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ABSTRACT
The network communication between Internet of Things (IoT) de-
vices on the same local network has signi�cant implications for
platform and device interoperability, security, privacy, and correct-
ness. Yet, the analysis of local home Wi-Fi network tra�c and its
associated security and privacy threats have been largely ignored
by prior literature, which typically focuses on studying the com-
munication between IoT devices and cloud end-points, or detecting
vulnerable IoT devices exposed to the Internet. In this paper, we
present a comprehensive and empirical measurement study to shed
light on the local communication within a smart home deployment
and its threats. We use a unique combination of passive network
tra�c captures, protocol honeypots, dynamic mobile app analysis,
and crowdsourced IoT data from participants to identify and an-
alyze a wide range of device activities on the local network. We
then analyze these datasets to characterize local network protocols,
security and privacy threats associated with them. Our analysis
reveals vulnerable devices, insecure use of network protocols, and
sensitive data exposure by IoT devices. We provide evidence of how
this information is ex�ltrated to remote servers by mobile apps and
third-party SDKs, potentially for household �ngerprinting, surveil-
lance and cross-device tracking. We make our datasets and analysis
publicly available to support further research in this area.
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1 INTRODUCTION
Internet of Things (IoT) devices are increasingly pervasive in home
environments thanks to the many advantages and services that
they o�er to users, with an estimated household penetration of
43.8% in 2022 [113]. However, IoT devices may have undetected
security and privacy threats due to design and development errors,
privacy-intrusive business models, supply-chain vulnerabilities, or
even an incorrect use by end-users [34, 39, 54, 74, 89, 104, 119].

Prior research has mostly focused on understanding how IoT
devices interact with cloud services [34, 50, 54, 65], or identifying
vulnerabilities, often using mobile companion applications (apps)
as gateways to the devices [34, 90, 115, 118] or highlighting in-
stances of information leaks to the cloud by these Internet-facing
devices [89, 105]. Despite these important research contributions,
our understanding of the security and privacy threats caused by
the continuous and seamless interaction among IoT devices and
mobile apps in the local home network is still limited.

In this paper, we aim to �ll this gap by conducting a systematic
analysis of the network protocols used by IoT devices to interact
with each other in the home network, and the unexpected implica-
tions for security, privacy, and device functionality. Concerns range
from standard security issues such as vulnerable services running
on open ports, to privacy issues related to sensitive information
broadcasted by devices in the local network, thus enabling house-
hold and device �ngerprinting. In our threat model, we consider
IoT devices or software with access to a home network (i.e., behind
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the �rewall) that exploit device vulnerabilities or local network
protocols to gather privacy- or security-sensitive data from other
devices in the same local network, an attack that would not be
possible from the Internet.

All these threats are indeed real. Surreptitious device discovery
and device metadata disseminated by IoT devices in the local net-
work may be equally (ab)used by advertising companies, spyware,
or state-level surveillance. The Snowden revelations showed how
apparently harmless data such as device models and device MAC
addresses facilitate user tracking and household pro�ling [52]. Sim-
ilarly, Reardon [102] and the Wall Street Journal [117] discovered a
spyware SDK embedded that sent broadcast messages to the whole
LAN to �ngerprint other devices. This SDK—allegedly disseminated
by a U.S. defense contractor through mobile apps present in the US
Play Store—ex�ltrated this data to the cloud along with clipboard
contents, various device identi�ers, and location data. This same
malicious SDK was observed embedded in deceptively-advertised
encryption software released by a sister company, which was also
a root Certi�cate Authority [83].

This anecdotal evidence highlights the need to understand how
protocols are used on the LAN, what are the associated threats, and
to what extent are they potentially exploited in order to inform the
design and deployment of future standards and mitigations. Thus,
this paper focuses on answering the following research questions:
• RQ1:What are the protocols that smart home IoT devices support
and use within the local network to interact with other devices,
including mobile apps?

• RQ2: What are the security and privacy threats associated with
the use of these protocols in the local network?

• RQ3: Are network and device information been gathered by
advertising and tracking services? How amenable is this infor-
mation to household �ngerprinting and cross-device tracking?

Contributions. Through a combination of rigorous experiments,
both automated and manual, both controlled and uncontrolled, this
paper presents a comprehensive analysis of local network commu-
nications of a diverse range of consumer smart IoT devices and
mobile apps, and their associated threats. We study IoT local tra�c
in di�erent settings and scenarios and using complementary analy-
sis methods. Speci�cally, we combine (8) passive tra�c captures
and active scans in an IoT lab consisting of 93 di�erent IoT devices,
(88) the tra�c interactions between 2,335 mobile apps—including
companion IoT apps and regular apps—with those 93 devices, and
(888) organic local network interactions from 13,487 IoT devices
crowdsourced from 3,800 households. We consider only IP-based
consumer smart home IoT devices, their companion mobile apps,
and their wireless (Wi-Fi/IEEE 802.11) or wired (Ethernet) tra�c
in the local network. Analyses of other wireless interfaces like
Bluetooth are outside the scope of this paper.

The key contributions of this work are:
• We conduct the �rst rigorous analysis of smart home IoT tra�c
in the local network using a combination of controlled tra�c
analysis, active scans and runtime mobile app analysis. We �nd
a diverse use of protocols—both standard and proprietary—for
device discovery and data exchange. We reveal analogous proto-
col support for devices o�ering similar services or from the same
vendor, for service interoperability. Yet, the purpose of some

protocols remains unknown due to the lack of accurate tra�c
classi�cation methods for local IoT tra�c and documentation.

• We identify concerning security and privacy threats associated
with local network tra�c. We observe uncontrolled dissemina-
tion of sensitive and identi�able information, such as MAC ad-
dresses, device models, UUIDs, and geolocation. These can be
harvested by malicious actors in the home network (e.g., spyware
or privacy-intrusive advertising companies). We also identify
devices running outdated and vulnerable services.

• We provide evidence of Android mobile apps and third-party
SDKs (e.g., innoSDK and AppDynamics) harvesting local network
information potentially for advertising and tracking purposes. In
order to access this data, they abuse user-space discovery proto-
cols (e.g., UPnP and mDNS) to bypass the Android permissions
that control the access to sensitive information such as the MAC
address of the Wi-Fi Access Point. Further, using IoT Inspector’s
crowdsourced data, we demonstrate that local network infor-
mation is a valuable asset for privacy-intrusive practices like
household �ngerprinting and cross-device tracking.

In summary, the threats we consider in this paper are important
and unaddressed by existing mitigations. As we show, many devices
are vulnerable to the threats described above, and these issues are
actively exploited by mobile apps, malware, and third-party SDKs.
We discuss potential mitigations that may contribute to minimize
the impact of the threats presented in this paper in § 7.
Responsible Disclosure. We responsibly disclosed all security
and privacy risks to the respective vendors, along with proof-of-
concept details and an assessment of their security and privacy
impact. Interactions with a�ected vendors are still ongoing at the
time of writing, and we report on details in Appendix §A. We note
that Google is engaging with us to explore mitigations that could
be implemented via the Android OS, app review processes, and
general IoT standardization e�orts.
Research Artifacts. To ensure reproducibility and facilitate follow-
up research, we have made our data and analysis artifacts with
the exception of commercial products, publicly available at https:
//github.com/Android-Observatory/IoT-LAN/.
Ethical Considerations. All data collected from human subjects
was conducted with participant consent and IRB approval at respec-
tive institutions. No personal identi�ers were used for our analysis
nor will be disclosed with our dataset releases. § 3.4 provides a
detailed discussion of the ethical considerations of this work.

2 BACKGROUND
IoT devices not only communicate over the Internet, but also with
other devices and software services running on the local network.
This is facilitated by popular IoT platforms such as SmartThings or
Google Home that provide support and protocols for discovering,
connecting, and managing IoT devices, thus enabling interoper-
ability across IoT vendors, platforms, and devices. While standard
protocol speci�cations (e.g., UPnP, mDNS, DHCP) may be well
known, their actual use and behavior in home networks is not. Not
to mention the little attention that proprietary protocols (e.g., TP-
Link Smart Home protocol [28], and Tuya protocol [27]) and new
standards (e.g., Matter [22]) have received in previous research.
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While these local network protocols are vital for seamless in-
tegration and device communication in smart home systems (i.e.,
enabling device discovery, network management, and device pair-
ing), their potential for misuse and abuse is concerning. Malicious
actors can manipulate these protocols to bypass permission models
and siphon information through side channels. Such exploitation
targets IoT devices or software (e.g., mobile apps) that utilize IoT
protocols’ vulnerabilities, enabling them to scan or collect sensitive
data from other devices in the local network—attacks that would
not be possible from the Internet.
Security threats. We consider IoT devices using insecure network
protocols that expose sensitive data to on-path observers, such
as home routers or recipients of broadcast messages; or devices
that integrate vulnerable networking services and protocols that
can be abused by malicious actors from within the home network.
Compromised devices under the control of an attacker (e.g., through
malware running on a mobile device like spyware) are included
in our model, since they may be able to scan devices and monitor
tra�c to/from other devices on the local network.
Privacy threats. Protocols such as UPnP andmDNS can be abused
by IoT devices and applications (e.g., mobile and smart TV apps)
with access to networking APIs to actively scan the network or
to passively gather sensitive network-, user-, and device-related
data from other devices in the network. Prior work demonstrated
that router MAC addresses can be used to infer device (and user)
locations with street-level precision [106] or for surveillance [52].
This is possible because Wi-Fi hotspots tend to have �xed locations
and MAC addresses that uniquely identify them. Thus, developers
and tracking services can use this data to query users’ geolocation
from online geocoding services like Wigle [29]. Further, access to
network and device metadata can be used to infer household social
structures and socio-economic level [46, 114], while also facilitating
cross-device tracking and household �ngerprinting [41, 76].

2.1 Home Network Scanning by Mobile Apps
It is for these reasons that mobile platforms consider local net-
work data like the Wi-Fi Access Point (AP) SSID and BSSID to be
sensitive, requiring elevated privileges to access it through the o�-
cial APIs [37, 63]. Yet, a recent article published at the Wall Street
Journal revealed that Google removed apps with third-party code
by Measurement Systems—a company with ties to a U.S. defense
contractor [117]—from the Play Store. In some apps, this code was
soliciting local network information with neither user notice nor
consent, by directly opening up network sockets to send broadcast
messages (in lieu of requesting the information through o�cial
permission-protected APIs).

To mitigate these risks and control access to nearby devices
over Wi-Fi, both iOS (v14) and Android (v13) introduced changes
in their permission models [10, 19]. Since Android 13, developers
must request access to the NEARBY_WIFI_DEVICES permission to
read the SSID of the Wi-Fi AP. Previously, starting in Android 9
SSID/BSSID access required either the ACCESS_COARSE_LOCATION
or ACCESS_FINE_LOCATION runtime permissions [13]. Yet, these
Android permissionmodel changes do not preventmobile apps from
scanning the local IP address space using mDNS and SSDP/UPnP,

for which Android even provides native support through the Nsd-
Manager (Network Service Discovery Manager) interface [61].

We con�rm this behavior through a proof-of-concept app built
for Android 13; the app can discover other devices on the local
network using these protocols while holding only the INTERNET
permission to access the hostname of the local device, and the
CHANGE_WIFI_MULTICAST_STATE permission to get the multicast
socket lock. Neither permission is considered “dangerous,” and
therefore does not require the user’s explicit consent [62]. Moreover,
third-party SDKs inherit the same privileges as the host app [53],
so they can scan the home network and gather local network infor-
mation without the awareness of the app developer.

In iOS, local network tra�c requires developers to acquire the
com.apple.developer.networking.multicast entitlement—
whose use must be explicitly approved by Apple [38]—and in-
clude the NSLocalNetworkUsageDescription in the app manifest
to communicate (either with unicast of multicast connections) to
other hosts in the local network [36]; a permission that also requires
explicit user consent to proceed. We implemented a PoC iOS (v16.7)
app to con�rm the multicast entitlement and permission require-
ments. However, it is possible that this attack can be performed in
iOS once this entitlement is granted, or using other side-channels
we are not yet aware of. Similarly, third-party smart TV apps could
potentially exploit programmatic and unprotected access to local
network sockets to perform �ngerprinting attacks. However, the
analysis of the Smart TV ecosystem is left for future work.

3 DATASETS AND METHODOLOGY
Our study relies on three methods to gain a comprehensive view
of devices’ local network activity and its risks: (8) the MonIoTr Lab
Dataset (§ 3.1) contains data collected from our smart-home IoT
testbed using both passive tra�c collection techniques and active
scans, enabling detailed insights into the tra�c IoT devices generate
on the LAN; (88) the Mobile App Dataset (§ 3.2) reveals information
about local network communication when smartphone apps are
deployed into our smart-home testbed; and (888) the Crowdsourced
IoT Dataset (§ 3.3) o�ers IoT tra�c gathered from large numbers of
volunteer participants’ home networks, providing insight into local
IoT tra�c “in the wild.” We conclude this section with a description
of our tra�c classi�cation method (§3.5) and limitations (§3.6).

3.1 MonIoTr Lab Testbed
The MonIoTr Lab testbed [23] consists of 93 IP-based devices rep-
resenting 78 unique device models. The devices are deployed in a
“living lab” that resembles a studio apartment that is connected to
the Internet via aWi-Fi AP that captures all network tra�c utilizing
tcpdump. The captured tra�c is stored in separate �les for each
MAC address, enabling us to distinguish tra�c from individual
devices. In our testbed, we do not attempt to decrypt any encrypted
�ows or modify any devices to obtain privileged access. Table 3 (Ap-
pendix) lists the devices in our testbed, which are in the following
categories: cameras, smart speakers, smart TVs, home automation,
sensors, appliances, smart hubs, and smart health devices.

To capture more instances of local IoT tra�c between devices,
similar to prior work [80, 105], from 11/2022 to 12/2022, we capture
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�ve consecutive days of tra�c without human interaction 1, as well
as tra�c generated from 7,191 interactions when we manually or
automatically interact with the di�erent IoT devices in our testbed.
During our experiments without human interaction, no one was
allowed to enter the lab. The interactions considered for the ex-
periments are triggered by (8) IoT companion apps running on a
Google Pixel 3 and an iPhone 7 connected to the same network as
the IoT device; or (88) voice commands to activate di�erent voice
assistants, which subsequently interact with the corresponding
device according to the voice command. Speci�cally, we use either
the Echo Spot or Echo Show 5 (powered by Alexa), or the Google
Home Mini or Google Nest Hub (powered by Google Assistant).
We refer to the generated datasets as MonIoTr Lab passive dataset.
IoTHoneypots. Passive tra�c collection can be incomplete when
�ows require speci�c input or responses from endpoints that we do
not control. To address this limitation, we deploy various honeypot
within the same network as our IoT devices. These honeypots cap-
ture network scans from IoT devices and issues authentic responses
to requests, mimicking real-world device interactions. They support
protocols such as SSDP, mDNS, UPnP, HTTP(S), and telnet. Given
our control over these responses, the honeypots give us the ability
to track how information propagates through the IoT devices.
Active Scans. Active scans provide information about open ser-
vices of smart devices that may not be observed passively. Informed
by previous work [34, 77], we perform active scans using nmap [25].
We run TCP SYN scans on all ports (1-65535), UDP scans on popular
ports (1-1024), and IP-level protocol scans. We picked well-known
UDP ports as UDP scanning is generally slower and more challeng-
ing than TCP scanning. Note that only 54 and 20 devices responded
to TCP SYN and UDP scans, respectively, and 58 to IP protocol
scans. We also use Nessus scanner [94] to detect potential vulnera-
bilities in running services, and annotate their security states and
associated CVE (Common Vulnerabilities and Exposures).

3.2 Instrumented Mobile Devices
In addition to our Pixel and iPhone devices running companion
apps to control IoT devices (§3.1), we use a Google Pixel 3a smart-
phone running a licensed version of AppCensus’ runtime analysis
technology [14]. Speci�cally, we use a system-level instrumented
variant of Android 9.0 (Pie), combined with Frida [16] scripts, that
allows us to track runtime resource access by mobile apps (e.g.,
access to permission-protected Android APIs) and log all network
tra�c in plaintext (i.e., using MITM approaches to decrypt TLS
tra�c and other encodings). We use AppCensus’ visibility into
app runtime behavior to detect potential instances of cross-device
tracking and network �ngerprinting, and to track how sensitive
data is transmitted from IoT devices to companion apps, and then
to remote servers. We pair the testing smartphone to each IoT de-
vice, then we use Android’s Application Exerciser Monkey [48] to
generate synthetic user inputs for approximately �ve minutes. The
reason why we focus our analysis on the Android ecosystem is due
to the technical impediments caused by the closed nature of the

1We chose to collect data over �ve consecutive days to ensure that we capture back-
ground local tra�c, including those occurring very infrequently (e.g., �rmware update
checks).

iOS platform, which prevent us from dynamically analyzing iOS
apps with the same detail as Android apps.
App Dataset. We crawled the Google Play Store [17] in May 2023
to download 2,335 apps with varying popularity and user ratings.
These include 987 IoT-speci�c apps (e.g., companion apps) and 1,348
“regular” apps (e.g., social network apps). Analyzing both types of
apps allows comparisons of behavior in the local network across
app categories, and reveals whether local network activity and
local network data collection is exclusive to IoT companion apps.
To collect mobile companion apps for smart home IoT devices, we
use the Google Play API to search for similar apps, starting with a
seed of 35 well-known IoT companion apps. To create the regular
app dataset, we randomly selected 1.5K unique package names
from Androzoo [33]. Then, we employed a custom-built Google
Play Store crawler to fetch the most recent version of each app,
yielding a total of 1,348 downloaded apps.

3.3 Crowdsourced IoT Tra�c Data
We collected the IoT Inspector dataset [69] and analyzed a sub-
set of the data for this paper. This subset includes only passive
local network tra�c captured using ARP spoo�ng [69] of 13,487
Internet-connected devices (3,893 users or households), along with
their mDNS and SSDP responses. The data was collected with the
consent of participants from April 12, 2019 through July 15, 2022.
We consider only tra�c whose source and destination IP addresses
are in ranges reserved for private networks [45].

The IoT Inspector data that we use in this paper contains the fol-
lowing data: source and destination IP addresses and ports, device
IDs,2 and the number of bytes sent and received by each inspected
device over �ve-second windows, along with the timestamps of
these windows. IoT Inspector does not collect any packet pay-
load with two exceptions: (i) the hostname �elds in DHCP Request
and DNS Response packets, and (ii) the full mDNS and SSDP re-
sponses [69]. We collect these for analyses related to entropy (§ 6.3).

IoT Inspector data does not directly collect vendor and prod-
uct information for devices. Instead, we rely on device metadata
(e.g., the �rst three octets of a MAC address) and user-provided
device labels (e.g., vendor and model) to infer the vendor and prod-
uct information of devices, as described in prior work [69] and
in Appendix E. In total, using this method, the 13,487 devices in
the dataset are associated with 199 vendors, and 323 products (i.e.,
vendor-category combinations).

3.4 Ethics
The MonIoTr Lab testbed is part of an IRB-approved user study
where our participants with informed consent use the space and
the IoT devices as they see �t. When we conduct controlled experi-
ments to produce labeled tra�c traces and datasets of this project,
participants are not allowed in the room. The active scans and app
analysis are fully automated and performed when the lab is closed
to prevent collecting any data from users.

IoT Inspector’s data collection is approved by New York Uni-
versity’s IRB. We follow industry-standard security and privacy
practices to safeguard the data and limit its access, including storing

2Computed by HMAC, which uses SHA-256 to hash the original device MAC addresses
with a secret salt persistent per user [69].
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the dataset on a secure server in our institution and restricting its
access to only co-authors of this paper, as approved by our IRB.
For details on how IoT Inspector protects user privacy, refer to the
original paper [69], the IRB protocol [6], and the FAQ page [9].

3.5 Tra�c Classi�cation Methodology
While tra�c classi�cation is a well-trodden research area, we found
that existing and widely-used tools like tshark [30] or nDPI [47] are
insu�cient for the IoT context. Speci�cally, nDPI utilizes signature-
and behavioral-based detection, and heuristic techniques, whereas
tshark relies on packet header and payload information to identify
application-layer protocols using prede�ned speci�cations.

To identify the most accurate and e�ective tool for classifying
local IoT tra�c, we compare the outputs of nDPI (v4.7.0), and tshark
(v3.6.2). We refer the reader to Appendix C.2 for details about this
cross-validation. Informed by the experimental results, we selected
nDPI to classify the captured IoT tra�c and augmented it with
manually-de�ned rules informed by our manual evaluation, thus
allowing us to handle errors and coverage limitations. For protocols
below the transport layer, we used the type �eld in Ethernet frame
headers to identify the protocol, determining if tra�c was non-IP
(e.g., ARP) or IP. For IP tra�c, we extracted the protocol �eld in IP
packet headers to identify transport layer protocols.

As mentioned in § 3.1, we use nmap to scan for open ports on
devices in our testbed. The tool, however, primarily relies on port
numbers and packet responses to infer the protocol behind an open
service. We �nd these inferences to be incorrect in many cases,
e.g., due to similar scan responses provided by di�erent services or
the use of non-standard port numbers. We manually validated and
corrected nmap labels to ensure accurate service identi�cation.

3.6 Limitations
Incompleteness. Despite extensive measurements, we cannot
guarantee that we observe all possible instances of IoT local com-
munications. Similarly, the app behaviors we observe are a lower
bound since our automated mobile app instrumentation may miss
some local interactions (e.g., those that require logging in).
Tra�c characterization. The prevalent use of custom protocols
and non-standard ports by IoT devices poses a signi�cant challenge
for accurately classifying network protocols. Despite our use of
widely-used tools such as nDPI, tshark, nmap, and manual veri�ca-
tion and domain expertise, our protocol classi�cation may still be
incorrect in some cases.
Limited payload visibility. The adoption of non-standard pro-
tocols and encryption in IoT tra�c sources constrains our visibility
over payloads using passive tra�c captures. This limitation impedes
our exhaustive exploration of the threat landscape. While modify-
ing IoT devices might provide visibility to encrypted payloads, this
approach is not scalable for a large number of devices and is often
infeasible for many of them. For this reason, we complement our
passive tra�c captures with the honeypots and AppCensus’ mobile
app testing capabilities, so that we can get visibility into some of
the encrypted �ows generated by IoT devices.
Device Update. Although many devices in our testbed like smart
speakers receive automatic updates from the vendor, others require
us to manually update their �rmware after receiving noti�cations

on the companion apps or on-screen prompts. However, we did
not manually check for updates for all 93 devices before each ex-
periment so there is a possibility that some devices might not be
up-to-date while performing some experiments. Our study, there-
fore, re�ects the state of IoT devices at the time of experiments.

4 LOCAL IOT TRAFFIC OVERVIEW
This section answersRQ1 by providing a high-level overview of the
network protocols used (and supported) by the IoT devices in our
lab’s local network. We use passively gathered data to characterize
which devices communicate with each other on the local network,
and what protocols they use if they do (§4.1). We complement this
analysis with the results of our active scans (§4.2) and with the
analysis of protocols used by mobile app analysis to communicate
with IoT devices (§4.3).

4.1 Passive Tra�c Captures
Figure 1 depicts how smart home devices communicate with each
other as a network graph, where nodes are devices and edges are
connections via UDP (dashed lines), TCP (solid lines), or both (thick
solid lines). Nearly half (43/93) of the devices in our lab contact at
least another device in the local network using TCP or UDP unicast
tra�c. This graph-based representation reveals clusters of devices
that communicate with each other, either because they are from
the same vendor or because they o�er interoperable features.

At the protocol level, we �nd a substantial and diverse range of
local network protocols (both standard and proprietary) and com-
munication paradigms (unicast, multicast, and broadcast) across
devices. Figure 2 represents this as a bar graph, with the x-axis
representing protocols and the left y-axis representing the fraction
of devices observed using each protocol. The color map shows the
method used to infer the set of protocols supported by each de-
vice. Focusing on the blue bars, which represent passively observed
tra�c, we identify 21 protocols for local network communication
according to our tra�c classi�cation method. We observe that an
average IoT device in our lab supports 8 di�erent protocols for local
communication, with devices like Google’s Nest Hub supporting
up to 16. The most commonly used protocols are local network
management ones like ARP (92%), DHCP (92%), and EAPOL (84%),
followed by ICMP (78%) and IGMP (56%). All devices used IPv4
but only 59% supported IPv6. We also identify the newly-released
IPv6-based Matter [22] tra�c from Amazon Echo smart speakers.

Device discovery is key for platform interoperability, and accord-
ingly we �nd that 93% of devices used broadcast-based protocols
like ARP, XID/LLC, DHCP, while 73% of devices used multicast
ones like mDNS, ICMPv6, SSDP, DHCPv6, IGMPv2/v3, and CoAP.
We also identify several unidenti�ed UDP-based protocols using
both multicast and broadcast IPs.

At the application layer, the most popular protocols are standard-
ized ones like HTTP (40%), SSDP (35%), and TLS (35%), followed
by proprietary ones like TPLINK-SHP[28] (26%) and TuyaLP[27]
(5%). The latter two also o�er discovery capabilities. RTP (Real-time
Transport Protocol) is also widely used (10%) for real-time data
exchanges and device synchronization [109]. For example, Amazon
Echo uses RTP over UDP:55444 for a multi-room music feature [24].
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TCP UDP BothAppleGoogleAmazon

Figure 1: Transport layer device-to-device communication
generated from the MonIoTr Lab passive dataset. For clarity,
we show neither multicast- and broadcast-discovery proto-
cols nor their interactions with smartphone apps (§4.3). See
Figure 4 in the Appendix for isolated depictions of vendor-
speci�c clusters.

Wenotice protocol usage di�erences between vendors, platforms,
and device types. For example, Google and Amazon Echo smart
speakers communicate with each other using TLSv1.2 (zoomed-in
TCP graphs for Google in Figure 4a and Amazon Echo in Figure 4b
in the Appendix), and unidenti�ed UDP protocols. We refer the
reader to the UDP graphs for Google in Figure 4d and Amazon Echo,
with a clear coordinator in Figure 4e. In contrast, Apple devices
use TLSv1.3, and other unidenti�ed UDP and TCP protocols, which
are possibly part of the HomeKit protocol [18]. We also observe
inter-manufacturer communication for device interoperability. The
reason is that either they are connected to a corresponding platform
(e.g., Alexa, Homekit) or they support functions that need local
communication such as ChromeCast. Additionally, certain devices
(e.g., Philips HueHub, three smart plugs and bulbs, Amcrest Camera,
and three smart TVs), facilitate platform interoperability through
protocols like SSDP or TPLINK-SHP with open local APIs.

4.2 Active Scans
The orange bars in Fig. 2 (left y-axis) show the most relevant open
services identi�ed with active scans. Due to space limitations in
Fig. 2, we group many protocols in the long tail as Other-UDP
and Other-TCP. Many of these open services and protocols were
not captured passively. In fact, the diversity of actions triggered
on the devices during the experiments or the presence of at least

two devices supporting this protocol limit the range of protocols
captured using passive methods. For example, while 33% of IoT
devices run an HTTP server on port 80, only 15% of them generated
this tra�c in our passive dataset.We �nd 178 unique open TCP ports
and 115 unique open UDP ports on 61 devices which are associated
with protocols such as HTTP(S), Telnet, NetBIOS, Socks5, or even
DNS servers, some of which are known for being exploitable by
other programs running on the local network [75, 84], a topic we
explore later in the paper.

TCP ports 55442, 55443, and 4070 are open by 20% of the devices.
These ports are primarily used by Amazon Echo devices for audio
caching (HTTP), and device control (HTTPS) [1]. For UDP, port
68 (DHCP) is open in 7% of devices, followed by DNS port 53 (5%),
and PTP port 320 (5%). As in passive tra�c captures, we note that
devices from the same vendor or o�ering the same functionality
keep similar port combinations open.

4.3 App-to-IoT Local Tra�c
The 2,335 mobile apps in our dataset (both companion and non-
IoT apps) use 18 unique protocols for network discovery and local
communication with the 93 IoT devices in the MonIoTr Lab. Using
our mobile tra�c instrumentation, we observe background ARP
and ICMP tra�c in the majority of the app tests. However, this
tra�c may be generated by the OS as raw packet access requires
root privileges [4]. We note that our tra�c attribution mechanism
only applies to transport-layer protocols so we cannot con�rm
which component generates ARP and ICMP tra�c.

Only a small fraction of analyzed apps use mDNS (6%), and
SSDP (4%) for local network scanning and device discovery. Yet,
we note that the NetBIOS protocol—designed for local network
communication—is also used to scan the local network by 0.5%
of the apps. For example, Device Finder [99] and Network Scan-
ner [107] are two examples that employ NetBIOS to scan the local
network and list all devices, likely intended for diagnosing home
network issues. We �nd that 25% of the apps use TLS to inter-
act with IoT devices in the local network once paired. However,
IoT companion apps tend to use IoT-related custom protocols like
TPLINK-SHP than regular ones. We also found that the Tuya and
Chromecast companion apps already use the Matter standard to
advertise their availability via mDNS [22].

4.4 Takeaways
By combining complementary tra�c analysis methods, we �nd a
substantial, diverse, and previously unreported use of network pro-
tocols for local communication among IoT devices. These comprise
a large mix of protocols (i.e., standard and proprietary) and com-
munication paradigms (i.e., unicast, multicast and broadcast). The
use of these protocols extends to mobile apps, including both IoT
companion apps and regular ones. We also note similar behaviors
and protocol support for devices o�ering akin features or from the
same manufacturer, mostly for interoperability and control. We
leave further analysis of local communication patterns as future
work. Next, we explore the security and privacy implications of
this diverse range of local network communication protocols.
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Figure 2: Percentage of protocols observed across the 93 devices deployed in our IoT devices, passively and with the active scans.
We report the protocols observed when integrating 2,335 IoT and regular mobile apps. The y-axis values for the mobile app
category refer to the number of tested apps observed using these protocols (N=2,335), rather than the number of IoT devices
(N=93). The inset zooms into the long tail of the distribution.

5 THREAT ANALYSIS
This section answers RQ2 by analyzing the threats arising from:
(8) potentially vulnerable services and components (e.g., outdated
�rmware versions and deprecated protocol versions), (88) user ac-
tions (e.g., open streaming activities), and (888) dissemination of
device and network information (e.g., unique identi�ers) that facil-
itate �ngerprinting and cross-device tracking. We study how an
attacker with access to the local network (e.g., IoT manufacturers,
compromised Wi-Fi APs, or mobile and smart TV applications) can
exploit these issues following the threat model described in § 2.
For this analysis, we combine our MonIoTr Lab passive dataset
and honeypot with the output of a Nessus scanner deployed in the
local network. We present the protocols in a bottom-up approach
following the TCP/IP protocol stack.

5.1 Discovery Protocols
We now describe how IoT devices use discovery protocols like
UPnP and mDNS to scan the local network, and the associated
risks. Table 1 summarizes potentially sensitive data that we observe
exposed by IoT devices via these protocols in our IoT lab. At the end
of this section, we investigate the frequency of discovery messages
and which devices respond to them, because high frequency scans
can reveal further information about the household. Appendix §D
explains how we analyze the scanning frequency.
ARP. ARP is a standard Layer 3 protocol to discover MAC ad-
dresses associated with IP addresses in local networks. Prior to
conducting the analysis, our working hypothesis was that ARP
tra�c would be used only for resolutions between a device and the
gateway, or between two devices that identi�ed each other using
other discovery protocols. However, ARP may be abused to harvest
the MAC addresses of all the devices in the local network, which
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Table 1: Observed information exposure in the local network
by IoT devices per discovery protocol.

can be valuable persistent device IDs that enable geolocation, �n-
gerprinting, and cross-device tracking. In fact, we �nd that devices
perform ARP scans in di�erent ways. Amazon Echo devices per-
form daily broadcast ARP scanning of the entire local IP space, and
also send targeted unicast ARP messages to 83% of other devices3.
Interestingly, while only 58% of devices in our testbed respond to
Echo’s broadcast ARP scans, all of them reply to the unicast ones,
thus revealing their presence. Six devices also send requests for
public IPs, which may be an intentional behavior to identify device
and network miscon�gurations [59].
ICMPv6. This protocol is used by 55% of the devices for multi-
cast discovery, adhering to the SLAAC standard [91], indicating
IPv6 networking support. ICMPv6 queries can include the MAC
addresses of the sender as part of the IPv6 Neighbor Advertisement
3Note that we found no discussion of local network communication or local scanning
in Amazon’s privacy policy.
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standard [111], which could be collected by other devices on the
local network. It is worth noting that we observed the Nest Hub
sending multicast ICMPv6 requests to 2,597 distinct addresses.
DHCP. While our testbed uses DHCP [49] by default for IP ad-
dressing, 86 devices actively request 30 di�erent data types from
other devices using DHCP. This includes network-relevant infor-
mation (e.g., Subnet Mask, Router address, and DNS server address)
but also unexpected requests associated with deprecated standards
(e.g., SMTP Server, Name Server, and Root Path). Unfortunately, de-
vices carelessly respond and expose sensitive information about
themselves such as their hostname, and DHCP client name and
version. We identi�ed hostnames for 67% of devices, and 16 unique
DHCP client versions from 40% of devices. We �nd that 37 devices—
including Amazon Echo and Google ones—use old or custom DHCP
client versions, potentially leaving them open to vulnerabilities (e.g.,
[2]). Interestingly, we observe a variety of hostname naming meth-
ods across devices. For example, a combination of device names
and MAC address (Ring Chime), their device model name (e.g.,
Ring Cameras), or a combination of model or vendor name with
partial MAC address (e.g., Tuya devices). Other devices expose user-
de�ned display names (e.g., Google and Apple smart speakers) that
could reveal sensitive data like the name of the room or owner
(e.g., “Jane Doe’s Kitchen Homepod”). A small number of vendors,
however, follow more secure approaches that minimize data expo-
sure. For example, GE Microwave and TiVo Stream obfuscate their
hostnames and names, respectively, using variable random bytes
for each request.
mDNS. We �nd that 44% of the IoT devices in our testbed use
mDNS [43] for device discovery, name resolution, and service ad-
vertisement within the local network. Among them, 90% actively
send queries and nearly 98% send multicast responses, while a rela-
tively small fraction, about 20%, also send unicast responses. mDNS
queries and responses reveal hostnames representing the services
supported by the device, such as casting (e.g., Viziocast), print-
ing (e.g., IPP), platform-speci�c services (e.g., Alexa), commercial
streaming services (e.g., Spotify), IoT standards (e.g.,Matter, Thread),
and networking protocols (e.g., Bonjour Sleep Proxy). Importantly,
mDNS hostnames are often constructed by appending unique iden-
ti�ers such as MAC addresses, device IDs, serial numbers, or other
device-speci�c tags, thus creating distinct hostnames that facili-
tate device discovery and communication in a network, but also
cross-device tracking and �ngerprinting. For example, Philips Hub
reveals MAC address in its mDNS hostnames; worse, the .local
URL of Spotify Connect devices is composed of MAC address, de-
vice ID and special UUIDs—perhaps session IDs—, depending on
the service being advertised with the ZeroConf API [112]. For a
detailed illustration, readers can refer to the example provided in
Table 5 in the Appendix.
SSDP/UPnP. SSDP/UPnP protocol [32] is a UDP-based protocol
used by 32% of the devices in our testbed. 4 All Amazon and Google
smart speakers and hubs support SSDP. Unlike mDNS, SSDP allows
both active service discovery or passive service broadcasting. In
active SSDP, devices send M-SEARCH queries to IP multicast groups,
while in passive SSDP, devices send multicast NOTIFY messages.
In our testbed, 26 out of 30 devices using SSDP send M-SEARCH

4We note that SSDP is the foundation of the discovery protocol UPnP.

messages and 7 of the 30 devices send NOTIFY ones. Only 9 de-
vices respond to SSDP multicast messages, including 4 smart TVs
and two Nest hubs with Chromecast. We observe that Amazon
smart speakers search for 2 generic network services (ssdp:all
and upnp:rootdevice), while Google products search for speci�c
ones. We also observe how 8 devices expose device information
such as UUID, OS version, UPnP implementation name and ver-
sion. The use of deprecated UPnP versions or its incorrect use can
also have security implications. Fifteen years after the release of
UPnP 1.1, 9 IoT devices still use UPnP version 1.0, which has been
demonstrated to be exploitable [34]. Roku TV sends SSDP requests
related to the IGD (Internet Gateway Device) protocol, which can
be exploited by malware [7]. Some vendors have reported that their
newer �rmware versions no longer run deprecated versions. We
also notice possible miscon�gurations. For example, the Fire TV
sends NOTIFY messages to announce a /16 local IP address which is
not supported on the LAN; and LG TV’s requests are sent by three
di�erent �rmware versions: WebOS TV/Version 0.9, WebOS/1.5,
and WebOS/4.1.0.
Other discovery protocols. We now discuss unusual or platform-
speci�c protocols used for both discovery and communication.

• TPLINK-SHP. Google Home and Amazon Echo smart devices—
and their companion apps—use the TPLINK-SHP protocol over
UDP broadcast to discover and extract information from TP-
Link devices. These respond to the queries with their system
information, including the device latitude and longitude in plain
text as shown in Table 5. The disclosure of this information allows
an eavesdropper in the local network to get the geolocation of
the home along device metadata such as device name, Original
Equipment Manufacturer (OEM) ID, and device status. Other
smart devices also use TPLINK-SHP over TCP to control TP-
Link devices. Therefore, a local attacker could control TP-Link
devices via this protocol without authentication, as shown by
prior work [28, 67].

• TuyaLP. Tuya devices (and companion apps) use the custom
TuyaLP protocol on UDP ports 6666 or 6667 to broadcast discov-
ery messages. Tuya devices do not respond to requests unless
they come from their companion apps. The Jinvoo Bulb sends its
GWid and Product key in plaintext.

• CoAP. Three devices (Samsung fridge, and two Homepod Mi-
nis) use the CoAP standard [110], a web transfer protocol for
constrained devices with discovery capabilities. Speci�cally, the
fridge requests a URI corresponding to IoTivity, a software frame-
work for local communication developed by Samsung [72]. We
were unable to decode the payloads from Homepod Mini tra�c.

• Unidenti�ed tra�c. We note that 45 devices generate tra�c
that we were unable to classify with our methods. However,
the periodicity of some of this tra�c suggests that they may be
related to device discovery, network scanning, or synchronization.
For example, Echo devices periodically send a broadcast packet
to UDP port 56700 every 2 hours, which seems to be used by
Lifx [20], a smart device manufacturer not represented in our
testbed. While most of this tra�c is encoded, some plaintext
cases contain strings with unknown meaning, preventing us
from drawing conclusions about their purpose and risks.
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Discovery Intervals. The ability to scan the entire IP space
at a high frequency allows identifying temporal patterns, such as
smartphones entering and leaving the households. Therefore, a high
scanning interval can reveal the social network of the household,
and perform for cross-device and mobility tracking. Amazon Echo,
Google, and Apple devices periodically send most mDNS queries
every 20s-100s depending on the hostname. Similarly for SSDP,
we �nd that Google smart speakers and hubs send active SSDP
requests to IP multicast groups every 20s, whereas Echo smart
speakers send active SSDP scans every 2-3 hours. We also note
that short scanning intervals can increase network congestion and
energy consumption in resource-constrained or battery-powered
devices (e.g., smart cameras, sensors, and smart locks).

5.2 Other Protocols
We now analyze those protocols used for exchange of data and
commands. Unlike discovery messages, which often follow stan-
dard protocols and are—by design—readable by any device on the
network, these non-discovery protocols may be proprietary and
encrypted (or encoded). As we discussed in § 3, this limits our visi-
bility to analyze this type of tra�c passively and infer their purpose.
For this reason, we only discuss those protocols and devices for
which we have identi�ed a potential threat.
Plaintext HTTP. Combining the insights of our passive and ac-
tive analysis, 33 devices in our testbed communicate using plaintext
HTTP tra�c, 26 of which appear only as clients and 5 as servers.
The LG TV and Nest Hub send both HTTP requests and responses.
By inspecting the metadata of HTTP requests, we detect 17 devices
related to SSDP/UPnP services, which o�er control such as multi-
screen casting, and could reveal user activities within the home. The
only devices that include a User-Agent string in the HTTP headers
are Google products and the LG TV. Google devices (Chromecast
OS) include the OS version, the device type, and the Chromecast
�rmware version in the HTTP headers, while LG TV (LG WebOS)
reports the OS and the supported UPnP versions.

Nessus collects service banners to identify the web server and
the exact version deployed on 6 devices. This knowledge can be
leveraged to seek exploits speci�c to a given software version. For
example, the Lefun camera runs an HTTP server that allows access-
ing backup �les. Nessus retrieved content containing server con�g-
uration details. Similarly, the Microseven camera runs JQuery 1.2,
known to have multiple XSS vulnerabilities [87, 88]. This device
also runs a remote service that allows unauthenticated users to
view camera snapshots. Nessus acquired one snapshot from the re-
mote camera using the speci�c ONVIF requests [98]. Moreover, our
scanner also listed all user accounts on the device, and identi�ed
the directory where camera recordings get stored.
TLS. We �nd that 32 devices (from Google, Amazon Echo, and
Apple ecosystems) predominantly use TLS to communicate with
each other in the local network. In fact, most TLS tra�c on the
local network uses recent protocol versions (1.2 and 1.3), and the
devices use custom public key infrastructures (due to the fact that
devices on a local network generally cannot obtain globally unique
DNS names for validating the subject name). As a result, the devices
already supporting TLS are likely robust against eavesdroppers, yet
there are noticeable di�erences across them:

• Google smart speakers, Nest hubs, Google Chromecast (with
Google TV), and TiVo TV (based on Android TV) communicate
using TLSv1.2 and use their own internal PKI with root certi�-
cates not in any trust store (according to Censys) and with leaf
certi�cates that expire in 20 years. Nessus scanner detected one
high-severity issue across all these devices that run TLS on port
8009 due to the small size of the encryption key (64-122 bits).
This facilitates birthday attacks to obtain cleartext data in the
presence of a long-duration encrypted sessions [85]. We did not
veri�ed whether this vulnerability is exploitable.

• Amazon Echo devices, also employing TLSv1.2, use self-signed
TLS certi�cates issued by each device with a validity of three
months. The Issuer and Subject’s Common Name of each cer-
ti�cate are an IP address in the 192.168.0.0/16 pre�x or 0.0.0.0.
This set of devices uses two-way TLS authentication, where both
client and server send their respective certi�cates.

• Apple TV and smart speakers are the only ones communicating
with each other using TLSv1.3, with certi�cates encrypted in
their handshakes, similar to their device-to-cloud tra�c [100].

• Through active scans, we �nd that D-Link camera, SmartThings
and Philips Hue hubs di�er from the previous vendors, since
they all use self-signed certi�cates that last from 20 up to 28
years. However, we cannot infer for which purpose these cer-
ti�cates are used since as we do not passively observe any local
communication using them.

DNS. Apple HomePod Mini and the WeMo plug run a DNS server
susceptible to DNS server cache snooping and remote information
disclosure [93]. This vulnerability potentially enables malicious
actors within the local network to track user activity by discovering
recently-resolved domains, thus exposing visited hosts. However,
we did not validate the feasibility of this attack. In the case of Apple
HomePod Mini, Nessus identi�ed the DNS server as SheerDNS 1.0.0,
an old version with known security �aws [92]. Additionally, when
querying for device hostname using Nessus, the DNS services on
all three of these devices revealed the testbed’s remote host name
and private IP of the DNS server.

5.3 Takeaways
This section discovers and analyzes a prevalent issue in smart IoT de-
vices within the home: the exposure of sensitive device and network
information through discovery protocols, including MAC address,
UUIDs, device model name and user-de�ned display names, OS
version, outdated or potentially vulnerable software on devices, and
geolocation. As we analyze in the next section, this information can
inadvertently reveal sensitive information about users and house-
holds, allowing targeted attacks and/or household �ngerprinting
for advertising or surveillance purposes. Our analysis also reveals
potential risks associated with the use of unencrypted HTTP in
the network, the presence of exploitable services and potential
developer miscon�gurations and errors.

6 CASE STUDY: HOUSEHOLD
FINGERPRINTING

This section aims to answer RQ3. It provides evidence of how
the uncontrolled dissemination of sensitive device and network
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information in the local network is abused by mobile apps (§6.1)
and third-party libraries (§6.2). It then leverages IoT Inspector’s
crowdsourced data to measure the entropy of the information dis-
seminated by IoT devices in 3,860 households (i.e., users) (§6.3). Our
results demonstrate that harvesting this information is a valuable
asset for organizations performing privacy-intrusive practices such
as household �ngerprinting, advertising, and cross-device tracking.

6.1 Device Data Dissemination Beyond the
Local Network

Using our instrumented Android smartphones, we trace the dis-
semination of information collected from discovery protocols to
endpoints hosted in the cloud. Out of the 2,335 analyzed mobile
apps, 9% of them use at least one of the following protocols to
scan the home network: mDNS (6.0% of apps), SSDP/UPnP (4.0% of
apps), and NetBIOS (0.5% of apps). In most cases, the use of these
discovery protocols is required to deliver their service and control
the device, as in the case of mobile companion apps. Note that 10
mobile apps—only 2 of them falling in the IoT app category—use
NetBIOS, a protocol that was not observed in the passive tra�c
captures (§4). However, the use of these protocols can be potentially
misused as described below.
MACAddresses. Six IoT apps relay MAC addresses of IoT devices
to the cloud, with recipients being either �rst-party domains (e.g.,
Alexa) or third-party providers like Tuya, a China-based IoT plat-
form provider, and Amplitude, an analytics service. For example,
Amazon Alexa’s companion app collects through Amazon Echo (8)
the MAC address of di�erent devices con�gured on Alexa—such
as the smart microwave, and (88) the Philips Bridge ID, a unique
device identi�er [70]. However, this app also shares the MAC ad-
dress of other devices in the network like the Meross smart plug,
despite it not having been con�gured to work with Alexa. The Nest
Hub behaves similarly, sharing the Wi-Fi AP MAC address to the
Chromecast app, even when the app and the devices are not paired.

Fire TV and Roku TV expose their own MAC address to 10
and 31 apps (such as casting, streaming or peripheral controlling
apps) using SSDP/UPnP, respectively. Some apps also enrich device
MAC addresses with other sensitive information obtained using
Android APIs. For example, the Blueair puri�er companion app
uploads to its servers the puri�er’s MAC address along with the
mobile device’s coarse geolocation and its Android Advertising
ID (AAID) (a resettable ID for advertising purposes [60]). This
practice has direct privacy consequences: by linking persistent IDs
such as MAC addresses with pseudo-resettable ones and accurate
geolocation data, the developer defeats any user attempt to reset
these values. This behavior is in violation of best practices for
user ID collection [60]. Additionally, organizations collecting that
information can use it to feed geocoding services.

Interestingly, we also observe dissemination in the downlink
tra�c. Speci�cally, 13 companion apps associated with IoT devices
in the testbed (e.g., Amazon Echo) receive MAC addresses from
other devices in the local network via Tuya machines or AWS
instances. Unfortunately, we cannot tell how and when this infor-
mation was obtained for the �rst time, but we believe that this may
have happened at the initial pairing stage.

Router Information. As we discuss in §2, access to Wi-Fi Ac-
cess Point’s MAC address and its BSSID are protected by a system
permission in Android devices. However, we note that multiple
apps in our dataset collect and upload them to the cloud: the router
MAC addresses (28 apps), i.e., the bridge device described in § 3,
the Router SSID (36 apps), and the Wi-Fi MAC address (15 apps).
We also �nd non-IoT apps from the same developer actively scan-
ning the local network to identify all nearby Wi-Fi MAC addresses
and BSSIDs, subsequently transmitting this data to MyTracker [12],
a Russian analytics and attribution SDK. We note that this data
dissemination occurs without requesting the necessary Android
permissions to access these data types as discussed in § 2. Addi-
tionally, FireTV, RokuTV, and Nest Hub relay the Router SSID to
eight di�erent apps, including casting apps and streaming apps like
YouTube.
TPLINK-SHP Identi�ers. Certain identi�ers transmitted in
TPLINK-SHP broadcasts, such as bulb device ID, hardware ID, OEM
ID, and plug device ID, are relayed to the cloud by TP-Link support-
ing devices. The TP-Link companion app uploads this information
to its own servers, along with the geolocation of the plug and mo-
bile device. This information could potentially be used to track
user movements and �ngerprint the household. The Amazon Alexa
companion app collects and uploads to its own servers the device
IDs for both the TP-Link bulb and plug, along with the TP-Link
OEM ID, collected from TPLINK-SHP.

6.2 SDK libraries
Third-party SDKs associated with advertising and tracking com-
panies can leverage their presence in thousands of mobile apps to
scan and obtain device information in the local network, often with-
out app developer awareness. We discuss three particularly brazen
cases of third-party libraries present in Android apps gathering
local network information:
Umlaut InsightCore SDK. The app Simple Speedcheck [71] in-
cludes a monetization library called “Umlaut insightCore SDK.” This
library conducts SSDP discovery operations, speci�cally targeting
the UPnP Internet Gateway Device (IGD) service active on local
devices. Through such services, the library can potentially control
and manage network settings, such as con�guring port forwarding
or managing network connections, thus potentially exposing these
devices to unauthorized external access. Its privacy policy indicates
that it uploads system and network information such as the list of
connected devices in the local network and geolocation [5]. Accord-
ing to their privacy policy, this data is collected with the purposes
of supporting the development and improvement of communication
networks as well as usage-related analyses.
AppDynamics. In version 6.18.3 of the CNN app [44], users can
cast content to a smart TV on their local network by leveraging
SSDP/UPnP. The app incorporates a Cisco-owned app performance
analytics and pro�ling SDK called AppDynamics [15], which tracks
UI and network event. By o�ering code instrumentation and wrap-
per APIs for common network library callbacks (e.g., okhttp), the
AppDynamics SDK allows developers to track each network request.
As a result, AppDynamics not only monitors communication over
the Internet but also local tra�c activity such as the �le descriptor
of the local URL of the UPnP/SSDP XML �le. In the case of CNN app,
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when searching for devices to cast content, it receives device infor-
mation through UPnP. Intriguingly, AppDynamics accesses this in-
formation arbitrarily. This potentially enables the pro�ling of users’
home networks and their activities. This is particularly concerning,
as UPnP device descriptors contain device information, supported
UPnP services, and their MAC addresses. Additionally, AppDynam-
ics actively tracks requests to events.claspws.tv/v1/event, with URL
parameters that include base64 encoded Wi-Fi AP SSID, Android
device ID, Identi�er for Advertising (IDFA), and list of devices with
screens in the local network via UPnP/SSDP; these details are arbi-
trarily collected by AppDynamics through a side channel [86]. The
latest version of the CNN app (7.23.1) at the time of writing has re-
moved the casting feature, thereby preventing AppDynamics from
collecting SSDP device information. Nonetheless, the request track-
ing functionality remains integrated into the app, thus continuing
to pose potential privacy risks.
innosdk. Ten apps conduct NetBIOS scans, three of which utilize
ARP either by implementing it natively or using the libarp.so
library to collect MAC addresses and subsequently send targeted
NetBIOS requests with the payload structure as shown in Table 5 in
the Appendix. The transmission of this string is an attempt to do an
enumeration of any available NetBIOS shares on the local network.
The “Lucky Time - Win Rewards Every Day” app [21] sends a UDP
datagram to every IP in the 192.168.0.0/24 pre�x, regardless
of whether there was a machine assigned to that IP. This scan is
performed by the third-party library “innosdk,” which connects to
the endpoint gw.innotechworld.com. It is also noteworthy that
this network transmission is algorithmically generated by the SDK
instead of stored as a constant, perhaps to avoid being detected as
obvious malware. This app has been removed from the Google Play
Store since our analysis.

6.3 Household Fingerprintability: Entropy
Analysis

The previous sections identify that large numbers of unique de-
vice identi�ers and metadata are exposed in the local network,
and this can have privacy and security implications as Snowden
revealed [52]. We now show how such identi�ers and metadata
can lead to a �ngerprinting attack, i.e., where a client can uniquely
identify a household based on observed local network tra�c.

To do so, we rely on IoT Inspector’s crowdsourced data, which
captures the organic behavior of 12,669 IoT devices deployed in
3,860 households, associated with 264 di�erent products from 165
vendors. We quantify the extent to which unique household �nger-
prints can be generated bymeasuring the entropy of the information
gathered by experiment participants. Speci�cally, we analyze the
information present in plaintext mDNS and SSDP responses [69].
From every mDNS and SSDP payload, we extract what appears to
be unique identi�ers, including names, UUIDs, and MAC addresses:

(1) Names. For example, a device in the dataset has the follow-
ing value under the name �eld in its SSDP response: “Roku 3
- REDACTED’s Room”. Using regular expressions, we search for
responses where an English word is followed by an apostrophe,
“s”, space, and another word.

(2) UUIDs. We search for standard UUID patterns [79].

# Pdt Vdr Dev ⌃ Hse Identi�er(s) Hse Ent
0 154 107 4,175 1,811 N/A N/A N/A
1 160 100 6,915 3,007 name 2 (50.0%) 3.4

UUID 2,814 (94.2%) 8.9
MAC 572 (94.4%) 7.8

2 76 59 1,577 1,201 name, UUID 22 (81.8%) 12.3
UUID, MAC 1,182 (95.6%) 16.7

3 1 1 2 2 name, UUID, MAC 2 (100.0%) 20.1

Table 2: Information exposed via mDNS and SSDP. “#” counts
identi�er types exposed, including �rst names, UUIDs, and
MAC addresses. “Pdt” counts distinct products exposing this
information, “Vdr” counts vendors across these products,
“Dev” counts distinct devices, and “⌃Hse” counts households
for these devices. The “Identi�er(s)” column shows which
identi�er(s) are exposed over how many households (“Hse”),
with the percentages of households that can be uniquely
identi�ed in the parentheses. “Ent” shows the entropy.

(3) MAC Addresses. We search for the standard MAC address
formats, with and without “:” and “-”. To reduce false positives,
we compare each potential MAC address with the OUI (the �rst
three bytes of MAC addresses) that IoT Inspector collects for
each device [69], and �lter out cases where the OUI is not a
substring of the regular expression’s result.
To estimate household �ngerprintability, we count the number

of unique products, vendors, devices, and households where we
observe the identi�er for each type of exposed identi�er. Then, we
compute the entropy: �;>62 (1/# ), where # denotes the number of
distinct values for each type of exposed identi�er, as proposed by the
EFF tool “Cover Your Tracks” to measure web �ngerprintability [51].

Table 2 reports the results of the entropy analysis. The �rst row
shows 154 products (associated with 107 vendors, covering 4,175
devices in 1,811 households) exposing none of the three types of
identi�ers—name, UUID, or MAC address— in the collected mDNS
or SSDP responses. The second row shows products that exposed at
least one type of identi�er; e.g.,, 2,814 households exposed UUIDs
only. The table also shows cases where a combination of identi�er
types was exposed; for instance, some 1,182 households exposed
both the UUIDs and MAC addresses. The last row shows 2 house-
holds exposing all three identi�er types; both households have Roku
TVs, which exposed the user’s name (“REDACTED’s Roku Express”),
UUIDs, and the MAC addresses (which are a part of the UUIDs).

The three types of identi�ers could potentially be abused to �n-
gerprint households by third-party apps, SDKs or other co-located
IoT devices. We illustrate the �ngerprintability in the “Ent” (en-
tropy) column in Table 2. We obtain entropy values over 12.3 in
households with at least 2 devices. As a reference point, HTTP
User Agent strings have an entropy of 10.5 if used to track web
users [51]. In addition to entropy analysis, we also measure how
many households can be uniquely identi�ed, as shown in the paren-
theses in the “Hse” column. For example, 2,814 households exposed
UUIDs; the unique UUIDs could identify 94.2% of these households.
If a third-party tracker were to combine UUID and MAC addresses
(exposed in 1,182 households), the unique combinations of UUID
and MAC addresses could identify 95.6% of these households. That
being said, we do not knowwhether these values remain unique per
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device over time (e.g., over days and months), as the median time of
data collection per household is less than one hour [69]. Still, these
results further con�rm that the three types of identi�ers are mostly
unique across households and could lead to �ngerprintability.

We note that a typical smart home in IoT Inspector’s dataset is
smaller than the setup present in the IoT Lab. A regular household in
the IoT Inspector dataset has a median of 3 di�erent IoT devices that
often communicate with each other over TCP and UDP connections.
Hence, the results presented in this analysis are a lower-bound
estimation of the �ngerprintability of these households.

6.4 Takeaways
Multicast protocols like mDNS and SSDP expose sensitive identi-
�ers, such as �rst names, UUIDs, and MAC addresses that have
been already collected by mobile applications and analytics SDKs.
Most of these identi�ers and other device metadata are unique per
device so they enable accurate household �ngerprinting and user
tracking across devices and networks. Our study predominantly
monitors these information relays and side channels discussed in
section 6.1 and 6.2 through mobile companion apps. It is crucial to
understand that similar vulnerabilities might exist in direct device-
to-device interactions. However, due to the opaque or “black-box”
nature of many IoT devices and our limited visibility into their
encrypted tra�c, our capacity to directly observe and diagnose
device-to-device channels is constrained. Thus, our observations
via mobile apps serve as a proxy, suggesting broader implications
for IoT security and privacy beyond just smartphone interactions.

7 DISCUSSION
We argue that local networks must be considered a zero-trust en-
vironment. While ARP, UPnP, and mDNS protocols are essential
for seamless integration and device communication in smart home
systems, they introduce privacy and security risks that must be
considered. As we demonstrate in §6, mobile apps, spyware, and
third-party SDKs already harvest this information for commercial
and malicious purposes. Informed by our empirical results and
the conversations with IoT vendors triggered by our responsible
disclosure, this section discusses possible mitigations to these risks.
Usable Security and Privacy Controls. Transparency in the IoT
space is generally de�cient, and the visibility of local interactions
is not an exception. Many IoT devices are designed to connect to
networks or other devices without requiring any user interven-
tion or authorization. In fact, many IoT platforms provide APIs to
third-party app developers to integrate these capabilities in their
software. While this may reduce friction for device operation, it can
also lead to a total lack of user awareness about which devices are
connected to their home networks and what data is being shared.
The lack of transparency and controls can leave users vulnerable to
security and privacy threats. To mitigate these issues, mobile and
IoT platforms must o�er usable solutions to force third-party apps
to obtain explicit consent from the user at runtime before scanning
and connecting with other devices in the local network. We be-
lieve that the model introduced by iOS to prevent local network
scanning is a move in the right direction. However, incorporating
these changes in mobile and IoT platforms may take a long time, as
they may require profound architectural changes that can introduce

unexpected compatibility issues. These measures can be comple-
mented by the vetting processes that platforms have to control the
dissemination of malicious and deceptive programs in their stores.
Secure-by-design Firmware and Timely Updates. IoT devices
have been historically shipped with inadequate default security
settings and unnecessary capabilities that can be abused to enable
attacks on other systems. Our �ndings in §5 con�rm that many
home IoT devices run outdated services and use protocols with
known vulnerabilities. While we acknowledge that tracking newly
discovered vulnerabilities and shipping security patches in a timely
manner is challenging, vendors cannot dismiss the crucial need to
keep their products updated throughout their life cycle.
Supply Chain Analysis and Hardening. Several devices in
our setting, such as smart TVs, run services with di�erent versions
of UPnP, some of which are vulnerable. These products are built
in a (possibly complex) supply chain involving di�erent teams
or even external organizations, each with its own dependencies
and development practices. The presence of a potentially large
number of actors in the supply chain makes it hard to achieve goals
such as secure-by-design and routine security updates. One key
complication is the lack of knowledge about the supply chain itself.
The use of Software Bill of Materials (SBOMs) has recently gained
momentum as a measure to address some of these issues.
Standardization E�orts. The results of our §6 experiments
demonstrate that network and device data broadly available in
the local network can enable cross-device tracking and household
�ngerprinting. Standardization methods can be an e�ective mitiga-
tion, by promoting the adoption of privacy- and security-by-design
principles across vendors like data exposure minimization or ID
randomization, ultimately reducing consumer risks. One promi-
nent example of a new protocol standard is Matter [22], a protocol
already being adopted by major IoT vendors. However, while Mat-
ter is positioned as an alternative cross-platform method for local
device communication, it does not address most of the threats we
identi�ed in this paper (yet). In fact, Matter still considers the local
network as a trusted environment and exposes MAC addresses
in mDNS discovery as well [64]. Recent initiatives such as ETSI’s
“Cyber Security for Consumer Internet of Things: Baseline Require-
ment” [3] standard already have considerations for data processing
and collection in consumer IoT devices. However, they are very
generic and do not consider the risks associated with the dissem-
ination of sensitive device and network information within the
local network that enable �ngerprinting attacks and cross-device
tracking. Other e�orts such as OWASP’s Mobile Application Se-
curity group can also incorporate and discuss threats such as the
�ngerprinting attacks described in this paper [26].
Regulation and Certi�cation. A recent wave of regulations
in the US and the EU aim to improve the security of the supply
chain for connected products. Both the EU Cyber Resilience Act
(CRA) [8] and the US National Cybersecurity Strategy [11] seek to
ensure that connected digital products are manufactured according
to best cybersecurity practices and provided with the latest security
updates throughout their life cycle. In the case of the CRA, non-
adherence to a baseline of essential cybersecurity requirements will
translate into �nes, and some critical devices will need to comply
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with stricter standards and possibly go through third-party audits.
Standardization bodies like NIST [96], and industry-led e�orts such
as IoXt [73], aim to facilitate these audits through IoT certi�cation
programs and providing security and privacy guidelines for ven-
dors. Though still in a preliminary stage, the combination of these
regulations and auditing frameworks with more privacy-oriented
IoT standards have the potential to shape market forces to adopt
best security and privacy practices.

8 RELATEDWORK
IoT Tra�c Characterization. Prior work conducted general
studies to characterize the behavior of smart homes in the wild,
thus capturing device behavior with real user stimuli [39, 68, 69, 77,
80, 105, 108, 115]. Typically, researchers rely on instrumented IoT
gateways to monitor device network tra�c [81, 105, 108]. While
this approach revealed the dissemination of personal data (e.g.,
MAC addresses and geolocation) to the cloud using unencrypted
network protocols [105], they o�er little insight into the local
network communication behavior of IoT devices. Several stud-
ies have highlighted security and privacy risks associated with
IoT local network deployment and protocols such as mDNS and
UPnP [58, 66, 75, 78, 101]. However, the inherent risks and the po-
tential for cross-device data leakage via local smart home commu-
nication to third parties have remained unexplored in the research
literature. While Hakim et al. [66] proposed honeypots to identify
malicious UPnP activities, our honeypots emulate real smart devices
to monitor data dissemination. Könings et al. [78] investigated zero
con�guration networking, emphasizing the need for improved user
awareness and changes in device naming conventions to enhance
privacy, aligning with our �ndings.

Vulnerability Analysis. In the wake of the Mirai botnet at-
tack [35], the research community has intensely scrutinized the
security of IoT devices, uncovering a range of vulnerabilities and at-
tack vectors [34, 35, 54, 119, 120]. While IoT vendors have strived to
respond e�ectively by adopting various best practices, several core
device services can still be prone to side-channel data leakage [97].
Consequently, IoT platforms like smart speakers, hubs, and smart
TVs have gradually moved towards implementing permission-based
models to enhance user security and privacy. Yet, Fernandes et
al. [55–57] statically analyzed smart apps to detect side-channels
that allow circumventing the permission model of these platforms.

Application Analysis. The research community has proposed
various methods to detect harmful and privacy-invasive behaviors
across mobile and smart IoT platforms [31, 89, 95, 103, 106, 116, 119].
However, the opaque nature of IoT devices presents considerable
challenges to fully understanding the privacy and security risks
when multiple devices are co-located in a smart home system, par-
ticularly their tra�c payloads [100]. Yet, prior e�orts analyzed the
companion apps of smart devices to indirectly infer security vul-
nerabilities of smart devices [42, 104] and data exposure from the
companion apps [40, 90, 118]. IoTPro�ler [90] used NLP, ML, and
static program analysis to detect potential data leaks in companion
apps. Their �ndings that over 70% of IoT devices rely on local con-
nections with mobile apps for initial data processing aligns with
our observations. In contrast, we observe that any regular app can

inadvertently integrate SDKs that scan the network and expose to
remote servers the data made available by devices in the same smart
home ecosystem, thus exploiting side-channels to circumvent the
Android permission model [103].

9 CONCLUSION
This paper presented the �rst analysis of local network interactions
observed in an IoT testbed comprising 93 devices, as well as their
interactions with mobile apps. Through a rigorous combination
of complementary methodological approaches, we demonstrated
the concerning prevalence of vulnerable services and components
in smart home IoT devices, and how the misuse of local network
protocols exposes sensitive network-, user-, and device-speci�c data
to other devices and third-party mobile apps and SDKs running on
the local network.

We provided evidence that such data is collected by mobile apps
and third-party SDKs and transmitted to remote servers. Addition-
ally, we performed the �rst analysis on the entropy of data that is
exposed over discovery protocols such as mDNS and SSDP, demon-
strating that this information is highly e�ective for performing
household �ngerprinting and cross-device tracking. The threats
we consider in this paper are real, important, and unaddressed by
Android’s permission model.

As we showcased in our analysis, many devices are still vulner-
able to the threats described above, and these issues are actively
exploited by mobile apps and SDKs. We discussed several potential
mitigations, from technical solutions to standardization and regu-
latory actions, and we encourage device manufacturers, software
developers, and policymakers to take our �ndings into account
to improve privacy and security for home IoT deployments and
enhance transparency in the IoT space. We note that Google is
engaging with us to explore mitigations that could be implemented
via the Android OS, app review processes, and general IoT stan-
dardization e�orts.
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A DISCLOSURE PROCESS
Our work identi�ed numerous security and privacy issues a�ecting
software running on mobile and IoT devices. In this section, we
provide details about our vulnerability disclosure process, principles
followed, vendor interactions, and status of remediations. We note
that interactions with responsible parties are ongoing at the time of
writing, so we expect further remediations to occur in the future.

Our approach was to follow responsible disclosure principles by
privately informing responsible parties through their vulnerability
disclosure programs or customer contacts before publication. There
is no standard for time given to address these issues; we gave ven-
dors 30 days notice given timing constraints for publication. While
all parties involved would have liked a longer embargo period, this
was unfortunately not possible given available time and resources.

We sent disclosures to 19 IoT vendors and manufacturers, as well
as reported to Google a list of Android mobile apps and SDKs that
we discovered collecting sensitive local network information. At the
time of writing, we have received responses from 11 of these parties,
and are actively collaborating with them to address the identi�ed
vulnerabilities. In addition, we are in the process of disclosing the
potential privacy violations found in this study to regulators in
relevant jurisdictions.

B IOT DEVICES
Table 3 lists the IoT devices that comprise our MonIoTr Lab IoT
testbed.

C TRAFFIC PROCESSING
C.1 Local Tra�c Filter
If the local IP range is 192.168.10.0/24, the rule in WireShark/tshark
(version >= 3.7.0) consists of the following conditions:

( i p . d s t = = = 1 9 2 . 1 6 8 . 1 0 . 0 / 2 4
and i p . s r c = = = 1 9 2 . 1 6 8 . 1 0 . 0 / 2 4 )
or ( e th . d s t . i g ==1)
or ( e th . d s t . i g ==0&&! i p )

• Local IP unicast tra�c (ip.dst===192.168.10.0/24 and
ip.src===192.168.10.0/24): Both source and destination IP
addresses belong to the 192.168.10.0/24 subnet.

• Multicast/broadcast tra�c (eth.dst.ig==1): The destination
Ethernet address is a multicast or broadcast address .

• Non-IP unicast tra�c (eth.dst.ig==0&&!ip): The tra�c is
unicast but does not have an IP layer.

C.2 Protocol Classi�cation
In order to identify the most accurate tra�c classi�cation method,
we perform a cross-comparison of the outputs reported by tshark
and nDPI . We apply these tools to 366K local network packets and
�ows captured in the IoT labwithout any user interaction.We follow
RFC 6146 [82] to de�ne UDP and TCP �ows, i.e., a chronologically
ordered set of TCP segments/UDP datagrams with the same 5-tuple
combination (source IP, source port, destination IP, destination port,
transport protocol).

We found that tshark reported 35 labels for 76% of �ows, whereas
nDPI provided 18 labels for 74% of them. The tools provided di�er-
ent labels for 16% of the connections, and neither reported a label
for 7.5% of the connections (which mostly corresponded to layer 3
tra�c). Figure 3 shows the labeling inconsistencies between nDPI
and tshark.

We manually examined the �ows in which they disagree, con-
cluding that they belonged to 19 di�erent application layer proto-
cols. Out of those 16% �ows in which they disagreed, 95% of them
were misclassi�ed by tshark as generic “transport-layer tra�c” or
TP-Link’s custom protocol, while nDPI correctly identi�ed most of
them as SSDP �ows. On the other hand, nDPI incorrectly identi-
�ed a small fraction of SSDP �ows as CiscoVPN tra�c, and other
local tra�c generated by the Nintendo Switch (EAPOL layer 2 traf-
�c) as AmazonAWS. Another case is RTP tra�c, which is often
misclassi�ed by nDPI and tshark because RTP does not specify a
standard port number and its payload is not plaintext. Through a
combination of controlled experiments and informed speculation,
we created tools to partially identify some RTP tra�c used by smart
devices. Similarly, we observed Google devices frequently commu-
nicating using UDP over ports within the range 10000–10010. This
tra�c was initially classi�ed as STUN by both nDPI and tshark.
However, experiments similar to those conducted with Echo de-
vices indicated that this is a misclassi�cation of RTP tra�c and that
is likely used for control and synchronization purposes.

D PROTOCOL AND TRAFFIC ANALYSIS
D.1 Frequency Analysis
The frequency of the discovery tra�c can also provide information
on the purpose and privacy implication of local communication.
To check the periodicity of the tra�c, we use an approach[68] that
combines Discrete Fourier Transformation (DFT) and autocorrela-
tion. We check periodicity for tra�c from each unique (destination,
protocol) tuple. We do not consider port here as the randomization
of port number is prevalent on IoT devices. We �nd that 88% of
discovery protocol �ows are periodic, and we identify a total of
580 di�erent periodic groups (destination, protocol) across our IoT
devices, averaging approximately 6.2 groups per device. We leave
further in-depth analysis as future work.
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Game Console Generic IoT Home Appliance Home Automation Media/TV Surveillance Voice Assistant

Nintendo (1) Keyco (1) Anova (1) Amazon (1) Amazon (1) Amcrest (1) Amazon (17)
Oxylink (1) Behmor (1) Aqara (1) Apple (1) Arlo (2) Apple (3)
Renpho (1) Blueair (1) Google (1) Google (1) Blink (1) Meta (1)
Tuya (1) GE (1) IKEA (1) LG (1) D-Link (1) Google (7)

Withings (3) LG (1) MagicHome (1) Roku (1) Google (2)
Samsung (3) Meross (3) Samsung (1) ICSee (1)
Smarter (1) Philips (1) Tivostream (1) Lefun (1)
Xiaomi (1) Ring (1) Microseven (1)

Sengled (1) Ring (4)
SmartThings (1) Tuya (1)
SwitchBot (1) Ubell (1)
TP-Link (2) Wansview (1)
Tuya (3) Wyze (1)
WeMo (1) Yi (1)
Wiz (1)

Yeelight (1)
Table 3: IoT devices under test categorized by device type. The number in the parentheses indicates the number of devices.
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Figure 3: Heatmap of Tshark vs nDPI Normalized Protocols.

D.2 Discovery Protocol Responses
We correlate multicast and broadcast discoveries with their re-
sponses by inspecting unicast inbound tra�c to the devices that
initiate the discoveries. We search for tra�c employing the same
transport layer protocol and port number within a short time period
(empirically set as 3 seconds in this study) following the discovery

requests. A response could also be multicast tra�c such as QM
mDNS, which we plan to explore in future work.

We present the number of these protocols used by each device
grouped by device category in Table 4. Excluding ARP, DHCP, and
ICMPv4/v6 which are used by most of the devices, we observe
that 32 devices receive responses from other devices using these
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(a) TCP Google (b) TCP Amazon (c) TCP Apple

(d) UDP Google (e) UDP Amazon (f) UDP Apple

Figure 4: Zoom-in TCP and UDP graphs for the Apple, Amazon and Google clusters.

Device Group # Discovery
Protocols

# Protocols
with Response

# Devices Re-
sponded to

Amazon Echo 3.65 1.82 9.47
Google&Nest 4.0 3.0 5.14
Apple 1.0 1.0 5.0
Tuya 1.0 0.0 0.0
TVs 1.4 1.0 2.0
Cameras 1.17 1.0 1.5
Hubs 1.5 0.0 0.0
Home Auto 1.0 1.0 1.0
Appliances 2.0 0.0 0.0

Table 4: Number of discovery protocols (exclude ARP, DHCP,
ICMP/v6 as they are used by most devices) used grouped
by category. Number of protocol with at least one response
per category. Number of devices responded to each device
grouped by category.

protocols. Amazon Echo devices, on average, receive responses
from 9.47 other smart devices as shown in Table 4.

D.3 Vendor-speci�c Clusters
We present the isolated depictions of vendor-speci�c device-to-
device communication clusters in Figure 4. These �gures illustrate
extracted clusters for Google’s, Amazon’s, and Apple’s IoT plat-
forms. The thinkness of the edges corresponds to the volume of the
tra�c.

D.4 Payload examples
Table 5 provides several examples of SSDP, mDNS and NetBIOS
payloads exposing device information.

E IDENTIFICATION OF DEVICES FOR IOT
INSPECTOR

As explained in the original paper [69], IoT Inspector collects meta-
data of network tra�c (e.g., source/destination IP addresses and
ports), some payloads (e.g., DNS), and crowdsourced user labels.
The dataset does not explicitly identify vendors, models, products
of devices. In this section, we discuss how we infer identities of
devices, including the vendor and category information, based on
this dataset. We say “infer” because we do not have the ground
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SSDP

HTTP/1.1 200 OK
SERVER: Linux, UPnP/1.0, Private UPnP SDK
...
<?xml version=“1.0” ?>
<friendlyName>AMC020SC43PJ749D66</friendlyName>
<serialNumber>9c:8e:cd:0a:33:1b</serialNumber>
<UDN>uuid:device_3_0-AMC020SC43PJ749D66</UDN>
<serviceList>
<service>

mDNS

Ethernet II, Src: PhilipsL_68:5f:61 (00:17:88:68:5f:61),
Dst: IPv4mcast_fb (01:00:5e:00:00:fb)
...
Multicast Domain Name System (response)
Philips Hue - 685F61._hue._tcp.local: type TXT, class IN, cache �ush
_hue._tcp.local: type PTR, class IN, Philips Hue - 685F61._hue._tcp.local
1.6.F.5.8.6.E.F.F.F.8.8.7.1.2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.8.E.F.ip6.arpa: type PTR

NetBIOS
00 01 00 00 00 00 00 00 20 43 4b 41 41 41 41 41 ........ CKAAAAA
41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAA
41 41 41 41 41 41 41 41 41 00 00 21 00 01 AAAAAAAAA..!..

TPLINK-SHP

{"system":{"get_sysinfo
...
"deviceId":"8006E8E9017F556D283C850B4E29BC1F185334E5",
"hwId":"60FF6B258734EA6880E186F8C96DDC61"
...
oemId":"FFF22CFF774A0B89F7624BFC6F50D5DE
"alias":"TP-Link Plug","dev_name":"Wi-Fi Smart Plug With Energy Monitoring"
...
"latitude":42.337681,"longitude":-71.087036

Co-located devices leaking data to the cloud

HTTP/1.1 200 OK
{“entity”:{“entityId”:“SKILL_eyJza2lsbElkIjoiYW16bjEuYXNrLnNraWxsLmI0YmYyYjRkLT ->
8012A5191D2CB6983983DB807412997E18990EFF> –> Light bulb deviceId
“,”entityType”:“CLOUD_DISCOVERED_DEVICE”},“capabilityStates”:
[“{\“namespace\“:\“Alexa.BrightnessController\“,\“name\“:\“brightness\“,\“value\“:100,

Table 5: Examples of payload exposing device information such as MAC addresses within the local network and cloud.

truth due to the crowdsourced nature; we can only validate our �nd-
ings across di�erent internal data sources and/or through manual
inspection.

Overview. We obtained a subset of IoT network tra�c from IoT
Inspector’s authors. For each device, we make sure that at least two
pieces of the following metadata are available: OUI (the �rst three
bytes of a MAC address), DHCP hostname, mDNS/SSDP responses,
hostnames contacted, and the user labels. The user labels are what
IoT Inspector users have optionally named their IoT devices in
terms of the vendor, product name, and product type; these labels
can be selected from a pre-�lled drop-down list in the IoT Inspector
UI, or can be free-form text [69]. The entire IoT Inspector dataset
includes 216,824 devices, of which 25,033 devices have at least two
pieces of the metadata above. In the next few steps, we will infer
the identities, including the vendor and categories, for these 25,033
devices.

Inferences with ChatGPT. Using OpenAI’s TextCompletion API,5,
we develop prompt to infer device vendors and categories based

5https://platform.openai.com/docs/guides/completion

on a device’s DHCP hostname, mDNS/SSDP responses, and user
labels. We use this API because it is trained on Internet-scale data,
which likely includes public knowledge on various IoT devices.
Also, we pick these three pieces of metadata because, based on
our manual sampling, they are likely to contain identifying infor-
mation (albeit imperfect), explicitly (i.e., substring) or implicitly.
For example, user labels are crowdsourced and sometimes include
incorrect spellings [69]; mDNS/SSDP responses often include the
vendor and product information, although the exact formats could
di�er across vendors; and DHCP hostnames may be indicative of
the product identity (e.g., the string “cast” often appearing in the
DHCP hostnames of Google Chromecast devices). We treat all these
metadata as unstructured natural languages—especially given the
diversity of IoT devices—and feed them into the TextCompletion
API.

By iteratively testing di�erent prompts on a small subset of
known devices, we develop the following prompts. To infer the
vendor names, we ask: “I have an IoT device named ‘[metadata]’.
What is the company that makes this IoT device? Output the com-
panyś name only.” For device type, we use this prompt instead:
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“I have an IoT device named ‘[metadata]’. What type of IoT de-
vice is this? Output the name of the device type only.” We replace
[metadata] with user labels, DHCP hostnames, or mDNS/SSDP
responses, separately, extracted from the IoT Inspector dataset. We
apply these prompts to the 25,033 devices with the TextCompletion
API. After removing empty or unknown responses, we have the

API responses for 24,998 of the devices. At the time of writing, the
API cost was approximately $70 USD in total.

F GENERATIVE AI ACKNOWLEDGMENTS
As explained in Section E, we use ChatGPT (OpenAI’s TextCompletion
API) to infer device identities in IoT Inspector data. ChatGPT was
also utilized to automatically generate LATEX format tables.
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