
BehavIoT: Measuring Smart Home IoT Behavior Using
Network-Inferred Behavior Models

Tianrui Hu
Northeastern University

Boston, Massachusetts, USA
hu.tian@northeastern.edu

Daniel J. Dubois
Northeastern University

Boston, Massachusetts, USA
d.dubois@northeastern.edu

David Cho�nes
Northeastern University

Boston, Massachusetts, USA
cho�nes@ccs.neu.edu

ABSTRACT
Smart home IoT platforms are typically closed systems, meaning
that there is poor visibility into device behavior. Understanding
device behavior is important not only for determining whether
devices are functioning as expected, but also can reveal implications
for privacy (e.g., surreptitious audio/video recording), security (e.g.,
device compromise), and safety (e.g., denial of service on a baby
monitor). While there has been some work on identifying devices
and a handful of activities, an open question is what is the extent
to which we can automatically model the entire behavior of an IoT
deployment, and how it changes over time, without any privileged
access to IoT devices or platform messages.

In this work, we demonstrate that the vast majority of IoT be-
havior can indeed be modeled, using a novel multi-dimensional
approach that relies only on the (often encrypted) network tra�c
exchanged by IoT devices. Our key insight is that IoT behavior
(including cross-device interactions) can often be captured using
relatively simple models such as timers (for periodic behavior) and
probabilistic state-machines (for user-initiated behavior and de-
vices interactions) during a limited observation phase. We then
propose deviation metrics that can identify when the behavior of
an IoT device or an IoT system changes over time. Our models and
metrics successfully identify several notable changes in our IoT
deployment, including a camera that changed locations, network
outages that impact connectivity, and device malfunctions.

CCS CONCEPTS
• Networks ! Home networks; Network monitoring; • Secu-
rity and privacy;

KEYWORDS
Smart Home, IoT, Measurement Techniques, Behavior Modeling

ACM Reference Format:
Tianrui Hu, Daniel J. Dubois, and David Cho�nes. 2023. BehavIoT: Measur-
ing Smart Home IoT Behavior Using Network-Inferred Behavior Models. In
Proceedings of the 2023 ACM Internet Measurement Conference (IMC ’23), Oc-
tober 24–26, 2023, Montreal, QC, Canada.ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3618257.3624829

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
IMC ’23, October 24–26, 2023, Montreal, QC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0382-9/23/10. . . $15.00
https://doi.org/10.1145/3618257.3624829

1 INTRODUCTION
Smart home Internet of Things (IoT) systems are closed systems,
meaning that we know little about whether a device (or set of
devices) is behaving in ways that might violate expectations such
as privacy, security, and correctness. Prior work has shown that
these devices can indeed pose signi�cant security [14, 15, 34, 47, 60,
75, 77], privacy [19, 29, 40, 49, 59], and safety [20, 21, 27, 28, 74] risks.
Such diverse types of undesired behavior are di�cult to detect and
mitigate because we have a poor understanding of what is normal
device behavior and how it changes over time.

A key question, then, is whether it is possible to accurately
model the behavior of IoT systems, and use these models to identify
deviations of interest as the behavior changes over time. Speci�cally,
we focus on whether we can develop models that (i) do not require
the modi�cation of devices or privileged access to closed APIs; (ii)
can abstract the behavior of an individual device (device behavior),
as well as the behavior of a system composed of many IoT devices
(system behavior); (iii) can account for the changes of such behavior
models, i.e., by providing metrics to quantify model deviations
(deviation metrics). Several prior e�orts focus on pieces of this
solution [13, 21, 25, 26, 28, 33, 41, 42, 49, 53, 59, 67, 72–74], but fall
short of addressing it entirely.

In this paper, we propose ameasurement approach that addresses
the above issues by modeling the per-device and system-wide be-
havior of an IoT system using network-inferred behavior models
(from now, simply behavior models), i.e., models that are built us-
ing information inferred from the IP tra�c produced by an IoT
system. Because our approach relies only on network tra�c, it
is inherently platform-agnostic, requires no privileged access to
devices or APIs, and is easy to deploy at routers or gateways. Our
behavior models rely on the observation that most consumer de-
vices are relatively simple, having a limited set of functions and
states [33, 35, 48, 53, 59, 74], and their network tra�c, although
mostly encrypted, typically exhibits predictable patterns that are
either periodic or that correlate with the actual functions being
used [13, 50–53, 67, 76].

More speci�cally, we �rst create device behavior models by in-
ferring from all IP network tra�c collected during an observation
period a list of events generated by individual IoT devices (e.g., tog-
gling a switch, periodic maintenance tasks, heartbeat, etc.). One key
insight is that such events can be accurately modeled by separating
them into user events, periodic events, and aperiodic events. In real
IoT deployments, however, individual device behavior does not tell
the whole story because many devices interact with each other. To
model these interactions, we observe that we can model a collection
of cross-device interaction events as a probabilistic state-machine,
which serves as our system behavior model. Finally, we measure the

1

421

https://doi.org/10.1145/3618257.3624829
https://doi.org/10.1145/3618257.3624829
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618257.3624829&domain=pdf&date_stamp=2023-10-24

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Tianrui Hu, Daniel J. Dubois, and David Cho�nes

behavior deviation by de�ning several deviation metrics to quantify
under multiple dimensions how much IoT events are consistent
with generated device and system behaviors models over time.

We evaluate our approach on several real datasets produced in
an IoT testbed (comprising 49 devices) where we run controlled and
uncontrolled experiments. Speci�cally, we identify testbed device
and system behavior models during an observation period, then
analyze the changes in behavior using our deviation metrics �rst on
a synthetic dataset, where we perturb the tra�c of our IoT testbed,
and then on real tra�c produced as part of a user study where 40
study participants are allowed to use the devices as they see �t
(data collected with consent and IRB approval, see §3). Based on
the user study data, we identi�ed several IoT behavior deviations
due to user activity (user participants relocating devices), service
outages, and device malfunctions.

We believe that the ability to model IoT behavior and measure
behavior deviations at di�erent levels of abstraction can help IoT
safeguards (e.g., [6, 7, 11]) identify situations were IoT devices be-
have unexpectedly, can assist with developing pro�les of IoT sys-
tems to �ll the gap left by the lack of deployed MUD pro�les [44],
and can help audit IoT system behavior with respect to regulatory
and privacy policy compliance.
Summarizing, our main contributions are:

(1) New datasets from controlled experiments using 49 devices,
and from IRB-approved uncontrolled experiments involving 40
participants for three months (§3).

(2) A platform-independent measurement approach for inferring
device behavior models, system behavior models, and behavior
deviations from network tra�c (§4).

(3) An evaluation of our approach and a measurement study of IoT
behavior in our new datasets (§5 and §6).

To facilitate follow-up research, we publicly released our dataset
from controlled experiments and software [38].

2 GOALS, ASSUMPTIONS, AND SCOPE
Goals. The goal of this paper is to answer the following research
questions in the context of a smart home IoT system (i.e., a set of
consumer IoT devices in the same smart home):
RQ1. Can we measure and characterize the behavior of an
IoT system from (even encrypted) network tra�c? Previous
work explored the problem of modeling per-device IoT behavior
from network tra�c in terms of user events as those associated
with user activities (e.g., turning on a light) [13, 35, 53, 59, 67, 72],
typically to assess privacy threats where an attacker tries to pro�le
IoT user activity; however, their models only cover a minority of
all IoT tra�c—in fact, we observe that the vast majority of IoT
tra�c (overall average 98.5%, median 98.631%) is due to non-user
background activities (e.g., heartbeats) in our testbed. Having a
way to infer non-user events can enrich device behavior models
signi�cantly since such events occur constantly and independently
of user activity. The challenge in inferring non-user events is the
lack of ground truth, which makes existing user event inference
approaches unsuitable for the task. We address this challenge using
an unsupervised approach to infer a model of periodic behavior for
classifying periodic events.

To model the system IoT behavior, we rely on the insight that
a user interaction with the IoT system may cause correlated se-
quences of user events from di�erent IoT devices (e.g., a user trig-
geringmultiple sensors at once every time they enter a room). Based
on this insight, we use automatic model inference algorithms on
sequences of user events to abstract such correlations, thus gener-
ating a system behavior model that is more abstract and amenable
for analysis than the raw event sequence itself.
RQ2. Can we measure and characterize behavior deviations
of an IoT system? After inferring the behavior models of the IoT
system, we investigate how to measure their deviations, de�ned as
changes in suchmodels. Having a way to measure behavior changes
can help identify any new or unexpected behavior of the IoT sys-
tem (e.g., due to �rmware upgrades, to changes in user utilization
patterns, to service outages, or even malicious IoT behavior). The
main challenge in doing this is that our IoT behavior models are
multidimensional, in the sense that they model several character-
istics of the IoT systems (e.g., periodicity of device behavior and
di�erent temporal aspects of system behavior) so it is not obvious
a priori how to capture di�erent changes in behavior that might
occur. To address this, we �rst propose several deviation metrics,
each one capturing one di�erent aspect of the IoT system behavior,
that quantify the amount of behavior change between the behavior
model and a new sequence of events inferred from the network
tra�c; then we show on our datasets how we can use our deviation
metrics to identify notable cases of behavior deviation.
Assumptions and scope. To answer our research questions, we
assume we can observe (but not decrypt) the IP tra�c that traverses
the gateway serving the IoT devices. We do not consider tra�c that
does not traverse the gateway (e.g., Thread and non-IP tra�c such
as Zigbee). We also do not consider on-device apps as the nature
of apps tra�c is di�erent from that of IoT devices with no apps
and already considered in previous work [69]. For devices o�ering
apps, we either include them without using any on-device apps,
or we exclude them, in case they o�er no signi�cant functionality
without relying on apps (e.g., smart TVs).

3 DATA COLLECTION
This section presents our IoT testbed and the datasets produced by
our experiments (available for download [38]).

3.1 Testbed
To collect data for this measurement study, we build a testbed that
consists of 49 IoT devices that we deployed in a lab that resembles
a studio apartment. We connected the devices in the testbed to the
Internet via a gateway that captures all network tra�c, separated
by device. We do not perform any device modi�cation or tra�c
decryption in this work. We selected the devices (listed in Table 1)
from awide range of categories that were deemed popular according
to Amazon search results at the time of purchase.

3.2 Dataset from Controlled Experiments
We conduct controlled experiments from 8/2021 to 10/2021.
Activity dataset for user event behaviors (30 devices). We
use this set of experiments and their data to obtain ground-truth
labels for inferring user-action models from the network tra�c, i.e.,

2

422

BehavIoT: Measuring Smart Home IoT Behavior Using Network-Inferred Behavior Models IMC ’23, October 24–26, 2023, Montreal, QC, Canada

Category Camera (11) Smart Speaker (11) Home Automation & Sensor (16) Appliance (5) Hub (6)

Devices (49
total)

D-Link Camera
iCSee Doorbell
LeFun Cam
Microseven Camera
Ring Camera
Ring Doorbell
Tuya Camera
Ubell Doorbell
Wansview Cam
Wyze Cam
Yi Camera

Echo Dot
Echo Dot3
Echo Dot4
Echo Flex
Echo Plus
Echo Show5
Echo Spot
Google Home Mini
Google Nest Mini
Homepod Mini
Homepod

Amazon Plug Jinvoo Bulb
D-Link Sensor Gosund Bulb
Govee Bulb Magichome Strip
Meross Dooropener Philips Bulb
Nest Thermostat Ring Chime
Smartlife Bulb Wemo Plug
TPLink Bulb TPLink Plug
Keyco Air Sensor Thermopro Sensor

Behmor Brewer
Samsung Fridge
Smarter iKettle
GE Microwave
Anova Sousvide

Aqara Hub
IKEA Hub
SmartThings Hub
SwitchBot Hub
Philips Hub
Wink Hub2

Interactions Move in front of camera, watch
remotely, record video, take
picture, voice intercom, ring

Voice command,
change volume,
turn on/o�

Turn on/o�, change brightness/color,
set modes, move in front of sensor

Turn on/o� Turn on/o�

Table 1: IoT devices under test per category and the interaction experiments we performed (if available).

models for identifying user events in network tra�c. Similar to prior
work [49, 59, 67], we conduct experiments where we interact with
devices in our testbed. Most interaction experiments that involve
the use of a companion app or a voice command are automated
and repeated at least 30 times for each activity. Based on prior
work [49], we use screenshot-based validation to determine if in-
teractions were successfully executed. We assign a unique label to
each interaction (e.g., “lightbulb on”).
Idle dataset for non-user event behaviors (49 devices). As we
discuss later, the vast majority of network tra�c in our experiments
is unrelated to user actions. To model this behavior, we require a
dataset where we are certain that no user interactions occur. To
meet this need, we run “idle” experiments to capture the tra�c of an
IoT device when it is isolated from any interactions. The idle dataset
contains 5 consecutive days of network tra�c from 49 devices.
Routine dataset (18 devices). To simulate a real smart home
environment that includes a mix of idle periods and user actions,
and to measure system IoT behaviors (across multiple devices),
we conduct one-week-long controlled experiments that involve
multi-device interactions. Inspired by the popularity of automation
platforms such as Alexa [5], SmartThings [12], and IFTTT [8], we
use trigger-actions routines/automations to execute a sequence of
user events (action), in response to another event (trigger). For this
dataset, we considered a subset of 18 devices that supported trigger-
actions in our testbed. We consider the size of our subset su�ciently
representative since the average number of IoT devices per home
is 7 according to crowdsourced data from IoT Inspector [39].

To generate the dataset, we manually created automations that
involve various types of activities and/or devices, using both the
Alexa and IFTTT platforms. The functionalities of the included
devices encompass on/o�, color, and dimming features for smart
bulbs; turning smart plugs on or o�, door opening, hub interactions,
thermostat changes, and smart kettle on/o�; motion, video, and
ring functions for smart cameras/doorbells; and voice control for
smart speakers. These automations draw from: (1) popular rou-
tines [5], automations [12], and applets [8] found online using the
popular automations in each platform’s corresponding online mar-
ketplace (e.g., “if doorbell rings, blink the light”); (2) knowledge
about how the devices are typically used [48] (e.g., “turn on all
lights using voice assistant”); and (3) similar automations created
by prior work [25, 33] (e.g., “if motion detected, turn on the light”).

Appendix A provides the full list of devices and automations we
use. In addition to pre-programmed automations, we also directly
trigger device functionality by voice commands and companion
apps during the experiment, to better simulate a real smart home
environment with arbitrary user behavior.

3.3 Dataset from Uncontrolled Experiments
To measure the changes of device behavior over time, we conduct
uncontrolled experiments from 12/2021 to 2/2022.
Uncontrolled dataset (47 devices). For 87 days, 40 participants
were allowed to use the testbed as they saw �t. By entering the
testbed facility, they triggered our pre-generated routines and other
aspects of device functionality—either intentionally or unintention-
ally. We did not conduct any controlled experiments during this
three-month data collection period. Note that due to various rea-
sons, not all devices stayed online during the entire three months,
a topic we will revisit when we analyze behavior deviations later
in this paper.
Ethics. The testbed is part of an IRB-approved user study where
consenting participants use the space and the IoT devices as they
see �t, commonly entering the room to use the fridge, microwave,
etc.When we conduct controlled experiments to produce labeled
tra�c traces, participants are not allowed in the room. Per the terms
of our approved research protocol, we do not share any data from
user interactions with unauthorized individuals.

4 BEHAVIOR MODELING
Our behavior modeling approach relies on three steps (Fig. 1): (i) the
device behavior inference step (§4.1) analyzes the network tra�c to
identify andmodel events generated by IoT devices (e.g., “turning on
a light” or periodic “heartbeats”); (ii) the system behavior inference
step (§4.2) combines events from IoT devices in an IoT system into a
uni�ed model that captures emergent behavior of the whole system;
(iii) the behavior deviation inference step (§4.3) uses deviationmetrics
to identify signi�cant changes in behavior compared to previously
generated device and system models.

4.1 Modeling Device Behavior
We now describe how we use measurements to build device behav-
ior models, i.e., models that capture the behavior of a single IoT
device. We consider the following two device behavior models: (i)

3

423

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Tianrui Hu, Daniel J. Dubois, and David Cho�nes
Io

T
Sy

st
em

Observed Traffic
(to infer behavior)

New Traffic
(to infer behavior

evolution) New Events

Deviation Metrics

Traffic Capture

User actions
(ground truth

from controlled
experiments)

Device
Behavior
Models

System
Behavior

Model

Local (step 1) Global (step 2)

Observed Events

Behavior Deviation
Inference (step 3)

Changes in
Behavior

Behavior Models Inference

one
device

all devices

all devices

*

*
(*) Traffic partitioning, annotation, and event classification

Figure 1: Overview of our approach. The diagram shows the
three steps of our approach, with gray boxes representing
the output of each step.

periodic models, which capture periodic behavior (e.g., keep-alive
heartbeat), and (ii) user-action models, which capture behavior due
to user actions or triggers (e.g., turning on a light).

To infer device behavior models we �rst partition (typically
encrypted [59]) network tra�c into discrete labeled events using
ground-truth information. Speci�cally, network tra�c generated
by an IoT device will be labeled as either user events (caused by user
actions or triggers), periodic events (caused by non-user periodic
tra�c), or aperiodic events (the remaining cases). We then use the
periods of periodic events to inform periodic models and machine
learning classi�ers to inform user-action models.

Prior approaches [13, 53, 58, 59, 67, 72] already o�er user-event
classi�cation and a certain degree of background-tra�c recognition,
but they o�er neither a suitable approach for identifying non-user
events, nor a way to disjointly partition the network tra�c into
user and non-user events, which is needed to inform our device
behavior models. To �ll this gap, we �rst introduce a novel way
to infer discrete non-user events and to separate them from user
events. Then, we show howwe can use such events to build periodic
and user-action behavior models.
Tra�c partitioning and annotation. Given a sequence of net-
work packets transmitted to/from an IoT device, we �rst assemble
the packets into �ows and bursts (analogous to related work on
encrypted tra�c for IoT [53, 76], and mobile security [66, 68]). We
de�ne a �ow as a chronologically ordered set of TCP segments/UDP
datagrams with the same 5-tuple (source IP, source port, destina-
tion IP, destination port, transport protocol). Because �ows can
last hours or even days, we may need to divide �ows into smaller
chunks of data for the purpose of event extraction. Like prior work,
we do so using the notion of bursts. A �ow burst is a consecutive
chunk of packets from the same �ow in which the interval between
any two consecutive packets is less than a threshold, which we set
at 1 second, as suggested by prior work [66, 76].We refer to flow
burst as flow in the rest of the paper for simplicity.

After identifying �ows, we annotate them with the start time,
duration, protocol, destination and other 21 features related to
packet and �ow sizes, and timings (see Table 8 in Appendix B for
the full list of features) for the purpose of event inference. Note
that our techniques do not rely on the contents of packet payloads,
and as such we make no attempt to decrypt any tra�c. In addition

to limiting the potential privacy concerns for such tra�c analysis,
this approach also means that the analysis can be conducted at the
Internet gateway (e.g., home router). We derive all the annotations
directly from the headers and timing of each �ow, except for the
destination domain name. We extract the domain name using DNS
responses and/or TLS handshakes (via the Server Name Indication
�eld). If these methods do not reveal a name for the destination IP
in a �ow (e.g., when DNS/SNI information is encrypted or appeared
outside of our data collection period), we rely on reverse DNS
lookups [9]. If none of the above approaches yields a domain name,
we leave the IP’s domain name blank.
Inferring periodic models. Based on our analysis of network
tra�c from IoT devices during idle periods (i.e., when the devices
are not used), we �nd that most �ows with the same destination
domain name and protocol appear at regular time intervals. To
capture this behavior, we use periodic models, i.e., models that can
capture the tra�c patterns of periodic events.

Speci�cally, we separate tra�c for each unique (destination do-
main, protocol) tuple into di�erent tra�c groups, then check if the
tra�c in each of the groups has periodicity, using an unsupervised
approach that combines Discrete Fourier Transformation (DFT) and
autocorrelation [36, 46, 71]. First, we use DFT to extract candidate
periods for a group by identifying the frequencies that carry sig-
ni�cant power in spectral density. Then, we use autocorrelation to
validate the candidate periods and identify the most likely period
for each pattern. The periods that have a signi�cant autocorrelation
score are chosen as the �nal periods of the signal. We �nally de�ne
a tra�c group with periodicity as our periodic model.

Once we have inferred our periodic models, we need a way to
use them for classi�cation purposes to recognize if future unlabeled
tra�c �ows are periodic events. The simplest way to achieve this
would be using a timer-based approach to label �ows with inferred
periods. However, we found that many non-deterministic factors
such as network congestion substantially reduce the accuracy of
this approach. To address this, we rely on the observation that peri-
odic tra�c patterns are relatively static, so unsupervised clustering
is amenable to labeling such tra�c: �rst, we use a timer to label
periodic tra�c with clearly identi�able periods, then, for the re-
mainder of the tra�c, we use DBSCAN [30], which does not require
specifying the number of clusters (something that is unknown a
priori), to group each periodic �ow into the clusters trained using
idle tra�c. Tra�c �ows belonging to any clusters are labeled as
periodic events.1

Inferring user-action models. To infer user-action models, i.e.,
models that capture the tra�c patterns of user events, we use an
approach similar to prior work [13, 53, 59], i.e., we use controlled
experiments as ground truth to train supervised Random Forest
classi�ers [18], which serve as our user-actionmodels. Once trained,
these user-action models can classify future unlabeled �ows related
to user activities. As the focus and novelty of this paper is not on
user event classi�cation, we provide details only in Appendix B.

1We con�rmed, via manual analysis from our controlled experiments, that these
observed periodic events are always unrelated to user events.

4

424

BehavIoT: Measuring Smart Home IoT Behavior Using Network-Inferred Behavior Models IMC ’23, October 24–26, 2023, Montreal, QC, Canada

INITIAL

TPLink
Plug ON

FINAL

TPLink
Plug OFF

Echo Spot
Voice

100%

50%
60%

8%

42%
25%

75%40%

Domain:
example.com

Protocol:
TCP

Device:
Bulb

T INITIAL

TPLink
Plug ON

FINAL

TPLink
Plug OFF

Echo Spot
Voice

100%

50%
60%

8%

42%
25%

75%40%

Domain:
example.com

Protocol:
TCP

Device:
Bulb

T

Figure 2: Behavior Models. The periodic model on the left
represents the periodic TCP tra�c to ‘example.com’ from
device ‘Bulb’ with period) . The PFSM on the right captures
the relationships among three events (states), where edges
represent transition probabilities.

4.2 Modeling System Behavior
We now consider the question of how to capture the behavior of
a system with multiple devices that can interact with each other.
Our key insight is that system-wide behavior can be modeled as a
�nite state machine, where sequences of user events correspond
to traversals of the state machine. Based on this, we propose an
approach that (i) combines temporally correlated user events into
user event traces, and (ii) repurposes a model inference algorithm to
transform a set of user event traces into a probabilistic �nite state
machine (PFSM) that models the process generating the traces.
Inferring user event traces. To abstract the system behavior,
we need to consider multiple user events from di�erent IoT devices
and their timing information. Speci�cally, we �rst use user-action
models to extract event sequences from the network tra�c, and
then split such user events sequences into temporally correlated
event traces. If the time interval of any two consecutive user events
in a sequence is larger than a certain threshold,2 we partition them
into di�erent event traces. Each of these newly created event traces
can be considered as individual “logs” of events in the IoT system.
From event traces to PFSM. A naive approach to modeling
system behavior is to combine event traces into a directed acyclic
sequence graph of events. However, this approach results in large
event-sequence models that provide little insight into system in-
variants (e.g., a motion sensor always turning on a light)—much like
the di�erence between a program containing multiple repetitions
of the same statement, and one that uses a concise for loop that
produces the same output. Our goal is to compactly model such
invariants from user-event sequences. To do so, we rely on the ob-
servation that IoT systems behave like �nite state machines (FSMs),
and these FSMs can be automatically generated by a tool originally
designed for distributed system debugging (namely, Synoptic [17]).
Speci�cally, Synoptic is a tool that automatically generates PFSM
models from a set of system execution traces.

Given user event traces as input, Synoptic outputs a PFSM repre-
senting our system behavior model, where each state models a user
activity and the transitions model the probability that one activity
leads to another activity. The probability of a transition from an
activity state to another in a PFSM depends only on the current
21 minute in our approach; chosen empirically (as in prior work [33, 66, 76]) to provide
a good trade-o� between the number of traces and trace size.

state. Using transitions, we can capture the temporal and causal
relations between states and their likelihood of appearance in event
traces. In the simple example in Fig. 2, we show how a PFSM is able
to capture key relationships between events: in this example, it is
easy to see that the TP-Link plug is triggered only by the Echo Spot
and the plug’s “On” event is triggered more often than “O�.”

Note that Synoptic is not the only tool for generating models
from log �les: we have chosen it due to its scalability with respect to
trace sizes and the presence of probabilistic information. Like any
modeling system, Synoptic has limitations. For example, it cannot
model states that are not in the logs, its invariant inferences may not
be perfect, and it cannot model algebraic or logical relationships.
Despite these limitations, we empirically found Synoptic to be
su�cient for our study and leave the evaluation of other models to
future work.
Leveraging probabilistic information of a PFSM. Both our
PFSM behavior model and a deterministic behavior model only
consisting of raw user event traces (the naive approach above) can
recognize deterministic lists of events (i.e., same events always in
the same order) as instances of the same system behavior. However,
in reality, IoT systems are typically non-deterministic, especially
as the number of IoT devices and types of user events grow. The
reason is that di�erent user events from di�erent devices may
happen simultaneously or in a slightly di�erent order, and some
sequences of user events may happen more frequently than others.

Our PFSM models account for this by using transition probabili-
ties and by combining similar states together, allowing the PFSM to
model sequences of events that have never been encountered before,
which in turn can account for some amount of (inconsequential)
non-determinism in an IoT system. A more detailed explanation of
why our models exhibit this desirable property is explained in [17],
where the authors show that Synoptic PFSM models are generative:
they may accept traces not present in the log. Finally, the PFSM’s
transition probabilities can inform the likelihood that an observed
user event trace corresponds to the behavior modeled by the PFSM:
we leverage this to build system deviation metrics, discussed in the
next section.

4.3 Measuring Behavior Deviations
Once we have models that capture behavior in an IoT system, a key
question is how do these behaviors change over time? To answer
this question, we use our behavior models as a baseline to measure
the extent to which new events produced by the IoT system deviate
from the behavior observed in the past, i.e., during the observation
period in which we establish its behavior models. Speci�cally, we
use one per-device deviation metric, based on the periodic model,
and two system-wide deviation metrics based on the PFSM.

For the periodic-event deviation metric, we look for cases
where the observed tra�c patterns have di�erent timings than
expected based on the modeled period. Periodic events that strictly
follow their periods have, by de�nition, zero deviation. For periodic
events that do not follow their periods, we use count-up timers to
get the elapsed time)0 (time di�erence between the current time
and the last time the event occurred).

Formally, we de�ne the periodic-event deviation metric "? 2
[0, +1) as "? = log(|)0�) |

) + 1), which measures the di�erence
5

425

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Tianrui Hu, Daniel J. Dubois, and David Cho�nes

between the elapsed time)0 and the inferred period) , normal-
ized by the period) , for periodic tra�c group ? . We use the log
transformation to mitigate skewed scores for easier interpretation.

For the short-termdeviationmetric, we leverage the probabilis-
tic information of the PFSM to quantify the similarity of new user
event traces with respect to the ones seen in the past. Intuitively,
this metric assigns large values to traces that lead to non-existent
states (i.e., new events) or to states reachable via low-probability
transitions (i.e., unlikely event sequences). Because this metric is de-
�ned over individual traces and those traces have limited duration,
it identi�es short-term deviations in event sequences.

Formally, we de�ne this metric (for a trace)) as�) = 1�log(%)),
where �) 2 [1, +1] and %) 2 [0, 1] is the probability that the
trace is consistent with the PFSM. We use the log transformation
to account for the wide range of small probability values in %) ,
while we use the negative inverse to have a score that is 1 when
there is no deviation. We calculate %) by traversing a path cor-
responding to the trace in the PFSM (a path is a route from B0
to B5) and multiplying each transition probability along the path:
%) = % (B0)

Œ=
8=1 % (B= |B=�1).3

For the long-term deviation metric, we also leverage the state-
transition probabilities in the PFSM, but here we consider the com-
pound e�ect of multiple traces instead of just one. This metric
captures long-term deviations from the PFSM in terms of event-
transition probabilities, including cases like a smart speaker con-
stantly misactivating and recording [1]—a normal state for the
device (and thus not detected by other metrics), but is an important
deviation because its transition frequency is higher than normal.

Formally, we de�ne this metric / 2 [0, +1) as / = |I |, where I
is the z-score that measures how far a sample data is from the mean.
We use the absolute value to ensure a zero lower bound and a score
that becomes larger as the deviation increases. This metric can be
interpreted as the statistical signi�cance of the deviation from the
previously observed transition probability in a snapshot. Given a
transition from B8 to B 9 , with transition probability %B 9 |B8 = ? having
Binomial distribution, we compute the z-score as I = ?�?0p

?0 (1�?0)/=
,

where = is the number of occurrences of B8 and ?0 denotes the
transition probability over = transitions from B8 to B 9 .

5 BEHAVIOR MODELS EVALUATION
In this section we evaluate our approach for modeling device be-
havior (§5.1) and system behavior (§5.2) (RQ1), and for determining
behavior deviations (§5.3) (RQ2).

5.1 Device Behavior Modeling
We now evaluate our methodology for inferring periodic and user-
action behavior models, demonstrating how we accurately identify
the corresponding events.
Periodic models. To infer periodic models we use a method
based on discrete Fourier transform (DFT) and autocorrelation. We
evaluate its accuracy by generating 100 periodic sequences with
varying periods and 100 aperiodic sequences by applying random
3If a trace includes a new transition with % = 0, the %) would be zero. However, due to
training data limitations (e.g., rare events missing from the training set), the zero score
may be too sensitive for discovering behavior changes. We address this by additive
smoothing [63].

Home
Auto

Camera Smart
Speak-
ers

Hub Appl-
iance

Total

Periodic Cov-
erage

99.9% 99.9% 99.7% 99.4% 99.9% 99.8%

Periodic Event
Acc.

99.9% 99.9% 99.7% 98.0% 99.6% 99.2%

User Event Acc. 99.1% 98.9% 96.5% 100.0% 100.0% 98.9%
Aperiodic % 0.16% 0.05% 1.55% 1.95% 0.04% 0.52%

Table 2: Event inference per IoT device category. Periodic
Coverage indicates how many �ows exhibit periodicity in
idle dataset. Periodic Event Acc. and User Event Acc. shows
how correctly periodic events and user events are inferred.
Aperiodic ratio indicates the portion of aperiodic �ows in
idle and activity datasets.

permutations to these periodic sequences. Additionally, we generate
100 periodic sequences with noise by combining generated periodic
sequences and aperiodic sequences. In all of these cases, our ap-
proach correctly infers periods and accurately classi�es sequences
as aperiodic when appropriate 100% of the time, demonstrating the
e�ectiveness of our method.

We next evaluate how many non-user �ows can be modeled as
periodic in the idle dataset (containing only background tra�c).
While we have no ground truth about the purpose of background
tra�c due to the closed nature of IoT systems, our hypothesis is
that most background IoT tra�c is related to periodic activities
(e.g., heartbeats, status synchronization, etc.). After running our
approach, we �nd that 99.8% (Table 2) of the �ows in the idle dataset
exhibits periodicity, lending support to our hypothesis. Finally, we
evaluate the ability of our periodic models to identify �ows as peri-
odic events. We split our idle dataset into training and testing set,
and train our inference model on the tra�c that exhibits periodicity
in the training set. After testing on the idle dataset, we �nd that our
approach identi�es more than 99.2% of inferred periodic �ows as
periodic events (Table 2). The remaining 0.8% of cases are primarily
due to variations in background tra�c caused by non-deterministic
factors such as network congestion, or by imperfect classi�ers.
User-action models. We use machine-learning classi�ers to
model user actions, and build our own models instead of using
existing ones [13, 53, 67] due to their limitations; namely, lack of
support for UDP (12.8% of idle �ows and 48.4% of activity �ows
are UDP in our dataset), limited device support, and no ability to
classify non-user tra�c (see §4.1).

We �nd that our user-action models (i.e., our user event classi-
�ers) meet or exceed the accuracy of a recent state-of-the-art user
event classi�er, PingPong [67] (a signature-based IoT user event
classi�cation method). For the six overlapping devices between
our two studies, we have identical (100%) accuracy for half and
better accuracy for the other half, as shown in Table 3. Extending
beyond the PingPong dataset, we measure an overall 98.9% user-
action model classi�cation accuracy across 30 di�erent devices in
the activity dataset (Table 2).

Furthermore, we evaluate our event inference using the false
negative rate (FNR) and false positive rate (FPR) metrics.

6

426

BehavIoT: Measuring Smart Home IoT Behavior Using Network-Inferred Behavior Models IMC ’23, October 24–26, 2023, Montreal, QC, Canada

Device Name BehavIoT accuracy PingPong accuracy
Amazon Plug 100% 98%
Wemo Plug 100% 100%
TP-Link Bulb 96.15% 83.3%
TP-Link Plug 100% 100%
Nest Thermostat 94.74% 93%
Smartlife Bulb 100% 100%

Table 3: User event classi�cation accuracy comparison be-
tween BehavIoT and PingPong [67].

False negative rate. We de�ne FNR as the ratio of false nega-
tive user events (i.e., user events incorrectly classi�ed as non-user
events) to the total number of user events in the activity dataset.
With respect to FNR, our event inference approach performs quite
well: 19 out of 30 devices have zero false negatives. The FNR for the
remaining eleven devices is 5.84%. The SmartThings Hub is respon-
sible for all of the false negatives in the Hub category. It has a high
FNR (71.88%) because the events generated by its low-bandwidth
user activities (turning on/o� all connected Zigbee devices) are of-
ten indistinguishable from background events that share the same
TCP connection. Note that we did not trigger other activities in our
controlled experiments on the SmartThings Hub, since the Smart-
Things platform is not our primary focus. For other cases of false
negatives, we could not �nd a precise explanation, but we speculate
that either the device or its companion app did not work properly
during the automated activity experiments, similar to observations
from our previous work [49].
False positive rate. We compute the false positive rate (FPR) as
the number of false positive events (i.e., events in the idle dataset
that are misclassi�ed as user events), divided by the total number
of events in the idle dataset. We �nd that only 0.09% of the events
in the idle dataset are misclassi�ed as user events. Of those, nearly
80% are caused by Echo Show 5, which has many �ows in its idle
dataset that exhibit tra�c patterns that are similar to user events.

5.2 System Behavior Modeling
In this section, we evaluate howwell our systemmodeling approach
(i.e., the PFSM model) captures system properties. We �rst evaluate
the scalability of our model, and then evaluate other properties
reported in previous work.
PFSM model scalability. One advantage to the PFSM approach
is that it can relatively compactly represent the behavior of an IoT
system, making it easier to interpret and analyze. The reason for the
compactness is that similar states in the PFSM are collapsed into a
single state, while they would stay distinct in state-transition chains.
An alternative simple model-building strategy is to combine all the
traces as parallel event sequences. To evaluate which approach
to use, we turn to Fig. 3, which shows how the number of nodes
and edges grows as new devices are added. The �gure shows that
the PFSM abstracts a compact and scalable model with nodes and
edges that grow much more slowly with increasing devices when
compared to the alternative approach of using event sequences.
More speci�cally, the PFSM constructed from the routine dataset
has 35 nodes and 211 transitions (edges) for 18 devices, 209 traces,
and 701 activity events (on average, 39 events per device). Using
traces from the same dataset, such a model has 710 nodes and 910

of devices

0

250

500

750

1000

2 4 6 8 10 12 14 16 18

Event sequence node Event sequence edge PSFM node PSFM edge

Figure 3: Complexity of models generated by di�erent ap-
proaches, showing the advantage of using PFSM.

transitions, thus con�rming that the PFSM provides a model that is
more scalable due to substantially fewer nodes and edges.
PFSM properties. Since we generate PFSM using Synoptic [17]
(see §4.2), we expect that the two main abstraction properties of
Synoptic models also hold for our PFSM: (i) the ability to accept
every event trace used to generate the model (i.e., each user event
trace maps to a valid path in the model), (ii) the ability to accept
event traces not used to generate the model (but that are similar
to ones that generated the model). To con�rm the �rst property,
we successfully veri�ed that 100% of the event traces we used to
build the model are accepted by the PFSM. For the second property,
we veri�ed the presence of user event traces in our datasets that
we did not use to build the model that are also accepted by PFSM.
This indicates that our PFSM is able to recognize traces that have
never been encountered before. We manually inspected a sample of
these traces and veri�ed that, although di�erent, they were related
to user activities used to generate the model. Speci�cally, they are
a combination, or permutation, of previously seen traces.

5.3 Deviation Inference Evaluation
Deviationmetrics. Our deviation metrics are intended to reveal
changes in IoT system behavior that are signi�cant, and we use
thresholds to capture this signi�cance from a statistical point of
view. To this end, we use 5-fold cross-validation on our datasets
from controlled experiments, divided into training data (used to
infer our behavior models) and testing data (not used to infer our
behavior models) plus arti�cially perturbed versions of them, to
see how our deviation metrics behave.

The periodic-event deviation metric captures how much the tim-
ing of a periodic event deviates from the expected timing. To eval-
uate the metric, we compare its value for periodic events in both
the training and the testing partitions of the idle dataset. Fig. 4a
shows the CDF of this metric on periodic events from such dataset
partitions. The distributions of the testing and training sets overlap,
indicating that there are few changes to periodic tra�c between
the two datasets. In fact, more than 99% of periodic tra�c �ows
in the idle training set are consistent with the previously inferred
periods (periodic model) and generate a zero deviation metric.

7

427

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Tianrui Hu, Daniel J. Dubois, and David Cho�nes

� � � � � � � � �
3HULRGLF�HYHQW�GHYLDWLRQ�PHWULF

���

���

���

���

���

���

&'
)

WUDLQ
WHVW

� � � � �
�������

�������

�������

�������

�������

�������
=RRPHG�&')

(a) Full and zoomed CDFs of the periodic-
event deviation metric from the idle train-
ing and testing sets and vertical lines corre-
sponding to the threshold.

�� �� �� �� �� ��
/RQJ�WHUP�GHYLDWLRQ�PHWULF

���

���

���

���

���

���

&'
) ͗ �͗ �͗ �͗ �͗

WUDLQ
WHVW
DGG�
DGG�
DGG�
DGG�
DGG�

(b) CDFs of the short-term deviation metric
for event traces in routine training and test-
ing sets combined from 5 folds and CDFs
from synthetic datasets. The y-axis repre-
sents the percentage of event traces.

��� ��� ��� ��� ��� ��� ��� ��� ���
/RQJ�WHUP�GHYLDWLRQ�PHWULF

���

���

���

���

���

���

&'
)

���
������ ���

����� WUDLQ
WHVW
GXS�
GXS�
GXS�
GXS�
GXS�

(c) CDFs of the long-term deviation metric
for all event transitions in each trace from
the routine training and testing sets com-
bined from 5 folds and CDFs from synthetic
datasets. The y-axis represents the percent-
age of event transitions.

Figure 4: CDFs of deviation metrics from the controlled experiments datasets.

The short-term deviation metric captures how much a given user-
event trace deviates from the PFSM representing the system behav-
ior model. To evaluate the metric, we demonstrate that the value
increases if we arti�cially increase the amount of user-event de-
viations compared to baseline traces. To show this, we generate
�ve synthetic datasets, all based on the testing routine dataset, by
adding to each event trace between one and �ve user events that
produce new transitions. Fig. 4b shows the CDF of the metric for
each dataset.4 In particular, we �nd that the distributions of the
metric’s values on �ve synthetic datasets shift to the right as the
amount of introduced deviation increases, showing that our metric
tends to become larger with respect to the amount of previously
unseen event transitions added to the system.

The long-term deviation metric measures long-term deviations
in event-occurrence frequency, determining if any user-event se-
quences are occurring more or less frequently compared to the sys-
tem behavior model. To show how the metric changes with respect
to long-term deviations, we synthesize �ve datasets by duplicating
traces in a testing set. The duplicated trace simulates changes in
user-event-sequence frequency (e.g., sending audio frequently from
a smart speaker). Fig. 4c shows a clear trend of the metric distribu-
tions shifting right as the introduced deviation increases, which is
what the metric was designed to do.
Signi�cant deviation thresholds. The deviation metrics quan-
tify changes in device behavior; we now focus on how to use the
magnitude of the deviations to distinguish small changes in behav-
ior from more signi�cant changes in behavior that may require
more attention. Speci�cally, we de�ne, for each deviation metric, a
threshold for statistical signi�cance of the deviation.

For the periodic-event deviation metric, we empirically choose
1.61 (when)0 = 5)) as the deviation threshold, a value determined
by identifying the knee of the zoomed CDF as shown in Figure 4a.

4Each curve represents data combined from evaluating the deviation metric on 5 folds
(i.e., 5 distinct partitions of training and testing sets) to avoid bias from particularities
of any one fold.

Given the vast number of periodic events (see §6.1), a higher thresh-
old ensures we avoid marking an excessive number of deviations
for manual review.

For the short-term deviation metric, we use the threshold d =
`+=f , calculated based on statistical properties of the events used to
create the system behavior model. Based on our observations from
Figure 4b, we set = as 3 for having the best tradeo� between cap-
turing signi�cant deviations and not �agging too many deviations
as to become unwieldy.

For the long-term deviation metric, we consider the con�dence
interval CI (see Fig. 4c): scores outside the interval are considered
statistically signi�cant deviations. We use the commonly used value
of CI = 95% to inform our threshold.
Deviation inference test cases. To assess whether deviation
inference identi�es notable changes in IoT system behavior, we test
it using network tra�c containing changes in behavior inspired
by various real-world examples from prior work [14, 28, 29, 33, 37]
and news articles [1–4]. The types of deviation we consider are: (i)
unusual sequences of user events; (ii) changes in non-user events.
We synthesize this tra�c by modifying the event sequences in the
routine dataset. Our approach is able to detect all generated cases as
signi�cant deviations, and we provide explanations for each case.
Deviations due to new event sequences. Changes in system behavior
can lead to new combinations of user events, due to factors such as
�rmware updates or device compromise. We emulate this deviation
by �rst injecting user events that cause new transitions in the PFSM,
and then measuring their presence using the short-term deviation
metric and the long-term deviation metric. For example, we inject
a trace with several user events from an iKettle and Echo Spot
after we turn o� all lights and plugs, and then open the Meross
(garage) Door-opener to leave home. Our approach identi�es this
as a signi�cant deviation since we never trigger these user activities
after we leave home in our controlled experiments.

8

428

BehavIoT: Measuring Smart Home IoT Behavior Using Network-Inferred Behavior Models IMC ’23, October 24–26, 2023, Montreal, QC, Canada

Device Ave # of Periodic Models Highest #

Home Auto 4.06 Nest Thermo: 8
Camera 5.82 ICSee Doorbell: 10
Smart Speaker 23.36 Echo Show5: 31
Hub 6.00 Philips Hub: 15
Appliance 6.40 Samsung Fridge: 22
Total 9.27 Echo Show5: 31

Table 4: Observed periodic models by device category.

Deviations due to event loss. Missing events can result in changes
of behavior that can happen, for example, when a device is malfunc-
tioning, or it is experiencing a service outage. We simulate this devi-
ation by removing events from our controlled experiment datasets.
Speci�cally, we remove events from an automation-introduced rou-
tine between Ring camera and Gosund Bulb, i.e., we simulated the
Gosund Bulb being o�ine and its events discarded. This change
in behavior is detected by the short-term deviation metric and the
long-term deviation metric since it causes statistically signi�cant
changes in user event traces. The periodic-event deviation metrics
also detect this deviation since periodic activity is a�ected as well.
Deviations due to device misactivations. Unauthorized Device ac-
tivations can result in problematic situations such as exposure of
sensitive information (e.g., from smart speakers [1, 29]), battery
draining [65, 70], etc. We synthesize misactivations by inserting
events simulating frequent device activations (e.g., Echo Spot ac-
tivating nine times in a row). Our approach detects synthetic mis-
activations as signi�cant deviations since the long-term deviation
metric or the short-term deviation metric exceed the threshold.

6 BEHAVIOR CHARACTERIZATION
In this section we use our behavior modeling approach and our
deviation metrics in a real-world environment. Speci�cally, we
characterize the IoT behavior observed during controlled and un-
controlled experiments in our IoT testbed.

6.1 Behavior Models Characterization
First, we provide a general characterization of our behavior models,
then we provide some insights on unclassi�ed tra�c, and �nally
analyze the destinations by event type.
Periodic models. To measure the fraction of periodic tra�c in
realistic settings with user interactions, we combine the idle, activ-
ity, and routine datasets. Using our periodic modeling approach,
we identify that an average 97.8% of the events in the combined
dataset exhibit periodicity (see Table 9 in Appendix C). On the one
hand, this is not surprising—periodic behavior is a hallmark of long-
running online systems. On the other hand, this lends credence to
our hypothesis that periodic tra�c can often be classi�ed due to its
regular behavior, and thus provides a solid foundation for detecting
deviations from such behavior.

From our 49 devices, we build 454 periodic models, correspond-
ing to 9.27 (5) models per device on average (median). The dif-
ference in mean and median implies a skew toward a relatively
small number of devices with large numbers of models. We sum-
marize observed periodic models per device category in Table 4,

where we show the average number of periodic models per de-
vice in each category (2nd column) and the name of the device
with the largest number of periodic models, along with the number
(3rd column). Echo Show 5 exhibits 31 periodic models, followed
by Echo Spot and HomePod Mini, both with 27. While a periodic
model can represent features such as heartbeats (e.g., tra�c to
device-metrics-us.amazon.com), there are cases where we can-
not map models to device features due to generic domain names
(e.g., *.cloudfront.net) and encrypted tra�c obfuscating the pur-
pose of the tra�c.

We note that the complexity of a device correlates with the
number of di�erent periodic background tra�c behaviors it gen-
erates. Devices with more functionality (e.g., smart speakers and
app-supporting devices like the smart fridge) generate more peri-
odic models in comparison to less complex devices like home au-
tomation devices. For instance, the Echo Show 5 has more periodic
models than Echo Dots, presumably because the former supports
functions like Prime video streaming, image display, and purchase
authentication, which are not supported on Echo Dots due to the
absence of a screen. Conversely, devices with a small set of features
such as the TP-Link Plug (with only one periodic model directed
to the TP-Link cloud destination, excluding DNS and NTP commu-
nication) and other home automation devices exhibit small sets of
periodic behavior.

We �nd that IoT devices with similar or identical functionality
from the same vendor (e.g., Amazon or Tuya) often have a similar
set of periodic models in terms of periods and destinations, poten-
tially due to shared software components. Interestingly, we also
notice variations among devices from the same vendor. For instance,
the TP-Link Bulb and Plug, despite contacting the same destination,
exhibit periodic models with di�erent periods. Similarly, smart light
bulbs from Tuya have di�erent periods and third-party destination
domains. This could be attributed to the use of di�erent software
components, di�erent versions of these components, or diverse
con�gurations. While we have no ground truth to explain these
di�erences, one possible explanation is that they use a di�erent
software supply chain. Such variations, if due to supply-chain is-
sues, could make it more di�cult to maintain software over time,
potentially posing security risks.
User-action models. We build 57 user-action models from 141
distinct activities for 27 devices. During our experiments, user event
classi�cation achieves high accuracy, largely because simple devices
typically exhibit easily identi�able network tra�c patterns. In fact,
we achieve perfect classi�cation performance for most of these
simple devices (see Table 3).

However, there are some types of user events that prove ex-
tremely challenging, if not impossible, to classify accurately. This
occurs when di�erent activities generate similar tra�c patterns,
making them indistinguishable by classi�ers. Upon further inspec-
tion, we identify that some events correspond to identical message
sizes, but with di�erent data �elds in their encrypted payload, which
typically come in pairs, such as on/o�, active/inactive. For instance,
although the ‘COLOR’ and ‘ON’ activities of the Jinvoo Bulb demon-
strate minor di�erences, our classi�er di�erentiates themwith 100%
accuracy. Conversely, the ‘ON’ and ‘OFF’ activities from devices
that are both from the same vendor and same category are identical

9

429

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Tianrui Hu, Daniel J. Dubois, and David Cho�nes

in most features like packet size, and our user-action models aggre-
gate them together as on/o�. We �nd that the binary state activities,
such as on and o� from 13 devices out of 18, are indistinguishable.
We also observe that di�erent types of video processing events are
di�cult to distinguish, due to being implemented in similar ways.
PFSM systemmodels. The PFSMmodel abstracts complex inter-
actions among di�erent devices due to both programmed behaviors,
i.e., deterministic user event sequences induced by automation or
applets, as well as non-programmed behaviors introduced by human
interactions and correlated events from devices that sense the same
environment. For instance, we �nd that the Ring Camera states in
the PFSM are always followed by Gosund Bulb’s ‘on’ or ‘o�’ states,
which is consistent with what we specify in an automation, i.e., a
programmed behavior. Similarly, we observed cases in which non-
programmed behaviors we were not aware of were also modeled by
our testbed’s PFSM. For example, we observe high-probability tran-
sitions between “movement detected” states of two smart cameras.
After investigating the reason, we discovered that they were next
to each other and triggered together when we generated the PFSM.
Unmodeled tra�c (aperiodic events). The tra�c �ows that
cannot be classi�ed by periodic and user-action events are aperiodic
events. We �nd that only 0.675% of the �ows from idle, activity,
and routine datasets are left unclassi�ed and labeled as aperiodic
events. These �ows are sent to 283 distinct destinations across all
49 devices, on average, 5.78 per device (see Table 9 in Appendix C
for more details).

While investigating the causes of the 0.2% of �ows that do not
exhibit periodicity in the idle dataset, we identi�ed that the majority
of them are from smart speakers or hubs. There are several reasons
why this occurs: (i) our classi�ers are not perfect and may fail to
�nd labels for user event tra�c; (ii) hubs act as gateways for many
other IoT devices and process events for them, which can in turn
add noise to tra�c patterns in ways that confound classi�ers.

In some cases, the tra�c may have a period that is so long, e.g.,
one day, that it cannot con�dently be detected by our approach with
a 5-day idle dataset. For example, Amazon Echo devices perform
update checks every 24 hours or more. In other cases, the tra�c is
expected not to be periodic, such as �rmware or other updates that
are not released on regular schedules. Last, smart speakers tend
to run more complex software (e.g., a full Android/FireOS system,
along with skills or apps) that can lead to irregular background
tra�c patterns. For example, mas-sdk.amazon.com, used for ad-
vertising physical and digital products that Amazon sells [10] on
Echo Show 5. We leave a deeper analysis of aperiodic events as a
topic of future work.
Event destination analysis. We characterize the destinations
that each modeled event entails, which can reveal how information
is exposed to other parties over the Internet for each type of event.
For each event’s destination, we identify the organization name for
a second-level domain or an IP using WHOIS data or commonsense
matching rules (e.g., ‘Amazon’ corresponds to alexa.com). If the
organization associated with IP aligns with the name, manufacturer,
or an a�liate of the IoT device, we categorize it as a �rst party.
Services such as cloud or CDN providers are labeled as support
parties. All other entities are considered third parties.

Event Device First
Party

Support
Party

Third
Party

Periodic Event

Home Auto 27 18 5
Camera 13 23 18
Smart Speakers 206 26 17
Hubs 6 8 15
Appliance 12 7 8
Total 264 82 63

User Event

Home Auto 12 2 1
Camera 7 11 2
Smart Speakers 7 0 0
Hubs 2 2 0
Appliance 0 1 0
Total 28 16 3

Aperiodic Event

Home Auto 36 3 7
Camera 7 8 3
Smart Speakers 178 7 6
Hubs 7 1 0
Appliance 10 2 8
Total 238 21 24

Table 5: Destination party per event type from idle, activity,
and routine dataset.

Table 5 summarizes the result of this mapping, broken down by
event type and device category. We �nd that 15.0% of destinations
associated with periodic events are third-party ones, signi�cantly
more than the fraction of third-party user-event destinations (6.4%)
and aperiodic event destinations (8.5%). This is expected, as user
events tend to invoke a device’s primary functionality (and thus
does not require third parties), and many aperiodic events are re-
lated to updates or skill activities that also use �rst party communi-
cation [45]. In contrast, more periodic activities are associated with
third parties. Particularly, we �nd that 6 devices periodically send
requests to Google’s DNS server though our DHCP server does not
specify it as the default DNS server. Similarly, our smart devices
periodically sync up with 17 distinct NTP servers including those
from third parties such as Google, Apple, Amazon, and servers
outside of US such as in Germany, Greece, or China. While it is per-
haps interesting that such distant NTP servers were selected, this
global spread of servers may alone constitute no additional privacy
risk given the limited privacy implications of the NTP protocol.
However, if these device NTP interactions contribute to establish-
ing reliable �ngerprints of devices or device activities, they could
contribute to privacy risks.

The percentage of support parties for user events (34.0%) is higher
than others (20.0% for periodic events and 7.4% for aperiodic events)
since one third of the devices we test in our activity dataset rely on
cloud services such as AWS for device control and communication.
One important implication is that Amazon has substantial visibility
into network tra�c from IoT devices made by other vendors, who
often are Amazon competitors in the IoT marketplace.
Non-essential destination analysis. A previous study [49]
investigated whether communication with a destination (domain
name) is required for smart device functionality, and produced a
list of non-essential destinations that could be blocked without
impairing device functionality, and a list of essential destinations.
We now investigate how our observed events correlate with this
list, to understand which events are essential or not.

We �rst search for matches in the non-essential list, �nding that
22 of our observed destinations are labeled as non-essential. Of

10

430

BehavIoT: Measuring Smart Home IoT Behavior Using Network-Inferred Behavior Models IMC ’23, October 24–26, 2023, Montreal, QC, Canada

2

4

5

1

3

(a) Behavior deviations due to
user events.

6

7

8

9

(b) Behavior deviations due to pe-
riodic events.

Figure 5: Deviations in uncontrolled experiments.

these, 16 are destinations associated with periodic events, and 6
with aperiodic events. This means that, in our dataset, periodic and
aperiodic event destinations tend to be non-essential compared
with user event destination.

We then compare the essential list, �nding that 55 destinations
are labeled as essential. Among them, we found that out of 18 device
models that overlapped between our device and theirs, 15 devices
have destinations associated with periodic events that are essen-
tial, meaning that these periodic models are required to support
the functionality of the device. As for user events, 15 of their de-
vices overlap with the devices we interacted with to generate labels
in our activity dataset. We found that 13 out of 15 devices have
destinations associated with user-action models that are essential.
For the remaining two devices, we manually con�rmed that their
destinations originated from the same cloud provider but di�ered
from the domains in the essential list. This motivates the need to
revisit such domain classi�cations over time as device behavior
changes. In terms of aperiodic events, 17 destinations are labeled as
essential, all from Amazon, Samsung, and Google smart speakers
and hubs. We con�rm that these destinations are shared with either
periodic or user event destinations, but exhibit di�erent tra�c pat-
terns, thus labeled as aperiodic events. This raises concerns about
the shared use of destinations for di�erent purposes, potentially
evading destination-based privacy-enhancing tools like IoTrim [49].

6.2 Behavior Deviation Characterization
We now analyze behavior deviations in the uncontrolled datasets.
Using our deviation metrics and thresholds, we detect a total of 177
signi�cant behavior deviations (2 per day on average). In the follow-
ing paragraphs we describe how these deviations reveal important
changes in behavior.

6.2.1 Behavior deviations due to user events. Figure 5a shows the
40 behavior deviations identi�ed via the PFSM by the short-term
deviation metric (4 of 40) and by the long-term deviation metric (36
of 40) over three months (0.46 per day). We now explain the labeled
deviations due to user events.
Case 1, 4, and 5: Two behavior deviations due to unusual user
events detected by the long-term deviation metric occurred near the
beginning of the experiment period. Upon manual inspection, we
found that unexpected activations of the Wyze Camera triggered
these deviations and we determined the cause to be the relocation
of Wyze Camera to a location where it is more sensitive to mo-
tion in the room. Case 4 and 5 were due to a similar reason. This

kind of deviation is important because moving a camera can have
signi�cant implications for privacy (e.g., if users are unexpectedly
monitored as a result of camera movement) and/or security (e.g., if
cameras are moved to prevent detection of thieves). Interestingly,
we can detect this type of change in behavior even though it was
never observed in our training set (in fact, we detect it because of
this) and even though the model was not designed speci�cally to
detect this.
Case 2:Many behavior deviations around Dec 13 were detected by
the long-term deviation metric and the short-term deviation metric,
indicating unusual user event frequency and combinations. After
looking at the traces responsible for the deviations, we con�rmed
that they were due to experiments from another project in our
lab, e.g., 50 consecutive voice activations on Echo Spot within 30
minutes. This demonstrates that unusual activity in the IoT system,
even if it corresponds to previously seen individual events, can
still be detected as signi�cant deviations using our model. In this
example, the detected Echo Spot behavior potentially exhibits the
same risks as the case where the Google Home Mini erroneously
and constantly recorded audio [1].
Case 3:We identi�ed eight behavior deviations via the long-term
deviation metric on Dec 15 due to many repeating events from the
SmartLife Bulb and SwitchBot Hub, which were caused by network
issues and incorrect con�guration of the devices after these two
devices were reset by researchers as part of an experiment for
another research project. In this case, our behavior models help
identify changes in behavior due to misactivation, which can be
helpful for users who want to ensure the correct operation of their
IoT devices.

6.2.2 Behavior deviations due to periodic events. Fig. 5b shows the
detection of 137 behavior deviations via the periodic-event deviation
metric over three months, with at least one occurring on 31 of the
87 days. We now explain some interesting cases.
Cases 6–8:All these cases were caused by documented network out-
ages or from devices being temporarily removed from our testbed
for other experiments. Our approach �ags them as behavior devia-
tions due to the total absence of non-user events. While there are
certainly many other ways to detect such outages, it is nonethe-
less interesting that our behavior model detects it without being
designed explicitly to do so.
Case 9: Several instances of periodic behavior deviation were trig-
gered by the SwitchBot Hub frequently being turned o� for minutes
or hours. Upon manual investigation, we found that these interrup-
tions were caused by device malfunctions, though the exact reasons
for them remain unknown to us.

6.2.3 Takeaways. By leveraging our behavior models and devia-
tion metrics, we can e�ectively identify a range of behavior devia-
tions. While our measurement approach is not designed to deter-
mine the actual root causes of such deviations, our behavior models
and inferred events provide the context for determining them. For
example, the cases above show how our approach can help detect
or verify outages, device failures, and device relocations.

7 DISCUSSION
11

431

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Tianrui Hu, Daniel J. Dubois, and David Cho�nes

7.1 Summary of Findings
To summarize the key takeaways from our modeling and charac-
terization of IoT systems, we �nd that:

(i) The vast majority (97%) of IoT tra�c is periodic, with a small
portion (2.325%) due to user actions, and an even smaller amount
(0.675%) left unclassi�ed. The fact that so much network tra�c
is classi�able into periodic and user events is good for purposes
like anomaly detection, but also problematic when it comes to pri-
vacy, given that network observers (e.g., network providers, home
routers) can use this to identify devices and activities in a home.
Further aggravating privacy concerns, we �nd that a substantial
portion (15%) of periodic events entail third parties.

(ii) Most unclassi�ed tra�c (aperiodic events) is not essential,
i.e., it may be blocked without losing device functionality. This mo-
tivates the need for better information and disclosures regarding
the purpose of network activities in IoT systems, to assist in under-
standing the impact of such unnecessary information exposure.

(iii) IoT system behavior was relatively stable during a three-
month longitudinal study, with only few statistically signi�cant
deviations per day in our uncontrolled environment. The devia-
tions we identi�ed covered a range of important changes in be-
havior, including a camera being moved, network outages, and
device miscon�gurations/failures—even though our models were
not speci�cally designed to detect any of these types of issues.

7.2 Other Behavior Model Applications
In this study, we primarily developed an approach to analyze the
behavior of an IoT system and to apply it to our IoT testbed to shed
light on the changes of its behavior over a period of three months.
Our modeling approach can serve additional purposes as follows.
Informing IoT pro�les. The creation of IoT pro�les, de�ned
as devices speci�cations and intended communication patterns, is
an important problem partially addressed by the IETF in March
2019 with the Manufacturer Usage Description standard (MUD —
RFC 8520 [44]). However, even four years after standardization, the
MUD standard was not adopted yet by any of the devices in our
testbed. We believe that our approach can assist with automati-
cally creating such pro�les based on our behavior models, and can
also help with automatically verifying compliance with existing
pro�les. For example, we identi�ed that TP-Link Plug exhibited
the following models — PFSM (states): on and o�; periodic models
(protocol-destination-period in second): TCP-*.tplinkcloud.com-236,
DNS-*.neu.edu-3603, NTP-*.pool.ntp.org-3603. The network tra�c
corresponding to these models could become a MUD pro�le, and
made available to the manufacturer for validation. Once validated,
any network tra�c from the device that deviated from these models
could be �agged a non-compliant.
Regulatory and privacy policy compliance. IoT devices
usually must comply with local regulations (e.g., GDPR [56] and
CCPA [54]) and their published privacy policies, which may im-
pose restrictions on the data, their purpose, and their destinations.
Because our behavior models capture many of these aspects of IoT
device behavior, we believe our approach can help with regulatory
and privacy policy compliance analysis. Speci�cally, our approach
can �ag behavior deviations as events for further investigation. For

example, we found that aperiodic events not matching our peri-
odic and user-action models are typically not essential and may be
blocked without a�ecting the device functionality. If, upon further
investigation, we �nd that the destination of the tra�c is a known
tracker and we can block such tra�c without a�ecting the device
functionality, it means that the device may be exposing data un-
necessarily, which could violate the data minimization principle of
article 5c of GDPR.
Anomaly detection. We believe that existing anomaly detection
systems can leverage our behavior modeling approach to estab-
lish baseline normal behavior, and leverage our deviation metrics
and thresholds to detect behavior deviations as anomalies. Our ap-
proach provides names/descriptions of the IoT devices responsible
for the deviation and the reasons behind its detection, including
information such as the speci�c deviation score that triggered the
detection, the events involved, and the extent of the deviation. We
have proposed thresholds that measure statistical signi�cance; how-
ever, in an anomaly detection system those can be modi�ed to �nd
the desired trade-o� between sensitivity and speci�city. Further-
more, the fact that our approach abstracts events and traces can
help labeling the detected anomalies with the actual events and
traces responsible for them, thus aiding the system administrator
in triaging such anomalies. While we believe the information we
provide is su�cient for experts and IoT enthusiasts to understand
and use, we have not conducted any user studies, nor have we ex-
plored how to convey this information to lay users. We leave these
topics to future work; it is our hope that at least some anomalies
detected by our system can be presented to typical home users in
ways that are understandable and actionable (e.g., notifying them
that a camera is recording video when it should not, and perhaps
should be removed).

Any anomaly detection approach can raise privacy concerns due
to the information gleaned from tra�c analysis. To mitigate such
risks, our system can run in a local network (e.g., at the home gate-
way) without any external dependencies (e.g., cloud servers). Our
approach does not require data to be collected from users; rather,
models based on lab experiments can be pushed into home-network-
based deployments. An interesting avenue for future work is to
incorporate privacy-preserving techniques (e.g., di�erential privacy,
privacy-preserving federated learning) that enable monitoring from
outside the local network and without loss of privacy.

7.3 Limitations and Future Work
Ground-truth limitations. Our work assumes the availability
of ground-truth labels to create the user-action models, as also
assumed by previous work [13, 59, 67]. However, there may be
situations where such ground-truth is not available, incomplete, or
obsolete (e.g., devices events changing signi�cantly after a �rmware
update, or devices o�ering too many functions), resulting in inac-
curate user-action models and user event inference. This limitation
can be addressed by using user-action models built using unsuper-
vised clustering methods and by periodically retraining the model.
By combining our dataset and the results in Kolcun et al. [43], we
�nd that most IoT devices exhibit relatively static network tra�c
behavior. That said, small changes that we observe over time mean

12

432

BehavIoT: Measuring Smart Home IoT Behavior Using Network-Inferred Behavior Models IMC ’23, October 24–26, 2023, Montreal, QC, Canada

that periodically updating models will result in better long-term
detection performance. We leave this last topic as future work.
Modeling limitations. We model only behavior that can be
inferred from IP network tra�c traversing our gateway to Internet
destinations. Our approach could incorporate local and non-IP
tra�c using wireless sni�ers, perform a similar event inference
approach from related work [64], and integrate these events into
our models. However, we focus only on wide-area IP tra�c in our
work, since capturing it requires no special-purpose hardware.

Two di�erent events with identical IP-tra�c characteristics are
indistinguishable in our system. These limitations can be mitigated
by integrating with event logs extracted from the companion apps,
platforms, or APIs (e.g., SmartThings APIs); however, in this work
we focused on the case where only network tra�c is available.

Finally, our system behavior model does not account for two or
more unrelated user events often occurring at the same time. We
believe it is possible to address this if we can identify that the events
otherwise always occur separately, but this is left as an optimization
for an uncommon case.

8 RELATEDWORK
IoT behavior analysis. Many prior works in the context of
IoT behavior analysis [14, 29, 34, 40, 43, 55, 59] focus on IoT mea-
surement studies to reveal privacy, security, or safety issues of IoT
devices. Other studies characterize attacks on IoT devices [15, 52,
60, 61]. Finally, other papers consider IoT application security and
privacy [16, 19, 31, 76] and design approaches to improve IoT sys-
tems and/or data privacy [22, 23, 25, 32, 42, 49]. These studies do
not model or characterize IoT behaviors by event types, and in par-
ticular neglect non-user events that account for the vast majority
of the IoT tra�c. Moreover, they do not consider emergent system
behavior and do not measure behavior changes.
IoT event inference. Numerous prior studies �ngerprint IoT
events by analyzing network tra�c [13, 53, 67]. Some of them [13,
67] consider only user-event tra�c. HomeSnitch [53] detects non-
user (background) tra�c, but does not distinguish periodic tra�c,
does not consider UDP tra�c, and requires a manual process for
identifying and labeling tra�c; thus, their approach is not suitable to
fully inform our behavior models. Finally, several studies [24, 50, 52]
infer periodic features from network tra�c for speci�c purposes
(e.g., device identi�cation or attacks), but they do not use these
features to partition the tra�c into periodic events as we do, and
therefore these approaches are not suitable to inform our behavior
models or to �lter the tra�c to classify aperiodic events; hence, the
only comparable approaches to our work are the ones that include
user-event classi�cation since they use models that are comparable
to our user-action models. In §5.1 we discuss and compare our
user-action models with [67].

9 CONCLUSION
In this paper, we proposed a novel measurement approach for mod-
eling and characterizing device and system behavior, and how be-
havior changes in a real IoT deployment. Our evaluation showed
that our models capture system properties not previously captured
by previous work, such as modeling periodic and aperiodic events,
and capturing emergent system behavior. Moreover, our analysis

of these models in a real-world setting sheds light on what is hap-
pening behind the scenes in today’s IoT deployments; for example,
we identi�ed the large prevalence of periodic tra�c, the fact that
periodic and aperiodic non-user tra�c tends to be non-essential
for functionality, and important deviations in behavior due to un-
foreseen causes (e.g., changing the location of a device).

We expect our approach to be useful not only for follow-up
research, but also for other applications such as anomaly detection,
generation of IoT pro�les, and regulatory compliance. To facilitate
follow-up research, and/or for applying our approach in di�erent
contexts, we released the code and data from our experiments [38].

ACKNOWLEDGMENTS
We thank our shepherd and the anonymous reviewers for their
constructive feedback. This research was supported by the NSF
(BehavIoT CNS-1909020, ProperData SaTC-1955227). The opinions,
�ndings, conclusions, and recommendations expressed are those of
the authors and do not necessarily re�ect the views of any of the
funding bodies.

REFERENCES
[1] 2017. Google admits its new smart speaker was eavesdropping on users. http:

//money.cnn.com/2017/10/11/technology/google-home-mini-security-�aw. Ac-
cessed on May 26, 2023.

[2] 2019. Massive Google Outage Turned Smart Homes Into Zombies.
https://www.thedailybeast.com/massive-google-outage-turned-smart-homes-
into-zombies. Accessed on May 26, 2023.

[3] 2020. It’s time for smart home devices to have local failover options during cloud
outages. https://staceyoniot.com/smart-home-devices-cloud-outage-vs-local/.
Accessed on May 26, 2023.

[4] 2021. First-world-problems-Amazon-outage-left-tens-thousands-without-
Alexa. https://www.dailymail.co.uk/news/article-10291367/First-world-
problems-Amazon-outage-left-tens-thousands-without\-Alexa-Roombas-
Ring-apps.html. Accessed on May 26, 2023.

[5] [n. d.]. Alexa Routines. https://www.wikipedia.org/. Accessed on May 26, 2023.
[6] [n. d.]. Bitdefender Box 2. https://www.bitdefender.com/smart-home/. Accessed

on May 26, 2023.
[7] [n. d.]. Fingbox. https://www.�ng.com/products/�ngbox. Accessed on May 26,

2023.
[8] [n. d.]. IFTTT. https://ifttt.com/. Accessed on May 26, 2023.
[9] [n. d.]. Internet Systems Consortium BIND(dig). https://www.isc.org/bind/.

Accessed on May 26, 2023.
[10] [n. d.]. Mobile Associates API Overview. https://developer.amazon.com/docs/

mobile-associates/mas-overview.html. Accessed on May 26, 2023.
[11] [n. d.]. RATtrap. https://www.myrattrap.com/. Accessed on May 26, 2023.
[12] [n. d.]. SmartThings. https://www.smartthings.com/. Accessed on May 26, 2023.
[13] Abbas Acar, Hossein Fereidooni, Tigist Abera, Amit Kumar Sikder, Markus Mietti-

nen, Hidayet Aksu, Mauro Conti, Ahmad-Reza Sadeghi, and Selcuk Uluagac. 2020.
Peek-a-Boo: I see your smart home activities, even encrypted!. In Proceedings of
the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks.
207–218.

[14] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. 2019. Sok:
Security evaluation of home-based iot deployments. In 2019 IEEE Symposium on
Security and Privacy. IEEE, 1362–1380.

[15] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, et al. 2017. Understanding the mirai botnet. In 26th USENIX Security
Symposium (USENIX Security 17).

[16] Leonardo Babun, Z Berkay Celik, Patrick McDaniel, and A Selcuk Uluagac. 2021.
Real-time analysis of privacy-(un) aware iot applications. Proceedings on Privacy
Enhancing Technologies 2021, 1 (2021), 145–166.

[17] Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider, Michael Sloan, and Michael D
Ernst. 2011. Leveraging existing instrumentation to automatically infer invariant-
constrained models. In Proceedings of the 19th ACM SIGSOFT symposium and the
13th European conference on Foundations of software engineering. 267–277.

[18] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[19] Z Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu, Gang Tan,

Patrick McDaniel, and A Selcuk Uluagac. 2018. Sensitive Information Tracking
in Commodity IoT. In 27th USENIX Security Symposium (USENIX Security 18).

13

433

http://money.cnn.com/2017/10/11/technology/google-home-mini-security-flaw
http://money.cnn.com/2017/10/11/technology/google-home-mini-security-flaw
https://www.thedailybeast.com/massive-google-outage-turned-smart-homes-into-zombies
https://www.thedailybeast.com/massive-google-outage-turned-smart-homes-into-zombies
https://staceyoniot.com/smart-home-devices-cloud-outage-vs-local/%20
https://www.dailymail.co.uk/news/article-10291367/First-world-problems-Amazon-outage-left-tens-thousands-without%5C-Alexa-Roombas-Ring-apps.html
https://www.dailymail.co.uk/news/article-10291367/First-world-problems-Amazon-outage-left-tens-thousands-without%5C-Alexa-Roombas-Ring-apps.html
https://www.dailymail.co.uk/news/article-10291367/First-world-problems-Amazon-outage-left-tens-thousands-without%5C-Alexa-Roombas-Ring-apps.html
https://www.wikipedia.org/
https://www.bitdefender.com/smart-home/
https://www.fing.com/products/fingbox
https://ifttt.com/
https://www.isc.org/bind/%20
https://developer.amazon.com/docs/mobile-associates/mas-overview.html
https://developer.amazon.com/docs/mobile-associates/mas-overview.html
https://www.myrattrap.com/
https://www.smartthings.com/

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Tianrui Hu, Daniel J. Dubois, and David Cho�nes

[20] Z Berkay Celik, Patrick McDaniel, and Gang Tan. 2018. Soteria: Automated
IoT Safety and Security Analysis. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18). 147–158.

[21] Z Berkay Celik, Gang Tan, and Patrick D McDaniel. 2019. IoTGuard: Dynamic
Enforcement of Security and Safety Policy in Commodity IoT.. In Network and
Distributed System Security Symposium, NDSS.

[22] Yunang Chen, Mohannad Alhanahnah, Andrei Sabelfeld, Rahul Chatterjee, and
Earlence Fernandes. 2022. Practical Data Access Minimization in Trigger-Action
Platforms. (2022).

[23] Yunang Chen, Amrita Roy Chowdhury, Ruizhe Wang, Andrei Sabelfeld, Rahul
Chatterjee, and Earlence Fernandes. 2021. Data Privacy in Trigger-Action Systems.
In 2021 IEEE Symposium on Security and Privacy. IEEE, 501–518.

[24] Haotian Chi, Chenglong Fu, Qiang Zeng, and Xiaojiang Du. 2022. Delay Wreaks
Havoc on Your Smart Home: Delay-based: Automation Interference Attacks. In
2022 IEEE Symposium on Security and Privacy. IEEE, 1575–1575.

[25] Haotian Chi, Qiang Zeng, Xiaojiang Du, and Lannan Luo. 2021. PFIREWALL:
Semantics-Aware Customizable Data Flow Control for Smart Home Privacy
Protection. Network and Distributed System Security Symposium, NDSS (2021).

[26] Adrien Cosson, Amit Kumar Sikder, Leonardo Babun, Z Berkay Celik, Patrick
McDaniel, and A Selcuk Uluagac. 2021. Sentinel: A Robust Intrusion Detection
System for IoT Networks Using Kernel-Level System Information. In Proceedings
of the International Conference on Internet-of-Things Design and Implementation.
53–66.

[27] Wenbo Ding and Hongxin Hu. 2018. On the safety of iot device physical interac-
tion control. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. 832–846.

[28] Wenbo Ding, Hongxin Hu, and Long Cheng. 2021. IOTSAFE: Enforcing Safety
and Security Policy with Real IoT Physical Interaction Discovery. In Network and
Distributed System Security Symposium, NDSS.

[29] Daniel J Dubois, Roman Kolcun, Anna Maria Mandalari, Muhammad Talha
Paracha, David Cho�nes, and Hamed Haddadi. 2020. When speakers are all
ears: Characterizing misactivations of iot smart speakers. Proceedings on Privacy
Enhancing Technologies 2020, 4 (2020), 255–276.

[30] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-
based algorithm for discovering clusters in large spatial databases with noise.. In
kdd, Vol. 96. 226–231.

[31] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. 2016. Security analysis
of emerging smart home applications. In 2016 IEEE symposium on security and
privacy. IEEE, 636–654.

[32] Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro
Conti, and Atul Prakash. 2016. Flowfence: Practical data protection for emerging
iot application frameworks. In 25th USENIX Security Symposium (USENIX Security
16).

[33] Chenglong Fu, Qiang Zeng, and Xiaojiang Du. 2021. Hawatcher: Semantics-aware
anomaly detection for appi�ed smart homes. In 30th USENIX Security Symposium
(USENIX Security 21).

[34] Aniketh Girish, Tianrui Hu, Vijay Prakash, Daniel J. Dubois, Srdjan Matic, Danny
Yuxing, Serge Egelman, Joel Reardon, Juan Tapiador, David Cho�nes, and Narseo
Vallina-Rodriguez. 2023. In the Room Where It Happens: Characterizing Local
Communication and Threats in Smart Homes. In Proc. of the Internet Measurement
Conference (IMC’23).

[35] Tianbo Gu, Zheng Fang, Allaukik Abhishek, Hao Fu, Pengfei Hu, and Prasant
Mohapatra. 2020. Iotgaze: Iot security enforcement via wireless context analysis.
In IEEE INFOCOM 2020-IEEE Conference on Computer Communications. IEEE,
884–893.

[36] Jiawei Han, Jian Pei, and Micheline Kamber. 2011. Data mining: concepts and
techniques. Elsevier.

[37] Weijia He, Valerie Zhao, Olivia Morkved, Sabeeka Siddiqui, Earlence Fernandes,
Josiah Hester, and Blase Ur. 2021. SoK: Context sensing for access control in the
adversarial home IoT. In 2021 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 37–53.

[38] Tianrui Hu, Daniel J. Dubois, and David Cho�nes. 2023. BehavIoT Dataset and
Software. https://moniotrlab.khoury.northeastern.edu/publications/behaviot-
imc23.

[39] Danny Yuxing Huang, Noah Apthorpe, Frank Li, Gunes Acar, and Nick Feamster.
2020. Iot inspector: Crowdsourcing labeled network tra�c from smart home
devices at scale. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 4, 2 (2020), 1–21.

[40] Umar Iqbal, Pouneh N Bahrami, Rahmadi Trimananda, Hao Cui, Alexan-
der Gamero-Garrido, Daniel J. Dubois, David Cho�nes, Athina Markopoulou,
Franziska Roesner, and Zubair Sha�q. 2023. Tracking, Pro�ling, and Ad Targeting
in the Alexa Echo Smart Speaker Ecosystem. In Proc. of the Internet Measurement
Conference (IMC’23).

[41] Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rahmati, Earlence Fernan-
des, Zhuoqing Morley Mao, Atul Prakash, and SJ Unviersity. 2017. ContexloT:
Towards Providing Contextual Integrity to Appi�ed IoT Platforms.. In Network
and Distributed System Security Symposium, NDSS, Vol. 2. San Diego, 2–2.

[42] Haojian Jin, Gram Liu, David Hwang, Swarun Kumar, Yuvraj Agarwal, and Jason I
Hong. 2022. Peekaboo: A Hub-Based Approach to Enable Transparency in Data
Processing within Smart Homes. In 2022 IEEE Symposium on Security and Privacy
(S&P’22).

[43] Roman Kolcun, Diana Andreea Popescu, Vadim Safronov, Poonam Yadav,
Anna Maria Mandalari, Yiming Xie, Richard Mortier, and Hamed Haddadi. 2020.
The Case for Retraining of ML Models for IoT Device Identi�cation at the Edge.
arXiv preprint arXiv:2011.08605 (2020).

[44] Eliot Lear, Ralph Droms, and Dan Romascanu. 2019. Manufacturer Usage De-
scription Speci�cation. RFC 8520. https://doi.org/10.17487/RFC8520

[45] Christopher Lentzsch, Sheel Jayesh Shah, Benjamin Andow, Martin Degeling,
Anupam Das, and William Enck. 2021. Hey Alexa, is this skill safe?: Taking a
closer look at the Alexa skill ecosystem. Network and Distributed Systems Security
(NDSS) Symposium2021 (2021).

[46] Zhenhui Li, Bolin Ding, Jiawei Han, Roland Kays, and Peter Nye. 2010. Mining
periodic behaviors for moving objects. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining. 1099–1108.

[47] Haoyu Liu, Tom Spink, and Paul Patras. 2019. Uncovering security vulnerabilities
in the Belkin WeMo home automation ecosystem. In 2019 IEEE International
Conference on Pervasive Computing and Communications Workshops (PerCom
Workshops). IEEE, 894–899.

[48] Sunil Manandhar, Kevin Moran, Kaushal Ka�e, Ruhao Tang, Denys Poshyvanyk,
and Adwait Nadkarni. 2020. Towards a natural perspective of smart homes for
practical security and safety analyses. In 2020 IEEE Symposium on Security and
Privacy. IEEE, 482–499.

[49] Anna Maria Mandalari, Roman Dubois, Daniel J.and Kolcun, Muhammad Talha
Paracha, Hamed Haddadi, and David Cho�nes. 2021. Blocking Without Breaking:
Identi�cation and Mitigation of Non-Essential IoT Tra�c. In Proc. of the Privacy
Enhancing Technologies Symposium (PETS).

[50] Samuel Marchal, Markus Miettinen, Thien Duc Nguyen, Ahmad-Reza Sadeghi,
and N Asokan. 2019. Audi: Toward autonomous iot device-type identi�cation
using periodic communication. IEEE Journal on Selected Areas in Communications
37, 6 (2019), 1402–1412.

[51] Thien Duc Nguyen, Samuel Marchal, Markus Miettinen, Hossein Fereidooni, N
Asokan, and Ahmad-Reza Sadeghi. 2019. DÏoT: A federated self-learning anomaly
detection system for IoT. In 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 756–767.

[52] TJ OConnor, William Enck, and Bradley Reaves. 2019. Blinded and confused:
uncovering systemic �aws in device telemetry for smart-home internet of things.
In Proceedings of the 12th Conference on Security and Privacy in Wireless and
Mobile Networks. 140–150.

[53] TJ OConnor, RehamMohamed, Markus Miettinen, William Enck, Bradley Reaves,
and Ahmad-Reza Sadeghi. 2019. HomeSnitch: behavior transparency and control
for smart home IoT devices. In Proceedings of the 12th Conference on Security and
Privacy in Wireless and Mobile Networks. 128–138.

[54] State of California Department of Justice. 2018. California Consumer Privacy
Act of 2018 (CCPA). https://oag.ca.gov/privacy/ccpa. Accessed on May 26, 2023.

[55] Muhammad Talha Paracha, Daniel J Dubois, Narseo Vallina-Rodriguez, and David
Cho�nes. 2021. IoTLS: understanding TLS usage in consumer IoT devices. In
Proceedings of the 21st ACM Internet Measurement Conference. 165–178.

[56] European Parliament. 2016. Regulation (EU) 2016/679 (General Data Protection
Regulation). https://gdpr-info.eu/. Accessed on May 26, 2023.

[57] Roberto Perdisci, Thomas Papastergiou, Omar Alrawi, and Manos Antonakakis.
2020. IoTFinder: E�cient Large-Scale Identi�cation of IoT Devices via Passive
DNS Tra�c Analysis. In 2020 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 474–489.

[58] Antônio J Pinheiro, Jeandro de M Bezerra, Caio AP Burgardt, and Divanilson R
Campelo. 2019. Identifying IoT devices and events based on packet length from
encrypted tra�c. Computer Communications 144 (2019), 8–17.

[59] Jingjing Ren, Daniel J. Dubois, David Cho�nes, Anna Maria Mandalari, Roman
Kolcun, and Hamed Haddadi. 2019. Information Exposure for Consumer IoT
Devices: A Multidimensional, Network-Informed Measurement Approach. In
Proc. of the Internet Measurement Conference (IMC’19).

[60] Eyal Ronen and Adi Shamir. 2016. Extended functionality attacks on IoT devices:
The case of smart lights. In 2016 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 3–12.

[61] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn. 2017. IoT goes
nuclear: Creating a ZigBee chain reaction. In 2017 IEEE Symposium on Security
and Privacy. IEEE, 195–212.

[62] Said Jawad Saidi, AnnaMariaMandalari, RomanKolcun, HamedHaddadi, Daniel J
Dubois, David Cho�nes, Georgios Smaragdakis, and Anja Feldmann. 2020. A
Haystack Full of Needles: Scalable Detection of IoT Devices in the Wild. In
Proceedings of the ACM Internet Measurement Conference. 87–100.

[63] Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan. 2008. Intro-
duction to information retrieval. Vol. 39. Cambridge University Press Cambridge.

[64] Narmeen Shafqat, Daniel J Dubois, David Cho�nes, Aaron Schulman, Dinesh
Bharadia, and Aanjhan Ranganathan. 2021. ZLeaks: Passive Inference Attacks

14

434

https://moniotrlab.khoury.northeastern.edu/publications/behaviot-imc23
https://moniotrlab.khoury.northeastern.edu/publications/behaviot-imc23
https://doi.org/10.17487/RFC8520
https://oag.ca.gov/privacy/ccpa
https://gdpr-info.eu/

BehavIoT: Measuring Smart Home IoT Behavior Using Network-Inferred Behavior Models IMC ’23, October 24–26, 2023, Montreal, QC, Canada

on Zigbee based Smart Homes. arXiv preprint arXiv:2107.10830 (2021).
[65] Ryan Smith, Daniel Palin, Philokypros P Ioulianou, Vassilios G Vassilakis, and

Siamak F Shahandashti. 2020. Battery draining attacks against edge computing
nodes in IoT networks. Cyber-Physical Systems 6, 2 (2020), 96–116.

[66] Vincent F Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Martinovic. 2016.
Appscanner: Automatic �ngerprinting of smartphone apps from encrypted net-
work tra�c. In 2016 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 439–454.

[67] Rahmadi Trimananda, Janus Varmarken, AthinaMarkopoulou, and Brian Demsky.
2020. Packet-level signatures for smart home devices. In Network and Distributed
System Security Symposium, NDSS, Vol. 2020.

[68] Thijs van Ede, Riccardo Bortolameotti, Andrea Continella, Jingjing Ren, Daniel J
Dubois, Martina Lindorfer, David Cho�nes, Maarten van Steen, and Andreas Peter.
2020. FLOWPRINT: Semi-Supervised Mobile-App Fingerprinting on Encrypted
Network Tra�c. In Network and Distributed System Security Symposium, NDSS.
Internet Society.

[69] Janus Varmarken, JA Aaraj, Rahmadi Trimananda, and Athina Markopoulou.
2022. FingerprinTV: Fingerprinting Smart TV Apps. In Proceedings on Privacy
Enhancing Technologies (PoPETs), Vol. 2022. 606–629.

[70] Eugene Y Vasserman and Nicholas Hopper. 2011. Vampire attacks: draining life
from wireless ad hoc sensor networks. IEEE transactions on mobile computing 12,
2 (2011), 318–332.

[71] Michail Vlachos, Philip Yu, and Vittorio Castelli. 2005. On periodicity detection
and structural periodic similarity. In Proceedings of the 2005 SIAM international
conference on data mining. SIAM, 449–460.

[72] Yinxin Wan, Kuai Xu, Guoliang Xue, and Feng Wang. 2020. IoTArgos: A multi-
layer security monitoring system for Internet-of-Things in smart homes. In IEEE
INFOCOM 2020-IEEE Conference on Computer Communications. IEEE, 874–883.

[73] FeiWang, JianliangWu, Yuhong Nan, Yousra Aafer, Xiangyu Zhang, Dongyan Xu,
and Mathias Payer. 2022. PROFACTORY: Improving IoT Security via Formalized
Protocol Customization. 31th USENIX Security Symposium (USENIX Security 22)
(2022).

[74] Qi Wang, Pubali Datta, Wei Yang, Si Liu, Adam Bates, and Carl A Gunter. 2019.
Charting the attack surface of trigger-action IoT platforms. In Proceedings of the
2019 ACM SIGSAC conference on computer and communications security. 1439–
1453.

[75] Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang, Taimin Zhang, and
Wenyuan Xu. 2017. Dolphinattack: Inaudible voice commands. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
103–117.

[76] Wei Zhang, Yan Meng, Yugeng Liu, Xiaokuan Zhang, Yinqian Zhang, and Haojin
Zhu. 2018. Homonit: Monitoring smart home apps from encrypted tra�c. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. 1074–1088.

[77] Wei Zhou, Yan Jia, Yao Yao, Lipeng Zhu, Le Guan, Yuhang Mao, Peng Liu, and
Yuqing Zhang. 2019. Discovering and Understanding the Security Hazards in
the Interactions between IoT Devices, Mobile Apps, and Clouds on Smart Home
Platforms. In 28th USENIX Security Symposium (USENIX Security 19).

A TESTBED DEPLOYMENT
The list of devices we deployed and the functionalities we triggered
while collecting the routine dataset are shown in Table 6. The list
of automations we enabled is shown in Table 7.

B ADDITIONAL DETAILS OF EVENT
INFERENCE

Features. Table 8 lists the features we selected. Features fall into
these three categories: (i) Packet features, (ii) Timing features,
(iii) Flow features. Note that we do not use IP address or port
numbers for classi�cation because they are highly dynamic. How-
ever, destination domain name and protocol do not change of-
ten [49, 57, 59, 62], and proved to be important features.

User event classi�cation. We choose a Random Forest classi-
�er [18] because it is lightweight and easy to deploy on an edge
device (e.g., a home router), and worked well with limited training
samples. Speci�cally, we use a separate binary classi�er for each
possible user activity instead of one multi-class classi�er for each
device. The input for each classi�er is the set of all the �ows in our
training set, each of which has a boolean label which is true when

Device activity

Ring Doorbell motion, ring, video
Ring Camera motion, video
D-Link Camera motion, video
Wyze Camera motion, video
TPLink Plug on, o�
Wemo Plug on, o�
Amazon Plug on, o�
TPLink Bulb on, o�, color, dim
Smartlife Bulb on, o�, color, dim
Jinvoo Bulb on, o�, color, dim
MagicHome Strip on, o�, color, dim
Gosund Bulb on, o�, color, dim
Govee Bulb on, o�, color, dim
Meross Dooropener on, o�
Nest Thermostat set, on, o�
SwitchBot Hub on, o�
iKettle on
Echo Spot voice

Table 6: 18 devices and corresponding user activities used in
automation experiments (routine dataset). On and o�mean
turning on and o�. Color and dim represent changing the
color and brightness of the device.

Index Automations

R1 Alexa
& IFTTT

says ‘open/close garage’, then open/close theMeross Dooropener.

R2 Alexa All light on routine: says ‘turn on all lights’
R3 Alexa All light o� routine: says ‘turn o� all lights’
R4 Alexa says ‘turn on TV’ (using SwitchBot Hub) and then turn o� Magi-

chome Strip
R5 Alexa says ‘turn o� TV’ (using SwitchBot Hub) and then turn on Magi-

chome Strip
R6 Alexa If Ring Doorbell rings, turn on Wemo Plug and weather reports

on Echo Spot, and then turn o�Wemo Plug after 5s
R7 Alexa If Ring Doorbell detects a motion, then blink Smartlife Bulb by

turning it on for 5s then turn o�, and set the color of Jinvoo Bulb
to red

R8 Alexa If Ring Camera motion, then turn on Gosund Bulb
R9 Alexa If D-Link Camera detects a motion, then turn on TPLink Bulb
R10 APP Turn on Nest Thermostat on 6 AM and turn o� on 10 PM
R11 Alexa says ‘I am leaving’, change Nest Thermostat temperature to 72,

open garage (R1). wait 5 min, close garage(R1).
R12
IFTTT

If Wyze Camera motion, then turn on TPLink Plug, clip Wyze
Camera, turn o� TPLink Plug

R13
IFTTT

Morning routine: says ‘good morning’, then boil the iKettle to
100 and turn on Govee Bulb

R14
IFTTT

Good night routine: says ‘good night’, then turn o� Govee Bulb

R15
IFTTT

If Meross Dooropener opens, then turn on TPLink Bulb and
change its color to maroon

R16
IFTTT

If Meross Dooropener closes, then turn o� TPLink Plug and set
TPLink Bulb color to green

Table 7: The list of automations we set up in our testbed.

the �ow corresponds to the activity and false otherwise. When
predicting the event for a given �ow, we select the prediction of
the binary classi�er with the highest con�dence of being positive.
If none of the classi�ers gives a positive result, the �ow is labeled
as an aperiodic event.

15

435

IMC ’23, October 24–26, 2023, Montreal, QC, Canada Tianrui Hu, Daniel J. Dubois, and David Cho�nes

Device Periodic event % Aperiodic event %

Amazon Plug 98.765% 0.229%
Aqara Hub 98.696% 0.345%
Behmor Brewer 99.855% 0.145%
Jinvoo Bulb 94.571% 0.030%
D-Link Camera 97.098% 0.00%
D-Link Motion Sensor 99.961% 0.039%
Echo Dot 99.751% 0.249%
Echo Dot3 85.948% 14.052%
Echo Dot4 99.902% 0.098%
Echo Flex 98.086% 1.914%
Echo Plus 98.014% 1.986%
Echo Show5 94.014% 4.036%
Echo Spot 98.505% 0.778%
Samsung Fridge 99.797% 0.203%
Google Home Mini 99.846% 0.253%
Google Nest Mini 99.846% 0.154%
Gosund Bulb 95.213% 0.000%
Govee Bulb 88.797% 0.696%
Homepod Mini 98.071% 1.929%
Homepod 98.490% 1.510%
iCSee Doorbell 95.789% 0.048%
IKEA Hub 99.568% 0.062%
iKettle 99.822% 0.059%
Keyco Air Sensor 99.888% 0.112%
LeFun Camera 95.681% 0.198%
MagicHome Strip 93.786% 0.026%
Meross Dooropener 99.788% 0.00%
Microseven Camera 98.969% 0.00%
LG Microwave 98.967% 1.033%
Nest Thermostat 91.830% 1.275%
Philips Bulb 99.972% 0.028%
Ring Camera 76.127% 1.270%
Ring Chime 99.941% 0.059%
Ring Doorbell 89.130% 0.062%
Smartlife Bulb 84.543% 0.120%
SmartThings Hub 97.286% 2.628%
Anova Sousvide 99.965% 0.00%
SwitchBot Hub 96.842% 0.00%
Thermopro Sensor 99.964% 0.036%
Philips Hub 99.704% 0.296%
Wemo Plug 96.227% 1.302%
TPLink Bulb 96.484% 0.580%
TPLink Plug 96.643% 0.134%
Tuya Camera 90.976% 0.056%
Ubell Doorbell 99.435% 0.00%
Wansview Camera 99.614% 0.011%
Wink Hub2 100.000% 0.00%
Wyze Camera 97.294% 0.127%
Yi Camera 99.507% 0.00%
ALL 97.798% 0.675%

Table 9: The fraction of periodic and aperiodic events in idle,
activity, and routine datasets.

Feature Description

meanBytes Average bytes in a �ow.
minBytes The lowest number of bytes in a �ow
maxBytes The highest number of bytes in a �ow
medAbsDev The median absolute deviation of number of

bytes in a �ow
skewLength The skewness of the number of bytes in a �ow
kurtosisLength The kurtosis of the number of bytes in a �ow
meanTBP The average of time di�erences between con-

secutive packets
varTBP The variance of time di�erences between con-

secutive packets
medianTBP The median of time di�erences between con-

secutive packets
kurtosisTBP The kurtosis of time di�erences between con-

secutive packets
skewTBP The skew of the time di�erences between con-

secutive packets
network_out_external The number of packets sent to server
network_in_external The number of packets received from server
network_external The number of packets transmit to/from

server
network_local The number of packets transmit between local

devices
network_out_local The number of packets sent to other device in

the local network
network_in_local The number of packets received from other

device
meanBytes_out_external Average bytes sent to servers per packet
meanBytes_in_external Average bytes received from servers per

packet
meanBytes_out_local Average bytes sent to other device in the local

network per packet
meanBytes_in_local Average bytes received from other device in

the local network per packet

Table 8: List of selected features used for event inference.

C ADDITIONAL EVALUATION OF EVENT
INFERENCE

Table 9 shows the fraction of periodic and aperiodic events in our
controlled datasets for each device.

D ACKNOWLEDGMENTS
ChatGPT was used to generate LATEX format tables, and revise
BibTEX format for certain citations of this work.

16

436

	Abstract
	1 Introduction
	2 Goals, Assumptions, and Scope
	3 Data Collection
	3.1 Testbed
	3.2 Dataset from Controlled Experiments
	3.3 Dataset from Uncontrolled Experiments

	4 Behavior Modeling
	4.1 Modeling Device Behavior
	4.2 Modeling System Behavior
	4.3 Measuring Behavior Deviations

	5 Behavior Models Evaluation
	5.1 Device Behavior Modeling
	5.2 System Behavior Modeling
	5.3 Deviation Inference Evaluation

	6 Behavior Characterization
	6.1 Behavior Models Characterization
	6.2 Behavior Deviation Characterization

	7 Discussion
	7.1 Summary of Findings
	7.2 Other Behavior Model Applications
	7.3 Limitations and Future Work

	8 Related Work
	9 Conclusion
	References
	A Testbed Deployment
	B Additional Details of Event Inference
	C Additional Evaluation of Event Inference
	D Acknowledgments

