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Abstract
Splice type surface singularities were introduced by Neumann and Wahl as a general-
ization of the class of Pham–Brieskorn–Hamm complete intersections of dimension
two. Their construction depends on a weighted tree called a splice diagram. In this
paper, we study these singularities from the tropical viewpoint. We characterize their
local tropicalizations as the cones over the appropriately embedded associated splice
diagrams. As a corollary, we reprove some of Neumann and Wahl’s earlier results on
these singularities by purely tropical methods, and show that splice type surface singu-
larities are Newton non-degenerate complete intersections in the sense of Khovanskii.
We also confirm that under suitable coprimality conditions on its weights, the diagram
can be uniquely recovered from the local tropicalization. As a corollary of the Newton
non-degeneracy property, we obtain an alternative proof of a recent theorem of de
Felipe, González Pérez and Mourtada, stating that embedded resolutions of any plane
curve singularity can be achieved by a single toric morphism, after re-embedding the
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ambient smooth surface germ in a higher-dimensional smooth space. The paper ends
with an appendix by Jonathan Wahl, proving a criterion of regularity of a sequence in
a ring of convergent power series, given the regularity of an associated sequence of
initial forms.

Mathematics Subject Classification Primary 14B05 · 14T90 · 32S05; Secondary
14M25 · 57M15

1 Introduction

Splice diagrams are finite trees with half-edges weighted by integers and with nodes
(internal vertices) decorated by± signs. If the half-edge weights around each node are
pairwise coprime, we say that the splice diagram is coprime. This class of weighted
trees was first introduced by Siebenmann [52] in 1980 to encode graph manifolds
which are integral homology spheres. Coprime splice diagrams with only + node
decorations and positive half-edge weights were used by Eisenbud and Neumann in
[10] to study special kinds of links in integral homology spheres, in particular those
corresponding to curves on normal surface singularities with integral homology sphere
links. One of the main theorems of [10] states that such integral homology spheres
are described by positively-weighted coprime splice diagrams satisfying the edge
determinant condition, namely, that the product of the two weights associated to any
fixed internal edge must be greater than the product of the weights of the neighboring
half-edges.

Interesting isolated surface singularities arise from splice diagrams. For example,
complete intersections ofPham–Brieskorn–Hamm hypersurface singularities are asso-
ciated to star splice diagrams (i.e., those with a single node). As recognized by Hamm
in [19, Sect. 5] and [20], in order to determine an isolated singularity inC

n , all maximal
minors of the coefficient matrix (ci j )i, j of each polynomial fi := ∑

j ci j z
a j
j in the

Brieskorn systemmust be non-zero. In turn, work of Neumann [35] shows that univer-
sal abelian covers of quasi-homogeneous complex normal surface singularities with
rational homology sphere links are complete intersections of Pham–Brieskorn–Hamm
hypersurface singularities.

In 2002, Neumann andWahl [37] extended this family of complete intersections by
defining splice type surface singularities associated to splice diagrams whose weights
satisfy a special arithmetic property called the semigroup condition. These singularities
are defined by explicit splice type systems of convergent power series near the origin,
whose coefficients satisfy generalizations of Hamm’s maximal minors conditions.
Splice type surface singularities and the related class of splice quotients (determined
by diagrams subject to an additional congruence condition) have been further studied
by both authors in [38–40], and by Lamberson, Némethi, Okuma and Pedersen in [27,
31–33, 42–44, 46–48]. For more details, we refer the reader to the surveys [36, 45, 58,
59].

The present paper uses tropical geometry techniques to study splice type systems
with n leaves associated to splice diagrams satisfying the edge determinant and semi-
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group conditions. Our first main result recovers and strengthens a central theorem
from [38] (see Theorem 2.16). More precisely:

Theorem 1.1 Splice type systems are Newton non-degenerate complete intersection
systems of equations. The associated splice type singularities are isolated, irreducible
and not contained in any coordinate subspace of the corresponding ambient space
C

n.

This statement plays a major role in the proof of the Neumann–Wahl Milnor fiber con-
jecture for splice type singularities with integral homology sphere links [39] obtained
by the present authors. For an overview of this proof, we refer the reader to [6].
Motivated by Theorem 1.1, we formulate Question 7.17.

The notion of Newton non-degeneracy (in the sense of Kouchnirenko [25] and
Khovanskii [22]) is closely related to the notion of the initial form of a series relative
to a weight vector, which lies at the core of tropical geometry (see Sect. 3, in par-
ticular Definition 3.1). A regular sequence of convergent power series ( f1, ..., fs) in
C{z1, . . . , zn} defining a germ (X , 0) ↪→ C

n is a Newton non-degenerate complete
intersection system if for each weight vector w with positive entries, the associated
initial forms (inw( fi ))i determine hypersurfaces of the algebraic torus (C∗)n whose
sum is a normal crossings divisor in the neighborhood of their intersection. This con-
dition is automatically satisfied whenever the intersection is empty. Surprisingly, not
many examples of Newton non-degenerate complete intersection systems are known
in codimension two or higher. Theorem 1.1 contributes a large class of examples of
such systems.

Newton non-degeneracy enables the resolution of the germ (X , 0) ↪→ C
n by a sin-

gle toric morphism. Indeed, works of Varchenko [57] (for hypersurfaces) and Oka [41,
Chapter III, Theorem (3.4)] (for complete intersections) show that such a morphism
may be defined by a regular subdivision of the positive orthant refining the dual fan
of the Newton polyhedron of each function fi . Furthermore, the complete dual fan is
not needed to achieve a resolution. Indeed, [41, Theorem III.3.4] allows us to restrict
to the subfan corresponding to the orbits intersecting the strict transform of the given
germ.

The support of this subfan depends only on the ideal defining the germ (X , 0) but
not on the particular generators fi . It is the finite part of the so-called local tropical-
ization of the embedding (X , 0) ↪→ C

n . This local version of the standard notion of
tropicalization of a subvariety of an algebraic torus was first introduced by the last two
authors in [49] as a tool to study arbitrary subgerms ofC

n or, more generally, arbitrary
morphisms from analytic or formal germs to germs of toric varieties.

As was mentioned earlier, splice diagrams record topological information about
the link of splice type singularities. Indeed, starting from a normal surface singularity
with a rational homology sphere link, Neumann and Wahl [37] build a splice diagram
which determines the dual tree of the minimal normal crossings resolution (up to a
finite ambiguity) whenever this graph is not a star tree. This diagram is homeomorphic
to the dual tree: it is obtained by disregarding all bivalent vertices of the dual tree.
It satisfies the edge determinant condition, but not necessarily the semigroup or the
congruence conditions. When (X , 0) ↪→ C

n has an integral homology sphere link,
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the ambiguity disappears and the dual tree is completely determined by the splice
diagram.

Given a splice diagram � with n leaves, the construction of Neumann and Wahl
associates a weight vector wu ∈ (Z>0)

n to each vertex u of �. These vectors induce
a piecewise linear embedding of � into the standard simplex in R

n after appropriate
normalization.Our secondmain result shows the close connection between�, the local
tropicalization of the associated splice type system in C

n and its resolution diagrams:

Theorem 1.2 Let � be a splice diagram satisfying the semigroup condition and let
(X , 0) ↪→ C

n be the germ defined by an associated splice type system. Then, the finite
local tropicalization of X is the cone over an embedding of � in R

n. Furthermore, in
the coprime case, � can be uniquely recovered from this fan.

Theorem 1.2 shows that the link at the origin of the local tropicalization of
(X , 0) ↪→ C

n (obtained by intersecting the fan with the (n − 1)-dimensional sphere)
is homeomorphic to the splice diagram �. To the best of our knowledge, this is the
first tropical interpretation of Siebenmann’s splice diagrams. In this spirit, we view
Siebenmann’s paper [52] as a precursor to tropical geometry (for others, see [28,
Chapter 1]).

Our method to characterize the local tropicalization is different from the general
one discussed in Oka’s book [41] and described briefly above. Namely, we do not
use the Newton polyhedra of the collection of series defining the germ. Instead, we
use a “mine-sweeping” approach, using successive stellar subdivisions of the standard
simplex in R

n dictated by the splice diagram, in order to remove relatively open cones
in the positive orthant avoiding the local tropicalization.

Once the local tropicalization is determined (via Theorem 1.2), a simple compu-
tation confirms the Newton non-degeneracy of the system. In turn, by analyzing the
local tropicalizations of the intersections of the germ with the coordinate subspaces of
C

n , we conclude that (X , 0) is an isolated complete intersection surface singularity,
thus completing the proof of Theorem 1.1.

As a consequence of Theorem 1.1, we provide an alternative proof of the main
theorem of de Felipe, González Pérez and Mourtada [7], stating that any germ of a
reduced plane curve may be resolved by one toric modification after re-embedding its
ambient smooth germ of surface into a higher-dimensional germ (Cn, 0) (see Corol-
lary 7.14). The first theorem of this kind was proved by Goldin and Teissier [17] for
irreducible germs of plane curves.

Our paper is organized as follows. In Sect. 2, we review the definitions and main
properties of splice diagrams, splice type systems and end-curves associated to rooted
splice diagrams, following [38, 39]. Sections 3 and 4 include background material
about local tropicalizations and Newton non-degeneracy. In Sect. 5 we show how to
embed a given splice diagram � with n leaves into the standard (n − 1)-simplex in
R

n , and we highlight various convexity properties of this embedding. The proof of
the first part of Theorem 1.2 is discussed in Sect. 6, while Theorem 1.1 is proven in
Sect. 7. Section 8 characterizes local tropicalizations of splice type systems defined by
a coprime splice diagram and shows how to recover the diagram from the tropical fan,
thus yielding the second part of Theorem 1.2. Finally, Sect. 9 discusses the dependency
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of the construction of splice type systems on the choice of admissible monomials for
arbitrary splice diagrams, in the spirit of [38, Sect. 10].

AppendixA,written by JonathanWahl, includes a proof of [38, Lemma3.3] thatwas
absent from the literature. This result confirms that given a finite sequence ( f1, . . . , fs)

in C{z1, . . . , zn} and a fixed positive integer vector w ∈ (Z>0)
n , the regularity of the

sequence (inw( f1), . . . , inw( fs)) of initial forms ensures that the original sequence is
regular, and furthermore, that the w-initial ideal must be generated by the sequence
of initial forms. This statement can be used to determine if a given w lies in the local
tropicalization of the germ defined by the vanishing of the input sequence (see Corol-
lary 7.7), providing an alternative proof to part of Theorem 1.2.

2 Splice diagrams, splice type systems and end-curves from rooted
splice diagrams

In this section, we recall the notions of splice diagram and splice type systems asso-
ciated to them. The definitions follow closely the work of Neumann and Wahl [38,
39].

We start with some basic terminology and notations about trees:

Definition 2.1 A tree is a finite connected graph with no cycles and at least one vertex.
The star of a vertex v of the tree � is the set Star�(v) of edges adjacent to v. The

valency of v is the cardinality of Star�(v), which we denote by δv . A node of a tree
is a vertex v whose valency is greater than one, whereas a leaf is a one-valent vertex.

We denote the set of nodes of � by V ◦(�) and its set of leaves by ∂ � .

When the ambient tree is understood from context, we remove it from the notation
and simply write Star(v).

Remark 2.2 Endowing a tree with a metric allows us to consider geodesics on it and
distances between vertices. Whenever these notions are invoked, it is understood that
each edge of the tree has length one.

Definition 2.3 Given a subset W = {p1, . . . , pk} of vertices of the tree �, we denote
by [W ] or [p1, . . . , pk] the subtree of � spanned by these points. We call it the
convex hull of the set {p1, . . . , pk} inside �. For example, � = [∂ �].

Splice diagrams are special kinds of trees enriched with weights around all nodes,
as we now describe:

Definition 2.4 A splice diagram is a pair (�, {dv,e}v,e), where � is a tree without
valency-two vertices, with at least one node, and decorated with a weight function on
the star of each node v of �, denoted by

Star�(v)→ Z>0 : e �→ dv,e.

We call dv,e the weight of e at v. If u is any other vertex of � such that e lies in the

unique geodesic of � joining u and v, we write dv,u := dv,e. We view this as the

123



M. A. Cueto et al.

weight in the neighborhood of v pointing towards u. The total weight of a node v of
� is the product dv :=

∏

e∈Star�(v)
dv,e.

Remark 2.5 Let (�, {dv,e}v,e) be a splice diagram. For simplicity, we remove the col-
lection of weights from the notation and simply use � to refer to the splice diagram.
By a similar abuse of notation, we may view Star�(v) also as a splice diagram, whose
weights around its unique node v are inherited from �. Splice diagrams with one node
will be referred to as star splice diagrams, and the underlying graphs as star trees.

Definition 2.6 Let u and v be two distinct vertices of the splice diagram�. The linking
number �u,v between u and v is the product of all the weights adjacent to, but not

on, the geodesic [u, v] joining u and v. Thus, �v,u = �u,v . We set �v,v := dv for

each node v of �. The reduced linking number �′u,v is defined via a similar product

where we exclude the weights around u and v. In particular, �′v,v = 1 for each node v

of �.

Remark 2.7 Given a node v and a leaf λ of �, it is immediate to check that �v,λ dv,λ =
�′v,λ dv .

Linking numbers satisfy the following useful identity, whose proof is immediate
from Definition 2.6 (see [13, Proposition 69]):

Lemma 2.8 If u, v, w are vertices of � with u ∈ [v,w], then �u,v �u,w = du �v,w.

In [34, Theorem 1], Neumann gave explicit descriptions of integral homology
spheres associated to star splice diagrams as links of Pham–Brieskorn–Hamm sur-
face singularities. The following definition was introduced by Neumann and Wahl in
[39, Sect. 1] to characterize which integral homology spheres may be realized as links
of normal surface singularities. Its origins can be traced back to [10, p. 82].

Definition 2.9 Let � be a splice diagram. Given two adjacent nodes u and v of �, the
determinant of the edge [u, v] is the difference between the product of the two dec-
orations on [u, v] and the product of the remaining decorations in the neighborhoods
of u and v, that is,

det([u, v]) := du,vdv,u − �u,v. (2.1)

The splice diagram� satisfies the edge determinant condition if all edges have positive
determinants.

The next result on integral homology sphere links is due to Eisenbud and Neumann
(see [10, Theorem 9.4] for details andDefinition 8.1 for themeaning of the coprimality
condition). It was strengthened by Pedersen in [47, Theorem 1] to address the case of
rational homology sphere links:

Theorem 2.10 The integral homology sphere links of normal surface singularities are
precisely the oriented 3-manifolds �(�) associated to coprime splice diagrams �

which satisfy the edge determinant condition.
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The construction of oriented 3-manifolds from splice diagrams is due to Sieben-
mann [52]. They are obtained from splicing Seifert-fibered oriented 3-manifolds
�(Star�(v)) associated to each node v of � along special fibers of their respective
Seifert fibration corresponding to the edges of �. For each �(Star�(v)), these special
fibers are in bijection with the δv-many edges adjacent to v. Each edge [u, v] induces a
splicing of both�(Star�(u)) and�(Star�(v)) along the oriented fibers corresponding
to the edge. These fibers are knots in both Seifert-fibered manifolds and their linking
number is precisely �u,v (see [10, Theorem 10.1]).

The following result shows that the edge determinant condition yields Cauchy–
Schwarz’ type inequalities:

Lemma 2.11 Assume that the splice diagram � satisfies the edge determinant condi-
tion. Then,

du dv ≥ �2u,v, for all nodes u, v ∈ �. (2.2)

Furthermore, equality holds if and only if u = v.

Proof The result follows by induction on the distance dist�(u, v) between u and v

(see Remark 2.2). The base case corresponds to adjacent nodes. Lemma 2.8 is used
for the inductive step. 	


If � satisfies the edge determinant condition, then the linking numbers verify the
following inequality, which generalizes Lemma 2.8. This inequality is reminiscent of
the ultrametric condition for dual graphs of arborescent singularities (see [16, Propo-
sition 1.18]):

Proposition 2.12 Assume that the splice diagram � satisfies the edge determinant con-
dition. Then, for all nodes u, v and w of �, we have �u,v �u,w ≤ du �v,w. Furthermore,
equality holds if and only if u ∈ [v,w].
Proof Consider the tree T spanned by u, v and w and let a be the unique node in the
intersections of the three geodesics [u, v], [u, w] and [v,w]. We prove the inequality
by a direct calculation. By Lemma 2.8 applied to the triples {a, u, v}, {a, u, w} and
{a, v, w}, we have:

�a,u �a,v = da �u,v, �a,u �a,w = da �u,w and �a,w �a,v = da �w,v.

These expressions combined with the inequality (2.2) applied to the pair {a, u} yield:

�u,v �u,w = �a,v �a,u

da

�a,w �a,u

da
= �a,v �a,w

da

(�a,u)2

da
= �v,w

(�a,u)2

da
≤ �v,w du .

Furthermore, Lemma 2.11 confirms that equality is attained if and only if a = u, that
is, if and only if u lies in the geodesic [v,w]. This concludes our proof. 	


Before introducing splice type systems as defined by Neumann and Wahl in [38,
39], we set up notation arising from toric geometry. We write n := |∂ �| for the
number of leaves of the splice diagram � (where | | denotes the cardinality of a finite
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set) and let M(∂ �) be the free abelian group generated by all leaves of �. We denote

by N (∂ �) its dual lattice and write the associated pairing using dot product notation,
i.e. w · m whenever w ∈ N (∂ �) and m ∈ M(∂ �). Fixing a basis { wλ : λ ∈ ∂ �}
for N (∂ �) and its dual basis { mλ : λ ∈ ∂ �} for M(∂ �) identifies both lattices
with Z

n . To each mλ, we associated a variable zλ . We view M(∂ �) as the lattice
of exponents of monomials in those variables and N (∂ �) as the associated lattice of
weight vectors.

In addition to definingweights for all leaves of�, each node u in� has an associated
weight vector:

wu :=
∑

λ∈∂ �

�u,λ wλ ∈ N (∂ �). (2.3)

As was mentioned in Sect. 1, star splice diagrams � with a unique node v produce

Pham–Brieskorn–Hamm singularities using the monomials {zdv,λ

λ : λ ∈ ∂ �}. Neu-
mann and Wahl’s splice type systems [38, 39] generalize this construct to diagrams
with more than one node. In addition to satisfying the edge determinant condition, �

must have an extra arithmetic property that allows to replace each monomial z
dv,λ
v by

a suitable monomial associated to the pair (v, e) where v is any node and e is an edge
adjacent to it (see (2.7)). This property, which ensures that all monomials associated to
a vertex v have the same wv-degree, will automatically hold for star splice diagrams.

Definition 2.13 A splice diagram � satisfies the semigroup condition if for each node
v and each edge e ∈ Star(v), the total weight dv of v belongs to the subsemigroup of
(N,+) generated by the set of linking numbers between v and the leaves λ seen from
v in the direction of e, that is, such that e ⊆ [v, λ]. Therefore, we may write:

dv =
∑

λ∈∂v,e�

mv,e,λ �v,λ , or equivalently dv,e =
∑

λ∈∂v,e�

mv,e,λ �′v,λ, (2.4)

where mv,e,λ ∈ N for all λ and ∂v,e� is the set of leaves λ of � with e ⊆ [v, λ].
Assume that � satisfies the semigroup condition and pick coefficients mv,e,λ sat-

isfying (2.4). Using these integers we define an exponent vector (i.e., an element of
M(∂ �)) for each pair (v, e) as above:

mv,e :=
∑

λ∈∂v,e�

mv,e,λ mλ ∈ M(∂v,e�) ⊂ M(∂ �). (2.5)

Following [39], we refer to it as an admissible exponent for (v, e). Note that the
relation (2.4) is equivalent to:

wv · mv,e = dv. (2.6)

Each admissible exponentmv,e defines anadmissible monomial, whichwas denoted
by Mv,e in [39]:

zmv,e :=
∏

λ∈∂v,e�

z
mv,e,λ
λ . (2.7)
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Definition 2.14 Let � be a splice diagram which satisfies both the edge determinant
and the semigroup conditions of Definitions 2.9 and 2.13. We fix an order for its set
∂ � of n leaves.

• A strict splice type system associated to � is a finite family of (n−2) polynomials
of the form:

fv,i (z) :=
∑

e∈Star(v)

cv,e,i zmv,e for all i ∈ {1, . . . , δv − 2} and v a node of �,

(2.8)
where mv,e ∈ M(∂�) are the admissible exponent vectors defined by (2.5) for
each node v ∈ � and each edge e ∈ Star(v). We also require the coefficients cv,e,i

to satisfy the Hamm determinant conditions. Namely, for any node v ∈ �, if we
fix an ordering of the edges in Star(v), then all the maximal minors of the matrix
of coefficients (cv,e,i )e,i ∈ C

δv×(δv−2) must be non-zero.
• A splice type system S(�) associated to � is a finite family of power series of
the form

Fv,i (z) := fv,i (z)+ gv,i (z) for all i ∈ {1, . . . , δv − 2} and v a node of �,

(2.9)
where the collection ( fv,i )v,i is a strict splice type system associated to � and
each gv,i is a convergent power series satisfying the following condition for each
exponent m in the support of gv,i :

wv · m > dv and wu · m > �u,v for each node u of � with u �= v. (2.10)

• A splice type singularity associated to � is the subgerm of (Cn, 0) defined by
S(�).

Remark 2.15 The inequalities in (2.10) should be compared with the equality imposed
in (2.6). As was shown by Neumann and Wahl in [38, Lemma 3.2], the right-most
inequality in (2.10) follows from the left-most one and the edge determinant condition.
We choose to include both inequalities in (2.10) for mere convenience since we will
need both of them for several arguments in Sect. 6.

The issue of dependency of the set of germs defined by splice type systems on
the choice of admissible monomials is a subtle one. We postpone this discussion to
Sect. 9.

As was mentioned in Sect. 1, splice type singularities satisfy the following crucial
property, proved by Neumann and Wahl in [38, Theorem 2.6]. An alternative proof of
this statement, using local tropicalization, will be provided at the end of Sect. 7.

Theorem 2.16 Splice type singularities are isolated complete intersection surface sin-
gularities.

Example 2.17 We let � be the splice diagram to the left of Fig. 1. Then, du = 294,
dv = 770 and �u,v = 420 and so the edge determinant condition du dv > �2u,v holds
for [u, v].
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Fig. 1 From left to right: a splice diagram and its associated rooted diagram obtained by fixing one of the
leaves as its root r , and removing one weight from the star of each node

The semigroup condition is also satisfied, since

49 = 0 · (2 · 5)+ 1 · (2 · 7)+ 1 · (5 · 7) and 11 = 1 · (3)+ 4 · (2) = 3 · (3)+ 1 · (2).

Thus, wemay take as exponentsmu,[u,v] = (0, 0, 0, 1, 1) andmv,[u,v] = (1, 4, 0, 0, 0)
or (3, 1, 0, 0, 0) in Z

5. A possible strict splice type system for � is:

⎧
⎪⎨

⎪⎩

fu,1 := z21 − 2 z32 + z4 z5,

fv,1 := z1z42 + z73 + z54 − 2155 z25,

fv,2 := 33 z1z42 + z73 + 2 z54 − 2123 z25.

(2.11)

An alternative system is obtained by replacing the admissible monomial z1z42 with
z31z2. The coefficients of the system were chosen to simplify the parameterization of
the end-curve of the corresponding splice type surface singularity associated to the
leaf λ1 (see Example 2.22 for details).

A central role in this paper will be played by tropicalizations and weighted initial
forms of series and ideals of C{zλ : λ ∈ ∂ �}, which we discuss in Sect. 3. In Proposi-
tion 7.1, we determine the initial forms of the series Fv,i of a splice type system S(�)

with respect to each weight vector wu from (2.3). Its proof is a consequence of the
next two lemmas:

Lemma 2.18 Assume that � is a splice diagram satisfying the edge determinant con-
dition. Then, for any pair of adjacent nodes u, v of � we have:

wu ∈ �u,v

dv

wv + R>0〈wλ : λ ∈ ∂v,[u,v]�〉.

Proof We write e = [u, v]. The definition of linking numbers gives the following
expressions for each λ ∈ ∂ �:

�u,λ =
{

(�v,λ du)/(dv,u du,v) if λ ∈ ∂u,e�,

(�v,λ dv,u du,v)/dv if λ ∈ ∂v,e�.
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The statement follows by substituting these expressions in the definition of wu

from (2.3) and by using the edge determinant condition, i.e.,

wu = du

dv,u du,v

∑

λ∈∂u,e�

�v,λ wλ + dv,u du,v

dv

∑

λ∈∂v,e�

�v,λ wλ

= �u,v

dv

wv +
∑

λ∈∂v,e�

det(e) �v,λ

dv︸ ︷︷ ︸
>0

wλ. (2.12)

	

Lemma 2.19 Assume that � satisfies the edge determinant and semigroup conditions.
Then, the exponent vector mv,e from (2.5) satisfies wu · mv,e ≥ �u,v for all nodes u of
� and each edge e ∈ Star�(v). Furthermore, equality holds if and only if e � [u, v].
Proof If u = v, then wv · mv,e = dv = �v,v . If u �= v, we argue by induction on the
distance dist�(u, v) > 0 between u and v in the tree �. If dist�(u, v) = 1, we let
e′ = [u, v]. Expression (2.12) yields

wu · mv,e = �u,v

dv

wv · mv,e + det(e′)
dv

⎛

⎝
∑

λ∈∂v,e′�
mv,e,λ �v,λ

⎞

⎠

= �u,v + det(e′)
dv

⎛

⎝
∑

λ∈∂v,e′�
mv,e,λ �v,λ

⎞

⎠ .

The second summand is always non-negative and it equals zero if and only if e �= e′.
If dist�(u, v) > 1, we let u′ be the unique node adjacent to u in [u, v] and set

e′ := [u′, u]. Note that e ∈ [v, u] if and only if e ∈ [v, u′]. Expression (2.12)
applied to {u, u′}, the non-negativity of eachmv,e,λ, the inductive hypotheses on {u′, v}
and Proposition 2.12 yield

wu · mv,e = �u,u′

du′
wu′ · mv,e
︸ ︷︷ ︸
≥�u′,v

+det(e′)
du′

∑

λ∈∂u′,e′�
mv,e,λ�u′,λ
︸ ︷︷ ︸

≥0
≥ �u,u′ �u′,v

du′
= �u,v.

By construction, equality is achieved if and only if e � [u′, v], which is equivalent to
e � [u, v]. 	


In Sect. 7, we will be interested in curves obtained from a given splice type system
when we choose a leaf r of the corresponding splice diagram � to be its root. We
orient the resulting rooted tree �r towards the root and remove one weight in the
neighborhood of each node, namely the one pointing towards the root, as seen on the
right of Fig. 1. We write ∂r� for the set of (n− 1) non-root leaves of �r and assume
it is ordered. The following definition was introduced in [38, Sect. 3] by the name of
splice diagram curves.
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Definition 2.20 Assume that the rooted splice diagram�r satisfies the semigroup con-
dition and consider a fixed strict splice type system S(�) associated to the (unrooted)
splice diagram �. For each node v of � and each index i ∈ {1, . . . , δv}, we let
hv,i (z) ∈ C[zλ : λ ∈ ∂r�] be the polynomial obtained from fv,i (z) by removing the

term corresponding to the unique edge adjacent to v pointing towards r . The subvari-
ety of C

∂r � � C
n−1 defined by the vanishing of (hv,i (z))v,i is called the end-curve of

S(�) relative to r . We denote it by Cr .

A planar embedding of �r determines an ordering of the edges adjacent to a fixed
node v that point away from r (for example, by reading them from left to right). Once
this order is fixed, by the Hamm determinant conditions, each group of equations
(hv,i (z) = 0)δv−2

i=1 becomes equivalent to a collection of wv-homogeneous binomial
equations of the form

zmv,e j − av, j z
mv,eδv−1 = 0 for j ∈ {1, . . . , δv − 2},

with all av, j �= 0. The next statement summarizes the main properties of Cr discussed
in [38, Theorem 3.1]:

Theorem 2.21 The subvariety Cr ⊆ C
n−1 is a reduced complete intersection curve,

smooth away from the origin, and meets any coordinate subspace of C
n−1 only at the

origin. It has g many components, where g := gcd{�r ,λ : λ ∈ ∂r�}. All of them are
isomorphic to torus-translates of the monomial curve in C

n−1 with parameterization
t �→ (t�r ,λ1/g, . . . , t�r ,λn−1/g

).

Example 2.22 We fix the splice diagram from Example 2.17 and consider its rooted
analog obtained by setting the first leaf as its root r , as seen in the right of Fig. 1. By
construction, �r ,2 = 49, �r ,3 = 30, �r ,4 = 42, �r ,5 = 105, �r ,u = 147, �r ,v = 210,
wu = (49, 30, 42, 105) and wv = (70, 10, 14, 35). The equations defining this end-
curve are obtained by removing the monomial indexed by the edge pointing towards
r in each equation from (2.11). Since g = 1, the curve Cr is reduced and irreducible.
It is defined as the solution set to

−2 z32 + z4 z5 = z73 + z54 − 2155 z25 = z73 + 2 z54 − 2123 z25 = 0.

Linear combinations of the last two expressions yield the equivalent binomial system:

−2 z32 + z4 z5 = z54 + 32z25 = z73 − 2187z25 = 0.

An explicit parameterization is given by (z2, z3, z4, z5) = (−t49, 3 t30,−2 t42, t105).

The collection hv,i (z) of polynomials defining the end-curve Cr determines a map
Gr : C

n−1 → C
n−2. Our next result, which we state for comparison’s sake with

Corollary 7.12, discusses the restriction of this map to each coordinate hyperplane of
C

n−1:

Corollary 2.23 For every λ ∈ ∂r�, the restriction of Gr to the hyperplane Hλ of C
n−1

defined by the equation zλ = 0 is dominant.
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Proof By Theorem 2.21, the fiber over the origin of the restricted map Gr |Hλ is finite.
Upper semicontinuity of fiber dimensions implies that the generic fiber is also 0-
dimensional. Since dim Hλ = n − 2, the map Gr |Hλ must be dominant. 	


3 Local tropicalization

In [49], the last two authors developed a theory of local tropicalizations of algebraic,
analytic or formal germs endowedwithmaps to (not necessarily normal) toric varieties,
adapting the original formulation of global tropicalization (see, e.g. [28]) to the local
setting. In this section, we recall the basics on local tropicalizations that will be needed
in Sect. 6. We focus our attention on germs (Y , 0) ↪→ C

n defined by ideals I of
the ring of convergent power series O := C{z1, . . . , zn} near the origin, rather

than of its completion Ô := C[[z1, . . . , zn]]. As Remark 3.5 confirms, both local
tropicalizations yield the same set.

The notion of local tropicalization of an embedded germ is rooted on the construc-
tion of initial ideals associated to non-negative weight vectors, whichwe now describe.
Any weight vector w := (w1, . . . , wn) ∈ (R≥0)n induces a real-valued valuation on

O, known as the w-weight, as follows. Given a monomial zα := zα1
1 · · · zαn

n , we set

w(zα) := w · α =∑n
i=1 wi αi . In turn, for each f =∑

α cα zα with f �= 0 we set

w( f ) := min{w(zα) : cα �= 0} = min{w · α : cα �= 0}. (3.1)

We define w(0) := ∞. The set {α : cα �= 0} is called the support of f, and it is
the basis of the construction of the Newton polyhedron and the Newton fan of f (see
Definition 3.3).

Definition 3.1 Given f ∈ O and w ∈ (R≥0)n , the w-initial form inw( f ) ∈ O is the
sum of the terms in the series f with minimal w-weight w( f ). In turn, given an ideal
I of O, the w-initial ideal inw(I )O of I in O is generated by the w-initial forms

of all elements of I . If w ∈ (R>0)
n , the w-initial ideal inw(I ) of I is the ideal of

C[z1, . . . , zn] generated by the w-initial forms of all elements of I .

Example 3.2 Given the minimal splice type system from Example 2.17, we havewu =
(147, 98, 60, 84, 210) and wv = (210, 140, 110, 154, 385). The polynomial fu,1 is
wu-homogeneous, whereas fv,1 and fv,2 are wv-homogeneous. Their initial forms
relative to the weight vectors wu and wv are:

⎧
⎪⎨

⎪⎩

inwv ( fu,1) = z21 − 2 z32,

inwu ( fv,1) = z73 + z54 − 2155 z25,

inwu ( fv,2) = z73 + 2 z54 − 2123 z25 .

Wewill see in Lemma 7.4 that inw(S(�)) = 〈inw( fu,1), inw( fv,1), inw( fv,2)〉Owhen
w equals wu or wv .
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The initial forms of a series determine its Newton fan as follows:

Definition 3.3 The Newton polyhedron NP( f ) of a non-zero element f ∈ O is
the convex hull of the Minkowski sum of (R≥0)n and the support of f . Given a face
K of NP( f ), we let σK be the closure of the set of weight vectors w in (R≥0)n

supporting K (that is, such that the convex hull of the support of inw( f ) is K ). The
set {σK : K face of NP( f )} is the Newton fan NF( f ) of f .

The map K �→ σK yields an inclusion-reversing bijection between the set of faces
ofNP( f ) and theNewton fanNF( f ). Furthermore, every face K ofNP( f ) satisfies

dim K + dim σK = n. (3.2)

Definition 3.4 Let (Y , 0) ⊆ C
n be a germ defined by an ideal I of O. The local

tropicalization of I or of the germ Y, is the set of all vectors w ∈ (R≥0)n such that
the w-initial ideal inw(I )O ⊆ O of I is monomial-free. We denote it by Trop I

or Trop Y . In turn, the positive local tropicalization of I or of the germ Y , is the
intersection of the local tropicalization with the positive orthant (R>0)

n . We denote it
by Trop>0 I or Trop>0 Y .

Even though Definition 3.4 depends heavily on the fixed embedding (Y , 0) ⊆ C
n ,

we omit it from the notation for the sake of simplicity. The next remarks clarify
some differences between the present approach and that of [49], which defines local
tropicalizations using local valuation spaces (see [49, Definitions 5.13 and 6.7]).
A recent extension of this construction to toric prevarieties by means of Berkovich
analytification can be found in [26].

Remark 3.5 As shown in [49, Theorem 11.2] and [54, Corollary 4.3], local tropicaliza-
tions of ideals in either O or Ô admit several equivalent characterizations analogous
to the Fundamental Theorem of Tropical Algebraic Geometry [28, Theorem 3.2.3].
One of them is as Euclidean closures in (R≥0)n of images of local valuation spaces.
By [49, Corollary 5.17], the canonical inclusion (O,m) ↪→ (Ô, m̂) induces an iso-
morphism of local valuation spaces. This implies that extending an ideal in O to the
complete ring Ô will yield the same local tropicalization. Therefore, we can define
local tropicalizations for ideals of O rather than of Ô, in agreement with the setting
of splice type systems.

As in the global case, local tropicalizations of hypersurface germs can be obtained
from the corresponding Newton fans. Indeed, if the ideal I is principal, generated
by f ∈ O, and w ∈ (R≥0)n , then each initial ideal inw(I )O is also principal, with
generator inw( f ). Equality (3.2) then yields the following statement (see [49, Propo-
sition 11.8]):

Proposition 3.6 The set Trop( f ) is the union of all cones of the Newton fan of f dual
to bounded edges of the Newton polyhedron of f .
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Fig. 2 Splice diagram, Newton polyhedron and local tropicalization of the E8 surface singularity

Fig. 3 From left to right: Splice diagram, and representations of the global and local tropicalizations of
Example 3.9

Example 3.7 The E8 surface singularity is the splice type surface singularity defined
by the polynomial z21+ z32+ z53. Its associated splice diagram, Newton polyhedron and
local tropicalization are depicted in Fig. 2. Its local tropicalization is a 2-dimensional
fan with four rays spanned by e1, e2, e3, and wu = (15, 10, 6). Its three maximal
cones are spanned by the pairs {ei , wu} for i ∈ {1, 2, 3}. These three cones are dual
to the three bounded edges of the Newton polyhedron.

By contrast, if I has two or more generators, their w-initial forms need not gen-
erate inw(I )O. However, for the purpose of characterizing Trop>0 I , it is enough to
have a tropical basis for I in the sense of [49, Definition 10.1], i.e., a finite set of
generators { f1, . . . , fs} of I which is a universal standard basis of I in the sense of
[49, Definition 9.8] and such that for any w ∈ (R>0)

n , the w-initial ideal inw(I )O
contains a monomial if and only if one of the initial forms inw( fi ) is a scalar multiple
of a monomial.

Remark 3.8 Such tropical bases exist by [49, Theorem 10.3] and can be used to
determine Trop I by intersecting the local tropicalizations of the corresponding hyper-
surface germs. Furthermore, their existence ensures that local tropicalizations are
supports of rational fans in (R≥0)n . Indeed, the corresponding fan is obtained by con-
sidering the common refinement of the intersection of the local tropicalization of each
member of a tropical basis for I combined with Proposition 3.6. Furthermore, under
the hypothesis that no irreducible component of (Y , 0) is included in a coordinate
subspace of C

n , such fans and their refinements are standard tropicalizing fans of Y
in the sense of Definition 3.17 below.
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Example 3.9 We consider the germ of splice type surface singularity from [39, Exam-
ple 2], given by {

fu := z21 + z32 + z3z4 = 0,

fv := z53 + z24 + z1z42 = 0.
(3.3)

associated to the splice diagram on the left of Fig. 3. A computation with the package
Tropical.m2 [1], available in Macaulay2 [18], determines the global tropical-
ization of the system (see [28, Definition 3.2.1]). It is a 2-dimensional fan in R

4 with
f -vector (1, 6, 9). Its six rays are generated by the primitive vectors

r1 := (−28,−13,−16,−40) , r3 := (−2,−7,−6,−15) , r5 := (21, 14, 12, 30) ,

r2 := (−15,−10,−11,−19) , r4 := (−6,−4,−1,−11) , r6 := (30, 20, 22, 55) .

Notice that r5 = wu and r6 = wv . Its nine top-dimensional cones are encoded by the
graph depicted at the center of the figure.

The local tropicalization of the germ defined by (3.3) is obtained by intersecting
the global tropicalization with the positive orthant [49, Theorem 12.10]. We indicate
the positions of the four canonical basis elements {e1, . . . , e4} of R

4 with unfilled dots
inside the edges of the central graph of Fig. 3. As we will see in Theorem 6.2, the local
tropicalization of this germ can be obtained as the cone over the red graph depicted in
the standard tetrahedron seen in the right of the figure. Note that this graph is homeo-
morphic to the splice diagram. This fact is general, as confirmed by Theorem 5.11.

Remark 3.10 Our choice of terminology for local tropicalizations differs slightly from
[49], as we now explain. As was shown in [49, Sect. 6], the local tropicalizations of
the intersection of a germ (Y , 0) ↪→ C

n with each coordinate subspace of C
n can be

glued together to form an extended fan in (R≥0 ∪ {∞})n called the local nonnegative
tropicalization of Y in [49]. In the present paper, we refer to this structure as an
extended tropicalization of the germ Y , in agreement with Kashiwara and Payne’s
constructions for global tropicalizations (see [28, Sect. 6.2]). The finite part of this
extended tropicalization (i.e., its intersection with (R≥0)n) is the local tropicalization
from Definition 3.4. A precise description of the boundary strata of the extended local
tropicalization of splice type singularities is given in Sect. 6.2.

Remark 3.11 The local tropicalization of a germ (Y , 0) ⊆ C
n coincides with the

local tropicalization of the associated reduced germ (Yred , 0) ⊆ C
n since the defin-

ing ideal of (Yred , 0) is the radical
√

I ⊆ O and w-initial forms respect products.
As a consequence, inw(

√
I ) is monomial-free if and only if the same is true for

inw(I ). Alternatively, the same statement can be obtained from the definition of local
tropicalization as the image of the local valuation space of Y and the fact that the
embedding Yred ↪→ Y induces a homeomorphism of local valuation spaces (see [49,
Lemma 5.18]).

Remark 3.12 The local tropicalization of a reduced germ (Y , 0) ⊆ C
n is equal to the

union of the local tropicalizations of its irreducible components, and the same is true
for their local positive tropicalizations. This is a direct consequence of the fact that
the local valuation space of (Y , 0) is the union of the local valuation spaces of its
irreducible components (see [49, Lemma 5.18]).
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The next result determines the local tropicalization of a germ (Y , 0) ↪→ C
n from

the positive one:

Proposition 3.13 The local tropicalization Trop Y is the closure of the positive local
tropicalization Trop>0 Y inside the cone (R≥0)n.

Proof By Remarks 3.11 and 3.12, it suffices to consider the case where (Y , 0) is
irreducible. In this situation, [49, Theorem 11.9] shows that the extended local tropi-
calization of (Y , 0) is the closure of the extended positive local tropicalization in the
extended non-negative orthant (R≥0 ∪ {∞})n . Applying Lemma 3.14 below to the
case when E is the extended local tropicalization of (Cn, 0), U = (R≥0)n and A is
the extended local tropicalization of (Y , 0) confirms the claim about the closure of
Trop>0 Y in (R≥0)n . 	


The following lemma is a standard statement in general set topology, which may
for instance be obtained as an immediate consequence of [30, Theorem 17.4]:

Lemma 3.14 Let E be a topological space and U be an open subset. Then, for any
subset A of E we have:

clU (A ∩U ) = clE (A) ∩U ,

where clE (A) is the closure of A in E and clU (A ∩U ) denotes the closure of A ∩U
in U.

Inwhat follows,we restrict our attention to subgerms of (Cn, 0)with no components
included in coordinate subspaces. Their local tropicalizations verify the following key
property (see [49, Proposition 9.21, Theorems 10.3 and 11.9]):

Proposition 3.15 Let (Y , 0) be a subgerm of (Cn, 0) with no irreducible components
contained in coordinate subspaces of C

n, and let I ⊆ O be its defining ideal. Then,
Trop Y is the support of a rational polyhedral fan F which satisfies the following
conditions:

1. the dimension of all the maximal cones of F agrees with the complex dimension
of Y ;

2. the maximal cones of F have non-empty intersections with (R>0)
n;

3. given any cone τ of F , the w-initial ideal of I is independent of the choice of
w ∈ τ ◦.

Proof By Remarks 3.11 and 3.12, we may restrict to the case when (Y , 0) is reduced
and irreducible. The existence of F satisfying the first two conditions is a direct
consequence of [49, Theorem 11.9], which ensures the analogous properties hold for
the extended local tropicalization of (Y , 0). Note that Trop Y is non-empty, since (Y , 0)
meets the dense torus of C

n (see [49, Lemma 7.4]). Furthermore, the fan structure on
Trop Y induced from a tropical basis { f1, . . . , fr } for I discussed in Remark 3.8
satisfies condition (3). In turn, any refinement will satisfy conditions (1) and (2) as
well. 	
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Remark 3.16 Proposition 3.15 allows us to recover the complex dimension of an irre-
ducible germ (Y , 0) ↪→ C

n meeting the dense torus from its positive tropicalization
(see, for instance, the proofs of Corollaries 6.20 and 6.21). Indeed, its dimension agrees
with the dimension of any of the top-dimensional cones in any fixed fan satisfying
conditions (1)–(3) in Proposition 3.15. If (Y , 0) is not irreducible, a similar procedure
determines the maximal dimension of a component of the germ meeting the dense
torus.

Definition 3.17 Let (Y , 0) be a subgerm of C
n with no irreducible component con-

tained in a coordinate subspace of C
n . Let I be the ideal ofO defining (Y , 0). Any fan

F satisfying all three conditions in Proposition 3.15 is called a standard tropicalizing
fan for (Y , 0) or for I . For every cone τ ofF meeting (R>0)

n and anyw ∈ τ ◦, wewrite
inτ (I ) := inw(I ) for the associated initial ideal in the polynomial ringC[z1, . . . , zn]
and inτ (Y ) := inw(Y ) for the associated subscheme of C

n (see Definition 3.1).

Remark 3.18 When Y is a hypersurface germ defined by a series f ∈ O, the set of
cones of codimension one of theNewton fan of f dual to bounded edges of the Newton
polyhedron of f satisfies all three conditions listed in Proposition 3.15. Furthermore,
it is the coarsest fan with these properties. However, for germs of higher codimen-
sion such canonical choice need not always exist. For an example in the global (i.e.,
polynomial) setting, we refer the reader to [28, Example 3.5.4].

The next proposition emphasizes the relevance of tropicalizing fans for producing
birationalmodels of irreducible germswith desirable geometric properties, in the spirit
of Tevelev’s construction of tropical compactifications of subvarieties of tori [56].

Proposition 3.19 Fix a rational polyhedral fan F contained in (R≥0)n and let
πF : XF → C

n be the associated toric morphism. Given an irreducible germ
(Y , 0) ↪→ C

n meeting the dense torus, let YF be the strict transform of Y under
πF and write π : YF → Y for the restriction of the map πF to YF . Then, the follow-
ing properties hold:

1. The restriction π is proper if and only if the support |F | contains the local tropi-
calization Trop Y .

2. Assume that π is proper. Then, the strict transform YF intersects every orbit S of
XF along a non-empty pure-dimensional subvariety with codimYF (YF ∩ S) =
codimXF (S) if and only if |F | = Trop Y .

Proof In what follows, we use standard terminology and notation from toric geometry,
which can be found in Fulton’s book [12]. The proof of (2) is similar to the global
analog [28, Proposition 6.4.7 (2)], so we leave it to the reader.

It remains to prove assertion (1). To this end, we consider a fan � subdividing the
non-negative cone (R≥0)n and containing F as a subfan. Such a fan exists by [11,
Theorem 2.8 (III.2)].

We consider the toric varieties XF and X� associated to the fans F and � and the
natural toric morphisms πF : XF → C

n and π� : X� → C
n . We let Y� and YF be

the strict transforms of Y under these two maps. The aforementioned varieties and
maps fit naturally into the commutative diagram
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Y� X�

π�

XF

πF

YF

π

C
n Y

where the central triangle involves toric morphisms and the horizontal arrows are
embeddings. The vertical map π on the right is the restriction of πF to YF . In what
follows we view XF as an open subvariety of X� . Note that the toric birational
morphism π� is proper by [12, Sect. 2.4], as the defining fans of its source and target
have the same support, namely (R≥0)n .

By construction, π is proper if and only if Y� is contained in XF . Thus, claim (1)
will follow if we show that for every cone τ of � we have the following equivalence:

Oτ ∩ Y� �= ∅ ⇐⇒ τ ◦ ∩ Trop Y �= ∅, (3.4)

where Oτ := Hommonoid(τ
⊥ ∩ M, C) is the corresponding toric orbit.

It remains to prove (3.4).We startwith the forward implication andfix y0 ∈ Oτ∩Y� .
Then, there exists a holomorphic arc in Y ∩ (C∗)n parameterized as t �→ y(t) such
that the limit as t → 0 of its strict transform in Y� equals y0, i.e.,

lim
t→0

y(t) = y0 ∈ Oτ ∩ Y�.

Such an arc can be built by choosing an irreducible subgerm of a curve C� of the
germ (Y�, y0), not contained in the toric boundary, then by projecting it to a subgerm
C of Y via π� and, finally, by choosing a normalization of C , which we identify with
(C, 0).

We consider the weight vectorw := ord y(t) in the dual lattice N := M∨ recording
the orders of vanishing of the components of y(t). We claim that w belongs to τ ◦ ∩
Trop Y , so τ ◦ ∩ Trop Y �= ∅, as desired. To prove this claim, notice that the arc
t �→ yin(t) of Y� obtained by keeping the w-initial terms yin(t) of the components of
y(t) has the same limit when t → 0 as y(t) does. This fact can be checked by working
in the affine toric variety associated to the cone R≥0〈w〉. Properties of limits in toric
varieties from [12, Sect. 2.3] ensure that limt→0 yin(t) ∈ Oτ is equivalent to the fact
that the weight vector w lies in τ ◦ ∩ N . Therefore, we conclude that ord y(t) ∈ τ ◦.

It remains to verify that w ∈ Trop Y . To do so, it suffices to notice that TropC ⊆
Trop Y (since C ⊆ Y ) and that TropC = R≥0〈w〉. The latter is a direct consequence
of [54, Corollary 4.3 3’)] (see also Maurer’s paper [29] which includes a precursor of
local tropicalization for germs of space curves).

Finally, to prove the reverse implication of (3.4), we assume that τ ◦ ∩ Trop Y �= ∅
and let w ∈ τ ◦ ∩ Trop Y be a primitive lattice vector in N � Z

n . We consider a
refinement �w of � such that the ray τw = R≥0〈w〉 ∈ �w . By construction, the orbit
Oτw is mapped via the toric morphism πw : X�w → X� to the orbit Oτ .

The intersection of Y�w with the orbit Oτw is determined by the w-initial ideal
inw(I (Y )) of the ideal I (Y ) defining Y , viewed in the Laurent polynomial ring. Since
this initial ideal is monomial free because w ∈ Trop Y , this intersection is non-empty.
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SinceOτw ⊆ Y�w , the map πw ensures that Y� ∩Oτ �= ∅ as well. This concludes our
proof. 	


One well-known feature of global tropicalizations of equidimensional subvarieties
of toric varieties is the so-called balancing condition [28, Sect. 3.3]. To this end,
tropical varieties must be endowed with positive integer weights (called tropical mul-
tiplicities) along their top-dimensional cones. Such multiplicities may be also defined
in the local situation. We restrict the exposition to equidimensional germs, since this
is sufficient for the purposes of this paper.

Definition 3.20 Let (Y , 0) ↪→ C
n be an equidimensional germmeeting (C∗)n , defined

by an ideal I of O and let F be a standard tropicalizing fan for it. Given a top-
dimensional cone τ of F , we define the tropical multiplicity of F at τ to be the
number of irreducible components of inτ (Y ) ∩ (C∗)n , counted with multiplicity.

In order to state the balancing condition for local tropicalization, we first define
the notion of a pure rational weighted balanced fan. Recall that a fan is pure if all its
top-dimensional cells have the same dimension.

Definition 3.21 Consider a pure rational polyhedral fan F in R
n relative to the lattice

Z
n , with positive integer weights on its maximal cones. Fix a cone τ ofF of codimen-

sion one in F , and let σ1, . . . , σs be the maximal cones of F containing τ as a face.
Denote by m1, . . . , ms the corresponding weights. For each i ∈ {1, . . . , s} consider a
vector ωσi |τ ∈ Z

n ∩ σi generating the lattice

�i := Z
n ∩ R〈σi 〉

Zn ∩ R〈τ 〉 . (3.5)

We say that F is balanced at τ if
∑s

i=1 miωσi |τ ∈ Z
n ∩R〈τ 〉. The fan F is balanced

if it is balanced at each of its codimension one cones.

Remark 3.22 By construction, the lattice �i in (3.5) is free of rank one. It has one
generator, up to sign. Even though there are many choices for ωσi |τ , their projections
onto �i give the same generator of the lattice.

Our last statement in this section confirms that the balancing condition holds for
local tropicalizations of equidimensional germs in C

n meeting the dense torus (C∗)n .
Its validity follows from [49, Remark 11.3, Theorem 12.10]:

Theorem 3.23 Let (Y , 0) ↪→ C
n be an equidimensional germ meeting (C∗)n and let

F be any refinement of a standard tropicalizing fan for Y . Then, F is a balanced fan
when endowed with tropical multiplicities as in Definition 3.20.

Remark 3.24 Balancing for local tropicalizations of equidimensional germs of sur-
faces features in the proof of Proposition 6.26. This property will help us prove that
the embedded splice diagrams in R

n are included in the local tropicalizations of the
corresponding splice type systems (see Sect. 6.3). Tropical multiplicities will be also
used in Sect. 8 to recover the edge weights on any coprime splice diagram � from the
local tropicalization of any splice type surface singularity associated to it.
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4 Newton non-degeneracy

In this section we discuss the notion of Newton non-degenerate complete intersection
in the sense of Khovanskii [22], starting with the case of formal power series in Ô, as
introduced byKouchnirenko in [24, Sect. 8] and [25, Definition 1.19]. Kouchnirenko’s
definition was later extended by Steenbrink [53, Definition 5] to C-algebras of formal
power series C[[P]] with exponents on an arbitrary saturated sharp toric monoid P .
For precursors to this notion we refer the reader to Teissier’s work [55, Sect. 5].

Definition 4.1 Given a series f ∈ Ô, we say that f is Newton non-degenerate if
for any positive weight vector w ∈ (R>0)

n , the subvariety of the dense torus (C∗)n

defined by inw( f ) is smooth.

Example 4.2 We consider the E8 singularity from Example 3.7, defined by f = z21 +
z32 + z53. Its local tropicalization is depicted in Fig. 2. Since inw( f ) is a monomial
whenever w /∈ Trop>0 Z( f ), the Newton non-degeneracy condition only needs to be
checked for w ∈ Trop>0 Z( f ).

The calculations are simplified since Trop>0 Z( f ) is a subfan of the normal fan to
the Newton polyhedron of f . If w ∈ R>0〈wu〉, we have inw( f ) = f . In turn, weight
vectors in the relative interiors of maximal cones of Trop>0 Z( f ) satisfy

inw( f ) =

⎧
⎪⎨

⎪⎩

z32 + z53 if w ∈ R>0〈e1, wu〉,
z21 + z53 if w ∈ R>0〈e2, wu〉,
z21 + z32 if w ∈ R>0〈e3, wu〉.

All four initial forms describe surfaces that are smooth when restricted to the torus
(C∗)3. Thus, Z( f ) is Newton non-degenerate.

The notion of Newton non-degeneracy extends naturally to finite sequences of
functions. For our purposes, it suffices to restrict ourselves to regular sequences, i.e.,
collections ( f1, . . . , fs) in Ô where

1. f1 is not a zero divisor of Ô, and
2. for each i ∈ {1, . . . , s − 1}, the element fi+1 is not a zero divisor in the quotient

ring Ô/〈 f1, . . . , fi 〉Ô.

As Ô is a regular local ring, the germs defined by regular sequences in Ô are exactly
formal complete intersections at the origin of C

n .

Definition 4.3 Fix a positive integer s and a regular sequence ( f1, . . . , fs) in Ô.
Consider the germ (Y , 0) ↪→ C

n defined by the ideal 〈 f1, . . . , fs〉Ô. The sequence
( f1, . . . , fs) is a Newton non-degenerate complete intersection system for (Y , 0) if
for any positive weight vector w ∈ (R>0)

n , the hypersurfaces of (C∗)n defined by
each inw( fi ) form a normal crossings divisor in a neighborhood of their intersec-
tion. Equivalently, the differentials of the initial forms inw( f1), . . . , inw( fs) must be
linearly independent at each point of this intersection.

Remark 4.4 Notice that Definition 4.3 allows for the initial forms to be monomials.
This would determine an empty intersection with the dense torus (C∗)n .

123



M. A. Cueto et al.

Our main result in this section is a useful tool for proving that a regular sequence
in Ô defines a Newton non-degenerate system. We make use of this statement in
Theorem 7.3:

Proposition 4.5 Let s be a positive integer, ( f1, . . . , fs) be a sequence in Ô and
w be a weight vector in (R>0)

n. Assume that (inw( f1), . . . , inw( fs)) is a regular
sequence in C[z1, . . . , zn] defining a subscheme Zw of C

n. If p is a smooth point of
Zw ∩ (C∗)n, then the differentials at p of the initial forms inw( f1), . . . , inw( fs) are
linearly independent.

Proof Fix any point p ∈ Zw ⊆ (C∗)n . Our regularity hypothesis implies that
dim(Zw) = n − s. Since p is a smooth point of Zw , by [8, Lemma 4.3.5] we know
that OZw,p is a regular local ring of dimension dim(Zw). Furthermore, this quantity
equals the embedding dimension edim(OZw,p) of the local ring OZw,p.

In turn, the Jacobian criterion for smoothness (see, e.g., [8, Theorem 4.3.6]) enables
us to compute the rank of the n × s Jacobian matrix of the initial forms {inw( fi )}si=1
evaluated at p, in terms of n and this embedding dimension. More precisely, we have

rk p(Jac(inw( f1), . . . , inw( fs))) = n − edim(OZw,p) = n − (n − s) = s.

This implies that the differentials of the initial forms inw( f1), . . . , inw( fs) are linearly
independent at p. 	

Example 4.6 Weconsider the splice type system fromExample 3.9.As claimedbyThe-
orem 1.1, the germ defined by it is Newton non-degenerate. By Remark 4.4 we need
only focus onweightsw ∈ Trop>0〈 fu, fv〉O. A direct computation using Lemma 2.19
shows that the initial forms of fu and fv are constant along the relative interiors of
maximal cones of Trop>0〈 fu, fv〉O. We check that the Newton non-degeneracy con-
dition is satisfied for w in two of the five maximal cones. The remaining three cases
are similar.

Pick w ∈ R>0〈wu, wv〉. Then, inw( fu) = z21 + z32 and inw( fv) = z53 + z24.
Their differentials are 2 z1 dz1 + 3 z22 dz2 and 5 z43 dz3 + 2 z4 dz4, so they are lin-
early independent everywhere in the torus (C∗)4. Similarly, if w ∈ R>0〈e1, wu〉,
we have inw( fu) = z32 + z3 z4 and inw( fv) = z53 + z24. Their differentials are
3 z22 dz2 + z4 dz3 + z3 dz4 and 5 z43 dz3 + 2z4 dz4. They are also linearly indepen-
dent everywhere in (C∗)4.

Remark 4.7 Definition 4.3 modifies slightly Khovanskii’s original definition from [22,
Remark 4 of Sect. 2.4], by imposing the regularity of the sequence ( f1, . . . , fs). The
generalization to formal power series C[[P]] associated to an arbitrary sharp toric
monoid P is straightforward, and parallels that done by Steenbrink [53] for hyper-
surfaces. A slightly different notion of Newton non-degenerate ideals was introduced
by Saia in [50] for ideals of finite codimension in Ô. For a comparison with Kho-
vanskii’s approach we refer the reader to Bivià-Ausina’s work [5, Lemma 6.8]. For a
general perspective on Newton non-degenerate complete intersections, the reader can
consult Oka’s book [41]. A definition of Newton non-degenerate algebraic subgerms
of (Cn, 0) for not necessarily complete intersections was given by Aroca, Gómez-
Morales and Shabbir [2]. The results of their paper (and the proofs involving Gröbner
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bases) can be extended to the analytic and formal contexts by working with standard
bases, in the spirit of [49]. Recent work of Aroca, Gómez-Morales and Mourtada
[3] generalize the constructions from [2] to subgerms of arbitrary normal affine toric
varieties.

5 Embeddings and convexity properties of splice diagrams

In this section, we describe simplicial fans in the real weight space N (∂ �)⊗Z R � R
n

that arise from splice diagrams and appropriate subdiagrams. These constructions will
play a central role in Sect. 6 when characterizing local tropicalizations of splice type
surface singularities. Throughout this section we assume that the splice diagram �

satisfies the edge determinant condition of Definition 2.9. The semigroup condition
from Definition 2.13 plays no role.

We let �n−1 be the standard (n − 1)-simplex of the real weight space R
n , with

vertices {wλ : λ ∈ ∂ �}. We start by defining a piecewise linear map from � to �n−1:

ι : �→ �n−1 where ι(v) = wv

|wv| for each vertex v of �. (5.1)

Here, |·| denotes the L1-norm in R
n . In particular, |wv| =∑

λ∈∂ � �v,λ for each node
v of �. After identifying each edge e of � with the interval [0, 1], the map ι on e is
defined by convex combinations of the assignment at its endpoints. The injectivity of
ι will be discussed in Theorem 5.11.

The following combinatorial constructions, in particularDefinitions 5.1, 5.3 and5.4,
play a prominent role in proving Theorem 6.2. Stars of vertices (see Definition 2.1)
and convex hulls of vertices (see Definition 2.3) are central to many arguments below.

Definition 5.1 A subtree T of the splice diagram � is star-full if Star�(v) ⊆ T for
every node v of T . A node of T is called an end-node if it is adjacent to exactly one
other node of T .

Every tree with two or more nodes contains at least two end-nodes. The following
statement, illustrated in Fig. 4, describes a method to produce new star-full subtrees
from old ones by pruning from an end-node. Its proof is straightforward, so we omit
it.

Lemma 5.2 Let T be a star-full subtree of � with d leaves {u1, . . . , ud}. Fix an end-
node v of T and assume that u1, . . . , uδv−1 are the only leaves of T adjacent to v.
Then, the convex hull T ′ := [v, uδv , . . . , ud ] is also star-full.

Definition 5.3 A branch of a tree T adjacent to a node v is a connected component of

T �

⎛

⎝{v} ∪
⋃

e∈Star�(v)

e◦
⎞

⎠ ,

where e◦ denotes the interior of the edge e.
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Fig. 4 Pruning a star-full subtree T of � from an end-node v of T produces a new star-full subtree T ′ with
one fewer node, as in Lemma 5.2. Here, s = δv − 1 and s′ = δv′ − 1

For example, {u1}, . . . , {us} and the convex hull [v′, T1, . . . Ts′ ] constructed inside the
tree T on the left of Fig. 4 are the δv branches of T adjacent to the node v. Similarly,
the branches of T ′ adjacent to v′ are T1, . . . , Ts′ and {v}.

Star-full subtrees of splice diagrams have a key convexity property rooted in
barycentric calculus. This is the content of Proposition 5.10. The following defini-
tion plays a crucial role in its proof.

Definition 5.4 Let v be a node of � and let L be a set of leaves of �. We define
Bar(L; v) as the barycenter of the leaves in L with weights determined by wv , that is:

Bar(L; v) :=
∑

λ∈L

�v,λ

�
wλ where � :=

∑

λ∈L

�v,λ. (5.2)

In particular, Bar({λ}; v) = wλ for any leaf λ.

Remark 5.5 Fix a node v of � with adjacent branches �1, . . . , �δv . Then, the set
{Bar(∂ �i ; v) : i = 1, . . . , δv} is linearly independent, and a direct computation gives

ι(v) =
δv∑

j=1

⎛

⎝ 1

|wv|
∑

λ∈∂ � j

�v,λ

⎞

⎠ Bar(∂ � j ; v). (5.3)

In particular, ι(v) lies in the relative interior of the simplex conv({Bar(∂ � j ; v) : j =
1, . . . , δv})

)
, where conv denotes the affine convex hull inside �n−1.

Following the notation from Definition 2.13, we write ∂a� := ∂b,[a,b]� and

∂b� := ∂a,[a,b]� for each pair of adjacent nodes a, b of �. Barycenters determined
by splitting � along the edge [a, b] are closely related, as the following lemma shows:

Lemma 5.6 Let a, b be two adjacent nodes of �, with associated sets of leaves ∂a�

and ∂b� on each side of �. Then:

1. Bar(∂a�; a) = Bar(∂a�; b) and Bar(∂b�; a) = Bar(∂b�; b) (which we denote by
Bar(∂a�; [a, b]) and Bar(∂b�; [a, b]) , respectively).

2. The points ι(a)and ι(b) lie in the line segment [Bar(∂a�; [a, b]),Bar(∂b�; [a, b])].

123



Local tropicalizations of splice type surface singularities

3. Bar(∂a�; [a, b]) < ι(a) < ι(b) < Bar(∂b�; [a, b]), where < is the order given
by identifying the segment [Bar(∂a�; [a, b]),Bar(∂b�; [a, b])] with [0, 1].

Proof We start by showing (1). Definition 2.6 induces the following identities:

�b,λ = �a,λ

�a,b

da
for all λ ∈ ∂a�, and �a,μ = �b,μ

�a,b

db
for all μ ∈ ∂b�.

(5.4)
Thus, a and b contribute proportional weights to ∂a� and ∂b�, respectively. This
implies that the corresponding barycenters agree, proving (1).

Next, we discuss (2). To simplify notation, we write w = Bar(∂a�; [a, b]) and
w′ = Bar(∂b�; [a, b]). Then, (5.4) yields:

wa =
⎛

⎝
∑

λ∈∂a�

�a,λ

⎞

⎠ w +
⎛

⎝
∑

μ∈∂b�

�a,μ

⎞

⎠ w′

and wb =
⎛

⎝
∑

λ∈∂a�

�b,λ

⎞

⎠ w +
⎛

⎝
∑

μ∈∂b�

�b,μ

⎞

⎠ w′.

The definition of ι then confirms that ι(a) and ι(b) are convex combinations of w and
w′.

It remains to prove (3). The condition w < ι(a) < ι(b) < w′ claimed in (3) is
equivalent to:

⎛

⎝
∑

λ∈∂a�

�a,λ

⎞

⎠

⎛

⎝
∑

μ∈∂b�

�a,μ

⎞

⎠

−1
>

⎛

⎝
∑

λ∈∂a�

�b,λ

⎞

⎠

⎛

⎝
∑

μ∈∂b�

�b,μ

⎞

⎠

−1
.

Rearranging these expressions by sums with common indexing sets and simplifying
further using (5.4) yields the equivalent identity:

1 >

⎛

⎝
∑

λ∈∂a�

�b,λ

⎞

⎠

⎛

⎝
∑

λ∈∂a�

�a,λ

⎞

⎠

−1 ⎛

⎝
∑

μ∈∂b�

�a,μ

⎞

⎠

⎛

⎝
∑

μ∈∂b�

�b,μ

⎞

⎠

−1
= �a,b

da

�a,b

db
.

(5.5)
The edge determinant condition for [a, b] confirms the validity of (5.5), and so (3)
holds. 	


Our next result shows that the image under ι of the vertices adjacent to a fixed node
v satisfy a convexity property analogous to that of Remark 5.5:

Proposition 5.7 Let v be a node of �, with adjacent vertices u1, . . . , uδv . Then:

1. {ι(ui ) : i = 1, . . . , δv} is linearly independent;
2. ι(v) ∈ ( conv({ι(u j ) : j = 1, . . . , δv})

)◦
.
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Proof Both statements are clear if v is only adjacent to leaves of � (i.e., when � is a
star splice diagram), so we may assume v is adjacent to some node of �. Thus, up to
relabeling if necessary, we suppose {u1, . . . , us} are leaves of � and {us+1, . . . , uδv }
are nodes of � (we set s = 0 if v is only adjacent to nodes).

For each j ∈ {1, . . . , δv}, we let � j be the branch of � adjacent to v containing u j ,
and set w j := Bar(∂ � j ; v). Lemma 5.6 (2) and the definition of barycenters ensures
the existence of α j ∈ (0, 1] satisfying

ι(u j ) = α jw j + (1− α j )ι(v) for each j ∈ {1, . . . , δv}, (5.6)

with α j = 1 if and only if j ∈ {1, . . . , s}.
We start by proving (1). We fix a linear relation

∑δv

j=1 β j ι(u j ) = 0. Substitut-
ing (5.6) into this dependency relation yields

δv∑

j=1
(β j α j ) w j + Bι(v) = 0 where B :=

δv∑

j=1
β j (1− α j ). (5.7)

We claim that B = 0. Indeed, assuming this is not the case, we use (5.7) to write ι(v)

in terms of w1, . . . , wδv . Comparing this expression with (5.3) and using the linear
independence of {w1, . . . , wδv } gives:

β j α j = − B

|wv|
∑

λ∈∂ Tj

�v,λ for each j ∈ {1, . . . , δv}. (5.8)

In particular, all βi are non-zero and have the same sign, namely the opposite sign to
B. Summing up the expressions (5.8) over all j yields

∑δv

j=1 β j = 0, which cannot
happen due to the sign constraint on the β j ’s. From this it follows that B = 0.

Since B = 0, the linear independence of {w1, . . . , wδv } forces β jα j = 0 for all
j . Combining this with our assumption that α j > 0 for all j , gives β j = 0 for all
j = 1, . . . , δv , thus confirms (1).
To finish, we discuss (2). We let q1, . . . , qδv be the coefficients used in (5.3) to

write ι(v) as a convex combination of w1, . . . , wδv . Substituting the value of each w j

obtained from (5.6) in expression (5.3) yields:

ι(v) =
s∑

j=1

q j

A
ι(u j )+

δv∑

j=s+1

q j

A α j
ι(u j ) where A := 1+

δv∑

j=s+1

q j (1− α j )

α j
.

(5.9)
The conditions 0 < α j < 1 for j ∈ {s + 1, . . . , δv}, and the definition of
q1, . . . , qδv ensure that the right-hand side of (5.9) is a positive convex combination
of ι(u1), . . . , ι(uδv ), as we wanted to show. 	


Each subtree T of � determines a polytope via the map ι:

�T := conv({ι(u) : u ∈ ∂ T }) ⊆ �n−1. (5.10)
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For example, �� is the standard simplex �n−1. We view the next result as a key
convexity property of star-full subtrees of splice diagrams.

Lemma 5.8 Fix a star-full subtree T of �. For every node u of T , ι(u) admits an
expression of the form

ι(u) =
∑

μ∈∂ T

αμ ι(μ) with
∑

μ∈∂ T

αμ = 1 and αμ > 0 for all μ ∈ ∂ T .

(5.11)
In particular, ι(T ) ⊂ �T .

Proof We let p be the number of nodes of T and proceed by induction on p. The
statement is vacuous for p = 0. If p = 1, then T is a star tree and the result follows
by Proposition 5.7 (2). For the inductive step, we let p ≥ 2 and suppose that the result
holds for star-full subtrees with (p − 1) nodes.

We fix ∂ T = {u1, . . . , ud} and we let v be an end-node of T . Following Fig. 4,
we let v′ be the unique node of T adjacent to v and assume that u1, . . . , uδv−1 are
adjacent to v. Proposition 5.7 (2) applied to Star�(v) gives

ι(v) = β0 ι(v′)+
δv−1∑

j=1
β j ι(u j ) with

δv−1∑

j=0
β j = 1 and β j > 0 for all j .

(5.12)
Using Lemma 5.2, we let T ′ be the star-full subtree of� obtained by pruning T from

v. By construction, T ′ has (p − 1) nodes and its leaves are {v} ∪ {uδv , . . . , ud}. The
inductive hypothesis yields the following expressions for v′ and all other (potential)
nodes u �= v′ of T ′:

ι(v′) = γ0 ι(v)+
d∑

j=δv

γ j ι(u j ) and ι(u) = α0 ι(v)+
d∑

j=δv

α j ι(u j ), (5.13)

withα0 +
∑d

j=δv

αi = γ0 +
∑d

j=δv

γ j = 1 andαi , γi > 0 for all i ∈ {0, δv, . . . , d}.
Since 0 < γ0β0 < 1, substituting the expression for ι(v′) obtained from (5.13)
into (5.12) produces the desired positive convex combination for ι(v):

ι(v) =
δv−1∑

j=1

β j

1− γ0β0
ι(u j )+

d∑

j=δv

β0γ j

1− γ0β0
ι(u j ).

In turn, substituting this identity in both expressions from (5.13) gives the positive
convex combination statement for all remaining nodes of T . The inclusion ι(T ) ⊂ �T

follows by the convexity of �T . 	

Proposition 5.7 and Lemma 5.8 combined have the following natural consequence:
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Corollary 5.9 For each pair of star-full subtrees T , T ′ of � with T ′ ⊆ T , we have
�T ′ ⊆ �T .

Our next result is a generalization of Proposition 5.7 and it highlights a key com-
binatorial property shared by � and all its star-full subtrees.

Proposition 5.10 Let T be a star-full subtree of �. Then:

1. the weights {ι(u) : u ∈ ∂ T } are linearly independent;
2. �T is a simplex of dimension |∂ T | − 1;
3. for each node v of T we have ι(v) ∈ �T

◦.

Proof Item (2) is a direct consequence of (1). In turn, item (3) follows from (2)
and Lemma 5.8. Thus, it remains to prove (1). We distinguish two cases, depend-
ing on the number of nodes of T , denoted by p.

Case 1: If p < 2, then T is either a vertex, an edge of �, or a star tree. If T is a vertex
of �, then the claim holds because ι(u) �= 0 for any vertex u of �. If T is a star tree,
the statement agrees with Proposition 5.7 (1).

Next, assume T is an edge of �. We consider two scenarios. First, if T joins a
leaf λ and a node u of �, then the result follows immediately since ι(u) and wλ are
linearly independent. On the contrary, assume T joins two adjacent nodes of �, say
u and v. Pick two leaves λ,μ of � with u ∈ [λ, v] and v ∈ [u, μ] (i.e., λ is on
the u-side and μ is on the v-side of �, as seen from the edge [u, v]). Lemma 2.8
yields the following formula for the (λ, μ)-minor of the matrix (wu |wv), involving
the determinant det([u, v]) of the edge [u, v], as defined in (2.1):

(
�λ,u �λ,v

�μ,u �μ,v

)

= �λ,u �μ,v

du,vdv,u − �u,v

du,vdv,u
= �λ,u �μ,v det([u, v])

du,vdv,u
.

The last expression is positive by the edge determinant condition, so {ι(u), ι(v)} is
linearly independent.

Case 2: If p ≥ 2, we know that d := |∂ T | ≥ 4. We prove the result by reverse
induction on d. When d = n, we have T = � and there is nothing to prove since
ι(λ) = wλ for all λ ∈ ∂ �. For the inductive step, we take d < n and label the leaves
of T by u1, u2, . . . , ud . We assume that the linear independence holds for any star-full
subtree with k ≥ d + 1 leaves. Without loss of generality we assume u1 is a node of
� (one must exist since T �= � is star-full). Set s = δu1 − 1.

Next, we define T ′ := T ∪ Star�(u1). By construction, T ′ is a star-full subtree of
� with (d + s − 1) leaves. Since u1 is a node of T ′, Lemma 5.8 applied to T ′ yields a
positive convex combination:

ι(u1) =
∑

v∈∂ T ′
βv ι(v) with

∑

v∈∂ T ′
βv = 1 and βv > 0 for all v ∈ ∂ T ′.

(5.14)
To prove the linear independence for the d points ι(u1), . . . , ι(ud), we fix a potential

dependency relation
∑d

j=1 α j ι(u j ) = 0. Substituting (5.14) into it gives a linear
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dependency relation for the leaves of T ′:

d∑

j=2
(α j + α1 βu j ) ι(u j )+

d+s∑

j=d+1
(α1 βu j )ι(u j ) = 0,

where {ud+1, . . . , ud+s} are the leaves of T ′ adjacent to u1. The inductive hypothesis
applied to T ′ and the positivity of each βv with v ∈ ∂ T ′ forces α j = 0 for all
j = 1, . . . , d. Thus, (1) holds. 	

Next, we state the main result in this section, which is a natural consequence

of Lemma 5.8:

Theorem 5.11 The map ι from (5.1) is injective.

Proof We prove that the statement holds when restricted to any star-full subtree T of
�. As in the proof of Lemma 5.8, we argue by induction on the number p of nodes
of T . If p = 0, then T is either a vertex u or an edge [u, v]. The statement in the
first case is tautological. The result for the second one holds by construction because
{ι(u), ι(v)} is linearly independent by Proposition 5.7 (1).

If p = 1, then T is a star tree. Let v be its unique node and {u1, . . . , uδv } be its
leaves. Injectivity over T is a direct consequence of the following identity:

ι([ui , v]) ∩ ι([u j , v]) = {ι(v)} for all i �= j,

which we prove by a direct computation. Indeed, pick 0 ≤ a ≤ b ≤ 1 with

a ι(ui )+ (1− a) ι(v) = b ι(u j )+ (1− b) ι(v). (5.15)

By Proposition 5.7 (2), ι(v) admits a unique expression:

ι(v) =
δv∑

k=1
αk ι(uk) with

δv∑

k=1
αk = 1 and αk > 0 for all k.

Substituting this identity in (5.15) yields the following affine dependency relation for
ι(∂ T ):

(a + (b − a)αi )ι(ui )+ ((b − a)α j − b)ι(u j )+
∑

k �=i, j

αk(b − a)ι(uk) = 0

By Proposition 5.7 (1), we conclude that a + (b − a)αi = (b − a)α j − b = 0 and
αk(b − a) = 0 for all k �= i, j . Since αk > 0 for all k �= i, j and δv ≥ 3, it follows
that b − a = 0 and a = −b = 0. Therefore, expression (5.15) represents ι(v).

Finally, pick p ≥ 2 and assume the result holds for star-full subtrees with p − 1
nodes. Let T be a star-full subtree with p nodes and pick an end-node v of T . As in
Fig. 4, write v′ for the unique node of T adjacent to it and {u1, . . . , uδv−1} for the
leaves of T adjacent to v.
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As in Lemma 5.2, let T ′ be the star-full subtree obtained by pruning T from v. Our
inductive hypothesis ensures that ι is injective when restricted to T ′. By the p = 1
case we know that ι([v, ui ]) ∩ ι([v, u j ]) = {ι(v)} if i �= j . Thus, the injectivity of ι

when restricted to T will be proven if we show:

ι([v, ui ]) ∩ ι(T ′) = {ι(v)} for all i = 1, . . . , δv − 1. (5.16)

The identity follows from Proposition 5.10. Indeed, we write any w on the left-hand
side of (5.16) as

w := aι(ui )+ (1− a)ι(v) ∈ ι([v, ui ]) ∩ ι(T ′) with 0 ≤ a ≤ 1. (5.17)

Recall that w ∈ ι(T ′) ⊂ �T ′ and �T ′ ⊂ �T by Corollary 5.9. Since ι(v) ∈ (�T )◦
as in Proposition 5.10 (3), substituting this expression into (5.17) and comparing it
with the known expression for w as an element of �T yields an affine dependency
equation for {ι(u) : u ∈ ∂ T }. The positivity constraint on the coefficients used to write
ι(v) as an element of (�T )◦ forces a = 0, and so (5.16) holds. 	


6 Local tropicalization of splice type systems

Let � be a splice diagram with n leaves and let S(�) be a splice type system asso-
ciated to it, as in Definition 2.14. Fixing a total order on ∂ � yields an embedding of
the corresponding splice type singularity (X , 0) into C

n . In this section we describe
the local tropicalization of this embedded germ, following the characterization from
Definition 3.4. As a byproduct, we confirm the first half of Theorem 1.1, namely that
(X , 0) is a complete intersection in C

n with no irreducible components contained in
any coordinate subspace.

The injectivity of the map ι from (5.1), discussed in Theorem 5.11, fixes a natural
simplicial fan structure on the cone over ι(�) in R

n :

Definition 6.1 Let � be a splice diagram. Then, the set R≥0ι(�) has a natural fan
structure, with top-dimensional cones

{R≥0ι([u, v]) : [u, v] is an edge of �}.

We call it the splice fan of �.

Here is the main result of this section:

Theorem 6.2 The local tropicalization of (X , 0) ↪→ C
n is supported on the splice fan

of �.

We prove Theorem 6.2 by a double inclusion argument, first restricting our atten-
tion to the positive local tropicalization. In Sect. 6.1 we show that the positive local
tropicalization of S(�) is contained in the support of the splice fan of �. We prove
this fact by working with simplices associated to star-full subtrees of �, which were
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introduced in Definition 5.1. For clarity of exposition, we break the arguments into
a series of combinatorial lemmas and propositions. These results allow us to certify
that the ideal generated by the w-initial forms of all the series Fv,i in S(�) always
contains a monomial when w lies in the complement of the splice fan of � in (R>0)

n .
In turn, showing that the support of the splice fan of � lies in the Euclidean closure

of the local tropicalization of (X , 0) involves the so-called balancing condition for
pure-dimensional local tropicalizations. This is the subject of Sect. 6.3. An alternative
proof will be given in Sect. 7 after proving the Newton non-degeneracy of the germ
(X , 0).

The fact that the positive local tropicalization of (X , 0) is pure-dimensional is
verified in an indirect way. Our proof technique relies on the explicit computation of
the boundary components of the extended tropicalization, which is done in Sect. 6.2.
This establishes the first half of Theorem 1.1 discussed above (see Corollary 6.20).
As a consequence, we confirm by Corollary 6.22 that the local tropicalization is the
Euclidean closure of the positive one. This result togetherwith the findings in Sects. 6.1
and 6.3 complete the proof of Theorem 6.2.

Remark 6.3 Throughout the next subsections, we adopt the following convenient nota-
tion for the admissible exponent vectors mv,e from (2.5). Given a node v and a vertex
u of � with u �= v, we define mv,u := mv,e where e is the unique edge adjacent
to v and lying in the geodesic [v, u]. Similarly, given a star-full subtree T of � not
containing v, we write mv,T := mv,u , where u is any vertex of T .

6.1 The positive local tropicalization is contained in the support of the splice fan

In this subsection we show that the only points in �n−1 contained in the positive local
tropicalization Trop>0〈S(�)〉 are included in ι(�). We exploit the terminology and
convexity results stated in Sect. 5.

Our first technical result will be used extensively throughout this section to deter-
mine Trop>0〈S(�)〉. As the proof shows, the Hamm determinant conditions imposed
on the system S(�) play a crucial role.

Lemma 6.4 Fix a node v of � and let e, e′, e′′ be three distinct edges of Star�(v).
Fix w ∈ (R≥0)n and suppose that the admissible exponent vectors mv,e, mv,e′, mv,e′′
from (2.5) satisfy:

w · mv,e < w · mv,e′ and w · mv,e < w · mv,e′′ . (6.1)

Then, zmv,e = inw( f ) for some f in the linear span of { fv,i : i = 1 . . . , δv − 2}. If, in
addition, w satisfies

w · mv,e < w · m for each m ∈
δv−2⋃

i=1
Supp(gv,i ), (6.2)

then zmv,e = inw(F) for some series F in the linear span of {Fv,i : i = 1 . . . , δv − 2}.
In particular, w /∈ Trop〈S(�)〉.
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Proof We let e1, . . . , eδv be the edges adjacent to v and assume that eδv−2 := e,
eδv−1 := e′ and eδv := e′′. Using the Hamm determinant conditions, we build a basis
{ f ′v,i }δv−2

i=1 for the linear span of { fv,i }δv−2
i=1 where

f ′v,i := zmv,ei + ai zmv,e′ + bi zmv,e′′ for each i ∈ {1, . . . , δv − 2}.

From (6.1) we conclude that inw( f ′v,δv−2) = zmv,e . Taking f := f ′v,δv−2 proves the
first part of the statement.

For the second part, the technique yields a new basis {F ′v,i }δv−2
i=1 for the linear span

of {F ′v,i }δv−2
i=1 with

F ′v,i = f ′v,i + g′v,i for each i ∈ {1, . . . , δv − 2},

where each g′v,i is a linear combination of {gv, j }δv−2
j=1 . Condition (6.2) then ensures

that

inw(F ′v,δv−2) = inw( f ′v,δv−2) = zmv,e .

Thus, the series F = F ′v,δv−2 satisfies the required properties. In particular, the ideal
inw(〈S(�)〉) contains the monomial zmv,e and so w /∈ Trop〈S(�)〉 by definition. 	


Next, we state the main theorem in this subsection, which yields one of the required
inclusions in Theorem 6.2 when choosing T = �. More precisely:

Theorem 6.5 For every star-full subtree T of �, we have �T ∩Trop>0〈S(�)〉 ⊆ ι(T ).

Proof Recall from (5.10) that�T is the convex hull of the set of leaves ∂ T of T , viewed
in �n−1 via the map ι. We proceed by induction on the number of nodes of T , which
we denote by p. If p = 0, then T is either a vertex or an edge of �, and �T = ι(T ).
For the inductive step, assume p ≥ 1 and pick a node v of T . Let T1, . . . , Tδv be the
branches of T adjacent to v, as in Definition 5.3. We use the point ι(v) to perform a
stellar subdivision of �T , giving a decomposition �T =⋃

λ∈∂ T τv,λ, where

τv,λ := conv({ι(v)} ∪ ι(∂ T � {λ})) for all λ ∈ ∂ T . (6.3)

By Lemma 5.8, τv,λ is a simplex of dimension |∂ T | − 1. Proposition 6.7 below
shows that τv,λ ∩ Trop>0 S(�) lies in the boundary of τv,λ. In turn, Proposition 6.10
below ensures that

∂τv,λ ∩ Trop>0〈S(�)〉 ⊆
⋃

1≤i≤δv
i �= j

�[Ti ,v],

where Tj is the unique branch of T adjacent to v that contains the leaf λ, and [Ti , v]
denotes the convex hull in � of Ti ∪ {v}. Combining this fact with the inductive
hypothesis applied to all star-full subtrees [Ti , v] of � with i ∈ {1, . . . , δv} gives
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�T ∩ Trop>0〈S(�)〉 ⊆
δv⋃

i=1
(�[Ti ,v] ∩ Trop>0〈S(�)〉) ⊆

δv⋃

i=1
ι([Ti , v]) ⊆ ι(T ). (6.4)

	

As a natural consequence of this result, we deduce one of the two inclusions required

to confirm Theorem 6.2:

Corollary 6.6 The positive local tropicalization of S(�) is contained in the support of
the splice fan of �.

In the remainder of this subsection, we discuss the two key propositions used in
the proof of Theorem 6.5. We start by showing that the relative interior of any of the
top-dimensional simplices τv,λ from (6.3) obtained from the stellar subdivision of �T

induced by a node v of T does not meet Trop>0〈S(�)〉. Lemma 6.4 plays a central
role. The task is purely combinatorial and the difficulty lies in how to select the triple
of admissible exponent vectors required by the lemma. Throughout, we make use of
branches of subtrees, which were introduced in Definition 5.3.

Proposition 6.7 Let T be a star-full subtree of � and λ ∈ ∂ T . Consider the simplex
τv,λ defined by (6.3). Then, its relative interior τv,λ

◦ is disjoint from Trop>0〈S(�)〉.
Proof Let u be the unique node of T adjacent to λ, and denote by T1, . . . , Tδu the
branches of T adjacent to u. We assume that Tδu = {λ} and fix any w ∈ τv,λ

◦. Since
τv,λ is a simplex, we can write w uniquely as

w = αvι(v)+
δu−1∑

j=1
w j where w j :=

∑

μ∈∂ Tj

αμ, j ι(μ) for all j ∈ {1, . . . , δu−1},

(6.5)
and αv , αμ, j > 0 for all μ ∈ ∂ Tj .

In what follows we analyze the w-initial forms of the series Fu,i from S(�) for
i ∈ {1, . . . , δu − 2} and use Lemma 6.4 to confirm that w /∈ Trop〈S(�)〉. To this end,
we compare the w-weights of zmu,λ and of the remaining monomials in Fu,i , for each
i ∈ {1, . . . , δu − 2}. We treat the monomials appearing in fu,i and gu,i separately.

Lemma 6.8 discusses the monomials in gu,i and confirms that the required condi-
tion (6.2) of Lemma 6.4 holds for mu,λ. In turn, Lemma 6.9 verifies that we can find
two edges e′, e′′ of T adjacent to u satisfying the inequalities (6.1) for e = [u, λ].
Therefore, Lemma 6.4 applied to the node u confirms that zmu,λ is the w-initial form
of a series in the linear span of {inw(Fu,i ) : i = 1, . . . , δu−2}. Thus,w /∈ Trop〈S(�)〉
as we wanted to show. 	


In the next two lemmas we place ourselves in the setting of Proposition 6.7. In
particular, we use the notations introduced in its proof.

Lemma 6.8 Let w be a weight vector satisfying condition (6.5). Then, for each i ∈
{1, . . . , δu − 2} and each monomial zm appearing in gu,i we have

w · mu,λ < w · m . (6.6)
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Proof First, we compare the w-weights of zmu,λ and all the monomials zm appearing
in gu,i . We do so by looking at the weight contributed by each summand of w in the
decomposition (6.5). Lemma 2.19 and conditions (2.10) ensure that

ι(v) · mu,λ = �u,v

|wv| < ι(v) · m . (6.7)

In turn, to compare the w j -weights of the monomials zmu,λ and zm , we notice that
the only summands αμ, j ι(μ) of w j contributing a positive weight to zmu,λ are the
ones coming from those μ ∈ ∂ Tj that are nodes in �. Again, Lemma 2.19 and the
conditions on gu,i listed in (2.10) confirm that

ι(μ) · mu,λ = �u,μ

|wμ| < ι(μ) · m for all μ ∈ ∂ Tj � ∂ �.

Combining this inequalitywith the positivity of the coefficientsαμ, j yields the inequal-
ity

w j ·mu,λ =
∑

μ∈∂ Tj �∂ �

αμ, j
�u,μ

|wμ| ≤
∑

μ∈∂ Tj �∂ �

αμ, j (ι(μ)·m) ≤ w j ·m for 1 ≤ j < δu .

(6.8)
Furthermore, the leftmost inequality is strict if the set ∂ Tj � ∂ � is non-empty.

Finally, the positivity of αv together with the inequalities (6.7) and (6.8) ensure that
each m in the support of gu,i satisfies the inequality (6.6). This concludes our proof. 	

Lemma 6.9 Let w be a weight vector verifying condition (6.5). Then, there exist two
different edges e′, e′′ adjacent to the node u of � satisfying

w · mu,λ < w · mu,e′ and w · mu,λ < w · mu,e′′ .

Proof We use the notation mu,T introduced in Remark 6.3. It is enough to find two
different branches Tj1 and Tj2 of T adjacent to u with j1, j2 < δv , and verifying

w · mu,λ < w · mu,Tj1
and w · mu,λ < w · mu,Tj2

. (6.9)

Our choice will depend on the nature of u. If u = v we pick any pair of distinct
indices j1, j2 < δv . On the contrary, if u �= v we take Tj1 to be the unique branch of
T adjacent to u containing v, and let Tj2 be any other branch of T adjacent to u not
containing λ with j2 < δv . After relabeling, we may assume that j1 = 1 and j2 = 2.

In the remainder, we confirm that these two branches satisfy the inequalities in (6.9)
by analyzing the contributions of each summand ofw in the decomposition (6.5) to the
total weight of each of the three relevant monomials. We follow the same reasoning
as in the proof of Lemma 6.8. Lemma 2.19 is again central to our computations.

We start with the contribution of ι(v). The lemma confirms that

ι(v) · mu,λ = �u,v

|wv| = min{ι(v) · mu,T1 , ι(v) · mu,T2}. (6.10)
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To analyze the w j -weight of the three monomials, we recall from the proof of
Lemma 6.8 that we need only consider the contributions of those vertices μ ∈ ∂ Tj

that are nodes of �. Indeed, we have

w j · mu,λ =
∑

μ∈∂ Tj �∂ �

αμ, j
�u,μ

|wμ| for j ∈ {1, . . . , δu − 1} . (6.11)

This expression agrees with the value of w j ·mu,T1 = w j ·mu,T2 when j > 2 even if
∂ Tj � ∂ � is the empty-set.

If j = 1, Lemma 2.19 confirms that

w1 · mu,λ = w1 · mu,T2 =
∑

μ∈∂ T1�∂ �

αμ,1
�u,μ

|wμ| < w1 · mu,T1 . (6.12)

The inequality is strict even if the set ∂ T1 � ∂ � is empty. Indeed, the fact that the tree
T is star-full ensures that when ∂ T1 ⊂ ∂ �, any variable appearing in zmu,T1 will be
indexed by an element in ∂ T1. Therefore, the total w1-weight of mu,T1 is positive no
matter the choice of admissible exponent mu,T1 .

By symmetry, we deduce that w2 · mu,λ = w2 · mu,T1 < w2 · mu,T2 . Combining
this fact, the positivity of αv , and the expressions (6.10), (6.11) and (6.12) yields the
inequalities in (6.9). This concludes our proof. 	


Our next result is central to the inductive step in the proof of Theorem 6.5. As with
the previous two lemmas, the proof is combinatorial and the difficulty lies in how to
select the triple of admissible exponent vectors required by Lemma 6.4 in a way that
is compatible with a given input proper face of τv,λ.

Proposition 6.10 Let T be a star-full subtree of �, and let v be a node of T . Denote
by T1, . . . , Tδv the branches of T adjacent to v. Let L be a proper subset of ∂ T which
is not included in any ∂ Ti , and set

P := conv({ι(v)} ∪ ι(L)). (6.13)

Then, P is a simplex of dimension |L| and its relative interior P◦ is disjoint from
Trop>0 S(�).

Proof By Lemma 5.8, we have ι(v) ∈ (�T )◦. In addition, Proposition 5.10 (2) and
(3) imply that P is a simplex of the expected dimension. It remains to show that
P◦ ∩ Trop>0〈S(�)〉 = ∅. For each j = 1, . . . , δv , we set

L j := L ∩ ∂ Tj and τ j := R≥0〈ι(L j )〉. (6.14)

By definition, we have τ j = {0} if L j = ∅. Moreover, each τ j is a simplicial cone
of dimension |L j |. Our assumptions on L and a suitable relabeling of the branches
Tj (if necessary) ensure the existence of some q ∈ {2, . . . , δv} with L j �= ∅ for all
j ∈ {1, . . . , q} and L j = ∅ for all j ∈ {q + 1, . . . , δv}.
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We argue by contradiction and pick w ∈ P◦ ∩Trop>0〈S(�)〉. Since P is a simplex
and w belongs to its relative interior, we may write w as

w = αvι(v)+
q∑

j=1
w j with αv > 0 and w j ∈ τ j

◦ for all j . (6.15)

Lemma 6.11 below implies that L j = ∂ Tj for all j ≤ q. Since L � ∂ T , it follows
that q < δv .

Next, we use Lemma 6.4 to confirm that zmv,Tδv is thew-initial form of a series in the

linear span of {inw(Fv,i )}δv−2
i=1 , which contradicts our assumption w ∈ Trop>0〈S(�)〉.

We use the admissible exponents mv,T1 , mv,T2 and mv,Tδv
.

First, the star-full property of T combined with the condition that L j = ∂ Tj for
all j ≤ q ensures that

ι(v) · mv,Tδv
= ι(v) · mv,T2 = ι(v) · mv,T1 =

dv

|wv| and

w j · mv,Tδv
= w j · mv,T1 = w j · mv,T2 for all j ∈ {3, . . . , q}.

(6.16)

These identities follow directly from Lemma 2.19. In turn, the same arguments
employed in the proof of Lemma 6.9, together with the equalities L1 = ∂ T1 and
L2 = ∂ T2 give

w1 ·mv,Tδv
= w1 ·mv,T2 < w1 ·mv,T1 and w2 ·mv,Tδv

= w2 ·mv,T1 < w2 ·mv,T2 .

(6.17)
Expressions (6.16) and (6.17) combinedyieldw·mv,Tδv

< w·mv,T1 andw·mv,Tδv
<

w · mv,T2 . Thus, the first condition required by Lemma 6.4 is satisfied.
To finish, we must compare the w-weight of zmv,Tδv with that of any exponent

m in the support of a fixed series gv,i . For each j ∈ {1, . . . , q} we write w j :=∑
μ∈∂ Tj

αμ, j ι(μ) with αμ, j > 0 for all μ. Then, the defining properties (2.10) of gv,i

and the reasoning followed in the proof of Lemma 6.8 imply that

ι(v)·mv,Tδv
< ι(v)·m and w j ·mv,Tδv

=
∑

μ∈L j �∂ �

αμ, j
�v,μ

|wμ| ≤ w j ·m for 1 ≤ j ≤ q .

(6.18)
Note that the right-most inequality for j ∈ {1 . . . , q} is strict whenever L j � ∂ �.

Combining both parts of (6.18) and the positivity of αv yields w · mv,Tδv
<

w · m whenever zm appears in gv,i . This verifies the second hypothesis required
for Lemma 6.4, contradicting our choice of w ∈ Trop>0〈S(�)〉. 	

Lemma 6.11 Let L be a set as in Proposition 6.10 and P be the simplex defined by
formula (6.13). For each j ∈ {1, . . . , δv}, let L j be the set of elements of L which are
leaves of Tj , as in (6.14). If P◦ ∩Trop>0〈S(�)〉 �= ∅, then L j is either empty or equal
to ∂ Tj .
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Fig. 5 Building a maximal sub-branch of Tj avoiding L j starting from a suitable leaf λ ∈ ∂ Tj � L j and
moving inwards towards v, as in the proof of Lemma 6.11. Here, s ≤ δv′ − 2 and r = δu′′ − 1

Proof We argue by contradiction and assume ∅ � L j � ∂ Tj , so in particular |∂ Tj | >
1. We break the argument into four combinatorial claims, guided by Fig. 5. The left-
most picture informs the discussion for Claims 1 and 2. The central picture refers
to Claim 3, and the right-most picture illustrates Claim 4. Throughout, we fix w ∈
P◦ ∩ Trop>0〈S(�)〉 and write w as in (6.15), where we write each wk ∈ τk

◦ as
wk :=∑

μ∈Lk
αμ,k ι(μ) for each k ∈ {1, . . . , q}, with αμ,k > 0 for all μ, k. 	


First, we pick λ ∈ ∂ Tj � L j furthest away from v in the geodesic metric on
T (see Remark 2.2). Let v′ be the unique node of Tj adjacent to λ. The condition
|∂ Tj | > 1 ensures that v′ �= v. The maximality condition satisfied by λ restricts the
nature of the node v′. More precisely:

Claim 1. The node v′ is an end-node of Tj .

Proof We consider all branches T ′k of Tj adjacent to v′ and containing neither v nor
λ. Our goal is to show that |∂ T ′k | = 1 for all k. We argue by contradiction.

Assume that k is such that |∂ T ′k | > 1. Then, by the maximality of the distance
between v and λ, we have ∂ T ′k ⊆ L j . We consider the series Fv′,i of S(�) for
i ∈ {1, . . . , δv′ − 2}, and the admissible exponent vectors at v′ associated to λ, v and
T ′k . We claim that the weight w satisfies the inequalities

w · mv′,λ < w · mv′,T ′k , w · mv′,λ < w · mv′,v and w · mv′,λ < w · m (6.19)

for each m in the support of some gv′,i . This cannot happen by Lemma 6.4, since
w ∈ Trop>0〈S(�)〉.

To prove the inequalities (6.19), we analyze the contributions of each summand of
w in the decomposition (6.15) to the total w-weight of each admissible monomial,
as we did in the proofs of Lemmas 6.8 and 6.9. Here, the node u appearing in those
lemmas is replaced by the node v′. As usual, Lemma 2.19 is central to our arguments.
The contribution of each weight vector wp for p �= j to the total weight of zmv′,λ

comes from elements in L p � ∂ �.
We start by verifying the left-most inequality in (6.19). Since v is a node of �,

Lemma 2.19 ensures that:

ι(v) · mv′,λ = �v′,v
|wv| = ι(v) · mv′,T ′k < ι(v) · mv′,v . (6.20)
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In turn, for each p ∈ {1, . . . , q} with p �= j , the weight wp satisfies

wp · mv′,λ =
∑

μ∈L p�∂ �

αμ,p
�v′,μ
|wμ| = wp · mv′,T ′k . (6.21)

On the contrary, if p = j , the condition ∂ T ′k ⊆ L j ensures thatw j ·mv′,λ < w j ·mv′,T ′k .
Indeed, separating the w j -weight of mv′,T ′k into the contributions of three groups of
elements from L j we have

w j · mv′,T ′k =
∑

μ∈L j �(∂ T ′k∪∂ �)

αμ, j
�v′,μ
|wμ| +

∑

μ∈∂ T ′k�∂ �

αμ, j

wμ · mv′,T ′k
|wμ|

+
∑

μ∈∂ T ′k∩∂ �

αμ, j

wμ · mv′,T ′k
|wμ| . (6.22)

Notice that wμ · mv′,T ′k > �v′,μ whenever μ ∈ ∂ T ′k � ∂ � and wμ · mv′,T ′k ≥ 0 for
μ ∈ ∂ T ′k ∩ ∂ �.

Similarly, the w j -weight of mv′,λ can be determined by separating the elements of
L j into two types:

w j · mv′,λ =
∑

μ∈L j �(∂ T ′k∪∂ �)

αμ, j
�v′,μ
|wμ| +

∑

μ∈∂ T ′k�∂ �

αμ, j
�v′,μ
|wμ| . (6.23)

Comparing expressions (6.22) and (6.23), the positivity of all the coefficients αμ, j

implies the inequality w j · mv′,λ < w j · mv′,T ′k if the set ∂ T ′k � ∂ � is non-empty.
In turn, if this last set is empty, the fact that T is star-full ensures that all variables
featuring in the admissible monomial z

mv′,T ′k are indexed by elements of ∂ T ′k ⊆ ∂ �.
Therefore, the last summand in (6.22) is strictly positive. Thus, the comparison of the
same two expressions gives w j · mv′,λ < w j · mv′,T ′k in this situation as well.

By adding up the strict inequality w j · mv′,λ < w j · mv′,T ′k and the equalities
wp · mv′,λ = wp · mv′,T ′k from (6.21) for each p ∈ {1, . . . , q}\{ j}, we obtain:

( q∑

k=1
wk

)

· mv′,λ <

( q∑

k=1
wk

)

· mv′,T ′k .

Combining this inequality with the decomposition (6.15) the equality ι(v) · mv′,λ =
ι(v) · mv′,T ′k from (6.20) yields the left-most strict inequality in (6.19).

Next, we confirm the central inequality in (6.19). By (6.20) and the positivity of
αv , it is enough to check that wp · mv′,λ ≤ wp · mv′,v for all p ∈ {1, . . . , q}. Indeed,
Lemma 2.19 yields:
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wp · mv′,λ =
∑

μ∈L p�∂ �

αμ,p
�v′,μ
|wμ| ≤

∑

μ∈L p

αμ,p
wμ · mv′,v
|wμ| = wp · mv′,v , (6.24)

since all coefficients αv,μ are positive, �v′,μ ≤ wμ ·mv′,v for each μ ∈ L p � ∂ � and
0 ≤ wμ · mv′,v if μ ∈ L p ∩ ∂ �.

To finish, we must certify the right-most inequality in (6.19). We use the same
reasoning as in Lemma 6.8. The properties defining the series gv′,i combined with the
star-full condition of T , the inclusion ∂ T ′k ⊆ L j and the expressions (6.20), (6.21)
and (6.23) imply that for each monomial zm appearing in a fixed gv′,i we have the
inequalities

ι(v) · mv′,λ < ι(v) · m and wp · mv′,λ ≤ wp · m for all p = 1, . . . , q.

The inequality αv > 0 then confirms the validity of the right-most inequality in (6.19).
�

Claim 2. We have StarTj (v
′)∩ L j = ∅. In particular, none of the leaves of Tj adjacent

to v′ can lie in L j .

Proof Since v is an end-node by Claim 1, any branch of T emanating from v′ and
not containing v is a singleton. The statement follows by the same line of reasoning
as Claim 1, working with the exponents mv′,v , mv′,λ and mv′,T ′k , where T ′k is any of the
remaining branches of Tj adjacent to v′. Indeed, if T ′k = ∂ T ′k ⊆ L j , the inequalities
in (6.19) will remain valid, and this will contradict w ∈ Trop>0〈S(�)〉. �

As a consequence of Claim 2 we conclude that λ is part of a branch of Tj which
avoids L j and has at least one node. Let T ′ be a maximal branch of Tj with this
property and furthest away from v. We claim that T ′ = Tj . To prove this, we argue by
contradicting the maximality of T ′. We let u be the node of Tj adjacent to T ′ and u′
be the node of T ′ adjacent to u, as seen in the center of Fig. 5. Note that u �= v since
T ′ �= Tj because L j is non-empty.

Next,we analyze the intersections between L j and the leaves of all relevant branches
of Tj adjacent to u. We treat two cases, depending on the size of each such branch,
starting with singleton branches:

Claim 3. None of the leaves of Tj adjacent to u belongs to L j .

Proof We argue by contradiction and pick a leaf μ of Tj adjacent to u satisfying
μ ∈ L j . Then, a reasoning similar to that of Claim 1 for the series Fu,i replacing λ by
T ′ and T ′k by μ confirms that

w · mu,T ′ < w · mu,μ, w · mu,T ′ < w · mu,v, and w · mu,T ′ < w · m (6.25)

whenever m ∈ Supp(gu,i ). Note that the inequality w j · mu,T ′ < w j · mu,μ follows
because Tj is star-full. However, Lemma 6.4 and the assumption w ∈ Trop>0〈S(�)〉
refute the validity of (6.25), so μ /∈ L j . �
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Claim 4. Given a non-singleton branch T ′′ �= T ′ of Tj adjacent to u and with v /∈ T ′′,
we have ∂ T ′′ ∩ L j = ∅.

Proof First, we show that ∂ T ′′ � L j . We argue by contradiction and consider the
series of S(�) determined by the node u. Replacing the roles of v′, λ and T ′k in (6.19)
by u, T ′ and T ′′, respectively, the same proof technique from Claim 1 yields

w · mu,T ′ < w · mu,T ′′ , w · mu,T ′ < w · mu,v and w · mu,T ′ < w · m

for each m in the support of any fixed gu,i . Lemma 6.4 then shows that w /∈
Trop>0 S(�), contradicting our original assumption on w. From here it follows that
∂ T ′′ � L j .

Next, we pick some leaf λ ∈ ∂ T ′′� L j . Following the reasoning of Claims 1 and 2,
we build a maximal branch of T ′′ not meeting L j . If ∂ T ′′ ∩ L j �= ∅ this branch would
be a maximal branch of T avoiding L j and properly contained in T ′′. Furthermore,
following the notation of the right-most picture in Fig. 5, it would be contained in one
of the branches T ′′k for k ∈ {1, . . . , r}. As a result, the distance between v and this
branch would be strictly larger than distTj (v, T ′), contradicting the maximality choice
of T ′. Thus, we conclude that ∂ T ′′ ∩ L j = ∅, as we wanted to show. �

To finish, we observe that Claims 3 and 4 combined contradict the maximality of
T ′, since the convex hull of all branches adjacent to u and not containing v will be
a branch of Tj strictly containing T ′ and not meeting L j . From here it follows that
T ′ = Tj , which cannot happen since L j �= ∅. 	


6.2 Boundary components of the extended tropicalization

In this subsection, we characterize the boundary strata of the extended tropicalization
of the germ (X , 0) defined by S(�) (see Remark 3.10). These strata are determined by
the positive local tropicalization of the intersection of X with each coordinate subspace
of C

n . This will serve two purposes. First, it will show by combinatorial methods that
(X , 0) is a two-dimensional complete intersection with no boundary components (that
is, without irreducible components contained in some coordinate hyperplane). Second,
it will help us prove the reverse inclusion to the one in Theorem 6.5. The latter is the
subject of Sect. 6.3 (see Theorem 6.23).

We start by setting up notation. Throughout, we write σ := (R≥0)n and fix a
positive-dimensional proper face τ of σ . Since N (∂�) � Z

n by choosing the basis
{wλ : λ ∈ ∂ �} from Sect. 2, we define

Lτ := {λ ∈ ∂ � : wλ is a ray of τ }. (6.26)

We let k be the dimension of τ and consider the natural projection of vector spaces

pτ : Rn → R
n/〈τ 〉 � R

n−k . (6.27)
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By abuse of notation, whenever wλ /∈ τ , we identify wλ with its image in R
n−k under

pτ .

Definition 6.12 Given a series f ∈ C{zλ : λ ∈ ∂ �}, we let f τ be the series obtained

from f by setting all zλ with λ ∈ Lτ to be zero. We view f τ ∈ C{zλ : λ ∈ τ⊥ ∩ Z
n}

as a series in the n − k variables in {zλ : λ ∈ ∂ � � Lτ }. We call it the τ -truncation
of f .

Definition 6.13 We let Xτ be the intersection of the germ (X , 0) defined by S(�)

with the dense torus in the (n− k)-dimensional coordinate subspace of C
n associated

to τ . This new germ is defined by the vanishing of the τ -truncations of all series in
S(�). The positive local tropicalization of S(�) with respect to τ is defined as the
positive local tropicalization of Xτ in R

n−k . Following [49, Sect. 12], we denote it by
Trop>0(S(�), τ ) .

Our first result generalizes Lemma 6.4, when some, but not all, admissible mono-
mials at a fixed node of � have trivial τ -truncations. It will simplify the computation
of Trop>0(S(�), τ ) for each proper face τ of σ .

Lemma 6.14 Fix a positive-dimensional proper face τ of σ , a node v of � and some
w ∈ pτ (σ ). Assume that some τ -truncated series in { f τ

v,i }δv−2
i=1 is not identically zero

and that one of two conditions holds:

1. the system involves at most δv − 2 admissible monomials and there exists an edge
e adjacent to v with mv,e /∈ N〈zλ : λ ∈ Lτ 〉 satisfying w · mv,e < w · m for each
m in the support of some (gv,i )

τ ; or
2. the system involves exactly δv − 1 monomials, and we have two distinct edges e,

e′ of Star�(v) with mv,e, mv,e′ /∈ N〈zλ : λ ∈ Lτ 〉 such that w · mv,e < w · mv,e′
and w · mv,e < w · m for each m in the support of some (gv,i )

τ .

Then, zmv,e is the w-initial form of a series in the linear span of {(Fv,i )
τ }δv−2

i=1 and
w /∈ Trop>0(S(�), τ ).

Proof Recall from (2.9) that Fv,i = fv,i + gv,i for each node v of � and each i ∈
{1, . . . , δv − 2}. Our assumptions on ( fv,i )

τ and the weight vector w ensure both that
the τ -truncation (Fv,i )

τ of Fv,i is non-zero and that thew-initial form of (Fv,i )
τ agrees

with that of ( fv,i )
τ .

The proof follows the same reasoning as that of Lemma 6.4, considering the trunca-
tions of a new basis {F ′v,i }δv−2

i=1 obtained by suitable linear combinations of the original

series {Fv,i }δv−2
i=1 and ordering the edges adjacent to v in a convenient way. Writing

each element in the new basis as F ′v,i = f ′v,i + g′v,i in the spirit of (2.9), the Hamm
determinant conditions on the original splice system allow us to choose a special
form for the polynomials { f ′v,i }i . Indeed, their coefficient matrix has the block form

(Idδv−2 | ∗ |∗), where ∗ represents a column vector in (C∗)δv−2. By construction, the
new tails g′v,i will satisfy conditions (1), respectively (2), if and only if the old tails
gv,i did.

If condition (1) holds, we pick any two edges e′, e′′ with mv,e′, mv,e′′ ∈ N〈zλ : λ ∈
Lτ 〉 and order the edges adjacent to v so that eδv−2 := e, eδv−1 := e′ and eδv := e′′. In
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this situation, the statement follows by our assumptions on the basis {F ′v,i }i , combined
with Lemma 2.19. Indeed, we have

inw((F ′v,δv−2)
τ ) = inw(( f ′v,δv−2)

τ ) = zmv,e .

Similarly, if condition (2) holds, we pick e′′ to be the unique edge with mv,e′′ ∈ N〈zλ :
λ ∈ Lτ 〉. Indeed, mv,e′′ is the single monomial of the polynomials { fv,i }i that drops
when taking their τ -truncations. We set eδv := e′′ and fix e := eδv−2 and e′ := eδv−1.
As in the previous case, we have inw((F ′v,δv−2)

τ ) = zmv,e . 	

Here is the main result of this section:

Theorem 6.15 Let τ be a positive-dimensional proper face of σ with λ ∈ Lτ . Let v be
the unique node of � adjacent to λ. Then:

1. If dim τ = 1, then Trop>0(S(�), τ ) ⊆ R>0〈pτ (wv)〉.
2. If dim τ ≥ 2, then Trop>0(S(�), τ ) = ∅.
Proof We fix k = dim τ . Since Trop>0(S(�), τ ) is included in (R>0)

n−k , we can
determine the positive tropicalization by its intersection with the standard simplex
�n−k−1. We do this by following the proof strategy of Theorem 6.5. Since the vector
pτ (wv) lies in (R>0)

n−k , we set

w′v :=
pτ (wv)

|pτ (wv)| ∈ (�n−k−1)◦ (6.28)

and perform a stellar subdivision of this standard simplex using w′v .
If k = 1, Proposition 6.16 below ensures that every positive-dimensional simplex

ρ of the stellar subdivision that meets (�n−2)◦ satisfies ρ◦ ∩ Trop>0(S(�), τ ) = ∅.
The subdivision has only one zero-dimensional simplex, namely {pτ (wv)}, so item (1)
holds. In turn, when dim τ = 2, the same proposition ensures the intersection is empty
even if ρ is a point. This forces Trop>0(S(�), τ ) = ∅, as stated in item (2). 	


Our next result is an adaptation of Proposition 6.10, needed to rule out points of
the extended tropicalization Trop>0(S(�), τ ) in a given simplex ρ ⊆ �n−dim τ−1. It
is central to proving Theorem 6.15.

Proposition 6.16 Let τ , λ and v be as in Theorem 6.15 and Lτ be as in (6.26).
Fix a proper subset L of ∂ � � Lτ . Let w′v be as in (6.28) and set ρ :=
conv ({w′v} ∪ {wμ : μ ∈ L}) ⊆ �n−k−1, where k = dim τ . If |L ∪ Lτ | > 1, then

ρ◦ ∩ Trop>0(S(�), τ ) = ∅. (6.29)

Proof We follow the proof strategy of Proposition 6.10 for T = � but now incorpo-
rating the set Lτ into the arguments. We let T1, . . . , Tδv be the branches of � adjacent
to v, with T1 = {λ}. Given j ∈ {2, . . . , δv}, we set

Lτ, j := Lτ ∩∂ Tj , L j := L∩∂ Tj and ρ j := R≥0〈pτ (wμ) : μ ∈ L j 〉 ⊂ R
n−k .

(6.30)
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If L j = ∅, we declare ρ j = {0}. Since 1 < |L∪Lτ | < n, upon relabeling the branches
T2, . . . , Tδv if necessary, there exists a unique q ∈ {2, . . . , δv} with L j ∪ Lτ, j �= ∅ for
all j ∈ {1, . . . , q}, and L j ∪ Lτ, j = ∅ for j > q.

We argue by contradiction and pickw ∈ ρ◦∩Trop>0(S(�), τ ). Since ρ is a simplex
and T1 ⊂ Lτ , we have

w = αvw
′
v+

q∑

j=2
w j with αv > 0 and w j ∈ ρ j

◦ for all j ∈ {2, . . . , q}. (6.31)

In particular, we know that w j = 0 if and only if ρ j = {0}.
Lemma 6.17 below ensures that L j ∪ Lτ, j = ∂ Tj for all j ≤ q. Since 1 <

|L ∪ Lτ | < n, we conclude that:

1 < q < δv. (6.32)

In particular, we see that ∂ Tδv ∩ (L ∪ Lτ ) = ∅, so the τ -truncation of zmv,Tδv is
non-zero.

By the Hamm conditions, the admissible monomial zmv,Tδv must feature in some

fv,i . Therefore, the τ -truncated series {( fv,i )
τ }δv−2

i=1 are not all identically zero. In

turn, since λ ∈ ∂ T1 ∩ Lτ and zmv,T1 = z
dv,λ

λ , we conclude that its τ -truncation is zero.

Thus, the system of τ -truncations {( fv,i )
τ }δv−2

i=1 involves at most δv − 1 admissible
monomials.

The proposition follows from our next claim, which contradicts our assumption
that w ∈ Trop>0(S(�), τ ).

Claim. The monomial zmv,Tδv is the w-initial form of a series in the linear span of

{(Fv,i )
τ }δv−2

i=1 .
The statement of this claim matches the conclusion of Lemma 6.14. Recall that our
earlier discussion confirmed that the τ -truncations of fv,i are not all zero, and there are
two options for the number ofmonomials featured in these τ -truncations.We prove the
claim via a case-by-case analysis, each onematching one of the two possible scenarios
portrayed in the lemma.

First, we assume that the system of τ -truncations {( fv,i )
τ }δv−2

i=1 involves exactly
δv − 1 monomials. In particular, (zmv,T2 )τ �= 0, so no variable appearing in zmv,T2 can
be indexed by an element of Lτ,2. Since L2 ∪ Lτ,2 = ∂ T2, we conclude that ρ2 �= {0}
and w2 · mv,T2 > 0.

Next, we confirm that the hypotheses of Lemma 6.14 (2) hold for the weight vector
w and the edges e = eδv and e′ = e2 giving rise to the admissible exponentsmv,Tδv

and
mv,T2 , respectively. Notice that our earlier discussion ensures that these two vectors
lie outside N〈zλ : λ ∈ Lτ 〉. To check the required inequalities between the w-weights
of these two admissible monomials and of any monomial zm in the support of some
(gv,i )

τ , we compare the contribution of each summand of w featured in (6.31) to
the total w-weight of each monomial. This was the same method used in the proofs
of Lemmas 6.8 and 6.9.
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Fig. 6 Given a branch Tj of � adjacent to v and a fixed proper subset of leaves L of ∂ � � {λ}meeting ∂ Tj
properly, we find a node u in Tj with dist�(u, v) maximal so that the branches T ′1, . . . , T ′r have a given
property, but T ′r+1, . . . , T ′δu−1 do not. This construction is the main ingredient in the proof of Lemma 6.17

First, we focus on w′v . Lemma 2.19 and the conditions (2.10) on gv,i imply that

w′v · mv,Tδv
= w′v · mv,T2 =

dv

|pτ (wv)| < w′v · m. (6.33)

In turn, our earlier discussion and the inequality q < δv seen in (6.32) imply the
following relations among the w j -weights:

w2 · mv,Tδv
= 0 < w2 · mv,T2 and w j · mv,Tδv

= w j · mv,T2 = 0 ≤ w j · m
for j ∈ {3, . . . , q}, (6.34)

where zm is anymonomial in the support of gv,i surviving the τ -truncation. Combining
the positivity of αv with expressions (6.33) and (6.34) confirms the validity of the
conditions required in Lemma 6.14 (2).

To finish proving the claim, we must analyze the case when the τ -truncated system
{( fv,i )

τ }δv−2
i=1 has at most δv − 2 admissible monomials. In this case, we consider the

edge e = eδv and certify that the hypotheses imposed in Lemma 6.14 (1) hold. This
is done by checking that the inequalities in (6.33) and (6.34) involving mv,Tδv

and m
remain valid in this new setting. 	


Our next result is analogous to Lemma 6.11. We prove it by using the same tech-
niques.

Lemma 6.17 Fix Lτ, j , L j and ρ j as in (6.30). If ρ◦ ∩Trop>0(S(�), τ ) �= ∅, then the
set L j ∪ Lτ, j is either empty or it equals ∂ Tj .

Proof We use the notation established in the proof of Proposition 6.16 and pick w ∈
ρ◦ ∩ Trop>0(S(�), τ ). We decompose w as in (6.31). We argue by contradiction,
assuming that 0 < |L j ∪ Lτ, j | < |∂ Tj |.

First, note thatwe canfind a branch T ′ of� contained in Tj with ∂ T ′∩(L j∪Lτ, j ) =
∅. For example, any leaf μ of ∂ Tj not in L ∪ Lτ will produce such a branch. Since
Tj is finite, we can choose the branch T ′ to be maximal with respect to the condition
∂ T ′ ∩ (L j ∪ Lτ, j ) = ∅ and furthest away from v in the geodesic metric on �. Let u
be the unique node of � adjacent to T ′. Since L j ∪ Lτ, j �= ∅, we know that u �= v.
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Assume that there are r branches adjacent to u with this maximality property,
and denote them by T ′1 = T ′, . . . , T ′r as in Fig. 6. We let T ′r+1, . . . , T ′δu−1 be the
remaining branches of � adjacent to u and not containing λ. The maximality of both
T ′ and dist�(u, v) combined with the condition u �= v implies that r < δu − 1 and
∂ T ′i ⊆ L j ∪ Lτ, j for each i ∈ {r + 1, . . . , δu − 1}. Indeed, if the latter were not the
case, we could find a branch T ′′ of � inside T ′i with the same properties as T ′, but
further away from v.

The construction of T ′1 ensures that (z
mu,T ′1 )τ �= 0. Therefore, the collec-

tion {( fu,i )
τ }δu−2

i=1 is not identically zero. Our original assumption that w ∈
Trop>0(S(�), τ ) will be contradicted by the following assertion:

Claim. The admissible monomial z
mu,T ′1 is the w-initial form of a series in the linear

span of {(Fu,i )
τ }δu−2

i=1 .
We prove our claim by analyzing three cases (in decreasing order of difficulty),

depending on whether the number of admissible monomials in the τ -truncation of the
collection { fu,i }δu−2

i=1 is exactly δu , at most δv− 2, or exactly δu − 1. The first case will
make use of Lemma 6.4, whereas we will invoke Lemma 6.14 to establish the other
two.

Case 1: We assume that the number of admissible monomials at u remaining after
τ -truncation is δu . By the Hamm conditions, this forces fu,i = ( fu,i )

τ for each
i ∈ {1, . . . , δu−2}. After replacing each gu,i with its τ -truncation, we are in the setting
of Lemma 6.4, where we view (R≥0)n−k ⊂ R

n≥0 by adding zeros as complementary
coordinates. In this situation, the condition ∂ T ′1 ∩ L = ∅ and the defining properties
of gu,i ensure that

w ·mu,T ′1 < w ·mu,v, w ·mu,T ′1 < w ·mu,T ′δu−1
and w ·mu,T ′1 < w ·m (6.35)

for each zm appearing in (gu,i )
τ . The aforementioned lemma then implies the validity

of our claim.
To prove the inequalities in (6.35), we proceed by comparing the contributions

of each summand of w in the decomposition (6.31) to the weight of each mono-
mial. Lemma 2.19 and (2.10) ensure that

w′v · mu,T ′1 = w′v · mu,T ′δu−1
= �u,v

|pτ (wv)| < min{w′v · mu,v, w′v · m} . (6.36)

In turn, for each p ∈ {2, . . . , δv} with p �= j , the fact that L contains no node of �

gives

wp · mu,T ′1 = wp · mu,T ′δu−1
= 0 ≤ min{wp · mu,v, wp · m} . (6.37)

Finally, since L j ∩ ∂ T ′1 = ∅, ∂ T ′δv−1 ⊆ L j ∩ Lτ, j and the admissible monomial

z
mu,T ′

δv−1 has no variable indexed by an element in Lτ, j , we see that

w j · mu,T ′1 = 0 ≤ min{w j · mu,v, w j · m} whereas 0 < w j · mu,T ′δu−1
. (6.38)
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Expressions (6.36), (6.37) and (6.38), combined with the positivity of αv con-
firm (6.35).

Case 2: Assume that the τ -truncated series {( fu,i )
τ }δu−2

i=1 involve at most δu − 2
admissible monomials. In this situation the claim follows by Lemma 6.14 (1) since
the inequalities involving mu,T ′1 and m in (6.35) remain valid in this scenario.

Case 3: Suppose that the τ -truncations of the collection { fu,i }δu−2
i=1 involve exactly

δu − 1 admissible monomials. If so, up to relabeling of T ′r+1, . . . , T ′δu−1 we may
assume that exactly one of the admissible monomials with exponent mu,v or mu,T ′δu−1
vanishes under τ -truncation. The inequalities in (6.35) involving mu,T ′1 , m and the
aforementioned surviving admissible exponent remain valid. Thus, the hypotheses
required by Lemma 6.14 (2) hold, hence confirming the claim. 	


Theorem 6.15 has the following two important consequences:

Corollary 6.18 The intersection of the germ (X , 0) defined by the system S(�) with
any coordinate subspace H of C

n of codimension at least two is just the origin.

Proof Assume the contrary and let H be a coordinate subspace ofC
n of maximal codi-

mension such that X ∩H �= {0}. Consider the face τ of (R≥0)n associated to H and let
Xτ be the intersection of X with the dense torus of H . The maximality condition on H
implies that Xτ �= ∅. Since dim Xτ = dim Trop>0(S(�), τ ) by Proposition 3.15 (1),
we conclude that Trop>0(S(�), τ ) �= ∅.

Since the dimension of τ agrees with the codimension of H in C
n , our hypothesis

implies that dim τ ≥ 2. Therefore, we have Trop>0(S(�), τ ) = ∅ by Theo-
rem 6.15 (2). This contradicts our earlier observation. 	

Corollary 6.19 The germ (X , 0) defined by the system S(�) intersects each coordinate
hyperplane along a germ of a curve. All its irreducible components meet the dense
torus of the corresponding hyperplane.

Proof We fix a coordinate hyperplane {zλ = 0} and let τ be the cone generated
by wλ in R

n . Counting the number of equations defining Y := X ∩ {zλ = 0} in
C

n , we see that dim Y ≥ 1 by Krull’s principal ideal theorem. By construction,
Xτ = Y∩(C∗)n−1. Since any face τ ′ of (R≥0)n properly containing τ satisfies Xτ ′ = ∅
by Corollary 6.18, it follows that no component of Y lies in the toric boundary of
C

n−1. Furthermore, Proposition 3.15 (1) implies that dim Xτ = dim Trop>0(S(�), τ ).
Since Theorem 6.15 (1) ensures that dim Trop>0(S(�), τ ) ≤ 1, we conclude that
dim Xτ = 1. 	


In turn, the last corollary has two consequences. First, it confirms that the germ
defined by S(�) is a complete intersection, and second, it shows that equality must
hold in Theorem 6.15 (1).

Corollary 6.20 The germ (X , 0) defined by the system S(�) is a two-dimensional
complete intersection. Each of its irreducible components meets the dense torus (C∗)n

non-trivially in dimension two.
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Note that this result allows a priori for the germ (X , 0) to have several irreducible
components. We will see in Corollary 7.13 that (X , 0) is in fact irreducible.

Corollary 6.21 Let λ be a leaf of � and let v be the unique node of � adjacent to it. If
τ = R≥0〈wλ〉, then Trop>0(S(�), τ ) = R>0〈pτ (wv)〉.
Proof The result follows by combining Theorem 6.15 (1), Corollary 6.19, and the
equality between the dimensions of Xτ and Trop>0(S(�), τ ) stated in Proposi-
tion 3.15 (1). 	


Our last result in this subsection is a special case of Proposition 3.13. It will be
used in the next subsection.

Corollary 6.22 The local tropicalization of the germ defined by the splice type system
S(�) is the Euclidean closure of Trop>0〈S(�)〉 in R

n.

6.3 The support of the splice fan is contained in the local tropicalization

In this subsection, we prove the remaining inclusion in Theorem 6.2. Our arguments
are purely combinatorial, and rely on the balancing condition for pure-dimensional
local tropicalizations (see Theorem 3.23 and Remark 3.24). Corollary 6.20 confirms
that such condition holds for the positive tropicalization of the germ defined by S(�).
Furthermore, the proofs in this section imply that no proper two-dimensional subset
of Trop>0〈S(�)〉 is balanced.

We start by stating the main result in this section. Its proof will be broken into
several lemmas and propositions for clarity of exposition.

Theorem 6.23 For every splice diagram �, we have ι(�) ⊆ Trop〈S(�)〉 in (R≥0)n.

Proof By Lemma 6.24 below we know that �n−1 ∩ Trop〈S(�)〉 is a 1-dimensional
polyhedral complex and ι(v) ∈ Trop>0〈S(�)〉 for some node v of �. We claim that,
in fact, ι(u) ∈ Trop>0〈S(�)〉 for each node u.

We prove this claim by induction on the distance between u and v (recall that
� is connected). If u = v there is nothing to show. For the inductive step, pick a
node u with dist�(u, v) = k ≥ 1 and assume that the claim holds for each node
u′ of � with dist�(u′, v) = k − 1. Let u′ be the unique node of [u, v] adjacent to
u. Then, ι(u′) ∈ Trop>0〈S(�)〉 by our inductive hypothesis. Proposition 6.26 below
and Corollary 6.22 yield:

ι(u) ∈ ι(Star�(u′)) ∩ (R>0)
n ⊆ Trop〈S(�)〉.

Thedesired inclusion ι(�) ⊆ Trop>0〈S(�)〉 followsbycombiningProposition6.26
with the identity

ι(�) =
⋃

v node of �

ι(Star�(v)).
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Our first lemma ensures that the image of some node of � lies in the positive
tropicalization of S(�):

Lemma 6.24 The intersection �n−1∩Trop〈S(�)〉 is a 1-dimensional polyhedral com-
plex. Furthermore, there exists a node v of � with ι(v) ∈ �n−1 ∩ Trop>0〈S(�)〉.
Proof By Corollary 6.20 and Proposition 3.15 (1) we know that TropS(�) is a fan of
pure dimension two, and so �n−1 ∩ Trop〈S(�)〉 is a pure 1-dimensional polyhedral
complex. To conclude, we must find a node v with ι(v) ∈ Trop>0〈S(�)〉.

Since Trop>0〈S(�)〉 ⊆ ι(�) by Corollary 6.6, we have two possibilities for any
w ∈ �n−1 ∩ Trop>0〈S(�)〉: either w = ι(v) for some node v of � or w ∈ ι([u, u′]◦)
for two adjacent vertices u, u′ of�. In the second situation, Lemma 6.25 below ensures
that ι([u, u′]) ⊂ �n−1 ∩ Trop〈S(�)〉. Since one of u or u′ must be a node of � and
each node maps to (�n−1)◦ under ι, the claim follows. 	


Our next lemma is central to the proof of both Theorem 6.23 and Lemma 6.24.
It describes the possible intersections between the local tropicalization of the ideal
〈S(�)〉 and the edges of � embedded in �n−1 via the map ι. The balancing condition
for positive local tropicalizations plays a prominent role.

Lemma 6.25 Let u, u′ be two adjacent vertices of �. If ι([u, u′]◦) intersects
Trop>0〈S(�)〉 non-trivially, then ι([u, u′]) ⊆ Trop〈S(�)〉.
Proof It suffices to show that ι([u, u′]◦) ⊆ Trop〈S(�)〉. We argue by contradiction
and fix a point w ∈ ι([u, u′]) � Trop>0〈S(�)〉. Let ϕ : [0, 1] → [u, u′] be the affine
map such that ϕ(0) = u and ϕ(1) = u′. There exists a unique t0 ∈ [0, 1] such that
w = ι(ϕ(t0)). Since Trop〈S(�)〉 is closed in (R≥0)n , we can find a pair a, b ∈ [0, 1]
satisfying a < t0 < b and such that the open segment (ι(ϕ(a)), ι(ϕ(b))) avoids
Trop>0〈S(�)〉. Furthermore, we pick (a, b) to be the maximal open interval in [0, 1]
containing t0 with this property. A contradiction will arise naturally if we prove that
a = 0 and b = 1.

By symmetry, it suffices to show that a = 0. We argue by contradiction,
and assume a > 0, so ι(ϕ(a)) ∈ (�n−1)◦ by construction. The maximality of
(a, b) combined with Corollary 6.22 ensures that ι(ϕ(a)) ∈ Trop>0〈S(�)〉. Recall
from Corollary 6.6 that �n−1 ∩Trop>0〈S(�)〉 ⊆ ι(�). Since ι is an injection by The-
orem 5.11, any neighborhood of ι(ϕ(a)) in Trop>0(〈S(�)〉) lies in the relative interior
of the two-dimensional cone R≥0〈ι([u, ϕ(a)])〉. In turn, since Trop>0(〈S(�)〉) is two-
dimensional, and ι([ϕ(a), ϕ(b)])◦ avoids Trop>0〈S(�)〉, it follows that Trop>0〈S(�)〉
is not balanced at ι(ϕ(a)) when a > 0. Indeed, the balancing condition (see The-
orem 3.23) at ι(ϕ(a)) involves a single non-zero vector, namely, the image of
ι(u)− ι(ϕ(a)) in the lattice (Zn ∩ 〈ι(u), ι(ϕ(a))〉)/(Zn ∩ 〈ι(ϕ(a))〉), and a non-zero
scalar. Therefore, we must have a = 0. 	


Our next result plays a prominent role in the induction arguments used to prove The-
orem 6.23. Once again, as in the proof of Lemma 6.25, the balancing condition for
local tropicalizations is crucial in our reasoning.

Proposition 6.26 Let v be a node of � with ι(v) ∈ Trop>0〈S(�)〉. Then, ι(Star�(v)) ⊆
Trop〈S(�)〉.
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Proof After refinement if necessary, we may assume that τ := R≥0ι(v) is a ray of
Trop>0〈S(�)〉. In order to exploit the balancing condition, we use analogous notation
to that of Definition 3.21, simplified slightly by the fact that Trop>0〈S(�)〉 is 2-
dimensional.

Given a vertex u of � adjacent to v, we consider the 1-dimensional saturated lattice

� := Z
n ∩ R〈wu, wv〉
Zn ∩ R〈wv〉 .

Fix a vector wu |τ ∈ Z
n ∩ R≥0ι([u, v]) whose natural projection to � generates this

lattice. In particular, we can write wu |τ uniquely as

wu |τ = αuι(u)+ βu ι(v) (6.39)

for some αu , βu ∈ Q and with αu > 0.
We let u1, . . . , uδv be the vertices of � adjacent to v. The balancing condition for

Trop>0〈S(�)〉 at τ combined with Theorem 6.5 ensures the existence of non-negative
integers {k1, . . . , kδv } (i.e., the tropical multiplicities of Definition 3.20) satisfying:

δv∑

i=1
ki wui |τ ∈ Z

n ∩ R〈wv〉. (6.40)

Moreover, by Definition 3.20, (ι([u j , v]))◦ intersects Trop>0〈S(�)〉 non-trivially in a
neighborhood of ι(v) if and only if k j �= 0.

Since Trop>0〈S(�)〉 is pure of dimension two and ι(v) ∈ Trop>0〈S(�)〉, we know
that k j0 > 0 for some j0 ∈ {1, . . . , δv}. We claim that, furthermore, all k1, . . . , kδv are
positive integers. The inclusion ι(Star�(v)) ⊂ Trop〈S(�)〉 follows by combining this
statement with Lemma 6.25.

To prove our claim, we consider the following linear equation in k1, . . . , kδv that is
equivalent to (6.40):

δv∑

j=1
(k j αu j )ι(u j ) = β ι(v) with β ∈ Q. (6.41)

First, we argue that this system admits a unique solution (k1, . . . , kδv ) ∈ Q
δv for all

β. Uniqueness follows directly since αu j > 0 for all j and the set {ι(u1), . . . , ι(uδv )}
is linearly independent by Proposition 5.10 (1).

Second, we claim that for β �= 0, any solution to (6.41) has k j �= 0 for all j .
By homogeneity, we may assume β = 1. Then, Proposition 5.7 (2) and the linear
independence of {ι(u j )}δv

j=1 force the coefficients k jαu j in (6.41) to be the ones used
to write ι(v) as an element of (�Star�(v))

◦. Since αu j > 0 for all j , we have k j > 0
for all j , as we wanted.
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To finish, we argue that (6.40) has a solution with k j0 > 0 by the balancing condi-
tion. This forces β �= 0 in (6.41), and so k j �= 0 for all j by the previous discussion.
This concludes our proof. 	


7 Splice type singularities are Newton non-degenerate

In this section we discuss the Newton non-degeneracy of splice type systems (see
Theorem 7.3), following the original framework introduced by Khovanskii (see Defi-
nition 4.3). This property only involves the initial forms of the generators of the system
S(�), as opposed to the initial ideals of the ideal generated by the elements of the sys-
tem S(�). In turn, Theorem A.1 ensures the w-initial forms of (Fv,i )v,i generate the
w-initial ideal of 〈S(�)〉, for each rational weight vector w in the positive local trop-
icalization of S(�), thus giving an alternative proof of Theorem 6.23. Furthermore,
Newton non-degeneracy implies that condition (3) of Proposition 3.15 holds for every
cell in ι(�), thus showing that the splice fan of � is a standard tropicalizing fan for the
germ defined by the system S(�), in the sense of Definition 3.17. This is the content
of Corollary 7.10. In turn, Corollary 7.14 gives an alternative proof of a recent theorem
of de Felipe, González Pérez and Mourtada [7], which resolves any germ of a reduced
plane curve by one toric morphism after a reembedding in a higher dimensional com-
plex affine space. The section concludes with an open question regarding embedding
dimension of splice type surface singularities preserving the Newton non-degeneracy
property (see Question 7.17).

Our first result is a direct consequence of Lemma 2.19 and (2.10). It allows us to
determine the wu-initial form of each series Fv,i in the system S(�) for each node u
of �. This computation is central to all arguments in this section:

Proposition 7.1 For each pair of nodes u, v in �, and each i ∈ {1, . . . , δv − 2}, we
have:

inwu (Fv,i ) = inwu ( fv,i ) =
{

fu,i if u = v,

fv,i − cv,[u,v] zmv,e otherwise,

where e is the unique edge adjacent to v with e ⊆ [v, u].

The second formula, for the case where u �= v, means that we remove from fv,i the
term associated to the edge starting from v in the direction of u.

Remark 7.2 Recall from Definition 2.20 that rooted splice diagrams �r with n + 1
leaves (including the root r ) give rise to end-curves in C

n . Consider a fixed strict
splice type system S(�) associated to � giving rise to this curve and let u be the
unique node of �r adjacent to r . In view of Proposition 7.1, the curve Cr is defined by
the vanishing set of zr and the wu-initial forms of the n−1 polynomials in the system
S(�), viewed in {0} × C

n .
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Next, we set up notation that we will use throughout this section. For each weight
vector w ∈ (R>0)

n we define:

Jw := 〈inw(Fv,i ) : v node of �, i = 1, . . . , δv − 2〉 ⊂ C[zλ1 , . . . , zλn ], (7.1)

and let Zw be the subscheme of C
n defined by Jw .

Next, we state the main result of this section. The rest of the section is devoted to
its proof.

Theorem 7.3 The splice type system S(�) is a Newton non-degenerate complete inter-
section system.

Proof We certify the two conditions from Definition 4.3 starting with the regularity of
the sequence defined by S(�). This property follows by Lemma 7.4 and TheoremA.1.
Indeed, since the weight vector wu associated to any node u of � lies in (Z>0)

n , and
Zwu is a complete intersection of dimension two with defining ideal Jw by the lemma,
we conclude that the n− 2 generators of Jw form a regular sequence inO. In turn, the
theorem confirms that the series {Fv,i }v,i form a regular sequence in O.

Recall from Definition 3.4 that Zw ∩ (C∗)n is the empty-set whenever w /∈
Trop>0〈S(�)〉. Thus, it suffices to certify the linear independence condition of the
differentials of inw(Fv,i )whenw ∈ (R>0)

n ∩Trop>0〈S(�)〉. In turn, by Theorem 6.2
it is enough to restrict our analysis to vectors w ∈ (R>0)

n ∩ ι(�).
Since the generators of Jw form a regular sequence in O by Corollary 7.7, Propo-

sition 4.5 simplifies our task: we need only verify that Zw ∩ (C∗)n is smooth for each
such w. We analyze three cases, depending on the nature of the unique cell of ι(�)

containingw in its relative interior. Each case matches the settings of Lemmas 7.4, 7.5
and 7.6 below.

First, we pick a node u of � and consider the weight vector w = wu/|wu |.
By Lemma 7.4, the components of the scheme Zwu ⊆ C

n are Pham–Brieskorn–Hamm
singularities, and they can only meet at coordinate subspaces of C

n . Furthermore, the
Hamm conditions ensure that these germs are smooth away from the origin. This fact
confirms the smoothness of Zwu ∩ (C∗)n .

Next, we consider a weight vector w ∈ ι([λ, u])◦, were λ is a leaf of � and u is a
node of � adjacent to λ. Then, by Lemma 7.5, Zw is a cylinder over an end-curve Cλ

associated to the rooted diagram �λ. By Theorem 2.21, such curves are smooth away
from the origin. This confirms that Zw ∩ (C∗)n is smooth in this case as well.

Finally, we fix a weight vector w ∈ ι([u, u′])◦ where u, u′ are adjacent nodes of
�. Then, Lemma 7.6 confirms that the scheme Zw is the product of two end-curves
C�′u and C�′′v associated to two splice subdiagrams of � rooted at u and v, respectively.
More precisely, we have �′ := [u, ∂u,[u,v]�] and �′′ := [v, ∂v,[u,v]�] in the notation
of Definition 2.13. By Theorem 2.21, these curves are smooth in the corresponding
ambient tori, so Zw ∩ (C∗)n is smooth. This concludes our proof. 	


The next three lemmas characterize the ideal Jw associated to points in the relative
interior of each cell in the piecewise-linearly embedded tree ι(�) ↪→ �n−1.
Lemma 7.4 Let u be a node of � and let w = wu. Let �0 be the star of � at u, viewed
as a splice diagram with inherited weights around u. Then:
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Fig. 7 Rooted splice diagrams used in the proofs of Lemmas 7.4, 7.6 and 7.11. The vertex u′ on the right
is allowed to be a leaf of �, whereas u is always a node

1. Jw = 〈inw( fv,i ) : v node of �, i = 1, . . . , δv − 2〉;
2. Zw is a complete intersection of dimension two;
3. Zw has no irreducible component contained in a coordinate hyperplane of C

n, so
Jw is monomial-free;

4. all components of Zw are obtained as images of torus-translated monomial maps
C

δu → C
n and their preimages lie in Pham–Brieskorn–Hamm complete intersec-

tions in C
δu determined by �0;

5. the intersection of any two distinct components of Zw lies outside of (C∗)n.

Proof Item (1) follows from the identity inwu (Fv,i ) = inwu ( fv,i ) for all v and i , seen
in Proposition 7.1. To prove the remaining items, we let k be the number of nodes

of � adjacent to u and T1 , . . . , Tk be the branches of � adjacent to u containing

these nodes, as seen in Fig. 7. Set �i := [Ti , u] and express Jw as the sum of the
following k + 1 ideals:

J0 := 〈inw( fu, j ) : j = 1, . . . , δu − 2〉,
Ji := 〈inw( fv, j ) : v node of �i , j = 1, . . . , δv − 2〉, for i = 1, . . . , k.

Note that the generators of each Ji with i �= 0 lie in C[zλ : λ ∈ ∂ Ti ]. In particular, no
variable zλ with λ adjacent to u appears in them. We call these leaves λ1 , . . . , λl ,
with k + l = δu .

To simplify notation, we write Z := Zw . We start by characterizing the compo-
nents of Z . Each ideal Ji with i ∈ {1, . . . , k} defines an end-curve Ci determined by
the splice diagram �i rooted at u, as seen in the center of Fig. 7. In turn, Theorem 2.21
ensures that each of the (gi -many) components of Ci admits a (torus-translated) mono-
mial parameterization of the form

C[zλ : λ ∈ ∂u�i ] → C[ti ] where zλ �→ c(u)
λ,i t

�u,λ/gi
i , (7.2)

with c(u)
λ,i �= 0 for allλ, i . Thus, each component of C1×· · ·×Ck can be parameterized

using C
k by combining these (torus-translated) monomial maps.

Substituting the expressions from (7.2) for the chosen component of each Ci into the
generators of J0 shows that the closure of each component of Z can be parameterized
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using a component of a splice type singularity defined by the diagram�0. Note that the
Hamm determinant conditions at u arising from S(�0) agree with those determined
by the generators of J0 up to multiplying the columns corresponding to the branches
�i , i = 1, . . . , k by non-zero constants. Therefore, each component of Z is the image
of a (torus-translated) monomial map from C

δu = C
k × C

� restricted to a Pham–
Brieskorn–Hamm complete intersection defined by �0. In particular, no component
of Z lies in a coordinate subspace of C

n , so Jw is monomial-free. This proves both (3)
and (4).

Since Z is equidimensional of dimension two and it is defined by n−2 polynomial
equations, it is a complete intersection. This proves (2). It remains to address (5) when
Z is not irreducible.

To determine the intersection of two distinct components (say, Z1 and Z2) of Z we
exploit the parameterization described earlier. Let I ⊆ {1, . . . , k} be the collection of
indices i for which the projections of Z1 and Z2 to Spec(C[ti ]) disagree. If I = ∅,
then the two components are parameterized using the same Pham–Brieskorn–Hamm
system of equations associated to �0 and the same (torus-translated) monomial map.
This cannot happen since such germs are irreducible and Z1 �= Z2.

Next, assume |I | ≥ 1. In this setting, the projection of Z1 ∩ Z2 to C
∂u�i for each

i ∈ I lies in the intersection of two components of the end-curve Ci , which can only
be the origin of C

∂u�i by Theorem 2.21. This means that Z1∩ Z2 lies in the coordinate
subspace of C

n defined by the vanishing of all zλ with λ ∈⋃i∈I ∂ Ti . This concludes
our proof. 	

Lemma 7.5 Let u be a node of � adjacent to a leaf λ and pick w ∈ [ι(u), ι(λ)]◦. Then,
Zw is a cylinder over a monomial curve in C

n−1 with gcd(�λ,μ : μ ∈ ∂ � � {λ}) many
components and Jw is monomial-free.

Proof We prove that Jw defines the cylinder over the end-curve Cλ associated to the
rooted splice diagram �λ. A simple inspection shows that for all nodes v of � and
each i ∈ {1, . . . , δv − 2}, the initial form inw(Fv,i ) agrees with the corresponding
polynomial hv,i defining Cλ (see Definition 2.20). Indeed, if we write w as

w = α ι(λ)+ (1− α) ι(u) with 0 < α < 1, (7.3)

then the defining properties of gv,i ensure that inw(Fv,i ) = inw( fv,i ) for all v, i . In
turn, combining this fact with Lemma 2.19 and Proposition 7.1 yields

w · mv,e ≥ (1− α)
�u,v

|wu | for each edge e in Star�(v).

Furthermore, equality holds if and only if e � [v, λ]. Thus, inw( fv,i ) is obtained from
fv,i by dropping the admissible monomial at v pointing towards λ. In particular, these
initial forms do not involve zλ.

The above discussion shows that J ′w := Jw ∩ C[zμ : μ ∈ ∂ � � {λ}] defines Cλ.

The general point of this curve lies in (C∗)n−1 by Theorem 2.21, so J ′w is monomial-
free. In turn, the same result confirms that J ′w defines a reduced complete intersection,
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smooth outside the origin, and with gcd(�λ,μ : μ ∈ ∂ � � {λ}) many irreducible
components. Since Jw is obtained from J ′w by base change to C[zλ : λ ∈ ∂ �], and
both ideals admit a common generating set, the result follows. 	


Given two adjacent nodes u and u′ of �, we let T ′ be the branch of � adjacent to
u′ containing u. Similarly, we let T be the branch of � adjacent to u and containing
u′. Our final lemma is analogous to Lemma 7.5:

Lemma 7.6 Let u and u′ be two adjacent nodes of � and pick w ∈ [ι(u), ι(u′)]◦. Then,
Zw is isomorphic to a product of two monomial curves in C

|∂ T ′|×C
|∂ T |. Furthermore,

the number of irreducible components of Zw equals gcd(�′u′,λ : λ ∈ ∂ T ′) gcd(�′u,μ :
μ ∈ ∂ T ) and Jw is monomial-free.

Proof We write w = αwu + (1− α)wu′ with 0 < α < 1 and follow the same proof-
strategy as in Lemma 7.5. By Theorem 5.11, we can find a unique r ∈ [u, u′]◦ with
ι(r) = w/|w| (see the rightmost picture in Fig. 7).

The conditions on α together with Proposition 7.1 guarantee that for each node v in
T ′, inw(Fv,i ) = inw( fv,i ). Furthermore, each form is obtained from fv,i by dropping
the admissible monomial at v pointing towards u′. This observation and the symmetry
between u and u′ determine a partition of the generating set of Jw , where each initial
form inw(Fv,i ) for any node v of T ′ (respectively, in T ) only involves the leaves of T ′
(respectively, of T ). Thus, each set determines an end-curve for the diagrams [T ′, r ]
and [T , r ], respectively, both rooted at r .

By construction, Jw defines the product of these two monomial curves. Since each
of them is a complete intersection in their respective ambient spaces, the same is true
for Jw . The number of components is determined by Theorem 2.21. Since Zw meets
(C∗)n , we conclude that Jw is monomial-free. 	


The next result is a direct consequence of Theorem A.1 and the previous three
lemmas. It gives an alternative proof of Theorem 6.23 since for any w in ι(�)◦, these
lemmas confirm that Jw is monomial-free.

Corollary 7.7 For any strictly positive vector w in the splice fan of �, we have
inw(〈S(�)〉) = Jw , where 〈S(�)〉 is the ideal generated by the splice type system
S(�).

Proof By construction, we have Jw ⊆ inw(S(�)) for each w ∈ (�n−1)◦ ∩ ι(�). In
addition, Lemmas 7.4, 7.5 and 7.6 imply that the generators of Jw form a regular
sequence in the ring of convergent power series C{zλ : λ ∈ ∂ �} near the origin.
Thus, Theorem A.1 implies that Jw = inw(S(�)) as ideals of C{zλ : λ ∈ ∂ �} for
each w ∈ Q

n ∩ R≥0〈ι(�)〉. Finally, since these ideals are constant when we consider
all rational points in the relative interior of any fixed edge of ι(�), Lemma 7.8 below
confirms that the same must be true for all points in these open segments. 	

Lemma 7.8 Fix an edge [u, v] of �. If Jw is constant for all w ∈ ι([u, v]) ∩ (Q>0)

n,
the same is true for all w ∈ ι([u, v]◦).
Proof We set J := 〈S(�)〉, σ := R≥0〈ι([u, v])〉, and fix a weight vector w′ ∈
σ ◦� Q

n . We wish to show that inw′(J ) = inw(J ) for all w ∈ σ ◦ ∩Q
n . We prove this

equality by double-inclusion.
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The inclusion inw′(J ) ⊆ inw(J ) is a direct consequence of the following claim:

Claim. For each f ∈ J , we have inw′( f ) ∈ inw(J ).

Proof Throughout our reasoning, we need the following auxiliary fact. By [28,
Lemma 2.4.6], given w1 and w2 in (R>0)

n , there exists ε > 0 with

inw1(inw2( f )) = inw2+ε′w1( f ) (7.4)

for all 0 < ε′ < ε and for each f ∈ C[zλ : λ ∈ ∂ �]. Restricting further the value of
ε > 0 to require that w2 + ε′w1 ∈ (R>0)

n whenever 0 < ε′ < ε, extends the validity
of (7.4) to convergent power series f ∈ C{zλ : λ ∈ ∂ �}.

Since w′ ∈ (R>0)
n by construction, the initial form inw′( f ) is a polynomial. Its

Newton fan is rational and complete, and we get an induced rational fan (denoted by
�) on the cone σ by common refinement. Thus, w′ cannot be a ray of � (the vector
is not rational), so it lies in a 2-dimensional cone τ of �. By construction, τ ⊆ σ .
Picking any w′′ ∈ τ ∩ (Q>0)

n , our earlier discussion ensures the existence of ε > 0
with

inw′( f ) = inw′′(inw′( f )) = inw′+ε′w′′( f ) for all 0 < ε′ < ε.

Since the set {w′ + ε′w′′ : 0 < ε′ < ε} contains a point w in σ ◦ ∩ Q
n , we conclude

that inw′( f ) ∈ inw(J ). �
For the reverse inclusion, we argue as follows. Direct calculations used in the proofs

of Lemmas 7.5 and 7.6 confirm the identities

inw(Fv,i ) = inw′(Fv,i ) for all nodes v ∈ � and each i ∈ {1, . . . , δv − 2}.

In turn, Theorem A.1 ensures that this collection generates inw(J ). Thus, inw(J ) ⊆
inw′(J ), as desired. 	

Remark 7.9 The geometric information collected in Lemmas 7.5 and 7.6 com-
bined with Corollary 7.7 determines the tropical multiplicities of Trop>0〈S(�)〉.
Using Remark 2.7 and Definition 3.20, we have:

1. if τ = R≥0ι([λ, u]) for a node u of �, then τ has multiplicity

1

du,λ

gcd(�u,μ : μ ∈ ∂ � � {λ});

2. if τ = R≥0ι([u, v]) for two adjacent nodes u and v of �, then τ has multiplicity

1

du,vdv,u
gcd(�u,λ : λ ∈ ∂ �, u ∈ [λ, v]) gcd(�v,λ : λ ∈ ∂ �, v ∈ [λ, u]).

This information completes the characterization of Trop>0〈S(�)〉 as a tropical object,
i.e., as a weighted balanced polyhedral fan.We use this data in Sect. 8 when discussing
how to recover � from its splice fan.
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Our next statement follows naturally from Proposition 3.15 and Corollary 7.7:

Corollary 7.10 The splice fan of � is a standard tropicalizing fan for the germ (X , 0)
defined by S(�), in the sense of Definition 3.17.

Next, we show how we can use their local tropicalizations to recover some known
facts about splice type systems and their associated end-curves from [38, 39]. Our first
statement discusses the intersections of the initial degenerations of the germ defined
by S(�) will suitable codimension-2 coordinate subspaces of C

n :

Lemma 7.11 Let w be a vector in (R>0)
n which lies in the embedded splice diagram

ι(�), and let λ and μ be two leaves of � in different branches of ι(�) adjacent to w.
Then, the system

{
inw(Fv,i ) = 0, v is a node of �, i ∈ {1, . . . , δv − 2},
zλ = zμ = 0

(7.5)

has 0 ∈ C
n as its only solution.

Proof If w = ι(u) is the (normalized) weight vector corresponding to a node u of �,
this statement is proved as part of [38, Theorem 2.6], more precisely, on [38, p. 710].
For any point w in ι(�) ∩ (�n)

◦, the claim follows by similar arguments, but for
the reader’s convenience, we give a complete proof that includes the node case. Our
reasoning is guided by Fig. 7, and it is based on the techniques discussed in the proofs
of Lemmas 7.4, 7.5 and 7.6.

By Theorem 5.11, we can find a unique point r in � withw = ι(r). As in the figure,
we write r = u if u is a node of �. Otherwise, r is in the relative interior of a unique
edge [u, u′], where u is a node of � but u′ is allowed to be a leaf of �. The proofs
of the three aforementioned lemmas ensure that inw(Fv, j ) = inw( fv, j ) for all nodes
v in � and j ∈ {1, . . . , δv − 2}. Thus, to prove the statement, we may assume that
gv,i = 0 for all v, i .

By abuse of notation, we think of the point r as a node of � (potentially, of valency
two). We assume r is adjacent to k nodes and � leaves of �, with k + � = δr . We let
T1, . . . , Tδr be the branches of � adjacent to T . We assume T1, . . . , Tk contain nodes
of �, whereas the remaining branches are singletons. We view the single vertex of a
singleton branch as a leaf of this branch.

Using r , we build a collection of rooted splice diagrams �1, . . . , �k rooted at r .
Each �i is obtained as the convex hull [Ti , r ]. In particular, if r ∈ [u, u′]◦ (as in the
right of the figure), then k is the number of nodes of � among {u, u′}. We assume that
u ∈ T1 whenever δr = 2.

Throughout, we consider the ideals

Ji := 〈inw( fv, j ) : v node of �i , j = 1, . . . , δv − 2〉 for i ∈ {1, . . . , k}. (7.6)

The generators of Ji are among the series of the system (7.5) per our assumption on
the tails gv,i . Since r is not a node of �i , Lemma 2.19 confirms that Ji is generated by
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polynomials inC[zλ′ : λ′ ∈ ∂ Ti ]. Viewed in this ring, the ideal Ji defines an end-curve
Ci in C

|∂ Ti | associated to the rooted diagram �i (see Remark 7.2).
Next, we consider a solution p ∈ C

n of the system (7.5). Our assertion that p is
the origin will follow by combining the next two claims:
Claim A. Fix i ∈ {1, . . . , δr } and assume that pλ′ = 0 for some leaf λ′ of Ti .
Then, pλ = 0 for all leaves λ of Ti .

Proof If i > k, then Ti = {λ′} and the statement is tautological. On the contrary,
if i ≤ k, then the projection of p to C

|∂ Ti | lies in the end-curve Ci . Since pλ′ =
0, Theorem 2.21 guarantees that the projection of p is the origin of C

|∂ Ti |, as we
wanted. �
Claim B. Assume that all coordinates of p indexed by two different branches (say, Ti1
and Ti2 ) adjacent to r vanish. Then, the same is true for each remaining branch.

Proof If δr = 2, there is nothing to show. On the contrary, if δr ≥ 3, we consider the
splice type polynomials fr , j for j ∈ {1, . . . , δr − 2}. By Proposition 7.1, inw( fr , j ) =
fr , j for each j .
Using the Hamm conditions, we may assume that each fr , j involves exactly three

admissible monomials, two of which are z
mr ,Ti1 and z

mr ,Ti2 . The third one equals

z
mr ,Ti j . Since the first two monomials vanish along p by construction, we deduce that
the same is true for the remaining monomial in fr , j . Thus, for each of the remaining
branches Ti j adjacent to r we have pλ′j = 0 for some leaf λ′j in Ti j . Claim A ensures
that the same is true for all leaves of Ti j . This concludes our proof. �

To finish our proof, it is enough to notice that the hypothesis of Claim B holds by
combining Claim A with the fact that the leaves λ and μ belong to distinct branches
of � adjacent to r . 	


Our second statement gives a stronger version of Corollary 2.23:

Corollary 7.12 Assume that the conditions of Lemma 7.11 hold and consider the map
Fw : Cn → C

n−2 obtained from the collection {inw(Fv,i )}v,i , ordered appropriately.
Then, the restriction of this map to the codimension-2 subspace L = {zλ = zμ = 0}
of C

n is surjective.

Proof By Lemma 7.11, we see that the fiber of the restriction of Fw to L over the
origin of C

n−2 is 0-dimensional. By upper semicontinuity of fiber dimensions, the
generic fiber of Fw|L is also 0-dimensional. Since dim L = n − 2, the map Fw|L is
dominant.

Since Fw|L is defined byweighted homogeneous functions, it admits a projectiviza-
tion as amap betweenweighted projective spaces. But a dominant projectivemapmust
be surjective. Thus, as an affine map, Fw|L is surjective as well. 	


Next, we recover Theorem 2.16 (originally due to Neumann andWahl) by combin-
ing Corollary 6.18 with the following result:

Corollary 7.13 The singularity defined by the splice type system S(�) is isolated. In
particular, it is also irreducible.

123



M. A. Cueto et al.

Proof Let (X , 0) ↪→ C
n be the germ defined by S(�). By Corollary 6.20, we know

that X ∩ (C∗)n is dense in X . Since S(�) is a Newton non-degenerate complete
intersection system by Theorem 7.3, we conclude that X ⊂ C

n admits an embedded
toric resolution (see, e.g., Khovanskii [23, Sect. 2.7] and Oka [41, Chapter III, The-
orem (3.4)]). In particular, for a suitable subdivision � of the splice fan of X , the
corresponding toric morphism π : X� → C

n induces an embedded resolution of the
pair (Cn, X). But aswe saw in Theorem6.2, the local tropicalization ofS(�) intersects
the boundary of the non-negative orthant only along the canonical basis elements. It
follows from this that the morphism π is an isomorphism outside the origin, i.e., π

is a resolution of (X , 0). We conclude that the singularity at the origin is isolated. As
(X , 0) is moreover a complete intersection of dimension two by Corollary 6.20, it is
automatically irreducible by Hartshorne’s connectedness theorem [21, Theorem 2.2]
(see also [9, Theorem 18.12]), which states that a complete intersection singularity
cannot be disconnected by removing a closed subgerm of codimension at least two. 	


We end this section by showing how to use our results to get embedded resolutions
of complex plane curve singularities by composing re-embeddings of C

2 into higher-
dimensional smooth spaces C

n with toric modifications of C
n . The fact that such

resolutions are possible was proven by Goldin and Teissier [17] in the irreducible case
and recently by de Felipe, González Pérez and Mourtada [7, Theorem 2.27] in full
generality.

Corollary 7.14 Let (X , 0) ↪→ C
2 be the germ of a reduced complex analytic plane

curve. Then, the ambient germ (C2, 0) can be holomorphically re-embedded into
a suitable higher-dimensional germ (Cn, 0) in such a way that the induced germ
(X , 0) ↪→ C

n can be resolved by a single toric modification of C
n.

Proof This result is a consequence of Theorem 7.3, as we now explain. Indeed, con-
sider a completion (X̂ , 0) ↪→ C

2 of the input germ (X , 0) ↪→ C
2 in the sense of [15,

Definition 1.4.15]. By construction, (X̂ , 0) is also the germ of a reduced plane curve,
it contains (X , 0) as a subgerm and it admits an embedded resolution (that is, a modi-
fication π : S→ C

2 where S is smooth and the total transform of X̂ on S has normal
crossings) such that the strict transform of X̂ intersects all the leaf components of the
exceptional divisor. Here, leaf components correspond to leaves of the dual graph of
the exceptional divisor.

Moreover, possibly after extra blowups at points, the modification π : S→ C
2 can

be chosen to ensure that each leaf component is intersected by exactly one irreducible
component of the strict transform of X̂ . Since all the irreducible components of (X̂ , 0)
are principal divisors on (C2, 0), and (C2, 0) has an integral homology sphere link,
Neumann and Wahl’s end-curve theorem [39, Theorem 4.1 (3)] guarantees the exis-
tence of a holomorphic embedding φ : (C2, 0) → (Cn, 0) such that (φ(C2), 0) is
a splice type singularity. Furthermore, the irreducible components of (φ(X̂), 0) are
exactly the intersections of (φ(C2), 0) with the coordinate hyperplanes of (Cn, 0).

Let � be the splice diagram of the splice type singularity (φ(C2), 0) ↪→ (Cn, 0).
Consider the splice fan F of �, in the sense of Definition 6.1. By Corollary 7.10, F
is a standard tropicalizing fan of (φ(C2), 0), in the sense of Definition 3.17. Consider
a regular subdivision F ′ of F . It is also a standard tropicalizing fan of (φ(C2), 0).
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Fig. 8 Two splice diagrams used in Example 7.16: the right one is obtained from the left one by attaching
an extra leaf through a weight one edge

Let XF ′ be the toric variety defined by the fan F ′ and let πF ′ : XF ′ → C
n be the

birational toric morphism defined by the inclusion of the support of the fan F ′ in the
non-negative orthant (R≥0)n of the weight lattice Z

n of C
n .

Consider the strict transform S′ of (φ(C2), 0) by πF ′ and denote by

π ′ : S′ → (φ(C2), 0)

the restriction of πF ′ to S′. By construction, the support ofF ′ equals the local tropical-
ization of (φ(C2), 0) inC

n . Thus, Proposition 3.19 (1) implies that the bimeromorphic
morphism π ′ is proper.

By Theorem 7.3, (φ(C2), 0) is defined by a Newton non-degenerate complete inter-
section system inside C

n . Therefore, the scheme-theoretic intersections of S′ with the
orbits of the toric variety XF ′ are either empty or smooth (see [28, Remark 6.4.18]).
As a consequence, S′ intersects transversally the toric boundary ofXF ′ (see [6, Propo-
sition 3.9]). As F ′ is a regular fan, the toric variety XF ′ is smooth. Therefore, S′ is
also smooth and the total transform of (φ(X̂), 0) in S′ is a normal crossings curve.

This fact and the properness of π ′ imply that π ′ is an embedded resolution of
(φ(X̂), 0) ↪→ (φ(C2), 0). As (X , 0) ↪→ (X̂ , 0), the morphism π ′ is also an embedded
resolution of (φ(X), 0) ↪→ (φ(C2), 0). Therefore, φ−1 ◦ π ′ : S′ → (C2, 0) is an
embedded resolution of (X , 0) ↪→ (C2, 0), as we wanted to show. 	


Remark 7.15 Results from [14, Sect. 5] allow to describe the splice diagram associated
to a plane curve singularity in terms of the Newton–Puiseux series of its branches.
Applying Corollary 7.10 to this splice diagram yields a concrete description of the
local tropicalization of the embedding φ from the proof of Corollary 7.14 in terms of
standard combinatorial invariants of the given plane curve singularity. This method is
similar to the one used by de Felipe, González Pérez and Mourtada in [7, Sect. 3] to
characterize such local tropicalizations.

The construction of splice type systems by Neumann and Wahl implies that the
embedding dimension of a splice type singularity is bounded fromabove by the number
of leaves of the associated splice diagram. If an edge ending in a leaf has weight one,
then it can be removed by simple elimination to produce a germ in lower dimension.
As the following example illustrates, this operation need not necessarily produce a
splice type singularity.

Example 7.16 Consider the splice diagram � on the right of Fig. 8 satisfying the edge
determinant and semigroup conditions. We consider two strict splice type systems for
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�:
⎧
⎪⎨

⎪⎩

z21 + z32 + z3z34 = 0,

z1z42 + z53 + z24 + z5 = 0,

2 z1z42 + 3 z53 − 2 z24 + z5 = 0,

⎧
⎪⎨

⎪⎩

z21 + z32 + z3z4z5 = 0,

z1z42 + z53 + z24 + z5 = 0,

2 z1z42 + 3 z53 − 2 z24 + z5 = 0.
(7.7)

Eliminating the z5 variable from the left system yields a splice system associated to
the splice diagramon the left of thefigure, namely z21+z32+z3z34 = −z1z42−2z53+3z24 =
0. On the other hand, elimination on the rightmost system in (7.7) produces a system
of two equations in four unknowns that is not of splice type:

{
z21 + z32 + z63z4 − 4z3z34 = 0,

−z1z42 − 2z53 + 3z24 = 0.

	

But even if no such terminal edge with weigh one exists, the embedding dimension

of a splice type singularity can still be smaller than the number of leaves in the splice
diagram. In particular, [39, Example 3] exhibits a hypersurface singularity Z( f ) in
C
3 realizing a splice type surface singularity (X , 0) whose associate splice diagram

� has six leaves.
A simple calculation reveals that the standard local tropicalization of this hyper-

surface is the cone over a star-shaped tree with three leaves (corresponding to the
standard coordinate basis vectors) and a single node w. The w-initial form of f is
non-reduced so the Newton non-degeneracy condition fails for this hypersurface pre-
sentation, despite the fact that the splice type system S(�) defining (X , 0) is a Newton
non-degenerate complete intersection system by Theorem 7.3.

Motivated by this example, we define the Newton non-degenerate embedding
dimension edimN N D(X , 0) of an abstract germ (X , 0) as the smallest n ≥ 0 such
that (X , 0) may be embedded in C

n as a Newton non-degenerate subgerm. In this
context, the following question arises naturally:

Question 7.17 Fix a splice diagram with n leaves satisfying the edge determinant and
semigroup conditions. Assume that no edge of � ending in a leaf has weight one. Let
(X , 0) be a splice type singularity associated to �. Is it true that edimN N D(X , 0) =
|∂ �|?

8 Recovering splice diagrams from splice fans

Throughout this section we assume that the splice type diagrams satisfy the edge
determinant condition ofDefinition 2.9 and the semigroup condition ofDefinition 2.13.
The construction of splice fans from splice diagrams introduced in Definition 6.1
raises a natural question: how much data about � can be recovered from its splice fan,
decorated with the tropical multiplicities? The main result of this section answers this
question under the following coprimality restrictions, which are central to [39]:
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Fig. 9 A splice diagram � which cannot be recovered uniquely from its splice fan, as in Remark 8.4. Here,
d1 may take the values 1, 2 or 4 and all tropical multiplicities of the splice fan equal 4

Definition 8.1 We say that a splice diagram � satisfying the edge determinant condi-
tion and the semigroup condition is coprime if the weights around each node of � are
pairwise coprime.

As mentioned in Theorem 2.10, if � is coprime, then there exists a unique integral
homology sphere 3-manifold �(�) associated to �. However, there may be also non-
integral rational homology sphere links with the same splice diagram, since � only
determines the topological types of their universal abelian covers (see [38, p. 2]).

Our next result highlights the restrictions on the tropically weighted splice fan
imposed by a coprime splice diagram. Its proof will be postponed until the end of this
section. Precise formulas for the tropical multiplicities are given in Remark 7.9.

Theorem 8.2 Let � be a coprime splice diagram. Then:

1. for each node v of � the vector wv ∈ N (∂�) � Z
n is primitive;

2. all tropical multiplicities of Trop>0〈S(�)〉 equal one.

The following is the main result in this section. It ensures that coprime splice
diagrams can be recovered from their tropically weighted splice fans:

Theorem 8.3 Assume that all tropical multiplicities on the splice fan equal one. Then,
there is a unique coprime splice diagram � yielding the given weighted splice fan.

The rest of the section is devoted to the proof of these two results. A series of
lemmas and propositions will simplify the exposition.

Remark 8.4 Notice that the analog of Theorem 8.3 may fail if we drop the tropical
multiplicity one restrictions. This can be seen by looking at the example in Fig. 9.
For each choice of edge weight d1 = 1, 2 or 4, the diagram � satisfies the semigroup
and edge determinant conditions. Furthermore, all tropical multiplicities on the 2-
dimensional cones of the splice fan equal four. For each value of d1 we can choose
systems S(�) defining a germ in C

4, whose local tropicalization is supported on the
input splice fan.

Our first technical result will allow us to employ a pruning argument to prove The-
orem 8.3. To this end, we use superscripts to indicate the underlying splice diagram
considered for the computation of each linking number. The absence of a superscript
refers to �. The same notation will be used for weight vectors.

Proposition 8.5 Let [u, v] be an internal edge of a splice diagram �. Let T be the
branch of � adjacent to u and containing v. Consider �′ = [u, T ]with weights around
its nodes inherited from �. Then, the weighted tree �′ also satisfies the semigroup and
the edge determinant conditions.
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Proof We only need to check that the semigroup conditions hold for �′. The linking
numbers for� involving a vertex v′ of�′ with v′ �= u and a leaf λ of� can be obtained
from those in �′ via:

�v′,λ =
⎧
⎨

⎩

��′
v′,λ if λ ∈ ∂ �′ ∩ ∂ �,

��′
v′,u

�u,λ

du,v
otherwise .

(8.1)

Since the semigroup condition at each v′ holds for �, expression (8.1) implies the
same is true for �′. 	

Assume that u and v are adjacent nodes of� and let�′ be the associated splice diagram
introduced in Proposition 8.5. Up to relabeling, we write ∂ � � ∂ �′ = {λ1, . . . , λs}
for some s. Consider the following n× (n− s+1)matrix with integer entries in block
form obtained from (8.1):

A :=

⎛

⎜
⎜
⎜
⎝

�u,λ1/du,v

... 0
�u,λs /du,v

0 Idn−s

⎞

⎟
⎟
⎟
⎠

. (8.2)

A direct computation yields the following identity for the tree �′:

Lemma 8.6 For each vertex v′ of �′ with v′ �= u we have A w�′
v′ = wv′ .

Lemma 8.7 Fix a coprime splice diagram �. Let u, v be two adjacent nodes of �, and
let �′ be the diagram from Proposition 8.5. Then, we have

dv,u = gcd(�v,λ : λ ∈ ∂ �′ ∩ ∂ �).

Proof The result follows by an easy induction on the number of nodes of �′. If �′
has a single node, the identity holds by the coprimality of the weights around v. For
the inductive step, we assume that v is adjacent to q leaves and k nodes other than u,
denoted by {μ1, . . . , μq} and {v1, . . . , vk}, respectively. Then,

gcd(�v,μ1 , . . . , �v,μq ) = dv,u

k∏

j=1
dv,v j . (8.3)

For each j ∈ {1, . . . , k} we let Tj be the branch of �′ adjacent to v and containing
v j . Let �′j = [v, Tj ] be the corresponding splice diagram with inherited weights. The
inductive hypothesis on each �′j yields dv j ,v = gcd(�v j ,μ : μ ∈ ∂ �′j � {v}). The
identity �v,μ = (�v j ,μ/dv j ,v) (dv/dv,v j ) where μ ∈ ∂ �′j � {v} gives

gcd(�v,μ : μ ∈ ∂ �′j � {v}) = dv

dv,v j

. (8.4)

123



Local tropicalizations of splice type surface singularities

The result follows by combining (8.3) and (8.4) with the coprimality of the weights
at v. 	


Proof of Theorem 8.2 We prove the statement by induction on the number of nodes of
�, which we denote by p. If p = 1, we let u be the unique node of �. Then, the
coprimality condition

gcd(du,λi , du,λ j ) = 1 for i �= j

implies thatwu is a primitive vector. Furthermore, the formula in Remark 7.9 confirms
that the tropical multiplicity associated to the edge [u, λ] equals one since

1

du,λ

gcd

⎛

⎝du,λ

∏

γ �=λ,μ

du,γ : μ ∈ ∂ � � {λ}
⎞

⎠ = 1.

Next, assume p > 1 and let u be an end-node of �. Let {λ1, . . . , λs} be the leaves
adjacent to u and let v be the unique node of� adjacent to u.We let�′ be the splice sub-
diagram of � obtained from u and v, as in Proposition 8.5. The coprimality condition
for �′ and our inductive hypothesis confirm that for each vertex v′ of �′, w�′

v′ is a
primitive vector in N (∂�′), and all tropical multiplicities of Trop>0 S(�′) are one.

Since the gcd of all maximal minors of the matrix A equals 1 by the coprimality
condition around u, it follows that A maps primitive vectors in N (∂�′) to primitive
vectors in N (∂�). This fact together with Lemma 8.6 ensures that the vector wv′ is
primitive whenever v′ �= u is a node of �′. If v′ = u we have

wu =
s∑

i=1

du

du,λi

wλi +
du

du,v

∑

μ∈∂v�

�v,μ

dv,u
wμ,

where ∂v� is the set ∂u,[u,v]� from Definition 2.13. Since gcd(�v,μ : μ ∈ ∂v�) = dv,u

by Lemma 8.7, and gcd(du/du,λi : i = 1, . . . , s) = du,v , the pairwise coprimality of
weights around u ensures that wu is a primitive vector in N (∂�).

To finish, we compute the tropical multiplicities. Remark 7.9, Lemma 8.7 and the
coprimality of weights around u implies that the multiplicity corresponding to the
edge [u, λi ] of � is one. Indeed, we have

gcd

(
�u,μ

du,λi

: μ ∈ ∂ � � {λi }
)

= gcd

(

gcd

(
du

du,λi du,λ j

j = 1, . . . , s, j �= i

)

, gcd

(
�v,μ

dv,u

du

du,λi du,v

: μ ∈ ∂v�

))

= gcd

(

gcd

(
du

du,λi du,λ j

j = 1, . . . , s, j �= i

)

,
du

du,λi du,v

)

= 1.
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If we pick an edge [v′, λ j ] with j > s we get multiplicity one by the inductive
hypothesis applied to �′ combined with (8.1) and the coprimality of the weights
around u. More precisely,

gcd

(

gcd

(
�v′,λk

dv′,λ j

: k = s + 1, . . . , n, k �= j

)

, gcd(
�v′,λi

dv′,λ j

: i = 1, . . . , s)

)

= gcd

⎛

⎜
⎜
⎜
⎝
gcd

(
��′
v′,λk

dv′,λ j

: k = s + 1, . . . , n, k �= j

)

,
��′
v′,u

dv′,λ j

gcd(
�u,λi

du,v

: i = 1, . . . , s)

︸ ︷︷ ︸
=1

⎞

⎟
⎟
⎟
⎠
= 1.

Finally, the cone associated to an edge between two adjacent nodes u′, v′ of � will
have tropicalmultiplicity one byLemma8.7 since gcd(�u′,λ/du′,v′ : λ ∈ ∂v′,[u′,v′]�) =
gcd(�v′,μ/dv′,u′ : μ ∈ ∂u′,[u′,v′]�) = 1. 	


Proof of Theorem 8.3 The combinatorial type of � is completely determined by inter-
secting �n−1 and the splice fan. In turn, Theorem 8.2 (1) allows us to characterize
the vector wu as the primitive vector associated to the corresponding ray of the fan
R≥0ι(�). All that remains is to determine the weights around each node of � from
this data. We do so by induction on the number of nodes of �, which we denote by p.

If p = 1, then the coprimality of the weights around the single node u of �

determines each du,λi uniquely as follows. By construction, the entries of wu are
coprime and we have

du,λ = gcd((wu)μ : μ ∈ ∂ � � {λ}).

Next, assume p > 1 and fix an end-node u of �. Let λ1, . . . , λs be the leaves of �

adjacent to u, and v be the unique node of � adjacent to u. Let �′ be the tree obtained
by pruning � from u, as in Proposition 8.5. The weights around u can be recovered
uniquely from the splice fan of �. Indeed, write

wu =
s∑

i=1

du

du,λi

wλi +
du

du,v

n∑

j=s+1

��′
v,λ j

dv,u
wλ j . (8.5)

Notice that the coprimality condition gives du,v = gcd(du/du,λi : i = 1, . . . , s) and
du = lcm(du/du,λi : i = 1, . . . , s). From this we recover all remaining s weights at u
since du,λi = du/(du/du,λi ) for every i ∈ {1, . . . , s}.

Next, for each node v′ of � with v′ �= u, we use the full-rank matrix A from (8.2)
to recoverw�′

v′ ∈ Z
n−s+1 uniquely fromwv′ . Sincew�′

u is a prescribed canonical basis

element of N (∂�′) � Z
n−s+1, the set of vectors {w�′

v′ : v′ is a node of �′} allows us
to determine the splice fan of �′. The inductive hypothesis then uniquely recovers the
splice diagram �′, and hence � has been fully determined. 	
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9 Intrinsic nature of splice type singularities

Theorem 6.2 shows that the local tropicalization of the germ defined by a given splice
type system S(�) is independent of the choice of admissible monomials and higher
order terms used to define it. In fact, Neumann and Wahl proved that the set of splice
type singularities defined by splice type systems with fixed admissible monomials
associated to a given splice diagram is independent of these choices, both in the
coprime setting and in the general case under a suitable equivariant hypothesis on the
series gv,i collecting the higher order terms of each series Fv,i . In this section we give
a variant of their proof in the coprime case and we show by an example that without
the equivariance hypothesis, the result no longer holds.

Here is the precise statement for coprime diagrams, which can be deduced from
the equivariant case [38, Theorem 10.1]. For completeness, we include a direct proof:

Theorem 9.1 Let � be a coprime splice diagram with n leaves, and let

M := {zmv,e : v is a node in �, e ∈ Star�(v)}

be a complete set of admissible monomials for �. Let S(�)M be the set of all splice
type systems that can be constructed using the set M. Then, the set XM of all germs
(X , 0) ↪→ C

n defined by the vanishing of a system in S(�)M is independent of M.

Proof Let M′ be a second complete set of admissible monomials. We proceed by
induction on the size p of the setM�M′. If p = 0, there is nothing to show. For the
inductive step, it suffices to analyze the case when p = 1, i.e. whenM andM′ differ
by exactly one admissible monomial. Fix a pair (v0, e0) for which the corresponding
monomials inM andM′ differ, and let mv0,e0 and mv0,e0 be the associated admissible
exponents. To prove the statement, we use the wv0 -filtration I• : I0 ⊇ I1 ⊇ I2 ⊇ . . .

of ideals of the local ring O := C{z1, . . . , zn}, where

Id := { f ∈ O : wv0( f ) ≥ d}. (9.1)

Let {Fv,i : v, i} be a splice type system in S(�)M. It determines a germ (X , 0) ∈
XM together with an embedding ϕ : X ↪→ C

n . We write Fv,i = fv,i + gv,i for
each node v of � and i ∈ {0, . . . , δv − 2} as in (2.8) and (2.9). The wv0 -filtration I•
restricted to X yields a filtration J• under the corresponding surjective map of local
rings ϕ� : O � O(X ,0), i.e.,

Jk := ϕ�(Ik) for all k ≥ 0. (9.2)

By Lemma 9.2 below, there exist a ∈ C
∗, g ∈ Idv0+1 and h in the ideal of O

spanned by {Fv,i : v, i}, satisfying the equality

zmv0,e0 − a zm′v0,e0 = h + g. (9.3)
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Furthermore, up to moving to g all higher-order contributions of terms in h coming
from each Fv0,i , we may assume that h = ∑

v,i av,i Fv,i with av0,i ∈ C for each
i ∈ {1, . . . , δv0}. This can be achieved thanks to (2.6) and (2.10).

We prove the inclusion XM ⊆ XM′ by constructing an explicit system {F ′v,i : v, i}
in S(�)M′ whose vanishing set equals X . The reverse inclusion then follows by
exploiting the symmetry between M and M′. We consider the set {F ′v,i : v, i} with
F ′v,i := Fv,i for each v �= v0 and i ∈ {1, . . . , δv − 2}, whereas for v = v0 and
i ∈ {1, . . . , δv0 − 2} we pick F ′v0,i := f ′v0,i + g′v0,i with

f ′v0,i := ( fv0,i − cv0,e0,i z
mv0,e0 )+ (cv0,e0,i a)zm′v0,e0 and g′v0,i := gv0,i + cv0,e0,i g.

(9.4)
The scalar a and the series g ∈ Idv0+1 are those from (9.3).

We claim that {F ′v,i } ∈ S(�)M′ . Indeed, by construction, each series g′v0,i lies in
Idv0+1, as required by (2.10) (see Remark 2.15). In addition, the matrix of coefficients
for the polynomials {F ′v0,i }i is obtained from the matrix (cv0,e,i )i,e after rescaling by a
the column labeledwith e0. Thus, the Hammdeterminant conditions of Definition 2.14
are satisfied.

Combining (9.3) and (9.4) yields

F ′v0,i = Fv0,i − cv0,e0,i h ∈ 〈Fv, j : v node of �, j = 1, . . . , δv − 2〉.

We use the expression of h given above to replace {F ′v,i : v, i} by a set generating the
same ideal, i.e.,

{Fv,i : v �= v0, i = 1, . . . , δv − 2}

∪
⎧
⎨

⎩
Fv0,i − cv0,e0,i

δv0−2∑

j=1
av0, j Fv0, j : i = 1, . . . , δv0 − 2

⎫
⎬

⎭
. (9.5)

Since both {Fv,i : v, i} ∈ S(�)M and {F ′v,i : v, i} ∈ S(�)M′ determine complete
intersection systems of equations by Theorem 2.16, the (δv0−2)× (δv0−2)-matrix of
scalars Id−(cv0,e0,i av0, j )i, j associated to the second set in (9.5) must be invertible.
From here it follows that the vanishing sets of both collections {F ′v,i : v, i} and
{Fv,i : v, i} agree. Thus, the germ X lies in XM′ , as we wanted to show. 	


The following technical lemma gives a more precise version of the first half of the
statement of [38, Theorem 10.1]. Its proof follows the same reasoning, so we omit it
here:

Lemma 9.2 Fix two collections of admissible monomialsM,M′ with |M�M′| = 1.

Assume X ∈ XM, and let zmv0,e0 ∈M � M′ and zm′v0,e0 ∈M′
� M. Then, there

exists a ∈ C
∗ such that the restriction (zmv0,e0 − azm′v0,e0

)
|X belongs to Jdv0+1, where

Jdv0+1 is the ideal from (9.2).

As we mentioned earlier, if � is not coprime, analogous results to Theorem 9.1
and Lemma 9.2 can be proved under the condition that the higher order terms of
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Fig. 10 An example confirming the dependency of splice-type systems on the choice of admissible mono-
mials

each system (i.e., the terms in each gv,i ) satisfy an equivariant condition under the
action of a suitable finite abelian group, namely, the discriminant group of a given
plumbing graph with associated splice diagram �. For a precise statement, we refer
to [39, Theorem 10.1].

It is natural to ask whether this equivariant condition can be weakened. The next
example shows that this is not the case.

Example 9.3 Consider the (non-coprime) splice diagram � from Fig. 10 and pick two
sets of admissible monomials for � that differ only in the choice of exponent vectors
for the pair (v, [v, u]):

M := {z21, z22, z3z4, z23, z24} ∪ {z31}, M′ := {z21, z22, z3z4, z23, z24} ∪ {z21z2}.

We claim that XM �= XM′ , i.e., the elements of S(�)M and S(�)M determine
different sets of subgerms of (Cn, 0). More precisely, we show that the germ in XM
defined by the system {

fu,1 := z21 + z22 + z3 z4,

fv,1 := z31 + z23 + z24,
(9.6)

in S(�)M cannot be a member of XM′ . To do so, it suffices to show that no power
series associated to the node v of �, that is, no power series of the form

F ′v,1 := b1 z21z2 + b2 z23 + b3 z24 + gv,1,

with b1, b2, b3 ∈ C
∗ and gv,1 satisfying (2.10) can be an element of the ideal

( fu,1, fv,1) of the power series ring C{z1, . . . , z4}.
We argue by contradiction and pick elements A1, A2 ∈ C{z1, . . . , z4} with

b1 z21z2 + b2 z23 + b3 z24 + gv,1 = A1 fu,1 + A2 fv,1. (9.7)

By construction, thewv-initial form on the left-hand side is b1 z21z2+b2 z23+b3 z24 and
its wv-weight is 24. We claim that the wv-initial form on the right-hand side of (9.7)
may be written as

α1(z)(z
2
1 + z22)+ α2(z)

(
z31 + z23 + z24

)
,

for two wv-homogeneous polynomials α1(z), α2(z).
We prove this claim by explicit computation, comparing the wv-weights of both

summands and noticing that inwv ( fu,1) = z21 + z22, inwv ( fv,1) = fv,1. Three situ-
ations can occur. First, if wv(A1 fu,1) < wv(A2 fv,1), then the wv-initial form on
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the right-hand side of (9.7) comes from the first summand, i.e., α1(z) = inwv (A1)

and α2(z) = 0. Similarly, if wv(A1 fu,1) > wv(A2 fv,1), then the second summand
determines the wv-initial form on the right-hand side of (9.7), so α1(z) = 0 and
α2(z) = inwv (A2). Finally, if wv(A1 fu,1) = wv(A2 fv,1), the condition that the
total wv-weight of A1 fu,1 + A2 fv,1 and fv,1 agrees with the wv-weight of F ′v,1 con-
firms that both terms contribute to the wv-initial form, with α1(z) = inwv (A1) and
α2(z) = inwv (A2).

Comparing the wv-initial forms on both sides of (9.7) yields an identity of wv-
homogeneous polynomials:

b1 z21z2 + b2 z23 + b3 z24 = α1(z)
(

z21 + z22

)
+ α2(z)

(
z31 + z23 + z24

)
.

Since thewv-weight on both sides equals 24,we conclude thatα2(z)must be a constant.
Evaluating both sides at z1 = z2 = 0 forces b2 = b3 = α2(z), so in particular
α2 := α2(z) ∈ C

∗. We conclude from this that

b1 z21z2 = α1(z)
(

z21 + z22

)
+ α2 z31.

This identity implies that the function z31/(z
2
1z2) = b1α

−1
2 is constant on Z(z21+ z22)∩

(C∗)2, which is false. This contradiction confirms that XM �= XM′ , as we wanted to
show.
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Appendix A. Initial ideals and local regular sequences

In [38], the authors invoke a folklore lemma in commutative algebra in order to prove
several of their main theorems. This result involves regular sequences in a polynomial
ring and their initial forms with respect to integer weight vectors. As originally stated,
[38, Lemma 3.3] is not quite-correct: the global setting must be replaced by a local
one. This appendix provides a complete proof of this result in the local setting of
convergent power series near the origin, a result we could not locate in the literature.
This local version agrees with the general framework of [38]. Throughout, we let n
be a positive integer and let (O,m) denote the local ring of convergent power series
C{z1, . . . , zn} near the origin.

We start by stating our main result, namely, a reformulation of [38, Lemma 3.3] in
the local setting. Its proof will be given at the end of this appendix, after discussing

123



Local tropicalizations of splice type surface singularities

a series of preliminary technical results. Note that the same statement and proof will
hold ifO denotes the localization of the polynomial ringC[z1, . . . , zn] at the maximal
ideal of the origin of C

n .

Theorem A.1 Let ( f1, . . . , fs) be a finite sequence of elements in the maximal ideal m
ofO, and let J be the ideal generated by them. Fix a positive weight vector w ∈ (Z>0)

n.
Assume that (inw( f1), . . . , inw( fs)) is a regular sequence in O. Then:

1. the sequence ( f1, . . . , fs) is also regular, and
2. the w-initial ideal inw(J )O is generated by {inw( f1), . . . , inw( fs)}.
Remark A.2 As mentioned earlier, Theorem A.1 does not hold in the polynomial set-
ting. For instance, (z1(1 − z1), z2(1 − z1)) is a regular sequence in the local ring
C{z1, z2} but not in the polynomial ring C[z1, z2]. However, the sequence (z1, z2) of
initial forms with respect to any weight vector w ∈ (Z>0)

2 is regular in both rings.

Remark A.3 The regularity of the sequence of w-initial forms is needed in Theo-
rem A.1. As an example, fix n = 4, w = (1, 1, 1, 1), and consider the sequence
( f1, f2) with

f1 := z21 + z42 − z33 and f2 := z1 z2 − z34.

By construction, ( f1, f2) is a regular sequence in O defining an isolated complete
intersection surface singularity. The sequence of initial forms (inw( f1), inw( f2)) =
(z21, z1 z2) is not regular, and the w-initial ideal of ( f1, f2)O is generated by inw( f1),
inw( f2) and inw(z2 f1 − z1 f2) = −z2 z33 + z1 z34.

Throughout, we fixw ∈ (Z>0)
n and an arbitrary sequence ( f1, . . . , fs) of elements

of the maximal ideal m. We let J be the ideal generated by the fi ’s. Consider the
first few steps in the Koszul complex of O-modules determined by it (see, e.g., [51,
Sect. IV.A]):

F :=
⊕

1≤i< j≤s

O · ei j
d2

E :=
⊕

1≤i≤s

O · ei
d1 O O/J . (A.1)

The map d1 : E → O sends ei to fi for each i = 1, . . . , s and the kernel R of d1 is
the module of relations between the given generators of J . The morphism d2 : F → E
sends ei j to f j ei − fi e j , and its image is the submodule of “trivial relations” between
( f1, . . . , fs). By definition, the image of d2 lies in R, so we view d2 also as as a map
d2 : F → R.

By a standard result in commutative algebra (see, e.g., [51, Proposition 3, Chap-
ter IV.A.2]) we have:

Proposition A.4 The sequence ( f1, . . . , fs) of elements in m is regular in O if and
only if the Koszul complex (A.1) is exact at E.

Since the definition of E does not depend on the order of the sequence ( f1, . . . , fs),
the following consequence arises naturally:
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Corollary A.5 If ( f1, . . . , fs) is a regular sequence in O, any reordering of it is also a
regular sequence.

The weight vector w inducing the w-weight valuation (3.1) onO endows this ring
with a weight filtration by ideals (Ip)p≥0, where Ip := {g ∈ O : w(g) ≥ p}.
Similarly, we can filter O via the ideals (mp)p≥0. Both filtrations are cofinal since

Idp ⊆ mp ⊆ Ip for all p ≥ 0, (A.2)

where d is the maximum among all coordinates of w. It follows from this that
the completions of O with respect to both filtrations are canonically isomorphic. The
completion induced by them-adic filtration (mp)p≥0 is the ring of formal power series
in n variables.

In a similar fashion, we can filter the modules E and F appearing in (A.1) via
(E p)p≥0 and (Fp)p≥0, respectively, by assigning theweightsw( fi ) andw( fi )+w( f j )

to ei and ei j , respectively. More precisely,

E p :=
{

s∑

i=1
ai ei : w(ai ) ≥ p − w( fi ) ∀i

}

and

Fp :=
⎧
⎨

⎩

∑

i< j

bi j ei j : w(bi j ) ≥ p − w( fi )− w( f j ) ∀i, j

⎫
⎬

⎭
. (A.3)

These choices ensure that the maps d1 and d2 from the Koszul complex (A.1) preserve
the filtration. In addition, the module R of relations is filtered as well, via

Rp := E p ∩ R. (A.4)

We use these filtrations to define the w-initial forms on E and F . We state the
definition for E , since the one for F is analogous. The definition for R is given by
restriction.

Definition A.6 Given any g ∈ E with g �= 0, we let p be the unique integer such that
g ∈ E p�E p+1.An element g :=∑s

i=1 ri ei ∈ E p�E p+1 satisfiesw(ri )+w( fi ) ≥ p
for all i ∈ {1, . . . , s} and equalitymust hold for some index i . Let I be the set of indices
where equality is achieved. The w-initial form of g is inw(g) := ∑

i∈I inw(ri )ei .
We set inw(0) = 0.

By Proposition A.4, the regularity of the sequence ( f1, . . . , fs) is equivalent to
the surjectivity of the map d2 : F → R induced by (A.1). We prove the latter
in Lemma A.11, assuming the regularity of the sequence of w-initial forms of all
fi ’s.
Our first two lemmas use the regularity assumptions for the sequence of w-initial

forms to prove the surjectivity of d2 : F → R by working with the filtrations of F and
R described above.
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Lemma A.7 Assume that the sequence (inw( f1), . . . , inw( fs)) is regular in O. Then,
the morphism of C-vector spaces ϕp : Fp/Fp+1 → Rp/Rp+1 induced by the mor-
phism of O-modules d2 : F → R is surjective for all integers p ≥ 0.

Proof We must show that modulo Rp+1, every element g of Rp is the image of an
element of Fp/Fp+1 under the map ϕp. If g = 0, there is nothing to show, so we
assume g �= 0. In particular, g lifts to an element in Rp � Rp+1, which we denote by
g as well. We write g =∑s

j=1 r j e j .
Assume that inw(g) has k many terms, with k ∈ {1, . . . , s} (see Definition A.6).

By Corollary A.5, we can reorder the original sequence while preserving its regularity,
and write inw(g) as

inw(g) =
k∑

j=1
inw(r j )e j with w(r j )+ w( f j ) = p for all j ∈ {1, . . . , k}.

We claim that g is congruent, modulo the image of ϕp, to an element of Rp whose
w-initial form lies in the ideal generated by {inw( f1), . . . , inw( fk−1)}. The original
statement will follow by induction on k ≤ s.

Since
∑s

j=1 r j f j = 0 by definition of R and w(r j ) + w( f j ) > p for j ∈ {k +
1, . . . , s}, we conclude that the expected w-initial form of

∑s
j=1 r j f j must vanish,

i.e.,

k∑

j=1
inw(r j ) inw( f j ) = 0.

Therefore, inw(rk) inw( fk) is zeromodulo the ideal I := 〈inw( f1), . . . , inw( fk−1)〉O.
Since the sequence (inw( f1), . . . , inw( fs)) is regular, we conclude that inw(rk) must
lie in I .

Taking the w-weight value of rk and each f j into account we write inw(rk) as

inw(rk) =
k−1∑

j=1
a j inw( f j ),

where a j is either 0 or a non-zerow-weighted homogeneous polynomial withw(a j ) =
p−w( fk)−w( f j ) ≥ 0 for all j ∈ {1, . . . , k−1}. It follows from this that the element

r ′k := rk −
k−1∑

j=1
a j f j
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satisfies w(r ′k) > p −w( fk), so r ′k ek ∈ E p+1. Simple arithmetic manipulations give
a new formula for g, i.e,

g =
s∑

j=1
r j e j =

k−1∑

j=1
(r j + a j fk) e j +

k−1∑

j=1
a j ( f j ek − fk e j )

︸ ︷︷ ︸
=: h

+r ′k ek +
s∑

j=k+1
r j e j .

(A.5)
By construction, it follows that h = ϕp(

∑k−1
j=1 a j e jk) ∈ ϕp(Fp/Fp+1). Furthermore,

inw(g − h) only involves terms in the first of the four summands on the right-hand
side of (A.5) since the last two summands lie in E p+1. This establishes the claim. 	


Lemma A.8 Let J be the ideal of O generated by { f1, . . . , fs} and assume that
(inw( f1), . . . , inw( fs)) is a regular sequence in O. If g ∈ J has w-weight equal
to p ∈ N, then g admits an expression of the form g = ∑s

i=1 ai fi , where
w(ai fi ) ≥ p for all i . In particular, inw(g) belongs to the ideal of O generated
by {inw( f1), . . . , inw( fs)}.

Proof Since g ∈ J , we may write g as g = ∑s
i=1 bi fi with bi ∈ O for each i .

Consider

p′ = min{w(bi fi ) : i = 1, . . . , s}.

Assume that this weight is achieved at k many terms, which we can fix to be
{b1 f1, . . . , bk fk} upon reordering. If p′ ≥ p we have w(ai fi ) ≥ p for all i and
equality must hold for some i by definition of p. From here it follows that p′ = p, so
inw(g) =∑k

j=1 inw(a j ) inw( f j ), as we wanted to show.
On the contrary assume that p′ < p. We claim that we can find an alterna-

tive expression g = ∑s
j=1 b′j f j where the corresponding minimum weight p′′ :=

min{w(b′j f j )} satisfies p′′ ≥ p′ and the number of summands realizing p′′ is strictly
smaller than k. An easy induction combined with the fact that p′, p ∈ Z≥0 will then
yield a new expression for g with p′ ≥ p, as in our previous case.

It remains to prove the claim. Since p′ < p, the terms in g with w-weight p′ must
cancel out, i.e.,

∑k
j=1 inw(b j ) inw( f j ) = 0. As in the proof of Lemma A.7, the fact

that (inw( f1), . . . , inw( fs)) is a regular sequence in O ensures that

inw(bk) =
k−1∑

j=1
c j inw( f j ),

where c j is either zero or a w-homogeneous polynomial with w(c j ) = p′ −w( f j )−
w( fk) ≥ 0. It follows from here that the element b′k := bk −∑k−1

j=1 c j f j has weight
w(b′k) > w(bk), so w(b′k fk) > p′.
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An arithmetic manipulation allows us to rewrite g as follows:

g =
k−1∑

j=1
(b j + c j fk) f j + b′k fk +

s∑

j=k+1
b j f j (A.6)

By construction, the termswithminimumw-weight only appear in the first of the three
summands on the right-hand side of (A.6). Furthermore, the corresponding minimum
weight p′′ satisfies p′′ ≥ p′ since w(b j f j ) ≥ p′ for all j and w(c j fk f j ) ≥ p′ for
j < k. This confirms the validity of our claim. 	

A standard commutative algebra result (see, e.g., [4, Lemma 10.23]) combined

with Lemma A.8 yields:

Lemma A.9 Assume that the sequence (inw( f1), . . . , inw( fs)) is regular in O. Then,
the map d2 : F → R of filtered modules induces a surjection between their com-
pletions relative to the filtrations (Fp)p≥0 and (Rp)p≥0 respectively. More precisely,
lim←− F/Fp � lim←− R/Rp.

We let F̂ and R̂ be the m-adic completions of F and R respectively, which can
be computed with standard methods. Indeed, by [4, Theorem 10.13], we have

F̂ � F ⊗O Ô and R̂ � R ⊗O Ô. (A.7)

The double inclusions in (A.2) allow us to compare the completions in Lemma A.9
induced by (Fp)p≥0 and (Rp)p≥0, with F̂ and R̂, respectively. More precisely,

Lemma A.10 Assume that the sequence (inw( f1), . . . , inw( fs)) is regular in O. Then,
the completions appearing in Lemma A.9 agree with the m-adic ones, i.e.

lim←− F/Fp � lim←− F/mp F � F ⊗O Ô and lim←− R/Rp � lim←− R/mp R � R⊗O Ô.

(A.8)

Proof We let � := max{w( f j ) : j = 1, . . . , s}. It suffices to prove the first isomor-
phism on each side of (A.8), since the remaining ones appear in (A.7). By (A.3), we
have

E p :=
⊕

i

I p−w( fi ) ei and Fp :=
⊕

i< j

I p−w( fi )−w( f j ) ei j for each p ≥ 0.

It follows from here that Ip E ⊆ E p ⊆ Ip−�E and Ip F ⊆ Fp ⊆ Ip−2�F for each
p ≥ 0. Combining these inclusions with (A.2) yields:

Edp+� ⊆ Idp E ⊆ mp E ⊆ E p and Fdp+2� ⊆ Idp F ⊆ mp F ⊆ Fp

for each p ≥ 0. (A.9)
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The inclusions appearing on the right of (A.9) ensure that the filtrations (mp F)p≥0
and (Fp)p≥0 are cofinal in F . Thus, they yield isomorphic completions. This proves
the first isomorphism in (A.8).

Next, consider the filtration Rp from (A.4). First, notice that mp R ⊆ Rp by (A.9).
To finish, we claim the existence of some k ≥ 0 for which Rdp+(dk+�) ⊆ mp R for
all p ! 0. Indeed, by the Artin–Rees Lemma (see, e.g., [4, Theorem 10.10]), there
exists an integer k ≥ 0 satisfying

R ∩mp E = mp−k(R ∩mk E) for all p ≥ k.

Therefore, combining this fact with property (A.9) we obtained the desired inclusion:

Rdp+(dk+�) = R ∩ Ed(p+k)+� ⊂ R ∩mp+k E = mp(R ∩mk E) ⊂ mp R.

We conclude that (mp R)p≥0 and (Rp)p≥0 are cofinal filtrations in R, so they yield
isomorphic completions. 	


We let M be the cokernel of the map d2 : F → R given by (A.1), and we let M̂
be its m-adic completion. Lemma A.10 yields the following result:

Lemma A.11 Assume that the sequence (inw( f1), . . . , inw( fs)) is regular in O. Then,
M̂ = 0 and M = 0. In particular, the Koszul complex (A.1) is exact at E.

Proof By standard commutative algebra (see, e.g., [51, Corollaire 2, Chap. II.A.5])
we know that Ô is a flat O-module. Therefore, taking m-adic completion is an exact
functor. Since F̂ → R̂ is surjective (by combining Lemmas A.9 and A.10) it follows
that M̂ = 0.

By [4, Theorem 10.17], the kernel of the canonical morphism M → M̂ is anni-
hilated by an element of the form (1 + z) where z ∈ m. As O is a local ring, the
element (1 + z) must be a unit of O, thus M = 0 as claim. The exactness of the
Koszul complex at E follows immediately, as it is equivalent to the surjectivity of the
morphism d2 : F → R. 	


We end this appendix by proving its main result:

Proof of TheoremA.1 Since (inw( f1), . . . , inw( fs)) is regular in O, Lemma A.11
ensures that the Koszul complex (A.1) is exact at E . In turn, Proposition A.4 implies
that ( f1, . . . , fs) is a regular sequence in O. This proves item (1) of the statement.

To finish, we must show that the w-initial forms {inw( f1), . . . , inw( fs)} gener-
ate the w-initial ideal inw(J )O. By definition, the ideal generated by these forms
is contained in inw(J )O. As inw(J )O is generated over O by all elements inw(g)

with g ∈ J , the reverse inclusion will follow immediately if we show that inw(g) ∈
(inw( f1), . . . , inw( fs))O. This identity is a direct consequence of LemmaA.8. There-
fore, item (2) holds. This concludes our proof. 	
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