

j

eqj ·d+
j +

∑n
i=1 e

qj ·d−
ij

)
(5)

5.2 Results

The experimental results, detailed in Tab. 1, under-
score the significant advantages of our proposed
PLUTO models. In the Non-Finetuned setting,
PLUTO with Contriever showcases remarkable
scores, achieving 46.57% in Recall, outperform-
ing the best baseline by 9.92 points. This result
shows the model’s robust ability to identify rele-
vant tools without the necessity for specific finetun-
ing, a critical advantage in dynamic tool retrieval
environments. We observe a consistent trend in the
Finetuned setting, with the model scoring 48.47%
in Recall, demonstrating a 5.7 points lead when
compared with the Contriever baseline. This indi-
cates that our model is highly effective on retrieving
relevant tools.
Furthermore, our model outperforms baselines

across all settings on NDCG scores. In the Non-
Finetuned setting, our model leads by 8.23 points.
In the Finetuned setting, our model beats the base-
line by 4.57 points. These results reflect PLUTO

not only the relevance of the tools retrieved but also
their ranking in order of utility and applicability
to the user’s query, which is a indication to the
model’s nuanced understanding of tool utility.
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Figure 3: Performance comparison among different
LLMs for Plan-and-Retrieve paradigm using Recall
score. The backbone retriever is DPR.

To show the generalizability of PLUTO, we se-
lect different retrievers for the Plan-and-Retrieve
(P&R) paradigm. We observe that PLUTO has
synergy with both DPR and Contriever models, re-
gardless of their different architecture, that achieves
higher Recall and NDCG scores than the baselines.
This indicates that PLUTO is a plug-n-play and
retriever-agnostic framework that features effective-
ness and flexibility under different circumstances.
The experimental results highlight the superior

performance of PLUTO framework. Together, the
P&R and E&G paradigms establish a dynamic and
effective framework, which not only accurately in-
terprets and responds to user queries but also main-
tains an evolving understanding of tool function-
ality. This duality ensures that PLUTO remains
highly effective and adaptable in various setups,
consistently aligning user needs with the most suit-
able tools and their capabilities.

5.3 Ablation Study

As shown in Fig. 3, we observe that both the
Llama2 (Touvron et al., 2023) and ChatGPT vari-
ants show considerable improvements in tool re-
trieval capabilities, with notable increases in Recall
and NDCG scores compared to baseline models.
This consistent improvement across different LLM
integrations conclusively demonstrates the robust-
ness and effectiveness of our method. This finding
is particularly important as it suggests that our ap-
proach is not overly reliant on any single LLM,
thereby showcasing the broad applicability and po-
tential of our methods in diverse settings.
As shown in Tab. 2, the ablation experiment on

Model Non-Finetuned Finetuned

Rec NDCG Rec NDCG

PLUTO- full 46.57 82.93 48.47 84.73
- w/o E&G 42.55 80.70 44.90 81.10
- w/o P&R 38.12 77.60 47.07 81.90

Table 2: Ablation Study.

the PLUTO- full, focusing on the removal of Edit-
and-Ground (E&G) and Plan-and-Retrieve (P&R)
components, provides intriguing insights into their
roles in tool retrieval tasks. Generally, remov-
ing E&G leads to decreased Recall and NDCG
scores across settings, underscoring its critical role
in enhancing what the model seeks to retrieve.
On the other hand, excluding P&R tends to di-
minish more of the model’s performance in Non-
Finetuned settings, particularly impacting Recall.
This highlights P&R’s importance in effectively re-
trieving relevant information. A comparative analy-
sis reveals that the full implementation of PLUTO-
ChatGPT, incorporating both E&G and P&R, con-
sistently delivers strong performance across all
metrics and settings, emphasizing the synergistic
strength of these components. The variants of the
model, lacking either E&G or P&R, provide valu-
able insights into the unique contributions of each
component to the model’s overall efficacy.

5.4 Execution Pass Rate

We evaluate the pass rate of the execution schema
generated by ChatGPT using the DFSDT approach
(Qin et al., 2023). Using the ToolEval package, we
assessed two distinct retrieval tools, ToolRetriever
and PLUTO, for their correctness and efficiency in
responding to user queries. The PLUTO achieves
72.3% for pass rate, while the previous SOTA sys-
tem ToolRetriever scored 69.3%.
This experiment’s findings emphasize the piv-

otal role of advanced retrieval strategies in enhanc-
ing user query response quality. The improvement
gained during the retrieval phase, such as higher
accuracy and relevance in responses, significantly
contribute to the downstream tasks.

5.5 Case Study

As shown in Tab. 3, we compare our PLUTO

against the ToolRetriever baseline to underscore
PLUTO’s proficiency in retrieving relevant tools
for diverse user queries. Through selected exam-
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Question Gold Answer PLUTo Answer ToolRetriever Answer
I’m planning a weekend getaway with
my partner and I want to surprise them
with a romantic playlist. Could you
fetch the reels and posts from roman-
tic music artists on Instagram? Addi-
tionally, could you search for books
about love and relationships on Open
Library?

Instagram Reels and post
Downloader, Open Li-
brary

Instagram Reels and post
Downloader, Instagram,
Open Library, Instagram
Downloader

Love Quotes by
LoveMelon, The Love
Calculator, Book Finder,
fb-video-reels, Reading
Home APIs

I’m planning a family movie night
and I need a movie recommendation.
Can you fetch the trending images for
movie posters and provide me with the
details of the most popular movie from
the past month? Also, check the status
of the movie session and download the
completed movie.

Magisto, Bing Image
Search

Magisto, gogoanime-
data-api, Youtube video
info, Advanced Movie
Search, Image Service,
Memes, Bing Image
Search, Netflix Data

TikTok Info, Tiktok
Video Feature Summary,
TikTok Full Video Info,
TikTok Downloader -
Download Videos with-
out watermark

I’m a music blogger and I’m searching
for interesting radio stations to feature
on my website. Can you help me find
radio stations that play a mix of gen-
res? Also, provide me with the details
of the master for the track with the ID
’987654’ in the LANDR Mastering.

LANDR Mastering v1,
50K Radio Stations

GMC Radio, LANDR
Mastering v1, 50K Radio
Stations, 60K Radio Sta-
tions

LANDR Mastering v1,
Spotify_v2, TuneIn, Spo-
tify Scraper, Spotify_v3

Table 3: Performance comparison of PLUTo and ToolRetriever in retrieving relevant tools for user queries. This
table demonstrates the effectiveness of PLUTo in closely aligning with the gold standard answers for diverse queries,
showcasing its superior ability to understand and fulfill user needs compared to ToolRetriever. The highlighted tools
are the correctly retrieved ones.

ples, PLUTO’s superior understanding and com-
prehensive response capabilities are highlighted,
especially in scenarios requiring nuanced tool se-
lection.
For instance, for organizing a romantic week-

end in the first example, PLUTO not only identi-
fies all essential tools but also enhances the search
with additional relevant resources, showcasing its
broad and accurate grasp of user needs. This is
contrasted with ToolRetriever, where the retrieved
tools are only similar on a surface level (the ma-
jority of the tools contain the term "Love") and
fail to understand the user’s intent. This empha-
sizes PLUTO’s improved relevance and precision
in tool retrieval. We also showcase the descrip-
tions of tools before and after optimization by the
Edit-and-Ground paradigm in Tab. 4.
By leveraging the Plan-and-Retrieve (P&R)

and Edit-and-Ground (E&G) components, PLUTo
marks a significant advancement over conventional
retrieval systems, demonstrating its adaptability
and utility in fulfilling diverse user requirements.

6 Conclusion

We introduced PLUTO, a framework composed
of the Plan-and-Retrieve and Edit-and-Ground
paradigms, which marks a distinctive departure
from traditional methodologies, setting a new stan-

dard for tool retrieval. The empirical results il-
lustrate the superiority of PLUTO across critical
retrieval performance metrics as well as pass rate
in real-world tool-use evaluation. These metrics
collectively attest to the model’s efficacy in iden-
tifying relevant tools and successfully addressing
complex user queries. We hope the adaptability
and efficiency of PLUTO can empower a multitude
of domains where accurate and timely retrieval of
tools is paramount. From autonomous scientific
discovery to software development, the potential
applications are as diverse as they are impactful.
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Limitation

Our study, while enhancing tool learning by plan-
ning and editing strategies, is notably constrained
by its reliance on English language datasets. This
focus on English limits the model’s applicability to
other languages with distinct syntax and semantics
and confines its evaluation to specific English data
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sources, leaving its performance on diverse lan-
guage setups unexplored. Future research should
address this limitation by developing multilingual
capabilities and conducting evaluations across var-
ied data sources.
The Edit-and-Ground (E&G) may be executed

to further optimize the descriptions. However, due
to the cost, we currently set a relatively loose stop
criterion that is enough to demonstrate the effec-
tiveness of the presented method.

Ethical Consideration

In conducting this research, we have adhered to
ethical guidelines and legal norms to ensure respon-
sible data usage. The data used in this study was
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Bench. We ensured not to violate any terms of
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A K-means Algorithm for Furthest
Planning

Here, we present the algorithm for selecting the
optimal sub-query to proceed with the Plan-and-
Retrieve paradigm.

Algorithm 2 Sub-query Selection
Let Qprev be the set of previous queries, and
Qcand the set of candidate queries.
if Qprev = ∅ then

return Qcand
end if
Qtotal = Qcand ∪Qprev
V = TFIDFVectorizer(Qtotal)
C = KMeans.fit(V )
Let Lprev be the cluster labels for Qprev in C.
Qfiltered = {q | q ∈ Qcand, label(q, C) /∈ Lprev}
if Qfiltered = ∅ then

return Qcand
end if
return random.choice(Qfiltered)

B Evaluation Framework for NDCG
Assessment

In the process of evaluating the correspondence
between the retrieved digital tools and the user’s
query, a nuanced approach is employed to assign
relevance scores. This scoring paradigm operates
on a scale from 0 to 2. A score of ’2’ is allocated ex-
clusively to those tools that exhibit either an exact
match or a functional equivalence to the predefined
standards, referred to as ’ground-truths.’ A score
of ’1’ is designated for tools that are deemed to be
of moderate relevance. Conversely, a score of ’0’ is
reserved for tools that are determined to be irrele-
vant to the user’s query. We hire graduate students
to carry out this task.

C Edit-Ground Prompt Template

Please refer to Fig. 4. The task explanation and
demonstration are shown in orange. The input is
shown in blue.

D Case Studies for Edit-and-Ground
paradigm

From Tab. 4, we observe that humans tend to craft
tool descriptions that are abstract and simple, which
can omit vital details necessary for both users and
automated systems. Abstract descriptions can cre-
ate a gap in understanding, particularly in domains
where the nuances of functionality are key to effec-
tive use.
Contrastingly, tool descriptions that are contex-

tualized and grounded by PLUTo offer a more de-
tailed narrative, linking the tool’s features with spe-
cific use cases and demonstrating its utility in prac-
tical scenarios. This detailed approach not only
aids human users in understanding how a tool fits
their specific needs but also enhances the precision
of automated retrieval systems in matching tools to
user queries.
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Tool Name Before After

Magisto

Magically transform your videos.
Magisto turns your everyday videos
into exciting, memorable movies
you’ll want to watch again and again.

The Magisto API is a powerful tool that can trans-
form user videos into exciting and memorable
movies. It offers a range of capabilities to enhance
the user’s movie experience, provide movie recom-
mendations, and optimize video content for discov-
ery on platforms like Vimeo. The API allows users
to choose visually appealing movies ...

Bing Image Search
An AI service from Microsoft Azure
that turns any app into an image search
resource.

The Bing Image Search API is a comprehensive
and powerful tool that enables users to search for
and retrieve a wide range of images based on their
specific requirements. With its extensive database
and advanced search capabilities, this API offers
a variety of features to cater to different use cases
and scenarios. The API provides the ability to fetch
trending images for movie posters. Additionally,
the API offers the functionality to retrieve details
of the most popular movie from the past month,
enabling users to make informed decisions about
their movie selection.

LANDR Mastering
v1

Give your users an instant and cus-
tomized audio mastering solution by
harnessing the power of LANDR’s
industry-leading, AI-driven mastering
engine and its patented machine learn-
ing capabilities.

The "LANDR Mastering v1" API is a compre-
hensive and powerful audio mastering solution de-
signed to cater to the needs of music producers,
music lovers, and anyone interested in high-quality
audio production. With its instant and customizable
features, the API offers a range of capabilities to
enhance the music production process. For music
producers, the API allows them to download a spe-
cific track by providing the track ID. Additionally,
the API can fetch track credits, enabling the user to
gather essential information for their music produc-
tion needs ...

Table 4: Comparative Analysis of Tool Descriptions before and after optimization by the Edit-and-Ground paradigm.
This table showcases the evolution of tool descriptions for selected tools, illustrating the substantial enhancement in
clarity, detail, and functionality offered to users.
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Figure 4: Edit-and-Ground template.
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