
Findings of the Association for Computational Linguistics: NAACL 2024, pages 3846–3868
June 16-21, 2024 ©2024 Association for Computational Linguistics

Getting Sick After Seeing a Doctor? Diagnosing and Mitigating
Knowledge Conflicts in Event Temporal Reasoning

Tianqing Fang1, Zhaowei Wang1, Wenxuan Zhou2, Hongming Zhang3,
Yangqiu Song1, Muhao Chen2

1Hong Kong University of Science and Technology 2University of Southern California
3Tencent AI Lab, Seattle 4University of California, Davis

{tfangaa, zwanggy, yqsong}@cse.ust.hk, zhouwenx@usc.edu
hongmzhang@global.tencent.com, muhchen@ucdavis.edu

Abstract

Event temporal reasoning aims at identifying
the temporal relations between two or more
events from narratives. However, knowledge
conflicts arise when there is a mismatch be-
tween the actual temporal relations of events in
the context and the prior knowledge or biases
learned by the model. In this paper, we propose
to detect knowledge-conflict examples in event
temporal reasoning using bias indicators, which
include event relation prior bias, tense bias,
narrative bias, and dependency bias. We define
conflict examples as those where event rela-
tions are opposite to biased or prior relations.
To mitigate event-related knowledge conflicts,
we introduce a Counterfactual Data Augmenta-
tion (CDA) based method that can be applied to
both Pre-trained Language Models (PLMs) and
Large Language Models (LLMs) either as ad-
ditional training data or demonstrations for In-
Context Learning. Experiments suggest both
PLMs and LLMs suffer from knowledge con-
flicts in event temporal reasoning, and CDA
has the potential for reducing hallucination and
improving model performance1.

1 Introduction

An important goal of event understanding is to iden-
tify the temporal relations (TEMPRELS) among
events described in natural language text (Cham-
bers et al., 2007). This task aligns with human’s
cognitive ability (Zacks and Tversky, 2001; Za-
cks et al., 2007), which often involves routinely
reasoning about how events happening around us
are temporally sequenced, planned, and lead to
consequences and decisions (Schank and Abelson,
1977). From the intelligent system perspective, it
also benefits many NLP applications for narrative
understanding (Li et al., 2018; Cai et al., 2022),
schema induction (Li et al., 2021), and question
answering (Zhu et al., 2017; Stricker, 2021).

1Code and data are available at https://github.com/
tqfang/event-temporal-knowledge-conflict

Corpus Statistics:
Count(see, before, sick): 3
Count(see, after, sick):   8

see the doctor happens [MASK] sick.
before: 5.8×10!"

after: 7.0×10!"
[MASK]

ChatGPT:

I went to e1: see the doctor. However, I was more 
seriously e2: sick.
Q: the temporal relation between e1 and e2?
A: before

PLM: 

Bias Indicators (Prior Knowledge in the Corpus or LM)

Q: select the correct temporal relation. 
1. Seeing a doctor happens before sick.  
2. Seeing a doctor happens after sick. 

A: The correct temporal relation is: 2. 
Seeing a doctor happens after sick. 

Knowledge-Conflict Example

I went to e1: see the doctor because I was seriously e2: sick.
Q: the temporal relation between e1 and e2?
A: after

Normal Example

Figure 1: An example of a knowledge-conflict instance.
The actual TEMPREL in the context differs from the
biased or prior TEMPREL in the corpus and the language
model, leading to the emergence of knowledge conflicts.

In event temporal reasoning, the input includes
two parts, the event mentions and the context. The
TEMPREL a model seeks to infer should be based
on the context, rather than only revealed by the
event mentions themselves. For example, in Fig. 1,
without a context, the event mention see (the doc-
tor) and sick have certain temporal prior where
see the doctor statistically happen more often after
sick, either by corpus statistics or probing a masked
PLM. However, under the context of “I went to see
the doctor, However, I was more seriously sick,”
we can infer that see happens before sick instead of
after due to the presence of the connectiveHowever.
This is known as the phenomenon of knowledge
conflicts (Longpre et al., 2021), where the contex-
tual information contradicts the knowledge memo-
rized by the language model. Hence, the essential
requirement for accountable temporal reasoning
is context-faithfulness (Wang et al., 2023b; Zhou
et al., 2023), where models are expected to perform
reasoning based on the context instead of guessing
using only the prior knowledge about the events
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encoded in their parameters.
However, most current language models, includ-

ing both Pre-trained Language Models (PLMs) and
Large Language Models (LLMs)2, rely on short-
cuts from the mentions without being faithful to
the context (Xu et al., 2022; Bender et al., 2021) to
varying degrees, leading to hallucination. This is-
sue is particularly severe in contexts where event or
entity mentions have a different relation prior than
what is presented in the context. Though entity-
related knowledge conflicts (Longpre et al., 2021;
Wang et al., 2022a; Li et al., 2022) have recently
attracted much attention, questions about event-
related knowledge conflicts remained intact.
First, it is necessary to understand the con-

flicts regarding relations of events, which is more
complicated than that of a single event. Second,
the substitution-based paradigm defined in entity
knowledge conflicts or spurious correlation detec-
tion (Longpre et al., 2021) cannot be directly ap-
plied to events. Entity mentions can often be re-
placed randomly with other entities with the same
typing to study the faithfulness towards the con-
text other than the entity mention, which remains
unchanged after the replacement. For example,
in open-domain QA, a possible question can be
“Who is the CEO of Twitter?” based on the context
“Yaccarino succeeded Elon Musk as the CEO of
Twitter”. To check whether models faithfully rely
on the context instead of hallucinating, Yaccarino
in the context can be changed to a random name to
see if the model can still output the “correct” CEO
instead of Yaccarino as they have learned in pre-
training. However, events are usually denoted by
predicates in the context (Bethard et al., 2007), and
directly substituting the predicate (e.g., from see
in Fig. 1 to another random verb such as play) will
alter the semantic meaning of the whole context,
including both the predicate and its dependency
with the arguments, making it infeasible to analyze
the faithfulness towards the original context. Thus,
instead of resorting to a substitution, in this paper,
we study the effect of knowledge conflicts in event
temporal reasoning by selecting conflict examples
from the original dataset based on corpus statistics,
and evaluate models on the conflict subsets.
We outline the contributions of this paper as

follows. First, we define four types of bias that

2PLMs, or smaller models, are used in a pre-train and fine-
tune paradigm, while LLMs, larger and more powerful models
with over 10B parameters, are commonly employed through
in-context learning (Sun, 2023).

can lead to knowledge conflicts, including event-
relation bias, narrative bias, tense bias, and depen-
dency bias. The data instances where the actual
TEMPREL contradicts with the prior TEMPREL are
referred to as knowledge-conflict instances (§3), as
they conflict with the prior knowledge provided to
language models. Second, to mitigate the effect of
knowledge conflicts, we propose a Counterfactual
Data Augmentation (CDA) technique that explic-
itly generates contexts with knowledge-conflict el-
ements, thereby reducing the overall bias in the
data distribution. CDA can be applied to both
fine-tuned PLMs and LLMs with (test-time) in-
context learning (§3.3). Third, we study the effect
of various kinds of knowledge conflicts and our pro-
posed bias mitigation method on two popular event
temporal reasoning benchmarks, TORQUE (Ning
et al., 2020) and MATRES (Ning et al., 2018). We
show that models suffer from performance drop
on knowledge-conflict subsets, and our bias-aware
data augmentation method outperforms baselines
by a remarkable margin on both bias mitigation
and overall performance (§4).

2 Related Works

Event Temporal Reasoning. Event temporal
reasoning aims at identifying the temporal relations
(TEMPREL) of events in narratives. There are two
common ways of formulating this problem. The
first formulation is the TEMPREL extraction task,
which involves determining the TEMPREL between
two annotated event triggers from a pre-defined re-
lation set (Bethard et al., 2007, 2017; Ning et al.,
2018; Naik et al., 2019). Meanwhile, another for-
mulation is a reading comprehension task, which in-
volves determining more complicated TEMPRELS

expressed in natural language questions (Ning et al.,
2020; Han et al., 2021). To conduct event tempo-
ral reasoning, literature has leveraged various ap-
proaches, including graph neural networks (Zhang
et al., 2022; Zhou et al., 2022), rhetorical discourse
features and temporal arguments from semantic
role labels (Mathur et al., 2021), distant supervi-
sion (Zhou et al., 2021; Zhao et al., 2021), and
event relation joint learning (Wang et al., 2020,
2023c, 2022b). LLMs such as GPT3 (Brown et al.,
2020) and ChatGPT are also leveraged for event
temporal reasoning (Chan et al., 2023) with care-
fully designed prompts and In-Context Learning.
Our work differs from previous studies in that we
study the knowledge conflicts in event temporal
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reasoning and how to mitigate them.

Knowledge Conflict in Language Models.
Knowledge conflicts have been widely studied for
entity-centric NLU tasks (Schuster et al., 2021;
Wang et al., 2024). For example, Longpre et al.
(2021) studied the knowledge conflict in open-
domain question answering using entity substi-
tution. Li et al. (2022) also adopted this strat-
egy to study the enhancement of a PLM’s robust-
ness against context noise with a knowledge-aware
working memory. Schuster et al. (2021) proposed
a dataset using the user edits in Wikipedia as subtle
changes for the context and study the effect of such
changes on language models. Xu et al. (2022) sys-
tematically formulate six types of biases in entity
typing to study spurious correlations. Certain types
of biases, such as Mention-Context and Named
Entity bias, can reflect knowledge conflicts in en-
tities. Typical mitigation methods of knowledge
conflicts include causal analysis and coutnerfactual
analysis (Wang et al., 2023a, 2022a), and test-time-
only LLM prompting methods using counterfactual
demonstration and opinion-based prompting (Zhou
et al., 2023). However, the knowledge conflicts of
event-event TEMPRELS are under-explored. Feng
et al. (2022) proposed a dataset studying the differ-
ential effects of TEMPREL reasoning given addi-
tional contexts, while their focus is on annotating
additional out-of-distribution data instead of explor-
ing existing knowledge conflicts within the dataset.
Our work systematically defines and detects knowl-
edge conflicts in event temporal reasoning and pro-
poses a data-augmentation-based method to miti-
gate those conflicts based on the detected bias.

3 Event Knowledge Conflict

We introduce the problem definition (§3.1) and
formally define four types of bias and how to select
knowledge-conflict data (§3.2). We then introduce
our proposed Counterfactual Data Augmentation
for mitigating knowledge conflict (§3.3).

3.1 Problem Definition

In event temporal reasoning, the primary objective
is to determine the TEMPREL between two or more
events. Without the loss of generality, our study is
based on pairwise event relations: the relation r of
an event pair (e1, e2) based on the context c. More
complex cases can be easily addressed by breaking
down the relations involving multiple events into
pairwise relations. For example, in TORQUE, a

question might be formulated as “what happens
before e?”, where e can be a target event trigger.
Then, the answers ea1, ea2, · · · can form multiple
event pairs (e, before, eai), where i = 1, 2, · · · , etc.
The case where evaluating the temporal status of
a single event (happened, happening, will happen,
etc.) can also be easily adapted in this framework
by replacing the features of event pairs to a single
event.
To study event-related knowledge conflict, we

create an automated framework to use corpus
co-occurrence statistics to select conflict subsets.
Similar to the co-occurrence statistics in report-
ing bias (Gordon and Durme, 2013), to obtain
knowledge-conflict data, we first define bias, as the
opposite side of the conflict. We identify four types
of bias in event temporal reasoning and defined
corresponding bias statistics. We then selected a
subset of the original dataset where feature-relation
pairs were rare (i.e., knowledge-conflict) based on
the bias scores. As the (reporting) bias in the train-
ing corpus is usually learned and amplified by the
language models (Shwartz and Choi, 2020), our
selected subsets, which represent the opposite side
of the bias, conflict with the knowledge encoded in
the language models.

3.2 Knowledge Conflict Diagnosis

We first define a bias score b(P1, P2, r) with regard
to certain patterns (P1 and P2) against a specific
relation r ∈ R, where R is a subset of all relations
defined in a certain dataset. Patterns Pi can be
the event lemmas themselves, tense, dependency
patterns, and narrative orders of either event. Some-
times (P1, P2) is represented by one feature only,
for example, the dependency relation and narrative
orders between two events. Denote c(P1, P2, r) as
the number of occurrences of (P1, P2) under rela-
tion r in a corpus, and the bias score is defined
as:

b(P1, P2, r) =
c(P1, P2, r)∑

r′∈R c(P1, P2, r′)
(1)

For example, in tense bias, the bias score of the
tense pattern (VBD, VBZ) (past tense and third per-
son singular present tense) when only considering
two relations R = {before, after} is defined as:

b(VBD,VBZ, before)=
c(VBD, VBZ, before)

c(VBD, VBZ, before)+c(VBD, VBZ, after)
(2)

Knowledge Conflict Detection. In a set of rela-
tions, those with higher bias scores indicate higher
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Type Context & Label Bias Scores

Relation Prior
(relation)

(TORQUE) Chidambaram e1:drew up the previous United Front govern-
ment’s Indian budget for 1997-98 which is to be e2: approved by parliament
this week . Gujral has e3: adopted the same budget.
Question: What will happen after e1: drew?
True label: e2: approve. Biased Prediction: e3: adopted

b(draw, adopt, before) = 1.0
b(draw, approve, before) = 0

Relation Prior
(warm-up)

Question: What will happen in the future?
True label: e2: approve. Biased Prediction: e3: adopt

b(approve, happened) = 0.9
b(approve, future) = 0.05

Tense
(relation)

(MATRES) Albright e1: told (VBD) ambassadors of 30 African countries in
Washington, who came to the State Department to e2: offer (VB) condolences.
True label: e1 happens after e2; Biased Prediction: before

b(VBD, VB, before) = 0.70
b(VBD, VB, after) = 0.27
b(VBD, VB, equal) = 0.03

Tense
(warm-up)

(TORQUE) That’s what will e1: keep computer makers e2: coming (VBG) in
spite of the e3: irritation of e4: bugs.
Question: What will happen in the future?
True Label: e1, e2: coming; Biased Prediction: e1

b(VBG, happened) = 0.42
b(VBG, future) = 0.13
b(VBG, happening) = 0.45

Narrative
(MATRES) Now events are e1: doing the work for Schumer. Slepian’s death
was among the first topics e2: raised in Saturday night’s debate between the
two men, ... ; True label: e1 happens after e2; Biased Prediction: before

b(p1 < p2, before) = 0.59
b(p1 < p2, after) = 0.37
b(p1 < p2, equal) = 0.04

Dependency
(MATRES) Castro e1: said Gonzalez would e2: travel with his current wife
and their son (Dependency: says → ccomp → travel)
True label: e1 happens before e2; Biased Prediction: after

b(ccomp, before) = 0.66
b(ccomp, after) = 0.32
b(ccomp, equal) = 0.02

Table 1: Examples of different forms of knowledge conflicts.

degrees of bias towards certain relations, and others
with lower bias scores indicate higher degrees of
knowledge conflict. We select instances whose pat-
terns do not follow the majority distribution in the
training set as knowledge-conflict instances. A new
instance in the test set with a pattern-relation pair
(P1, P2, r) is considered knowledge conflict if the
bias score is less than the context-free frequency
of relations b(P1, P2, r) < c(r)∑

r′∈R c(r′) . More-
over, to ensure a significant degree of conflicts,
we set a threshold Tr such that b(P1, P2, r) <

Tr < c(r)∑
r′∈R c(r′) , to ensure that the conflict is large

enough3. For example, a test instance where the
event with a past tense happens after the event with
a present tense may be selected as a knowledge-
conflict instance, as the context makes the actual
TEMPREL different from the biased relation before.
Next, we introduce the definitions of different

forms of bias in detail.

Relation Prior Bias. Bias toward certain TEM-
PRELS exists because there are natural selectional
preference (Wilks, 1975) between the specific
events. For example, in the TORQUE dataset, ar-
resting dominantly happen after killing, and voting
more often happens before winning. These findings
suggest that the occurrence of certain events may
be more likely to follow or precede other events,
which can however, lead to bias when the con-

3Hyperparameter analysis on Tr is presented in Appx. §A.

text describes the TEMPREL differently from the
most frequent cases. Our definition of the bias
scoring function is based on the frequency of the
co-occurrence of event e1 and e2 under relation r:

b(e1, e2, r) =
c(e1, e2, r)∑

r′∈R c(e1, e2, r′)
(3)

Narrative Bias. Narrative bias in event temporal
reasoning is the tendency for the model to inter-
pret the chronological order of the events to be the
same as their narrative order. However, these two
orders, though more often accord with each other,
do not always necessarily follow the same (Zwaan
et al., 1995). In this sense, we only study before,
after, and equal relations for narrative bias. Denote
p = P (e, c) as the position of event e in context
c, where the earlier position of e indicates that this
event is described earlier in the narrative. The bias
scoring function is defined as follows for the case
where the positions of the two events follow the
order of p1 < p2:

b(p1 < p2, before) =
c(p1 < p2, before)∑
r′∈R c(p1 < p2, r′)

(4)

We select the event pairs where p1 < p2 while
the actual relation is (e1, after/equal, e2) or p1 > p2
while the actual relation is (e1, before/equal, e2) as
the knowledge-conflict examples.

Tense Bias. Tense bias is the tendency to rely on
the grammatical tense of verbs as evidence for the

3849



temporal order of events. For example, past tense
is typically used to describe events that occurred
before the present moment, while present tense is
typically used for events that are happening now
or in the future. However, this grammatical con-
vention does not always correspond to the actual
temporal order of events. Denote t1 and t2 as the
tense (POS-tags parsed by Spacy 4 as more fine-
grained tense information) of event e1 and e2 under
context c, then the bias score is defined as:

b(t1, t2, r) =
c(t1, t2, r)∑

r′∈R c(t1, t2, r′)
(5)

Dependency Bias Dependency bias is the ten-
dency to rely on syntactic dependency patterns
in language as evidence for the temporal order of
events. For example, if two events e1 and e2 are
directly connected in the dependency tree, the de-
pendency pattern (e1, dobj, e2) (where e1 is the
subject of the sentence, e2 is the direct object, and
dobj is the dependency between them) often indi-
cates that e1 is the entity performing an action on
e2. This pattern may suggest that e1 must occur
before e2 in time, but this is not always the case.
Denote d as the dependency relation between e1
and e2 in context c (d is null if e1 and e2 are not
directly linked in their dependency tree).

b(d, r) =
c(d, r)∑

r′∈R c(d, r′)
(6)

We summarize the core features of each defined
bias associated with examples in Tab. 1. Our focus
is particularly on two datasets, namely TORQUE
and MATRES, which will be presented in §4.1.
Prior to that, we introduce our proposed conflict-
mitigating method first.

3.3 Counterfactual Data Augmentation

In this sub-section, we introduce our proposed
Counterfactual Data Augmentation (CDA) method
for mitigating knowledge conflicts (Fig. 2). We
discuss the usage of CDA on both PLM and LLM
separately, as they differ in their applications. De-
tailed adaptations and prompts will be introduced
in §4.3 and Appx. §F.2.

Pre-trained Language Models. PLMs are usu-
ally fine-tuned on a training corpus, which naturally
contains event-relation biases that tend to be ampli-
fied after fine-tuning (Hall et al., 2022). To mitigate
bias, our proposed method automatically generates

4https://spacy.io/

Instructions:Write a story where 𝑒! happens 𝒓 𝑒". 

statistics-based
bias discovery

LLM inference time
bias discovery

Training dataset

Context: 
Q: .. A: ..

…𝑒!…𝑒"

Testing dataset

Context: 
Q: .. A: ..

…𝑒!…𝑒"

(𝑒!, 𝑟"#$%&, 𝑒') (𝑒!, 𝑟"#$%&, 𝑒')

(𝒓 ∈ 𝑅 − {𝑟!"#$%})

CDA generator: Instruction-finetuned LLM
🍮Flan-T5; 🤖 GPT-3.5;       ChatGPT

Context: 
Q: .. A: r

…𝑒!…𝑒"

PLM augmented data 
for fine-tuning

Context: 
Q: .. A: r

…𝑒!…𝑒"

LLM
In-context exemplars

Figure 2: An overview of the CDA pipeline.

context that contains event pairs whose actual tem-
poral relation is different from the biased relation.
Such knowledge-conflict (counterfactual) counter-
parts are trained together with the original training
corpus to mitigate the biased training distribution.
To be more specific, for each event pair (e1, e2)
that is identified as biased, we ask an Instruction-
finetuned Language Models (Chung et al., 2022)
to generate context where (e1, e2) are associated
with a TEMPREL that leads to a low bias score of
a certain bias type. Such augmented data can be
regarded as knowledge-conflict data. The intuition
is that, even though language models may suffer
from bias and cannot directly solve the task, they
can be well applied to generate synthetic data under
structured instructions (Josifoski et al., 2023).

Large Language Models. The go-to way of us-
ing LLMs for downstream tasks is test-time In-
Context Learning, as fine-tuning of the LLM is
typically impractical or unviable. In this case, we
extend the idea of Counterfactual Data Augmen-
tation to automatically generate counterfactual ex-
amples for in-context learning. Unlike the data
augmentation in PLMs, we generate counterfactual
counterparts for every event pair to be studied. For
a new event pair (e1, e2) to be studied, we first
acquire the predicted relation rLLM by the LLM.
We leverage the LLM to generate context examples
where (e1, e2) are associated with relations that be-
long to R − {rLLM} as counterfactual examples
to showcase the LLM the alternative cases when
(e1, e2) happens following a different TEMPREL.
Note that this method is still considered a zero-shot
as no training examples are seen during inference.
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4 Experiments

In this section, we introduce the datasets (§4.1), the
settings of knowledge conflict diagnosis (§4.2), and
conflict mitigation (§4.3), the primary experimental
results and analysis (§4.4).

4.1 Datasets and Evaluation Metrics

We select two event temporal reasoning datasets5.

TORQUE: Ning et al. (2020) is a reading com-
prehension benchmark with a focus on event tem-
poral reasoning questions.

MATRES: MATRES (Ning et al., 2018) is a
TEMPREL extraction dataset that includes refined
annotations from documents in different domains.
The TEMPRELS of interest are nailed to R =
{before, after, equal, vague}. We randomly sam-
ple 1,000 entries (out of ∼6k) from the develop-
ment set to perform evaluations for LLMs6.

We use Exact-Match (EM) and F1 as the evalua-
tion metric for TORQUE, and Micro/Macro F1 for
MATRES. (Macro) F1 is used as the primary met-
ric, due to the imbalanced distribution of labels7.

4.2 Knowledge Conflict Diagnosis

We apply the bias statistics introduced in §3 on the
training set to select knowledge-conflict subsets
from both TORQUE and MATRES development
sets. In MATRES, we directly make use of the
TEMPREL information (e1, e2, r) provided in each
data entry to count the occurrence and calculate
bias. However, in TORQUE, the problem is for-
mulated as reading comprehension, which requires
further pre-processing to acquire pairwise TEM-
PRELS. Specifically, we parse each question to
acquire the temporal predicate and arguments to
form a (e1, e2, r) format. In addition, TORQUE
includes warm-up questions that analyze whether a
single event has happened, will happen, or is hap-
pening. Our study calculates bias statistics based
on a single event and its temporal status relative to
a time expression in the context. The bias in warm-
up questions are labeled with warm-up, while the
other questions studying event-pair relations are
labeled with relation.

In addition, Tab. 2 lists the most biased features
selected for both datasets. We can find some bias,

5Details about datasets are presented in Appx. §B
6A common practice when doing GPT3-related experi-

ments to reduce the overall cost (Bian et al., 2023).
7Justifications are presented in Appx. §C

TORQUE

Rel.Prior b(kill, arrest, before)=0.69,
b(bombing, condemn, before)=0.67
b(incident, happened)=1,b(host, future)=0.91,
b(progress, happening)=1

Tense b(VBN, VB, before)=0.64,b(VBN, VBD, before)=0.48,
b(VBD, VB, before)=0.55
b(VBD, happened)=0.95,b(VB, future)=0.60,
b(VBZ, happening)=0.62

Narrative b(p1<p2, before)=0.50,b(p1<p2, after)=0.32,
b(p1<p2, equal)=0.03,b(p1<p2, vague)=0.13

Dependency b(xcomp, before)=0.81,b(ccomp, after)=0.70

MATRES

Rel.Prior b(say, have, after)=1,b(rise, close, before)=1,
b(have, close, before)=0.83

Tense b(VBN, VB, before)=0.80,b(VBN, VBP, before)=0.78,
b(VBD, VB, before)=0.70

Narrative b(p1<p2, before)=0.50,b(p1<p2, after)=0.32,
b(p1<p2, equal)=0.03,b(p1<p2, vague)=0.13

Dependency b(xcomp, before)=0.61,b(ccomp, after)=0.60

Table 2: Selected top biased event features in TORQUE
and MATRES.

for example, a past tense is more often predicted
as before a present tense. More details on the hy-
perparameters and statistics of knowledge conflict
diagnosis are presented in Appx. §A, Appx. §D,
and Tab. 8 in the Appendix.

4.3 Setup for Conflict Mitigation

Counterfactual Data Augmentation. We intro-
duce the details of conducting Counterfactual Data
Augmentation here. In augmentations for PLM,
we choose Flan-T5 (11B) (Chung et al., 2022) as
a more scalable generator (than API-based LLMs).
For each event pair (e1, e2, r) identified as being bi-
ased according to Relation Prior Bias, we generate
context with the promptWrite a story where e1 hap-
pens r′ e2:, where r′ ∈ R−{r} (e.g., r′=before). In
TORQUE, we thus construct a question Q=“What
happened r′ e2”, and the corresponding answer is
e1. Based on the coarse data, we apply additional
filters to only retain those that are not biased in
terms of tense and narrative.

For LLMs, we ask the model itself to predict the
labels of the test data first. Take MATRES as an
example, denote rLLM as the factual prediction by
the LLM, and then we ask the LLM itself to Gen-
erate a paragraph where event e1 happens r′ e2,
where r′ ∈ R − {rLLM}. More detailed prompts
are presented in Appx. §F.2.

Model Configuration. We perform experiments
using both PLMs and LLMs . For PLMs we use
RoBERTa-large (Liu et al., 2019) as the backbone.
We use GPT-3.5 (text-davinci-003) and Chat-
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all Rel.Prior
(relation)

Rel.Prior
(warm-up)

Narrative
(relation)

Tense
(relation)

Tense
(warm-up)

Dep.
(relation) Confl.Avg.

EM F1∗ EM F1∗ EM F1∗ EM F1∗ EM F1∗ EM F1∗ EM F1∗ EM F1∗

PLM
RoBERTa-L 50.4 75.7 29.5 73.3 50.0 75.1 31.4 69.0 33.5 72.9 48.4 72.4 41.7 78.6 39.1 73.6
PoE 33.3 65.8 21.6 76.1 22.7 59.8 23.5 67.1 27.5 71.1 22.5 57.0 32.3 79.2 25.0 68.4
L.-mixin 46.8 74.8 27.2 75.2 50.0 72.1 27.8 68.4 30.8 72.6 49.3 69.8 33.8 76.8 36.5 72.5
L.-mixin+H 37.6 70.6 20.4 73.4 40.9 71.6 28.5 69.6 28.8 71.6 38.0 67.7 32.3 76.0 31.5 71.7
Cont. Inf. 53.1 75.9 28.4 75.3 50.0 72.5 35.7 68.9 35.4 73.1 49.3 70.2 44.1 78.9 40.5 73.2
AFLite 50.5 75.8 34.1 73.5 48.5 72.1 26.4 68.2 34.6 72.7 47.9 69.8 39.7 77.3 38.5 72.3
CDA (Ours) 51.0 76.1 33.7 75.4 50.0 75.9 30.7 68.6 35.5 73.1 48.8 73.2 44.1 79.1 40.5 74.2

LLM
GPT-3.5 8.36 45.5 4.82 59.9 4.62 47.0 2.13 50.7 4.46 53.5 5.71 45.9 2.94 57.7 4.12 52.5

+ ICL 7.22 44.9 9.09 60.2 9.09 55.6 2.14 51.3 5.35 55.5 8.45 52.6 4.41 58.8 6.42 55.7
+ GDA 4.85 44.0 5.68 60.0 1.54 49.4 3.19 54.6 3.18 56.1 1.43 48.3 2.94 58.6 3.00 54.5
+ CDA 5.53 45.1 5.68 60.6 1.52 48.0 2.14 56.5 4.53 54.1 1.41 50.1 2.94 61.2 3.04 55.1

ChatGPT 17.7 40.7 9.09 40.3 4.55 38.3 6.43 42.3 10.3 41.4 4.23 35.8 7.35 42.2 6.99 40.0
+ ICL 3.92 43.9 4.55 58.3 4.55 50.1 1.43 48.9 3.70 52.8 4.23 47.9 1.47 54.8 3.32 52.1
+ GDA 4.38 44.2 3.41 56.2 1.52 50.6 1.43 50.0 3.29 52.9 1.41 48.3 2.94 57.4 2.33 52.6
+ CDA 6.72 45.2 3.41 55.6 1.52 50.9 1.43 51.4 2.06 53.3 2.82 50.0 4.41 59.1 2.60 53.3

Table 3: Experimental results on the TORQUE dataset. Exact-Match (EM) rate and Macro-F1 (F1, regarded as the
primary metric ∗ since EM can be susceptible to manipulation by simply predicting ‘none’) scores are reported.
Best-performed results are bold-faced and the second-best are underlined.

GPT (gpt-3.5-turbo) as the backbone LLM8.

Baselines. We compare our proposed meth-
ods with other representative bias mitigation ap-
proaches, including Product-of-Experts (PoE; Hin-
ton 2002; He et al. 2019), Learned-mixin (Clark
et al., 2019), Counterfactual Inference (Wang et al.,
2022a, 2023b), and AFLite (Le Bras et al., 2020).
These baselines are typical bias-agnostic debias-
ing baselines that address known or unknown bias
with statistical approaches. For LLMs, we use the
vanilla In-Context Learning (ICL) by randomly
retrieving one set of exemplars from the training
set as demonstrations. Note that ICL is consid-
ered few-shot learning while our method is purely
zero-shot. In addition, to study the effect of the
strategy for generating counterfactual exemplars,
we add an additional baseline named Generative
Data Augmentation (GDA) that performs exemplar
generation without counterfactual guidance9.

4.4 Results and Analysis
We present the main experimental results for
TORQUE in Tab. 3 and for MATRES in Tab. 410.
The all row indicates the performance on the whole
evaluation set. The Confl.Avg. column is an aver-
age of all knowledge-conflict subsets, measuring

8Details of prompts are listed in Appx. §F.2.
9Details of all baselines are in Appx. §F.1

10As elaborated in Appx. §B, we use a different preprocess-
ing of MATRES that includes an additional context sentence,
making the performance different than Ning et al. (2018)

models’ ability on mitigating knowledge conflicts.
The columns in between indicate the performance
on each knowledge conflict types, evaluated on the
detected subsets.

Impact of Knowledge Conflicts. Models on
both TORQUE and MATRES show a decrease
in performance when evaluated on knowledge-
conflict subsets. Tab. 5 shows a comparison of
baseline model performance on the conflict and
non-conflict partitions of MATRES. The compar-
ison on TORQUE is presented in Tab. 7 in the
Appendix, showing a similar trend. This finding in-
dicates that the selected conflict subsets are indeed
more confusing for language models, proving the
effectiveness of our conflict detection framework.
For LLMs, the overall performance is not sat-

isfactory compared with fully-supervised models,
which is in line with the findings in several eval-
uation works on LLMs (Chan et al., 2023; Zhou
et al., 2023; Yuan et al., 2023), due to the fact that
such tasks focusing on specific types of contextual-
ized reasoning, when not trained with instruction
fine-tuning, often lead to poor performance (Zhang
et al., 2023). Nonetheless, since LLMs are not fine-
tuned on the biased training set, their performance
on knowledge-conflict subsets does not drop as sig-
nificantly in comparison to that on the entire evalua-
tion set, while even being better in some cases. This
suggests that zero-shot predictions using LLM can
be more generalizable when not trained on smaller
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all Rel. Prior Narrative Tense Dependency Confl.Avg.
Micro Macro∗ Micro Macro∗ Micro Macro∗ Micro Macro∗ Micro Macro∗ Micro Macro∗

PLM
RoBERTa-large 70.8 44.9 59.7 28.5 59.2 27.1 54.8 33.2 58.5 38.3 58.0 31.8
PoE 69.4 45.3 60.0 30.7 52.6 32.8 61.1 29.0 53.1 36.7 56.7 32.3
Learned-mixin 71.0 45.0 60.4 29.5 55.7 34.6 60.9 27.5 60.0 40.1 59.2 32.9
Learned-mixin+H 70.5 44.8 59.6 29.2 54.3 34.0 62.2 27.7 58.5 39.8 58.6 32.6
Cont. Inf. 67.6 45.0 60.3 31.4 60.7 27.3 48.8 32.5 55.3 38.9 56.3 32.5
AFLite 64.3 43.4 52.4 28.8 50.3 32.8 62.5 30.0 55.0 39.3 55.1 32.7
CDA (Ours) 72.2 45.5 61.5 29.3 58.8 27.3 57.2 35.1 62.2 39.9 59.9 32.9

LLM
GPT-3.5 53.3 19.7 54.7 25.3 2.57 3.98 36.7 17.2 28.6 13.0 30.6 14.9

+ ICL 51.6 18.4 56.1 20.9 1.52 2.31 35.7 16.4 26.2 10.6 29.9 12.6
+ GDA 45.6 27.6 52.0 32.4 15.1 14.9 37.6 24.0 33.3 18.9 34.5 22.6
+ CDA 51.3 30.0 53.4 36.0 16.6 26.8 38.1 27.2 33.3 21.5 35.4 27.9

ChatGPT 39.8 25.9 31.1 22.3 37.6 32.5 27.0 17.6 21.4 13.8 29.3 21.6
+ ICL 43.1 23.8 53.4 23.5 34.8 22.2 11.3 12.7 28.6 11.1 32.0 17.4
+ GDA 45.7 30.8 36.5 25.1 29.5 26.2 32.5 20.7 40.5 24.4 34.7 24.1
+ CDA 49.3 32.0 42.6 24.3 37.1 31.0 31.2 20.7 33.3 19.3 36.1 23.8

Table 4: Experimental results on MATRES. We use two evaluation metrics, Micro-F1 (denoted as Micro) and Macro
F1 (denoted as Macro; regarded as the primary metric ∗ due to the significant class imbalance). Best-performed
results are bold-faced and the second-best is underlined.

Conflict Non-Conflict
Micro Macro Micro Macro

RoBERTa-large
Relation Prior 59.7↓ 28.5↓ 75.7 40.9
Narrative 59.2↓ 27.1↑ 76.8 21.7
Tense 54.8↓ 33.2↓ 72.8 47.2
Dependency 58.5↓ 38.3↓ 70.0 45.7

GPT-3.5
Relation Prior 54.7↓ 25.3↓ 56.8 28.6
Narrative 2.57↓ 3.98↓ 85.8 26.3
Tense 36.7↓ 17.2↓ 60.3 27.2
Dependency 28.6↓ 13.0↓ 57.7 28.9

Table 5: Performance on knowledge conflict and non-
conflict data in MATRES. Both models suffer from a
performance drop when tested on the conflict subsets. ↓
indicates a performance drop in the conflict subsets.

and biased data.

Knowledge Conflicts Mitigation. CDA signif-
icantly improves the performance of the vanilla
PLM RoBERTa-large both on the entire evaluation
set and on each of the knowledge-conflict subsets.
Bias-agnostic baselines adopt a model trained only
with event arguments and without context, which
performs debiasing by countering event-relation
bias. This yields competent results related to the
relationship prior bias. The counterfactual infer-
ence is more effective than other fine-tuned-based
methods, as also reported by previous work (Wang
et al., 2022a). However, bias-aware data augmenta-
tion methods are generally more effective, as they
explicitly address different forms of bias and have

a more focused performance on biased datasets.
As for LLMs, on MATRES, CDA-based demon-

strators can improve the performance on both the
whole evaluation set and all the knowledge con-
flict datasets, with the exception of a minor setback
compared to ChatGPT-GDA in terms of Confl.Avg.
Macro-F1. On TORQUE, CDA on ChatGPT out-
performs all baselines in terms of overall perfor-
mance and Confl.Avg. on the main metric F1. For
GPT-3.5, the zero-shot setting surprisingly achieves
the best overall performance. However, CDA can
outperform GDA, indicating that adding a counter-
factual prior can better help LLMs to understand
event temporal reasoning. Another noteworthy
point is that our CDA method is purely zero-shot
compared with ICL, showing the superiority of ap-
plying counterfactual guidance to LLMs.

Error Analysis on Different Bias Types Taking
MATRES as an example, zero-shot prediction by
GPT-3.5 suffers significantly from narrative bias,
where the performance is near-zero. This finding
is consistent with two other different prompt tem-
plates (Tab. 17 in the appendix). This is mainly be-
cause GPT is an autoregressive model following a
single-directional encoding, and it may not be fine-
tuned on temporal reasoning data to understand the
chronological orders, making it uses a shortcut to
rely on positions of events to conduct reasoning.
ChatGPT, on the other hand, suffers from depen-
dency bias the most, where there are syntactic de-
pendencies between the two target events. This
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may be attributed to that ChatGPT, though having
a stronger text generation ability, falls short of solv-
ing more subtle and contextual cases for temporal
reasoning, as events that have a direct dependency
edge typically occur in close proximity within the
context. However, reasoning about such scenarios
can be challenging, even for humans, due to their
subtle nature (Yuan et al., 2023).

Quality Analysis of Generated Data As the gen-
erated data are used for better training/prompting
language models, the quality of them is reflected by
the downstream performance improvement. In the
appendix, we compare our CDA with popular task-
agnostic data augmentation techniques in Tab. 12
and Tab. 13, and show that our CDA method can
better help boost both the performance in terms of
both knowledge-conflict and overall performance.
Regarding LLMs, the comparison between GDA
and our CDA also demonstrated the fact the aug-
mented data with a counterfactual constraint can
better help both overall and knowledge-conflict rea-
soning ability.

WhyCDA doesn’t outperform ICL in TORQUE.
For GPT-3.5, ICL indeed consistently outperforms
our proposed CDA. We have manually checked the
plausibility of the generated exemplars by CDA
on GPT-3.5, and find that 4 out of 10 generated
exemplars are either incomplete, or do not fully
contain the events we desired. In this sense, the
exemplars sampled from the training set are of a
better quality than GPT-3.5-generated ones, leading
to better ICL performance. For ChatGPT, on the
other hand, the quality of the generated synthetic
data is of a significantly better quality than GPT-3.5,
resulting in more improvement on top of zero-shot
ChatGPT and one-shot ICL for ChatGPT.
In all, the result of CDA on LLMs is highly de-

pendent on 1) the data synthesizing capability of
the backbone LLM, where ChatGPT excels, and
2) the problem solving ability for temporal reason-
ing, where GPT-3.5 excels. We also checked using
the exemplars generated by ChatGPT as in-context
examples for GPT-3.5, and the Confl.Avg. is 7.23
and 56.2, which is better than GPT-3.5-ICL.

Case Study For example, for a typical tense-
biased relation in Tab. 1, the “told-offer” case,
where past tense should happen after the present
tense. We ask ChatGPT to generate the case when
told happen after the present tense as a counter-
factual exemplar: “I offer my friend a ride to the

party all the time. She told me she has already
made plans to go with someone else. I understand
and told her to let me know if she needs a ride in
the future.” This gives a case when told happens
after offer and can be used as a counterfactual aug-
mented data. With this counterfactual exempler,
LLMs can perform correctly in this case.

We also provide some additional analysis regard-
ing why CDA cannot outperform ICL in TORQUE
for GPT3.5 and the inconsistent trends of primary
and secondary metrics on LLMs in Appx. §G.

5 Conclusion

In this paper, we investigate knowledge conflicts in
event temporal reasoning by formally defining four
types of biases to identify a knowledge conflict di-
agnoses evaluation set. We observe that both PLMs
and LLMs are susceptible to knowledge conflicts
in this task, resulting in decreased performance on
knowledge-conflict datasets. To address this issue,
we propose a CDA method that is suitable for both
PLMs through pre-training and LLMs through In-
Context Learning. Our experiments demonstrate
the effectiveness of our proposed method in miti-
gating knowledge conflicts.
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Limitations

This paper only discussed bias calculated based on
statistics in the training set. However, there are
various other ways of characterizing bias, such as
using predictions of zero-shot pre-trained language
models (Xu et al., 2022) and context masking, are
not discussed, which can be left as a future work.
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Appendices

A Knowledge-conflict Selection
Hyperparameters

In TORQUE, we set an empirical T Relation Prior
before =

T Relation Prior
after = T Relation Prior

equal = 0.25 by investi-
gating the distribution of before, after, and equal
relations. For tense bias, we set T tense

before = T tense
after =

0.25, and T tense
equal = 0.2 for the relations indicating

two events happening simultaneously. For narrative
and dependency bias, the threshold is simply set as
0.5. In MATRES, we set Tbefore = Tafter = 0.3 and
Tequal = 0.1.

Sensitivity Analysis In MATRES, for example,
if the T is set as its upper bound, Tbefore = 0.523,
and Tafter = 0.346, then more knowledge-conflict
examples will be selected based on the new thresh-
old. In MATRES, the number of Rel.Prior in-
creases from 148 to 229, the number of tense prior
increases from 210 to 418, and dependency prior
from 42 to 69. The statistics of narrative bias don’t
change because the order of two events in the con-
text is a binary relation and will not be affected by
Tau. We reproduce the results in Table 6 under the
new T , which studies the model performance on
the conflict subset versus the non-conflict subset.
The results are basically consistent with the T that
is originally used in this paper, which shows that
the PLM RoBERTa-large suffer from knowledge
conflicts with a performance drop on the conflict
dataset.

Conflict Non-Conflict
Micro Macro Micro Macro

RoBERTa-large
Relation Prior 62.7↓ 30.8↓ 75.4 40.1
Narrative 59.2↓ 27.1↑ 76.8 21.7
Tense 59.9↓ 36.1↓ 71.8 46.0
Dependency 57.2↓ 37.8↓ 71.1 44.7

Table 6: Performance on knowledge conflict and non-
conflict data in MATRES under the new T .

B Datasets

TORQUE: Ning et al. (2020) is a reading com-
prehension benchmark with a focus on event tem-
poral reasoning questions. TORQUE is more flex-
ible than simple relation extraction benchmarks
as the reading comprehension framework allows
more complicated TEMPRELS including uncertain
relations (e.g., might before), hypothetical relations
(e.g., what will happen if ...), and negated relations

(e.g., not after). In TORQUE, each passage is asso-
ciated with around 10 human-annotated questions
regarding the TEMPREL between certain events,
and the task objective is to select the correct an-
swers from the pre-defined set of annotated event
triggers. We evaluate the model performance using
exact-match (EM) and Macro F1.

MATRES: MATRES (Ning et al., 2018) is a
TEMPREL extraction dataset that includes refined
annotations from documents in TimeBank (Puste-
jovsky et al., 2003), AQUAINT (Louis and
Nenkova, 2012), and Platinum (UzZaman et al.,
2013). The task in MATRES is defined as iden-
tifying the TEMPREL between two events in the
context, where R = {before, after, equal, vague}.
The TEMPRELS of interest are nailed to R =
{before, after, equal, vague}. We use the pre-
processing by Wang et al. (2020) to process the
dataset from raw annotations, where the context
includes the sentences containing the two events
e1 and e2, together with a precedent sentence to
provide more contextual information. This makes
the context a bit longer than the common prepro-
cessing adopted by several previous works such as
Ning et al. (2018); Wang et al. (2023b), accounting
for the discrepancy of model performances.

C Evaluation Metrics

In this paper, (binary) F1 is the primary metric in
TORQUE where EM is the secondary metric. In
MATRES, the primary metric is macro F1 and the
secondary metric is micro F1.

Explanations on the Primary Metrics In
TORQUE, around 22% of the evaluation entries
have no answers, which means we can easily
achieve an EM of around 22% by predicting none
for all test cases, while the F1 can only be near zero.
In MATRES, the label class distribution is highly
imbalanced, where there are 52.3% instances with
the label ‘before’ and only 2.4% with the label
‘unknown’. By only predicting ‘before’ we can
reach a micro-F1 of 0.523 while a near-zero score
on macro F1, which motivates us to use macro F1
as the primary metric in Tab. 4. In the case when
LLMs mostly predict None or ‘before’, the most
dominant labels in the dataset that will lead to a
high EM or micro F1, it makes more sense to use
binary F1 or macro F1 as the primary metric.
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D Additional Details of Knowledge
Conflict Diagnosis

In TORQUE, for example, for the question “What
happened after Bush gave four key speeches?” and
answers “{called, elect, vote}” under a certain con-
text, we can acquire three event relation triples
(gave, before, called), (gave, before, elect), and
(gave, before, vote). and use those triples for calcu-
lating and detecting bias.

For each type of bias, we empirically set thresh-
olds to select knowledge-conflict subsets as in
Appx. §A. For instance, in a feature-relation pair
f (e.g., f represents dependency) and r, it is
knowledge-conflict if b(f, r) < c(r)∑

r′∈R c(r′) , indi-
cating that it does not conform to the dominant
distribution of relation r. Such selection crite-
ria can be further enhanced by setting a threshold
Tr < c(r)∑

r′∈R c(r′) , which increases the level of con-
flicts by further restricting b(f, r) to be less than
Tr.

E Impact of Knowledge Conflict

We compare the model performance on knowl-
edge conflict subsets and the non-conflict subsets to
show the impact of knowledge conflicts on model
performance in Tab. 7. In general, models perform
more poorly on the conflict subsets, compared with
those without conflicts. This discovery suggests
that the chosen conflict subsets pose greater chal-
lenges for PLMs and LLMs, thus validating the
efficacy of our conflict detection framework.

F Additional Details of the Models

F.1 Baselines

For TORQUE, the model consists of a one-layered
perceptron built on top of RoBERTa. The trans-
formers’ output corresponding to the token being
analyzed serves as input to the perceptron layer as
a sequence tagging task, where the expected output
is either 0 or 1, indicating whether this event argu-
ment is a correct answer or not. Following the orig-
inal paper of TORQUE, we fine-tuned RoBERTa-
large on the training set of TORQUE, using a batch
size of 6 (each input is a concatenation of one pas-
sage and one question, and the output is a vector
measuring the probability of each event argument
token). The learning rate is 1e-5, total epoch is 10,
and three random seeds were selected. The exper-
iments are conducted on NVIDIA A5000 GPUs,

Conflict Non-Conflict
EM F1 EM F1

RoBERTa-large
Rel.Prior 29.5↓ 73.3↓ 40.7 74.5
Rel.Prior (warm-up) 50.0↓ 75.1↓ 75.0 76.2
Narrative 31.4↑ 69.0↓ 48.4 75.2
Tense 33.5↓ 72.9↓ 50.7 75.0
Tense (warm-up) 48.4↓ 72.4↓ 77.3 78.6
Dependency 41.7↑ 78.6↓ 37.5 81.2

GPT-3.5
Rel.Prior 4.82↓ 59.9↑ 4.87 51.1
Rel.Prior (warm-up) 4.62↓ 47.0↑ 25.0 30.4
Narrative 2.13↓ 50.7↑ 7.21 44.4
Tense 4.46↓ 53.5↑ 7.27 42.6
Tense (warm-up) 5.71↓ 45.9↑ 25.3 30.0
Dependency 2.94↑ 57.7↑ 2.72 56.7

Table 7: Experimental results on the model perfor-
mance on knowledge conflict and non-conflict data in
TORQUE. The RoBERTa-Large model suffers from per-
formance drop when tested on the conflict subsets. On
the contrary, GPT-3.5, when not fine-tuned on the biased
training set, suffer less from the knowledge conflict in
general. However, there is still a large performance gap
on warm-up questions for GPT-3.5, dropping from an
EM of around 25% to 5%.

which takes around 30 minutes for training one
epoch.
In MATRES, each data entry is composed of

a passage and the corresponding positions of the
two event triggers. The model consists of a one-
layer perceptron to aggregate the embeddings of
the two event triggers provided by the transform-
ers. We use pre-trained Big Bird (Zaheer et al.,
2020), a RoBERTa variation that deals with longer
documents, following Wang et al. (2023b). The
experiments are conducted on NVIDIA A5000
GPUs, which takes around 2 minutes for training
one epoch.
We then introduce the bias-agnostic baselines

that we adopt.

PoE (Hinton, 2002) and Learned-mixin (Clark
et al., 2019). In this line of approaches, a biased
model is trained to specifically target biased fea-
tures in the data. The output of the biased model is
then combined with the output of the robust model
using product of predicted probabilities. This en-
ables the robust model to focus less on the biased
features and improve its overall performance. De-
note the probabilities predicted by the biased model
for element i as bi, and the probabilities by the ro-
bust model as pi, the ensemble to predict the final
label by PoE is:
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TORQUE MATRES

Whole Dev Set 1,483 1,000
Rel. Prior (relation) 88 148
Rel. Prior (warm-up) 66 -
Narrative 140 477
Tense (relation) 243 210
Tense (warm-up) 71 -
Dependency 68 42

Table 8: Statistics of each knowledge-conflict subset in
TORQUE and MATRES.

p̂i = softmax(log(pi) + log(bi))

As PoE assumes conditional independence be-
tween the bias in the data and all the features ex-
cept for bias in the data, which may be too strong,
learned-mixin is thus proposed to make the rela-
tions between pi and bi learnable. A function g(x)
of the input x is learned to dynamically adjust how
much to trust the biased model, leading to the final
estimation as:

p̂i = softmax(log(pi) + g(xi) log(bi))

However, a model could learn to set g(xi) to 0
to ignore the effect of biased model, learned-mixin
+ H is thus proposed by adding an entropy penalty:

R = wH(softmax(g(xi) log(bi))

Here the entropy function takes the form
H(z) = −∑

j zj log(zj). The entropy term can
help encourage the biased term to be non-uniform,
providing more biased information.

To train the biased model for all these three base-
lines, we mask all context except for the event
triggers. Other hyperparameters are the same as
training a RoBERTa baseline.

Counterfactual Inference (Wang et al., 2022a,
2023b). Counterfactual inference focus on event
trigger bias and frequent label bias that leads to
spurious correlations. A causal graph is established
to analyze the causal relations between the effect
of event triggers, the whole context, and the fi-
nal prediction. To mitigate event trigger bias and
label bias, element-wise subtraction operation is
conducted to get the final prediction:

y = yx − λ1yx̄,e − λ2yx̄

where yx is the prediction given by the model
trained on the original data without any masking,

yx̄,e is the prediction of the model trained on the
data where context except for event triggers are
masked, and yx̄ is the prediction where the model
sees nothing as input, which reflects label bias.
λ1 and λ2 are tuned by conducting 5-fold cross-
validations on the training set. The parameters that
yield the best cross validation are selected. The
search space is [−1, 1] with an interval of 0.1. For
TORQUE, λ1 = −0.8, λ2 = −0.1. For MATRES,
λ1 = −0.1, λ2 = 0.3.

AFLite (Sakaguchi et al., 2021; Le Bras et al.,
2020). AFLITE, which stands for Lightweight
Adversarial Filtering, is an alternative bottom-up
approach to algorithmic bias reduction proposed
by (Sakaguchi et al., 2021). AFLITE trains an en-
semble of linear classifiers on random subsets of
the training data and filters other instances in the
training data that linear classifiers can correctly
classify. The rationale of this baseline is that in-
stances that can be classified correctly by a shallow
linear model wound contain artifacts.
In this paper, we use logistic regression as the

linear classifier. We repeat training the logistic re-
gression model 20 times on randomly sampled sub-
sets of the training data. Then, we used the trained
logistic regression model to predict the labels of
the rest of the training instances. We compute a
score for every instance e based on the following
equation:

score(e) =
the times of e is predicted correctly

the times of e is predicted
.

After repeating, we filter instances that owns
a score higher than 0.8. Following previouse
work (Sakaguchi et al., 2021), we use dense rep-
resentations produced by frozen robert-large
and bigbird-roberta-large, instead of manu-
ally identified lexical features, to train logistic re-
gression classifiers on TORQUE and MATRES,
respectively.

F.2 Large Language Models

Prompts for the Tasks. For TORQUE, the
prompt template we use is “Q: {question}, select
none or several from {all_events} \n {context} \n
A:”. Here, question, context are provided in each
data entry in TORQUE. all_events indicates all the
annotated event triggers in the context. GPT3 is
expected to generate none or several events that are
the answers to the question given the context. We
also check another prompt as an additional analysis,
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which is “Given the context {context}, {question},
select none or several from all_events} \n A:”. The
performance analysis are introduced in Tab. 14.
For MATRES, we formulate the problem as a

multi-choice question answering (MCQA) task for-
mat, as it’s inherently a four-way classification task.
The prompt takes the form “Given the context:\n
{context} \n\n Q: What’s the temporal relation be-
tween the event {e1} and {e2}? \n Choice A: {e1}
happens before {e2}. \n Choice B: {e1} happens
after {e2}. \n Choice C: {e1} happens during {e2}.
\n Choice D: unknown. \n Answer only with A, B,
C, or D. \n\n A: Choice”. Here, e1 and e2 are the
target event triggers to be studied. The expected
output is either A, B, C, or D. In addition, we com-
pare our MCQA template with other templates that
have been used in previous works, denoted as tem-
plate 2 (Chan et al., 2023) and template 3 (Yuan
et al., 2023). A comparison of different templates
are presented in Tab. 15. We also present the ef-
fect of the three prompt templates in Tab. 17, and
find that our MCQA template achieves the best
performance.

Baselines We use In-Context Learning (ICL) and
Generative Data Augmentation (GDA) as two in-
tuitive baseline that can be directly comparable to
our CDA method. For ICL, specifically, we re-
trieve one passage-question pair in TORQUE, and
retrieve one example per relation from before, af-
ter, equal, and unknown as as set of exemplars
for MATRES (denoted as 1-shot), to form the ICL
demonstration. Note that ICL is considered few-
shot learning while our method is purely zero-shot.
We study the variability of different sets of exem-
plars as well as the effect of 1-shot and 3-shot ICL
in Tab. 17. We can find that the performance of
ICL is quite stable across different sets of random
exemplars, and 3-shot exemplars help on template
1 but not the other two templates.

In addition, we add an additional baseline named
Generative Data Augmentation (GDA) that per-
forms exemplar generation without a counterfac-
tual guidance. That is to say, we ask LLMs to gen-
erate exemplars under all relations from R, instead
of only under the counterfactual relations.

Counterfactual Data Augmentation We intro-
duce how to do Counterfactual Data Augmentation
(CDA) for both PLMs and LLMs.

In CDA for PLM, we generate augmented data
at scale. For TORQUE, we first retrieve all event
pairs that are identified as biased in the training

set. For an event-relation triple (e1, e2, r), where r
is identified as knowledge-conflict, which appears
less frequently in the training set, we ask Flan-T5 to
generate some context where e1, e2 happens under
relation r, to augment the undervalued distribution
of these two events under the conflict relation r.
The prompt is: “Write a story where e1 happens
r′ e2:”. We set temperature as 1 and use greedy
decoding to get the results. After generating the
context, the question associated with the context is
thus Q=What happened r′ e2 and the correspond-
ing answer is e1. We do similar generations for
warm-up questions that asks what events have hap-
pened / is happening / will happen. We first acquire
events that are knowledge-conflict with regard to a
relation r ∈ {happened, will happen, happening},
and randomly sample two or events that are conflict
with regard to r. We ask Flan-T5 “Write a story
where e1 and e2 r”. The corresponding question as-
sociate with the generated context is then Q=What
have happened/will happen in the future/is happen-
ing?, based on what r is. After such augmentations,
we conduct an additional filtering step by select-
ing only knowledge-conflict augmented data. We
keep a proportion of augmented data that is scored
with low loss by a fine-tuned PLM on TORQUE to
boost the initial learning process when trained on
augmented data. For MATRES, the prompt given
to Flan-T5 is “Write a story where e1 happens r′

e2”. Then r is used as the final label.

In CDA for LLM, we generate demonstrations
to perform in-context learning. In MATRES, for
an example (c, e1, e2, r), we first ask the LLM to
predict the temporal relation rLLM . Then we use
the same prompt as in CDA for PLM to generate
counterfactual examples dedicated to the event pair
(e1, e2), under relations other than rLLM . The gen-
erated examples are thus served as exemplars. In
TORQUE, the pipeline is more complicated. An
entry is composed of context c, the set of event
triggers E in c, the question q, and the answers a,
which is a subset of E. We first ask an LLM to pre-
dict the answers aLLM , which is also expected to
be a subset ofE. We then ask the LLM itself to gen-
erate some context where the ground answers are
sampled from E − aLLM , using the same prompt
as in CDA for PLM. Examples on MATRES are
presented in Tab. 16.
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G Additional Analysis and Discussions

Results Analysis on Secondary Metrics Specifi-
cally, in Tab. 3 on TORQUE, EM and F1 positively
correlate for PLMs intuitively as both scores are
fairly high. For LLMs, both ChatGPT and GPT-3.5
perform poorly on the task and tend to predict None
(no answers) in a zero-shot setting. This explains
the relatively higher EM scores in a zero-shot set-
ting. Incorporating in-context learning leads to
both LLMs generating more meaningful predic-
tions, resulting in a corresponding increase in the
F1 score. However, the improvement is not substan-
tial enough to surpass the zero-shot setting in terms
of EM scores. This is because it is relatively easy
to achieve a higher EM score by solely predicting
“None” for all instances.

In Tab. 4 on MATRES, regarding the perfor-
mance of PLM and LLM, micro and macro and F1
correlates positively for PLM, intuitively, as both
micro and macro F1 scores are decently high. On
LLMs, GPT-3.5 (text-davinci-003) especially,
EM and F1 doesn’t positively correlates with each
other because GPT-3.5 tends to predict “before” for
most of the instances (97%) in a zero shot setting,
which contributes to a high Micro-F1 but a low
Macro-F1. We also studied other prompt templates
(as in Tab. 17 in the appendix) and got similar re-
sults. This indicates a fairly high label bias of GPT-
3.5 on the label ‘before’. With the involvement of
in-context learning, when the labels predicted by
GPT-3.5 get more evenly distributed, the macro-F1
significantly improves. However, as the micro-F1
achieved by predicting ‘before’ for all instances
is quite high, the micro-F1 cannot be improved to
beat the 53.3% baseline as the improvement is not
large enough. In ChatGPT, the predicted labels are
not that illy distributed, which makes micro and
macro F1 basically positively correlate with each
other.
In all, the discrepancy of the EM/F1 trend for

PLMs and LLMs is due to the relatively poorer per-
formance of LLMs and the tendency of predicting
either “None” of “before”, a form of label bias.

H Statistical Significance

To gain a deeper understanding of the significance
of the improvement, we incorporate a statistical test.
The result shows that most of the improvements
are statistically significant, with some exceptions
on GPT-3.5.

We perform a randomization test (Cohen, 1995)

Model all-EM all-F1 confl-EM confl-F1

RoBERTa-L 50.4 75.7 39.1 73.6
CDA + RoBERTa 51.0* 76.1 40.5* 74.2
GPT3+GDA 4.85 44.0 3.00 54.5
GPT3+CDA 5.16 44.6 4.22 54.9
ChatGPT 17.7 40.7 6.99 40.0
ChatGPT+GDA 4.38 44.2 2.33 52.6
ChatGPT+CDA 6.72* 45.2* 2.60 53.3*

Table 9: Significance test on TORQUE.

Model
micro
(all)

macro
(all)

micro
(conf)

macro
(conf)

RoBERTa-L 70.8 44.9 58.0 31.8
CDA+RoBERTa 72.2* 45.5* 59.9* 32.9*
GPT-3+GDA 45.6 27.6 34.5 22.6
GPT-3+CDA 51.3* 30.0* 35.4 27.9*
ChatGPT 39.8 25.9 29.3 21.6
ChatGPT+GDA 45.7 30.8 34.7 24.1*
ChatGPT+CDA 49.3* 32.0* 36.1* 23.8

Table 10: Significance test on MATRES.

on EM and F1 for Table 3 and 4, indicating signifi-
cant improvements with p < 0.05 by adding a * to
the entries where our model outperforms the base-
line. Specifically, in TORQUE, CDA + RoBERTa
demonstrates significant improvements under the
’all’ and ’conflct.avg.’ categories for all-EM with
p < 0.05. Moreover, there are significant improve-
ments in F1 and EM from zero-shot to CDA when
using ChatGPT. However, for GPT-3.5, the addi-
tion of synthetic exemplars results in performance
deterioration due to its text generation limitations.
Further discussions on this matter can be found in
Appendix G (Line 1277-1299).

In MATRES, the improvements from RoBERTa-
L+CDA to RoBERTa-L is significant on both “all”
and ‘conflict.avg’. In terms of LLMs, adding CDA
(inherently also in a zero-shot setting) significantly
outperform the zero-shot prompt baseline by a large
margin except for ‘confl-avg-EM’. Compared to
it’s counterpart GDA, CDA outperforms GDA on
overall performance.

I Additional Ablations

In this section, we compare our Counterfactual
Data Augmentation method with other popular data
augmentation methods to show the effectiveness
of CDA with regard to knowledge conflict mitiga-
tion. Specifically, we adopt EDA and Synonym re-
placement as representative text-editing-based data
augmentation baselines, and we use a Generative
Data Augmentation (GDA) baseline to automati-
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Micro F1 Macro F1

zero-shot 39.8 25.9
ICL 43.1 23.8
Flan-T5-11b ICL 36.8 27.1
GDA 45.7 30.8
CDA 49.3 32.0

Table 11: Experimental results on MATRES using Chat-
GPT.
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Figure 3: Effect of varying proportions of Counterfac-
tual Data Augmentation (CDA) on MATRES. Models
benefit from increased amounts of CDA data.

cally generate task data using the same backbone
language model, Flan-T5-11B, to generate training
data without counterfactual constraints. The only
difference between GDA and CDA is that GDA
does not use counterfactual constraints, and GDA
can serve as an ablation to study the effect of coun-
terfactual constraints. The results for TORQUE are
presented in Tab. 12 and the results for MATRES
are presented in Tab. 13.
We also study the effect of using Flan-T5-

generated data as exemplars for ChatGPT as an
additional baseline, as in Tab. 11. The Macro F1 is
improved a tad bit than zero-shot and ICL, while
sacrificing the Micro F1 performance. This indi-
cates that Flan-T5-generated data, even though they
are useful for supervised fine-tuning in RoBERTa,
cannot be directly used for prompting ChatGPT
due to a relatively lower quality.
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all Rel.Prior
(relation)

Rel.Prior
(warm-up)

Narrative
(relation)

Tense
(relation)

Tense
(warm-up)

Dep.
(relation)

Confl.Avg.

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

RoBERTa-L 50.4 75.7 29.5 73.3 50.0 75.1 31.4 69.0 33.5 72.9 48.4 72.4 41.7 78.6 39.1 73.6
+EDA 50.2 75.5 33.5 74.2 50.7 71.7 30.7 67.9 33.9 71.8 50.0 69.4 41.1 79.6 40.0 72.4
+Synonym 49.7 76.1 28.0 71.8 49.5 72.3 29.5 68.7 33.5 72.0 47.4 69.7 35.8 75.9 37.3 71.7
+GDA 49.9 75.8 30.3 73.8 50.5 74.0 31.7 69.1 34.4 72.6 34.4 72.6 49.3 71.5 38.4 72.3
+CDA 51.0 76.1 33.7 75.4 50.0 75.9 30.7 68.6 35.5 73.1 48.8 73.2 44.1 79.1 40.5 74.2

Table 12: Experimental results on the TORQUE dataset using different data augmentation techniques. Exact-Match
(EM) rate and Macro-F1 (F1) scores are reported. Best-performed results are bold-faced and the second-best are
underlined.

all Rel. Prior Narrative Tense Dependency Confl.Avg.
Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

RoBERTa-large 70.8 44.9 59.7 28.5 59.2 27.1 54.8 33.2 58.5 38.3 58.0 31.8
+EDA 70.5 46.0 60.9 29.8 58.7 27.4 55.1 33.8 60.0 38.4 58.7 32.4
+Synonym 70.4 45.0 59.6 28.3 59.5 26.9 55.5 33.7 61.9 41.3 57.8 32.5
+GDA 72.2 43.6 62.0 27.2 57.5 25.3 54.0 31.4 58.1 36.0 57.9 30.0
+CDA (Ours) 72.2 45.5 61.5 29.3 58.8 27.3 57.2 35.1 62.2 39.9 59.9 32.9

Table 13: Experimental results on MATRES using different data augmentation techniques. We use two evaluation
metrics, Micro-F1 (denoted as Micro) and Macro F1 (denoted as Macro). Best-performed results are bold-faced
and the second-best are underlined.

EM F1

CDA (1-shot) 5.16 44.6
CDA (3-shot) 14.5 50.1

template 1 (zero-shot) 8.36 45.5
template 2 (zero-shot) 8.16 45.9

template 1 (1-shot)-1 4.52 43.4
template 1 (1-shot)-2 6.00 44.7
template 1 (1-shot)-3 13.1 46.9
template 1 (1-shot)-avg 7.87 45.0
template 2 (1-shot)-1 9.51 50.5
template 2 (1-shot)-2 12.6 51.2
template 2 (1-shot)-3 10.5 48.8
template 2 (1-shot)-avg 10.9 50.2
template 1 (3-shot)-1 13.0 46.7
template 1 (3-shot)-2 16.4 48.5
template 1 (3-shot)-3 11.2 48.2
template 1 (3-shot)-avg 13.5 47.8
template 2 (3-shot)-1 19.3 56.1
template 2 (3-shot)-2 18.6 55.4
template 2 (3-shot)-3 23.3 54.0
template 2 (3-shot)-avg 20.4 55.2

Table 14: Experimental results on TORQUE using dif-
ferent prompt templates.
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MATRES

Strategies Template input GPT3.5 Gold T/F

Prompt 1
(MCQA)

Given the context:\n Jim Unruh, Unisys’s president, said he is
approaching next year with caution. He said the strength of the world-
wide economy is suspect, and doesn’t see much revenue growth in
the cards. He also said that the price wars flaring up in parts of the
computer industry will continue through next year. He said the move
toward standard operating systems means customers aren’t locked
into buying from their traditional computer supplier and can force
prices down. \n\nQ: What’s the temporal relation between
the event "suspect" and "flaring"? \n Choice A: suspect
happens before flaring. \n Choice B: suspect happens
after flaring. \n Choice C: suspect happens during
flaring. \n Choice D: unknown. \Answer only with A, B,
C, or D. \n\nA: Choice

A A T

Prompt 2
(Chan et al., 2023)

Determine the temporal order from "suspect" to "flaring"
in the following sentence: ""Jim Unruh, Unisys’s president,
said he is approaching next year with caution. He said the strength of
the world-wide economy is suspect, and doesn’t see much revenue
growth in the cards. He also said that the price wars flaring up in
parts of the computer industry will continue through next year. He
said the move toward standard operating systems means customers
aren’t locked into buying from their traditional computer supplier
and can force prices down. "". Only answer one word from
AFTER, BEFORE, EQUAL, VAGUE. Answer:

BEFORE BEFORE T

Prompt 3
(Yuan et al., 2023)

Given the document Jim Unruh, Unisys’s president, said he is
approaching next year with caution. He said the strength of the world-
wide economy is suspect, and doesn’t see much revenue growth in
the cards. He also said that the price wars flaring up in parts of
the computer industry will continue through next year. He said the
move toward standard operating systems means customers aren’t
locked into buying from their traditional computer supplier and
can force prices down. and a list of temporal relations
[before, after, vague, equal] and event triggers suspect
and flaring. what is the temporal relation between suspect
and flaring? Answer vague if unsure. Keep the answer
short and concise.

before before T

Table 15: Prompt templates for MATRES.
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MATRES

Strategies Template input GPT3.5 Gold T/F

Zero-shot

Given the context:\n [Context] \n\nQ: What’s the temporal relation
between the event "e1" and "e2"? \n Choice A: e1 happens before
e2. \n Choice B: e1 happens after e2. \n Choice C: e1 happens
during e2. \n Choice D: unknown. \Answer only with A, B, C, or
D. \n\nA: Choice

A B F

Counterfactual
generation

Generate a paragraph where event e1 happens before e2:
Generate a paragraph where event e1 happens after e2:
Generate a paragraph where event e1 happens in the same time as
e2:
Generate a paragraph where the temporal relation of e1 and e2
cannot be determined based on the context:

cA, cB ,
cC , cD

/ /

CDA prompting

Given the context:\n cB \n\nQ: What’s the temporal relation
between the event " · · · A: Choice B
Given the context:\n cC \n\nQ: What’s the temporal relation
between the event " · · · A: Choice C
Given the context:\n cD \n\nQ: What’s the temporal relation
between the event " · · · A: Choice D
Given the context:\n [Context] \n\nQ: What’s the temporal relation
between the event "e1" and "e2"? \n Choice A: e1 happens before
e2. \n Choice B: e1 happens after e2. \n Choice C: e1 happens
during e2. \n Choice D: unknown. \Answer only with A, B, C, or
D. \n\nA: Choice

B B T

Table 16: A running example of CDA in MATRES. The LLM itself first predict the label of the example, where
the prediction is denoted as rLLM . Then, the LLM is asked to generate four context given e1 and e2 under four
different temporal relations, using the prompts in the second columns, where the corresponding generated context
are then cA, cB , cC , cD. Then, the generated contexts other than under the predicted relation rLLM are used as
demonstrations for in-context learning.
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Micro F1 Macro F1

CDA (1-shot) 51.3 30.0
CDA (3-shot)∗ 51.5 26.3

template 1 zero-shot (MCQA) 53.3 19.7
template 2 (Chan et al., 2023) 52.1 17.1
template 3 (Yuan et al., 2023) 13.4 13.0
template 1 (1-shot)-1 52.3 18.5
template 1 (1-shot)-2 53.1 20.4
template 1 (1-shot)-3 51.6 18.4
template 1 (1-shot)-avg 52.3 19.1
template 1 (1-shot)-MV 52.1 19.0
template 2 (1-shot)-1 49.9 22.0
template 2 (1-shot)-2 49.3 22.1
template 2 (1-shot)-3 50.1 19.8
template 2 (1-shot)-avg 49.8 21.3
template 2 (1-shot)-MV 50.0 20.6
template 3 (1-shot)-1 32.7 18.6
template 3 (1-shot)-2 34.4 20.7
template 3 (1-shot)-3 28.8 17.8
template 2 (1-shot)-avg 32.0 19.0
template 3 (1-shot)-MV 31.9 18.5
template 1 (3-shot)-1∗ 57.5 24.1
template 1 (3-shot)-2∗ 57.0 28.0
template 1 (3-shot)-3∗ 50.0 23.4
template 1 (3-shot)-avg∗ 54.8 25.2
template 1 (3-shot)-MV∗ 57.0 24.4
template 2 (3-shot)-1∗ 46.5 18.2
template 2 (3-shot)-2∗ 47.0 18.1
template 2 (3-shot)-3∗ 47.5 24.9
template 2 (3-shot)-avg∗ 47.0 20.4
template 2 (3-shot)-MV∗ 48.0 19.2
template 3 (3-shot)-1∗ 35.5 21.3
template 3 (3-shot)-2∗ 29.0 15.7
template 3 (3-shot)-3∗ 34.0 20.2
template 2 (3-shot)-avg∗ 32.8 19.1
template 3 (3-shot)-MV∗ 33.0 19.2

Table 17: Experimental results on MATRES using dif-
ferent prompt templates. ∗ indicates we test the perfor-
mance on the same 200 randomly down-sampled exam-
ples from MATRES. We run 3 different random seeds
per few-shot in-context learning experiments. ‘avg’ in-
dicates the average between the three runs, and ‘MV’
indicates the majority voting across the three runs.
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