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The Milnor fiber conjecture of Neumann and Wahl,
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Splice type surface singularities, introduced in 2002 by Neumann and Wahl, provide all exam-
ples known so far of integral homology spheres which appear as links of complex isolated
complete intersections of dimension two. They are determined, up to a form of equisingularity,
by decorated trees called splice diagrams. In 2005, Neumann and Wahl formulated their Milnor
fiber conjecture, stating that any choice of an internal edge of a splice diagram determines a
special kind of decomposition into pieces of the Milnor fibers of the associated singularities.
These pieces are constructed from the Milnor fibers of the splice type singularities determined
by the subdiagrams on both sides of the chosen edge. In this paper we give an overview of
this conjecture and a detailed outline of its proof, based on techniques from tropical geometry
and log geometry in the sense of Fontaine and Illusie. The crucial log geometric ingredient
is the operation of rounding of a complex logarithmic space introduced in 1999 by Kato and
Nakayama. It is a functorial generalization of the operation of real oriented blowup. The use of
the latter to study Milnor fibrations was pioneered by A’Campo in 1975.

1 Introduction

Let (X, 0) be an irreducible germ of a complex analytic surface with isolated singu-
larity at o, meaning that there exists a representative of it which is smooth outside
0, and also possibly at 0. We will say simply that (X, 0) is an isolated surface
singularity. Denote by d(X, o) its link, obtained by intersecting a representative X
embedded in C" with a Milnor sphere, that is, a sphere centered at o of radius r¢ > 0,
such that any sphere centered at o of smaller radius is transversal to X. The link
d(X,0) is a closed connected three-manifold, canonically oriented as the boundary of
(X \ {o}) NB(o, r9), where B(o, ro) denotes the ball of radius ry.
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The classical works [15], [53], [21] of Du Val, Mumford and Grauert show that
oriented three-manifolds appearing as links of isolated surface singularities are exact-
ly the graph manifolds which may be described by a negative definite and connected
plumbing graph. Such oriented three-manifolds have canonical fillings (that is, com-
pact oriented four-manifolds having them as boundaries), given by the minimal good
resolutions of (X, 0). Indeed, by work of Neumann [57, Theorem 2], the oriented
topological type of the link determines the oriented topological type of the minimal
good resolution.

Whenever (X, 0) is a complete intersection singularity, the link d(X, o) admits
another privileged filling, namely, the Milnor fiber of any smoothing f: (Y, 0) —
(C,0) of (X,0) (i.e., f is the germ of a holomorphic map with smooth generic
fibers and special fiber identified with (X, 0)), a notion originating in Milnor’s sem-
inal book [51]. Indeed, by Tjurina’s [80, Theorem 8.1], the miniversal deformation
of a complete intersection (X, 0) has an irreducible smooth base, therefore all the
smoothings of (X, 0) have diffeomorphic Milnor fibers.

The following topological questions remain open.

Question 1.1. Which oriented three-dimensional graph manifolds occur as links of
hypersurface or complete intersection isolated surface singularities?

Question 1.2. Which oriented four-dimensional manifolds occur as Milnor fibers
of smoothings of hypersurface, complete intersection or arbitrary isolated surface
singularities?

Most notably, very few conjectures have been proposed to address these ques-
tions. Among the most fruitful is the following one formulated by Neumann and
Wabhl in 1990 [60].

Casson Invariant Conjecture. If (X, 0) is a complete intersection isolated surface
singularity and its link d(X, 0) is an integral homology sphere, then the Casson invari-
ant of d(X, 0) is equal to one-eighth of the signature of the Milnor fiber of (X, 0).

In [60], Neumann and Wahl confirmed several instances of this conjecture, includ-
ing its validity for all weighted homogeneous singularities, all suspension hypersur-
face singularities and a particular family of singularities in C*. What hindered further
progress was the lack of other examples of complete intersections with integral homo-
logy sphere links.

Fifteen years later, Neumann and Wahl made a breakthrough in this direction,
by introducing a wide class of examples, which they called splice type singularit-
ies [63]. This name is motivated by their construction. These singularities are defined
by systems of equations whose structure is governed by special types of decorated
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trees, called splice diagrams, which were introduced by Siebenmann in [74] to encode
graph manifolds which are integral homology spheres.

The term splicing was coined by Siebenmann to indicate a cut-and-paste oper-
ation introduced by Dehn in [13] to build new three-dimensional integral homology
spheres from old ones. When splicing, solid tori are removed from two oriented integ-
ral homology spheres, and the resulting boundary 2-tori are then glued together by
the unique isotopy class of diffeomorphisms which produces a new oriented integral
homology sphere. Siebenmann proved that any integral homology sphere graph man-
ifold can be obtained by iterating this operation, starting from Seifert fibered integral
homology spheres and always removing tubular neighborhoods of fibers (which can
be special or not). The starting Seifert-fibered manifolds are encoded by weighted
star-shaped trees. Their edges correspond to the special fibers and to the fibers used
during the splicing process, and the weights record the orders of holonomies around
those fibers. The splicing is recorded by joining the corresponding edges of the two
trees involved. The resulting weighted tree is Siebenmann’s splice diagram.

Neumann and Wahl’s splice type singularities are given by explicit systems of
equations (see Definition 2.38) associated to splice diagrams which satisfy supple-
mentary constraints (see Definitions 2.26 and 2.32).

In [63, Section 6], Neumann and Wahl proposed an inductive approach for
proving the Casson invariant conjecture for splice type singularities. The base case
involved the so-called Pham—Brieskorn—-Hamm complete intersections with integral
homology sphere links which they had already established in [60]. The inductive step
would be achieved by an explicit description of the topology of Milnor fibers in terms
of splicing. To this end, they proposed the following conjecture (formulated precisely
in Conjecture 2.47).

Milnor Fiber Conjecture. Let (X, 0) be a splice type singularity with an integral
homology sphere link. Assume that its splice diagram T is the result of splicing two
other splice diagrams Ty and T'y. Then, the Milnor fiber of (X, 0) is obtained by a
four-dimensional splicing operation from the Milnor fibers associated to I'y and T'p.

When restricted to the boundaries, Neumann and Wahl’s four-dimensional spli-
cing operation becomes Dehn’s three-dimensional splicing. It resembles it in that it
requires one to remove tubular neighborhoods of proper surfaces G, and G; embed-
ded in the Milnor fibers F, and Fj associated to I', and I'p, but it differs from it in
that one does not glue directly the resulting four-dimensional manifolds with corners.
Instead, they are glued to parts of the boundary of a third manifold with corners,
namely the cartesian product G, x Gyp.

The Casson invariant conjecture for splice type singularities with integral homo-
logy sphere links was proven by Némethi and Okuma [55] by rephrasing it as a
statement about the geometric genus of the singularity (X, o). Their proof involved
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explicit computations with resolutions of (X, o), with no analysis of the Milnor fiber.
As aresult, the Milnor fiber conjecture remained open, only verified by Neumann and
Wahl themselves for suspension hypersurface singularities (see [63, Section 8]) and
by Lamberson [42] for iterated suspensions.

In this article, we present a step-by-step strategy for proving the Milnor fiber con-
jecture in full generality. Technical details will appear in forthcoming work by the
three authors. Our proof combines tools from both tropical geometry and logarithmic
geometry, in the sense of Fontaine and Illusie, and it is outlined in Section 7. Central
to our arguments is the concept of the rounding of a complex log structure in the sense
of Kato and Nakayama, which can be viewed as a generalization of A’Campo’s real
oriented blowup. Roundings allow us to find good representatives for Milnor fibra-
tions without the need to work with tubular neighborhoods. In addition, rather than
requiring good resolutions for our constructions, we broaden the setting and work
with toric modifications involving toric varieties whose associated fans are not regu-
lar. This extended setting facilitates the transition from the tropical to the logarithmic
category, since it allows us to work with natural fans subdividing the local tropicaliz-
ations of our germs, without the need to further refine them into regular fans.

Described very concisely, our proof involves the following stages, starting from
a splice type singularity (X, o) defined by a splice type system associated to a splice
diagram I'.

(1) We define a particular deformation of the splice type system, associated to a fixed
internal edge [a, b] of I'. We let (Y, 0) be the three-dimensional germ obtained as
the total space of this deformation. We prove that the deformation is a smoothing
(Y,0) - (D,0) of (X, 0), where D denotes a compact two-dimensional disk with
center 0.

(i1) Analogously, we define a-side and b-side deformations of a-side and b-side
splice type singularities associated to the starting system, by performing spe-
cial monomial changes of variables in the previous deformed system, that is,
by taking pullbacks through special affine toric morphisms. We let (Y, 0) and
(Y3, 0) denote their total spaces.

(iii)) We describe explicit fans subdividing the local tropicalizations of the deforma-
tions (Y, 0), (Y4, 0) and (Y3, 0), which are compatible with the local tropicaliz-
ations of the corresponding splice type singularities. As a preliminary step, we
describe an explicit fan subdividing the local tropicalization of (X, 0): topolo-
gically it is a cone over the corresponding splice diagram. This gives the first
tropical interpretation of splice diagrams (see Remark 2.42).

(iv) We consider toric birational morphisms defined by these three fans and the cor-
responding strict transforms of (Y, 0), (Y4, 0) and (Y3, 0), which we denote by
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(Y, 0), (Y, 0) and (Y3, 0), respectively. We show that the induced morphism
from each strict transform to the corresponding germ is a modification, that is, a
proper bimeromorphic morphism.

(v) We consider the associated morphisms (Y, D) - (D,0), (Ya, Dy) — (D,0),
(Yp, Dp) — (D,0), where D, D, and Dy, are the preimages of 0 under the previ-
ous modifications. This allows us to apply a local triviality theorem of Nakayama
and Ogus to the roundings of the associated logarithmic morphisms, yielding
representatives of the Milnor fibrations of (¥, 0) — (D, 0), (Y4,0) — (D,0) and
(Yp,0) — (D, 0) canonically associated to the previous modifications.

(vi) We show that the toric morphisms used to define the a-side and b-side deforma-
tions induce embeddings of suitable log enriched exceptional divisors of Y,—Y,
and f’b — Y} into a similar enrichment of the exceptional divisor of Y — Y. This
implies analogous results for their roundings.

(vii) These facts, combined with the knowledge that one of the components of the
exceptional divisor of Y — Y is a cartesian product of two curves, establish the
conjecture.

As a direct consequence of the proposed proof, we uncover an unknown property
of splice type singularities (see Theorem 2.48).

Theorem. The diffeomorphism type of the Milnor fiber of a splice type singularity
with integral homology sphere link depends solely on the underlying splice diagram.

The combined use of tropical and logarithmic geometry techniques to study the
topology of Milnor fibers is rather new. Since the inception of the research discussed
in this paper and conference talks given by the second author on this subject, several
articles applying logarithmic geometry to the study of problems about Milnor fibra-
tions of singularities have appeared, including works of Cauwbergs [11], Bultot and
Nicaise [9], Campesato, Fichou and Parusinski [10], and Fernandez de Bobadilla and
Petka [17]. By presenting an overview of our techniques, we hope that this mainly
expository article will help researchers apply similar ideas to address other questions
involving the topological structure of Milnor fibers of smoothings of singularities.

The rest of the paper is organized as follows. In Section 2 we introduce back-
ground results leading to Neumann and Wahl’s notion of splice type singularities.
Subsection 2.1 surveys their genesis by reviewing a presentation of the structure of
Seifert fibered integral homology spheres and the way they appear as links of isolated
complete intersections of Pham—Brieskorn hypersurface singularities. Subsection 2.2
provides detailed explanations on the three-dimensional splicing operation and splice
type integral homology spheres. Subsection 2.3 reviews the construction of splice type
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singularities. Finally, Subsection 2.4 presents Neumann and Wahl’s four-dimensional
splicing operation and the precise formulation of their Milnor fiber conjecture.

In Section 3 we discuss the main ideas of the proof of this conjecture. Subsec-
tion 3.1 shows that A’Campo’s operation of real oriented blowup yields canonical
representatives of the Milnor fibration over the circle of a smoothing, provided we
are given an embedded resolution of the smoothing. In our context we do not work
with embedded resolutions, but with more general morphisms which we call quasi-
toroidalizations. In Subsection 3.2 we present a general theorem of Nakayama and
Ogus, stating the local triviality of a continuous map obtained by rounding (in the
sense of Kato and Nakayama) of suitable logarithmic morphisms (in the sense of
Fontaine and Illusie). Finally, Subsection 3.3 shows how to build the aforementioned
quasi-toroidalizations through explicit fan structures on the local tropicalizations
of suitable deformations of splice type systems, combined with the Newton non-
degeneracy property of these deformations.

Section 4 presents detailed accounts of the logarithmic tools used to prove the
Milnor fiber conjecture. In Subsection 4.1 we introduce the notions of boundary-
transversality, of quasi-toroidal subboundary and of quasi-toroidalization of a
smoothing. In Subsection 4.2 we lead the reader to the notion of log structure through
a reformulation in a coordinate-independent way of the classical passage to polar
coordinates. In Subsection 4.3 we explain basic facts about the category of morph-
isms of complex log spaces in the sense of Fontaine and Illusie. In Subsection 4.4 we
list various kinds of monoids needed in the sequel, as well as the associated log struc-
tures, defined in terms of charts. In Subsection 4.5 we define Kato and Nakayama’s
rounding operation on complex log spaces and we explain some of its basic proper-
ties. In Subsection 4.6 we revisit Nakayama and Ogus’ local triviality theorem and
apply it in the context of quasi-toroidalizations of smoothings.

In Section 5 we introduce the tropical ingredients of our proof: the notion of local
tropicalization of an analytic germ contained in (C”, 0) and the notion of Newton
non-degeneracy.

Section 6 presents the explicit deformations of splice type systems appearing in
Stage (i1) above.

The paper concludes with Section 7, in which we give a detailed proof outline in
28 steps of the six stages discussed earlier to establish the Minor fiber conjecture.

2 Splicing, splice type singularities and the Milnor fiber conjecture
The operation of splicing and the construction of splice type singularities are central

components of the Milnor fiber conjecture. In this section, we review Seifert’s clas-
sification of Seifert fibered integral homology spheres, henceforth denoted by ZHS’s
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(see Proposition 2.9), Neumann’s realization of those ZHS’s as links of isolated com-
plete intersections of Pham—Brieskorn—Hamm type (see Proposition 2.14) and the
cut-and-paste operation of splicing of ZHS’s along knots (see Definition 2.21). In
addition, we recall the genesis of splice diagrams (see Definition 2.23) as graphs
introduced by Siebenmann to encode ZHS’s which are graph manifolds (see Defini-
tion 2.24), and Eisenbud and Neumann’s characterization of splice diagrams encoding
all singularity links which are ZHS’s (see Theorem 2.28). We describe how these
results motivated Neumann and Wabhl to define splice type systems and splice type sin-
gularities associated to splice diagrams which satisfy the so-called determinant and
semigroup conditions (see Subsection 2.3). The section concludes with a discussion
of Neumann and Wahl’s four-dimensional splicing operation (see Definition 2.45)
and with the statement of their Milnor fiber conjecture (see Conjecture 2.47).

2.1 Seifert fibered integral homology spheres

We start this subsection by explaining the notions of integral homology sphere
(or ZHS, see Definition 2.1), of meridian and longitude of a knot in a ZHS (see
Definition 2.5) and of Seifert fibration (see Definition 2.6). In addition, we discuss
various results that predate the notion of splice type singularity, from the appear-
ance of Poincaré’s homology sphere as the link of the Eg surface singularity (see
Example 2.12) to Seifert’s classification of Seifert fibered links of singularities which
are moreover integral homology spheres (see Proposition 2.9).

In the sequel, we denote by |0iop W | the boundary of a smooth or topological
manifold with boundary. In contrast, we use [0W] to denote the algebro-geometric
boundary of a toroidal variety (W, dW) (see Definition 3.2). If V' < W is a properly
embedded submanifold with boundary of a manifold with boundary, we use
to denote a topologically closed tubular neighborhood of V in W. Note that Ny (V)
has the structure of a disk bundle over V', whose fibers have dimension equal to
the codimension of V' in W, which we denote by . Its intersection with
diop W is a tubular neighborhood of the boundary 9.,V inside 0op W'.

The next class of three-dimensional manifolds is central to this paper.

Definition 2.1. An integral homology sphere, briefly written [ZHS], is a closed
smooth three-manifold which has the total integral homology group of a three-
dimensional sphere. A ZHS is called trivial if, and only if, it is homeomorphic to
the unit three-dimensional sphere S3.

Remark 2.2. Important properties follow from the ZHS condition. Indeed, if M is a
ZHS, then Hy(M,7Z) >~ Z. Thus, M must be connected. In addition, as H3(M,Z)~ 7.,
we see that M is also orientable.
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Remark 2.3. Fixing an orientation on a closed orientable three-manifold M determ-
ines a well-defined Poincaré duality isomorphism H,(M,Z) ~ H'(M, Z). Since
HY(M,Z) ~ Hom(H,(M, Z), Z), by the universal coefficients theorem, we con-
clude that M is a ZHS if, and only if, it is a connected and orientable three-manifold
with Hy(M,Z) = 0.

Throughout, we assume that all integral homology spheres are oriented, i.e., they
are endowed with fixed orientations. Such manifolds M admit a well-defined notion
of linking number between any two disjoint oriented knots Ky, K, on
them: it is the intersection number between K; and an oriented surface S, <— M with
boundary K,. The fact that such a surface exists and that this intersection number is
independent of the choice of S5 is a direct consequence of the vanishing of Hy (M, Z).
The linking number is symmetric in its two arguments, a property which we will
frequently exploit.

Given any integral homology sphere, the boundary of a tubular neighborhood of
a knot in it is canonically trivialized, up to isotopy, as the next result shows. For more
details, we refer to [16, page 21] and [74, §6].

Proposition 2.4. Let M be an oriented ZHS and let K be an oriented knot in M. Let
Ny (K) be a tubular neighborhood of K in M. Then, there exist embedded oriented
circles . and A on 0i0p Ny (K), well-defined up to isotopy, such that lk(u, K) = 1,
lk(A, K) = 0 and the homology classes of A and K in Hy(Npy(K), Z) coincide.
Moreover, the classes of p and A in Hy(0wop Ny (K), Z) form a basis of this lattice.

The previous statement determines the notions of meridian and longitude of ori-
ented knots in integral homology spheres, which we now recall.

Definition 2.5. Let M be an oriented ZHS and let K be an oriented knot in M. The
oriented curves i and A characterized in Proposition 2.4 are called a meridian and a
longitude of K, respectively.

Sometimes, any oriented simple closed curve on 0y, Nas(K) whose homology
class gives a basis of H{(dipNm(K), Z) when completed by that of u is called a
longitude of K (the curves characterized in Definition 2.5 being then called topolo-
gist’s longitudes). As we will not consider these more general types of longitudes, we
refrain from using this terminology.

Meridians and longitudes are essential to defining three-dimensional splicings, as
seen in Proposition 2.20 and Definition 2.21 below. They are denoted by m; and ¢;
in Figure 1.

The first example of non-trivial ZHS was given by Poincaré in his 1904 paper
[70]: it is the famous Poincaré homology sphere. He defined it using a Heegaard
diagram. Notably, it can also be defined as the link of the surface singularity, i.e.,
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3

the germ at the origin of the complex affine surface in C3 ,, ,

defined by the equation
x24+y3 422 =0.

It is not at all obvious that these two three-manifolds are homeomorphic. This was
established only after the introduction of Seifert fibered three-manifolds by Seifert
in his 1933 paper [73]. The crux of the proof is to show that both manifolds are
Seifert fibered integral homology spheres and that their Seifert fibrations have the
same numerical invariants (see Example 2.12). For further details on the first studies
of the Poincaré homology sphere, we refer to Gordon’s work [20, Section 6]. For
other characterizations, the reader may consult Kirby and Scharlemann’s paper [39],
or Saint Gervais’ website [72].

Next, we review the notion of Seifert fibration on closed oriented three-manifolds.
For further details, the reader may consult Orlik’s book [66] or Neumann and Ray-
mond’s paper [59].

Definition 2.6. A Seifert fibration on a closed oriented three-manifold is an orient-
able foliation by circles. Its base is the space of leaves endowed with the quotient
topology. Its fibre map is the quotient map. A manifold endowed with a Seifert fibra-
tion is called Seifert fibered.

Remark 2.7. It can be shown that the base S of a Seifert fibration on a closed oriented
three-manifold M is an orientable closed surface and that the fibre map ¥: M — S
is a locally trivial circle bundle away from a finite set of points of S. Those points
correspond to the so-called special fibers of the Seifert fibration.

Remark 2.8. Following Seifert’s original approach from [73, Section 1], Seifert
fibrations are often defined as maps ¥: M — § which are locally trivial on S away
from the neighborhood of a finite set of points and which have prescribed models in
the neighborhoods of the special fibers (see, for instance, [66, Section 5.2]). These
models can be described using the holonomy of the foliation along a special fiber
C. Turning once around C yields a diffeomorphism of a transversal slice, which is
isomorphic to a finite-order rotation of a disk. Such a rotation may be encoded by a
rational number ¢/ p € (0, 1) N Q, with p and g coprime. The integer p > 2 is the
order of the rotation, that is, the degree of the quotient map 1 restricted to a trans-
versal slice of C. For this reason, we call it the degree of the point ¥ (C) € S. It can
also be interpreted as the number of times the leaves situated in the neighborhood of
C turn around C.

The basic numerical invariants of a Seifert fibration are the pairs (p, g) associated
to its special fibers and the topological type of the base surface S. These, combined
with the rational Euler number of the fibration (see, e.g., [59, Section 1], [58, Sec-
tion 1] or [30, Section 1.3]), determine the fibration up to a homeomorphism of M
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preserving the foliation and the orientation. For general Seifert fibrations, the Euler
number is rational and it changes sign if the orientation on M is reversed. When
Y: M — S is alocally trivial circle bundle, we have no special fibers and the rational
Euler number of the fibration agrees with the usual Euler number of the bundle; thus,
it is an integer.

Seifert fibrations of non-trivial integral homology spheres are well-understood, as
the following theorem of Seifert confirms. For details, we refer the reader to works
of Seifert [73, Theorem 12], Neumann and Raymond [59, Section 4] or Eisenbud and
Neumann [16, Chapter I1.7].

Proposition 2.9. If M is a non-trivial ZHS that admits a Seifert fibration, then this
fibration is unique up to isotopy. Furthermore, its base is a two-dimensional sphere
and it has at least three special fibers, with pairwise coprime degrees. Conversely,
given n > 3 and a sequence (p1, ..., pn) of pairwise coprime positive integers
with p; > 2 for all i, there exists a unique Seifert fibered ZHS up to homeomorph-
isms, whose base is a two-dimensional sphere and whose special fibers have degrees
P1i,-- ., Pn. With either orientation, the Euler number of this fibration is non-zero.

The previous proposition allows to define integral homology spheres from se-
quences of pairwise coprime positive integers.

Definition 2.10. Fix n > 3 and let (p1, ..., pn) be a sequence of pairwise coprime
positive integers with p; > 2 foralli € {1,...,n} . The oriented three-dimensional
manifold |2 (py, ..., pn)|is the unique oriented ZHS which admits a Seifert fibration

with a negative Euler number and whose sequence of degrees of special fibers is
(p1...., pn), Up to permutation.

Remark 2.11. Note that in both Proposition 2.9 and Definition 2.10 we assume
pi > 2foralli € {l,...,n}. We can extend Definition 2.10 to allow for p; > 1, by
simply removing all terms of the sequence with value one, defining the correspond-
ing Seifert fibered 3-manifold and identifying indices i with p; = 1 with non-special
fibers of the fibration. For instance, 3 (1, 1, 3, 8, 35) = X (3, 8, 35) and the first two
elements of the sequence (1, 1, 3, 8, 35) witness two non-special fibers of X (3, 8, 35)
(see Remark 2.17 below). Allowing some p;’s to take value 1 is important in the
construction of integral homology spheres from splice diagrams (see Definition 2.24
below).

Example 2.12. Consider the polynomial f := x2 + y3 + z° defining the complex
surface X whose germ at the origin is the Eg singularity. The polynomial f is homo-
geneous relative to the weight vector w := (3-5,2-5,2 - 3). Therefore, the surface

X is invariant under the following natural action of the group (C;,-) on (Ci’ vz

t-(x,y,z):=>x,t%y,t*32). 2.1)
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Thus, it is invariant under the action of the circle (S!, ) of (C¥,-). Similarly, all

3
x’y5Z

under this action of the circle. As a consequence, the intersections X NS> are also
invariant. Note that the manifolds X \ {0} and S intersect transversally, as the orbits
of the (R}, -)-action on X induced by the above (C;, -)-action are transversal to the
spheres S?. Therefore, these intersections are representatives of the link 9(X, 0) of
the singularity (X, 0). In particular, this shows that there exists an action of (S!,-) on
this link with no fixed points. Its orbits determine a Seifert fibration on d(X, 0).

A closer look at the action (2.1) confirms that the previous Seifert fibration has
exactly three special fibers (the intersections with the planes of coordinates), with
degrees 2, 3 and 5. Moreover, d(X, 0) is a ZHS. This fact may be proved in several
ways.

Euclidean spheres S? centered at the origin of C (of radius & > 0) are invariant

» By secing it as a ramified cover of S3 of degree 5, ramified over the trefoil knot,
and using Seifert’s characterization (see [73, Addendum to Theorem 17, page 413
of the English version of Seifert and Threlfall’s book]) of such covers which are
integral homology spheres.

* By using Brieskorn’s criterion [7, Satz 1, page 6] (see also Dimca’s [14, Theorem
4.10, page 94]), described first in a letter of Milnor to Nash (see [8, page 47]),
allowing to determine when the link of a Pham—Brieskorn hypersurface singular-
ity of arbitrary dimension (see Remark 2.15) is an integral homology sphere.

* By computing the weighted dual graph of the minimal good resolution of (X, 0),
which is a tree of components of genus zero (it is the so-called Eg-tree of Lie
groups theory), and by proving that the associated intersection form is unim-
odular, which implies that the link is indeed an integral homology sphere (see
[14, Proposition 3.4, page 52]). The weighted dual graph may be computed either
using the Jung-Hirzebruch method, as explained by Laufer [43, pages 23-27] or
using the (C7, -)-action, as explained by Orlik and Wagreich in [67, Section 3]
(see also [14, pages 64—67] and [52, Theorem 4.2]).

* By using the facts that the intersections Z(x|x), Z(y|x), Z(z|x) of X with
the three coordinate planes are irreducible germs of curves and that their strict
transforms by the minimal good resolution 7: X — X of X intersect trans-
versally the exceptional divisor E at its components associated with the leaves
of the dual tree. Then, Neumann and Wahl’s [62, Proposition 5.1] implies
that the duals of those components (in the intersection lattice H,(E, Z) of E
endowed with its intersection form inside X) generate the discriminant group
H,(E,Z)Y/H»(E,Z) of E, which identifies canonically with H;(d(X, 0), Z).
The irreducibility and the transversality properties mentioned above imply that
those duals are equal to the opposites of the exceptional parts of the total trans-
forms of Z(x|x), Z(y|x), Z(z|x) by 7. Thus they have integral coefficients, that
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is, they belong to H,(E, 7). This implies that the discriminant group is trivial,
therefore Hy(d(X,0),Z) is also trivial.

Proposition 2.9 ensures now that d(X, 0) is the Seifert fibered integral homology
sphere ¥(2,3,5). >

Work of Neumann [56] characterizes the integral homology sphere X (p1,..., pn)
as a singularity link.

Theorem 2.13. Fix n > 3 and let (p1, ..., pn) be a sequence of pairwise coprime
positive integers with pr > 2 for all k € {1,...,n}. Let (¢;,j)1<i<n—2,1<j<n be a
matrix of complex numbers all of whose maximal minors are non-zero. Then, the
subspace of C" defined by the system of equations

izt 44 crpznt =0,
: R : (2.2)
Cn—Z,IZ{)1 + et Cn—Z,nZ;lzjn =0,
is an irreducible surface with an isolated singularity at O whose link, oriented as the
boundary of a neighborhood of 0, is (orientation-preserving) homeomorphic to the
integral homology sphere ¥ (p1, ..., Pn).

The condition that all the maximal minors of the matrix of coefficients are
non-zero is equivalent to the condition that the previous system defines an isolated
complete intersection singularity at the origin of C”. This is a direct consequence of
the following more general result of Hamm (see [24, §5] and [26]).

Proposition 2.14. Fixn > 3 and let (p1, ..., pn) be a sequence of positive integers
with p; > 2 foralli € {1,...,n},andfixk € {1,...,n — 1}. Consider a k x n-matrix
(ci,j)i,j with complex entries. Then, the system of equations

ciazit + -+ crpznt =0,

S : (2.3)
kit A+ crnzn’ =0,

defines an isolated complete intersection singularity at 0 in C" if, and only if, all

maximal minors of the input matrix (c; ;)i,j are non-zero.

Remark 2.15. Notice that each equation of (2.3) defines a so-called Pham—Brieskorn
hypersurface singularity (see Brieskorn’s paper [8, pages 47—49] for an explanation of
this terminology). For this reason, isolated complete intersection singularities (ICIS)
defined by these systems are sometimes called Pham—Brieskorn—Hamm singularities.
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Remark 2.16. If a Pham-Brieskorn—-Hamm singularity of complex dimension at
least three has an integral homology sphere link (i.e., its link has the integral homo-
logy of a sphere of the same dimension), then this link is homeomorphic to a sphere.
Indeed, as proved by Milnor [51, Theorem 5.2] for isolated singularities of hypersur-
faces and extended by Hamm [25, Kor. 1.3] to ICIS, their links are simply connected.
In turn, by a theorem of Smale [76], a simply connected integral homology sphere of
dimension at least five is homeomorphic to a sphere. Brieskorn discovered in [7] (see
also [8]) that for hypersurfaces, such links could be exotic spheres. Subsequent work
by Hamm [26] extended the study of such exotic spheres to all Pham-Brieskorn—
Hamm singularities.

Remark 2.17. Notably, the link of a Pham—Brieskorn—-Hamm surface singularity
(X, 0) defined by the system (2.2) is always Seifert-fibered, even when it is not an
integral homology sphere. This fact can be proven using the same group-action meth-
ods from Example 2.12. Indeed, the surface X is invariant under the action of (C*,-)
on C7 . givenby

.....

C*xC"—>C" (t,(z1,...,2zp)) > (tP2"Prgy  tPV"Pn—lg

Furthermore, the special fibers are obtained as the intersections of X N Sg”_l with
some hyperplanes of coordinates. If the integers p; are pairwise coprime (as required
for Theorem 2.13), it follows that the degree of the fiber X N S2"~1 N Z(z;) equals
pi, forevery i € {1,...,n}. In particular, we see that this fiber is special if, and only
if, pi > 1.

2.2 From three-dimensional splicing to splice type singularities

In this subsection we explain how to build new integral homology spheres from old
ones by splicing them along oriented knots (see Definition 2.21). Then, we introduce
splice diagrams (see Definition 2.23), which are particular decorated trees encoding
the result of successive splicings of Seifert fibered integral homology spheres along
some of their fibers (see Definition 2.24). We continue by explaining Eisenbud and
Neumann’s characterization of splice diagrams describing the ZHS which appear as
links of isolated complex surface singularities (see Theorem 2.28). This characteriza-
tion uses the notion of edge determinant condition (see Definition 2.26). We conclude
by explaining Neumann and Wahl’s semigroup condition on the decorations of splice
diagrams (see Definition 2.32), which we use in Subsection 2.3 to define splice type
singularities.

Proposition 2.9 above characterizes the non-trivial integral homology spheres
which are Seifert fibered. A natural question arises: are there other ZHS’s? It turns
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Cx, M,

gluing Cx, M

Figure 1. Splicing the integral homology spheres M and M»> along the knots K1 and K> (see
Definition 2.21).

out that there are many more! In order to explain this fact it is useful to introduce the
following terminology.

Definition 2.18. Let M be a compact manifold (with or without boundary) and let
K <> M be a properly embedded submanifold. A classical cut of M along K
is the closure inside M of the complement of a compact tubular neighborhood of K
in M.

Remark 2.19. Note that if K is a knot in a three-manifold M, then the boundary
diop(€x M) of €x M is a two-dimensional torus. If M is moreover an oriented ZHS,
then 0d,,p(€x M) contains preferred isotopy classes of curves, namely, those of the
meridians and longitudes of K in the sense of Definition 2.5.

As stated in the next proposition, new ZHS’s can be obtained from a pair of
ZHS’s with prescribed embedded knots by gluing the corresponding classical cuts
appropriately, as seen in Figure 1. For details, we refer the reader to [16, Section 1.1].

Proposition 2.20. Let My and M, be two oriented ZHS’s and let K; C M; be ori-
ented knots in them. Consider classical cuts Cg, M; of M; along K; in the sense
of Definition 2.18 and let M be the manifold obtained by gluing €x, M| and €k, M,
through a diffeomorphism of the tori 0., (€, M;) (for i = 1,2) which permutes their
meridians and longitudes. Then, the manifold M is also a ZHS.

As mentioned by Gordon in [20, Section 6], the previous property had been
noticed by Dehn in his 1907 paper [13] for a pair of three-dimensional spheres. The
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following terminology describing the operation performed in Proposition 2.20 is due
to Siebenmann [74].

Definition 2.21. Let M, and M, be two oriented ZHS’s and let K; C M; be oriented
knots in them. Then, the oriented three-manifold |(M;, K1) & (M>, K,)| obtained by
the procedure described in Proposition 2.20 is called the splice of M1 and M, along
the knots Ky and K> .

The splicing operation is sketched in Figure 1. The meridians are denoted by m1
and m», whereas the longitudes are indicated by £; and £,. The curves in the figure
are schematic, i.e., they should not be interpreted as linear projections of knots in
the standard sphere. Otherwise, the knot /; would not be a longitude of K;, as their
linking number would not be zero.

In the same article [74] in which he had introduced the splicing terminology,
Siebenmann considered the special class of ZHS’s obtained from several Seifert-
fibered ones by splicing them recursively along fibers of their respective Seifert
fibrations. He encoded the resulting oriented ZHS’s by special types of decorated
trees called splice diagrams, which we now discuss. We start by recalling some stand-
ard terminology from graph theory.

Definition 2.22. A tree T is a finite acyclic connected graph. The valency of a vertex
v is the number of edges incident to it, which we denote by . When 7' has at least
two vertices, the leaves of T are those vertices of valency one, and the nodes of T are
the remaining vertices. If 7' is a singleton, its unique vertex is taken to be a leaf. An
edge joining two nodes is called internal.

Definition 2.23. A splice diagram is a finite tree without vertices of valency two,
such that for each node v, every incident edge e is decorated by a positive integer
in the neighborhood of v and such that around each node, the integers decorating
adjacent edges are pairwise coprime. A star-shaped splice diagram is a splice diagram
with a single node.

Siebenmann’s work [74] associates an oriented integral homology sphere to every
splice diagram by an explicit procedure, which we now recall.

Definition 2.24. Let I" be a splice diagram. Its associated oriented integral homology

sphere | X (I")|is constructed as follows.

* For each node v of I, let be the star-shaped splice diagram obtained by tak-
ing the union of the compact edges of I' containing v and by keeping only their
decorations around v.

 If(pi(v),..., ps,(v)) is the sequence of decorations on the edges of I'” (arbit-
rarily ordered), consider the Seifert-fibered integral homology sphere |Z(I'Y)|:=
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e A4
2a7 11b2
3 5

)\.2 A3

Figure 2. The splice diagram used in Examples 2.27 and 2.34.

2 (p1(v), ..., ps,(v)) (see Definition 2.10 and Remark 2.11), with its fibers ori-
ented arbitrarily, but in a continuous way. The manifold ¥ (I"") has a set of §,
distinguished fibers in bijection with the set of edges of I' adjacent to v.

* Given two adjacent nodes u and v of I', splice X (I'¥) and X (I"V) along the ori-
ented fibers corresponding to the unique edge of I" joining u and v.

e Perform the previous splicing simultaneously on the disjoint union of all oriented
Seifert-fibered integral homology spheres with oriented fibers X (I"V), indexed by
all nodes v of I

* The resulting oriented integral homology sphere is X (I").

Remark 2.25. Siebenmann’s construction is more general and allows negative edge
weights on splice diagrams. We focus on the case of positive weights since this
restriction is enough for describing the singularity links which are ZHS’s (see Theo-
rem 2.28).

Theorem 2.13 shows that all integral homology spheres associated to star-shaped
splice diagrams occur as links of normal surface singularities. The notion of edge
determinant, introduced formally by Neumann and Wahl in [63, Section 1] (although
it appears already in [16, page 82]), allows to characterize which integral homology
spheres may be realized as such links (see Theorem 2.28).

Definition 2.26. Let I" be a splice diagram. If ¥ and v are two adjacent nodes of I',
then the edge determinant of the internal edge [u, v] is the number obtained by sub-
tracting from the product of the two decorations on [u, v] the product of the remaining
decorations in the neighborhoods of u and v. We say that I" satisfies the edge determ-
inant condition if the edge determinant of every internal edge of I" is positive.

We illustrate this definition with the running example from [63, Section 1].

Example 2.27. Consider the splice diagram with two nodes and four leaves seen in
Figure 2. It satisfies the edge determinant condition, as the edge determinant of its
single internal edgeis 7-11 — (2-3) - (5-2) =17 > 0. o
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In [16, Theorem 9.4], Eisenbud and Neumann gave an explicit description of all
integral homology spheres that can be realized as surface singularity links. Here is
the precise statement.

Theorem 2.28. The links of normal surface singularities which are ZHS’s are pre-
cisely the oriented three-manifolds % (I") associated to splice diagrams which satisfy
the edge determinant condition. Moreover, the diagram T" is completely determined

by the link if for every non-internal edge e of T joining a node v to a leaf A we have
dv,e > 2.

Note that Theorem 2.13 shows that the Seifert fibered ZHS’s are not only surface
singularity links, but they occur as links of isolated complete intersection singular-
ities. This observation leads to the following natural analog of Question 1.1 stated
in Section 1.

Question 2.29. Which integral homology spheres of the form 3 (I") can occur as
links of isolated complete intersection singularities?

Although a complete answer to this question remains unknown, a partial answer
was given by Neumann and Wahl in [62]. Indeed, they showed that 3 (I") is the link
of an isolated complete intersection singularity whenever I satisfies a supplementary
hypothesis called the semigroup condition, which we now recall. We start with the
auxiliary notions of the linking number between two vertices and of the degree of a
node of T".

Definition 2.30. Let I' be a splice diagram. For every pair of vertices u and v of I,
their linking number is the product of edge weights adjacent to the shortest
path [u, v] on I joining u and v. In particular, the degree of a node v is the product
:= £y, of all edge decorations adjacent to v.

Remark 2.31. The name linking number used for the integers £,, ,, is motivated by
the fact that they agree with the linking numbers (inside the integral homology sphere
3 (I") from Definition 2.24) of the knots corresponding to the generic fibers of the
Seifert fibered manifolds X (I'*) and X (I"V). For more details, we refer to [16, Theo-
rem 10.1]. Note that the edge determinant of an internal edge [u, v] is positive if and
only if dydy > €7, .

Definition 2.32. Let I be a splice diagram. Fix a node v and an edge e of I" adjacent
to it. We say that I satisfies the semigroup condition at v in the direction of e if d,
belongs to the subsemigroup of (N, 4-) generated by the positive integers £, 3, where
A varies among the leaves of I" seen from v in the direction of e (i.e., such that e lies
in the shortest path [v, A]). If this condition is verified for all pairs (v, e), then we say
that I satisfies the semigroup condition.
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Remark 2.33. The semigroup condition is essential to extend the construction of
Pham—Brieskorn—Hamm systems from star-shaped diagrams to arbitrary ones: it spe-
cifies how to replace the power of a single variable (indexed by the corresponding
leaf) by a monomial in the variables indexed by leaves seen from v in the direction
of e. Polynomials constructed in this way will be homogeneous relative to suitable
weight vectors, described in Remark 2.39 (1) below.

Example 2.34. Asin Example 2.27, we consider the splice diagram I" from Figure 2.
Note that dy, = 2-3-7=42,443,=2-3-2=12,443, =2-3-5=30,dp =
2-5-11 =110, €p 3, =2-5-3 =30, and £y, = 2-5-2 = 20. Therefore, I
satisfies the semigroup condition, as d, € N({; 15,€4,2,) and dp, € N(€p 2, Lp,2,)-
More precisely,

dg=42=12+30=4,4 3, + L4, and dp=110=30+4-20=4{p , + 4Lp;,.

(2.4)
Note that the semigroup condition is always satisfied at a node v in the direction of an
edge joining v to a leaf. For instance, d, =42 =2-(3-7) =244, € N(lg2,). ©

The following result is due to Neumann and Wahl (as a consequence of [62, The-
orems 2.6 and 7.2]).

Theorem 2.35. Let I' be a splice diagram with n leaves which satisfies the determ-
inant and semigroup conditions. Then, there exists an isolated complete intersection
singularity embedded in C" whose oriented link is orientation-preserving homeo-
morphic to % (T).

In fact, Neumann and Wahl’s result referenced above is more general, since it
concerns splice diagrams whose edge weights around vertices are not necessarily
pairwise coprime. The reader interested in learning more about them and the associ-
ated splice quotient singularities may consult Wahl’s surveys [82, 83].

The proof of Theorem 2.35 is constructive. Indeed, given any splice diagram I
satisfying the semigroup condition, Neumann and Wahl build a family of systems of
formal power series in n variables which define equisingular isolated complete inter-
section singularities with link 3 (I") (see Theorem 2.44). The explicit construction of
such splice type systems and the associated splice type singularities will be discussed
in Subsection 2.3 below. The largest class known up to date of complete intersec-
tion isolated surface singularities with integral homology sphere links remains that of
splice type.
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2.3 Splice type singularities

In this subsection we recall Neumann and Wahl’s construction of splice type sys-
tems [62, 63] associated to splice diagrams satisfying both the determinant and
semigroup conditions (see Definitions 2.23, 2.26 and 2.32). Such systems define the
so-called splice type singularities (see Definition 2.38). For a description of how Neu-
mann and Wahl were led to this construction, we refer the reader to Wahl’s paper [83].

Let Io/(F) be the set of nodes of the splice diagram I'" and be its set of
leaves. We denote by [12] the number of leaves of I'. Following Definition 2.24 we
let be the star of a vertex v of I, i.e. the collection of all edges adjacent to v,
with inherited weights around v. It contains precisely §, edges, i.e., as many as the

valency of v. In addition to the notion of linking number between pairs of vertices
introduced in Definition 2.30, it will often be convenient to work with the following
related notion, first introduced in [63, Section 1].

Definition 2.36. The reduced linking number |(; | is defined as the product of all
weights adjacent to the path [u, v] excluding those around u and v. In particular,
¢, , = 1 for eachnode v of T

Remark 2.37. Given a node v and a leaf A of I', it is immediate to check that
Lyadys = %, 5 dv. This implies that the semigroup condition from Definition 2.32
for the pair (v, e) is satisfied if, and only if, d, . belongs to the subsemigroup of
(N, +) generated by £ »» Where A varies among the leaves of I' which are seen from
v in the direction of e.

In what follows, we recall some standard notations from toric geometry. They are
not required to define splice type singularities (and were not used in the foundational
papers of Neumann and Wahl) but they are essential for our proof of the Milnor fiber
conjecture.

Each leaf A of T yields a variable [z]. Let be the lattice of exponent
vectors of monomials in the variables z,. We denote by its dual lattice of
weight vectors of the variables z,. We write the associated pairing using dot product
notation, i.e., € Z whenever w € N(dI') and m € M(dT"). The canonical basis
{wi:A € 0} of N(3T') and the dual basis {m3]: A € 9 I'} of M(dI") identify both
lattices with Z". Each node v of I" has an associated weight vector

= Y Lyaw, € N(OT). (2.5)
redll

If visanode of I and e € I'Y, we denote by the set of leaves A of I" seen
from v in the direction of e. The diagram I'" satisfies the semigroup condition if, and

only if, for each node v, edge e € I'” and leaf A € 9, (", there exists e N
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such that

Z My ely.a, oOrequivalently d,, = Z Myerll ;.  (2.6)
A.Gav’er A,an,erl

This last equivalence is a direct consequence of Remark 2.37.
We use the coefficients from (2.6) to define an element of M (d I') for each pair
(v.e)
= ) myeamy € M(3y,T) C M(@T). Q2.7)
A€dy T

Following [63], we refer to it as an admissible exponent vector for (v, e). By (2.6), it

satisfies
Wy My =d, foreachedgee € I'". (2.8)

In turn, each admissible exponent vector m,, . defines an admissible monomial

1_[ vae)t.

A€y T

The next definition is a reformulation of a notion introduced by Neumann and
Wahl in [63, Section 2].

Definition 2.38. Let I" be a splice diagram which satisfies both the determinant and
semigroup conditions, and assume that the set of n leaves of I' is totally ordered.
For each node v and adjacent edge e of it, fix an admissible exponent vector m, €
M (9T) as defined in (2.7).

» A strict splice type system for T is a finite family of (n — 2) polynomials of the
form

Z [Cv,e,i]Z z™ve foralli € {l,. — 2} and each node v of T'.

ecStar(v)

We require the coefficients ¢, . ; to satisfy the Hamm determinant condition
Namely, for any node v € I', and any fixed ordering of the edges in I'?, all the
maximal minors of the matrix of coefficients (cy¢,i)e.i € C%v*Gv=2) myst be non-
Zero.

* A splice type system |S (I')| associated to I' is a finite family of power series of the
form

= fv.i(2) + guv.i(z) foralli € {1,...,8, —2} and any fixed node v of T',

(2.9)
where the collection ( fy,i)v,; is a strict splice type system for I' and each g, ; is
a convergent power series near the origin satisfying the following condition for
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each exponent vector m in its support:
wv -m > dv. (2.10)

* A splice type singularity associated to I" is the subgerm of (C”, 0) defined by a
splice type system § (I").

Remark 2.39. The following observations regarding Definition 2.38 are in order.

(1) By equations (2.8) and (2.10), each polynomial f,; is w,-homogeneous,
where w,, is the weight vector from (2.5), and each monomial appearing in
gv,i has higher w,-weight.

(2) The first appearance of splice type systems can be traced back to [61]. In
that paper, the edge weights around nodes were not assumed to be pair-
wise coprime, but the edge determinant and semigroup conditions were still
required. Neumann and Wahl proved that under a supplementary condition
(called the congruence condition), it is possible to pick the series F; ;(z) in
an equivariant way under the action of certain finite abelian groups. This con-
struction then leads to defining splice quotient singularities as the quotients
of the associated splice type singularities by those abelian groups. These sin-
gularities and their defining systems are studied thoroughly in [62] (see also
Wahl’s surveys [82, 83]).

(3) Neumann and Wabhl proved in [62] that the set of splice type subgerms of C”
corresponding to a given splice diagram satisfying the determinant and the
semigroup conditions is independent of the choice of admissible exponents.
For a detailed proof, we refer the reader to [12, Theorem 9.1].

The following two examples illustrate Definition 2.38.

Example 2.40. Consider the splice diagram from Figure 2. As shown in Exam-
ples 2.27 and 2.34, I" satisfies the determinant and semigroup conditions. The explicit
semigroup membership identities from (2.4) yield the following associated strict
splice type system:

2 _ .3 . 4, .5 _ .2
Ja =121 —2z; +z3z4 and fp:=z1z;, + 23 — z}.

Another possible choice for the wp-homogeneous function fj is z3zy + z3 — 27,
obtained by replacing the admissible monomial leg by the other possible admiss-
ible monomial 21322 for (b, [b, a]). This second monomial is admissible because
dy=110=3-30+1-20=3-{p, +1-Lp,. 3

Example 2.41. Consider the splice diagram I' from Figure 3 with nodes a and b.
Then, d, = 294, dp = 770 and £, = 420, so d,dp > Ei »- Therefore, the edge
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A
49

Az

Figure 3. The splice diagram of Examples 2.41 and 6.6.

determinant condition holds for [a, b] by Remark 2.31. Furthermore,
49=0-(2-5)4+1-2-7)+1-(5-7) and 11=1-3)+4-(2)=3-3)+1-(2),

so the semigroup condition is also satisfied. Associated admissible exponent vectors
are Mg [q,p] = (0,0,0,1,1) and mp [, 5] = (1,4,0,0,0) or (3,1,0,0,0). The following
polynomials determine a strict splice type system for I':

Ja1 = Z% — 223 + z42s,
Jba = leg + Z:Z + ZZ — 215522,
fo2i=33z125 + 25 + 227 — 212322,

An alternative system is obtained by replacing the admissible monomial leg in fp1
and fp, with Zf’zz. o

Remark 2.42. Our paper [12] describes standard tropicalizing fans of splice type
singularities in the sense of Definition 5.4, and shows that splice type systems are
Newton non-degenerate complete intersection presentations of them in the sense
of Definition 5.10. These results are essential tools to prove analogous facts for their
edge-deformations, introduced in Section 6 (see also Remark 6.9). The weight vectors
(wy)y indexed by the nodes of I' generate the positive rays of the standard trop-
icalizing fan of the splice type singularity. Its remaining rays are generated by the
basis vectors (wj); of N(dI'). Moreover, the associated splice diagram appears
as a transversal section of the local tropicalization of a splice type singularity (see
[12, Theorem 1.2]). This gives the first tropical interpretation of splice diagrams,
whenever they satisfy the determinant and semigroup conditions. We make use of
this fact in Step (5) of Section 7.

Remark 2.43. Let (X, 0) be a splice type singularity associated to the splice dia-
gram I". For each leaf A of I', one may consider the hyperplane section of (X, 0) by
the hyperplane of coordinates defined by z; = 0. As a particular case of Neumann
and Wahl’s theorem [62, Theorem 7.2 (6)], this hyperplane section is an irreducible
germ of curve, therefore its associated link is a knot inside the link of (X, 0). This
fact will be used in Definition 2.45.
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Figure 4. Splitting the splice diagram I" along any interior point  on the central edge [a, b]
yields the diagrams I', and T';,, with roots r, and rp, respectively. The variables associated to
the leaves on each diagram are labeled from left to right by x,, z,, z,, and y,,, respectively.

In [62, Theorems 2.6 and 7.2], Neumann and Wahl prove the following explicit
form of Theorem 2.35.

Theorem 2.44. Let I" be a splice diagram which satisfies both the determinant and
the semigroup conditions. Then, the link of any splice type singularity associated to T’
is orientation-preserving homeomorphic to 3 (I").

2.4 Neumann and Wahl’s Milnor fiber conjecture

In this subsection we explain Neumann and Wahl’s four-dimensional splicing opera-
tion (see Definition 2.45) and we give a more precise formulation of the Milnor fiber
conjecture that the one given in the Introduction (see Conjecture 2.47). We conclude
by stating a corollary of our proof of this conjecture (see Theorem 2.48).

Throughout this subsection, we fix a splice diagram I with n leaves satisfying
the determinant and the semigroup conditions (see Definitions 2.26 and 2.32). Fur-
thermore, we assume that I' is not star-shaped and we fix two adjacent nodes of
it. As illustrated in Figure 4, we let and be the splice diagrams obtained by
cutting I' at an interior point [7] of [a, b]. Denote by [7,] € ', and [F5] € 'y the corres-
ponding leaves of I'; and I';. We view them as roots of the two trees. We let and
be the number of leaves of I'; and I'p, respectively. Therefore, n = n, 4+ np — 2.

It i1s a simple matter to check that I';, and I'j also satisfy the determinant and
semigroup conditions. Thus, we may use the three splice diagrams I', I'; and I’ to
build three splice type systems. We let [X], and be the germs at the origin
defined by each system in C”, C"¢ and C"?, respectively. We denote by x;, the
variables of the ambient space C"¢ of X, and by y, those of the ambient space C"»
of X3, where A varies among the set d [, of leaves of I'; and x varies among the
set 0 I'p of leaves of I'p. In particular, there are two variables, x,, and y,,, which
correspond to the roots of the two trees.
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N

S

Figure 5. From left to right: collection of meridians forming an open book on the sphere S? with
a distinguished page (in red), and pushing of this page inside the interior of the ball bounded
by S2, featured as a dashed arc. The binding is given by the north and south poles.

Since the germs X, X,, and X, are isolated complete intersections, they have
well-defined Milnor fibers [F],[F,],[Fp, which are compact oriented four-dimensional
manifolds with boundary. Furthermore, their boundaries are orientation-preserving
diffeomorphic to the links of the associated singularities. The Milnor fiber conjecture
of Neumann and Wabhl describes a concrete topological operation to build F' from F,
and F}p. In what follows, we review this construction.

Consider the restriction of the coordinate function x,, to X,. This holomorphic
function has an isolated critical point at 0 € X,. Therefore, it defines an open book
(a terminology introduced by Winkelnkemper [84], also called an open book decom-
position) on the link d(X,4, 0) of (X4, 0): it is the Milnor open book induced by the
argument of the holomorphic function (see [44, Section 6.5]). Since the link d(X,, 0)
1s diffeomorphic to the boundary of the Milnor fiber F,;, we obtain an open book on
this boundary [25]. Denote by < [F, a compact surface with boundary obtained
by pushing a page of this open book inside F,, while keeping the boundary fixed.
Figure 5 depicts this construction in lower dimension. Note that the boundary of G,
is connected, because the hyperplane sections of X, by coordinate hyperplanes are
irreducible (see Remark 2.43).

We let Nr,(G,) be a tubular neighborhood of G, in F,. Consider the associ-
ated classical cut Cg, F, of F, along G, as in Definition 2.18. Note that the normal
bundle of G, inside F, is trivial because it is a disk bundle over a connected surface
with non-empty boundary. Therefore, the tubular neighborhood Nfr, (G,) is diffeo-
morphic to G, x D, where D denotes a compact two-dimensional disk. This implies
that the longitudinal boundary of Nf,(G,), which we define as

010ng NF, (Ga)|:= €6, Fa N NF,(Ga) = 0iop(Cg, Fa)

is diffeomorphic to G, x S!.
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Figure 6. Splicing of two four-dimensional manifolds F, and Fj with integral homology
sphere boundaries along properly embedded surfaces called G, and Gp, respectively (see
Definition 2.45).

The next definition recalls Neumann and Wahl’s four-dimensional splicing oper-
ation in this context (see [63, Section 6] for further details). The construction is
depicted in Figure 6.

Definition 2.45. Let (F,, G,) and (F}p, Gp) be the pairs defined above. The manifold
\(Fa,Gq) ® (Fp, Gp)| obtained by splicing F, and Fy, along G, and Gy, is construc-
ted from the disjoint union

€6, Fa U (Gy x Gp) UCq, Fy

by identifying G, x S ~ Oong NF, (G4) — €g, Fy with G4 x S! ~ G, x 0iopGp —
G4 x Gp and, similarly, Gp X S' >~ 9iongNF, (Gp) < €g, Fp with S x G =~
diopGa X Gp — G4 x Gp.

A basic, yet crucial, property of this operation is that it induces the 3-dimensional
splicing operation of Definition 2.21 at the level of boundaries. As no proof for this
fact was given in [63], we include one below.

Proposition 2.46. Let (F,, G,) and (Fp, Gp) be pairs as above. Then, the boundary
of the manifold obtained by splicing F, and Fy along G, and Gy, is the three-
dimensional manifold obtained by splicing their boundaries. More precisely, we have
an orientation preserving diffeomorphism

atop ((Fa’ Ga) ) (Fb, Gb)) = (atOpFa’ atopGa) D (atopr» atopr)-

Proof. Let (F, G) be one of the pairs (F,, G;) and (Fp, Gp). The next reasoning
is to be followed along using Figure 7, suggestive of an analogous situation in one
dimension lower.
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K K’

Figure 7. A tubular neighborhood of G inside F, and copies G’ (in blue) and G (in red) of G
(in dashed red) with Gx C 0p F satisfying 0,0pG = 0i0pGx = K and 0,,(,G’ = K’. The pink
shaded area M bounded by Gx and G avoids G’ (see the proof of Proposition 2.46).

As explained above, the boundary K of the surface G is a knot in 0y, F, because
the hyperplane sections of splice type singularities by coordinate hyperplanes are irre-
ducible. We must show that the trivialization of the circle bundle diop Nj,,,r (K) — K
induced by the chosen trivialization of the circle bundle 9o, NF (G) — G coincides
up to isotopy with the trivialization described in Proposition 2.4. Thus, we must check
that the boundary of a constant section of diong Nr(G) — G relative to this trivializ-
ation has linking number 0 with K inside 0iop F.

Consider a page Gg <> 0iop I 0f the given open book on 0;p F with binding K. As
G is obtained by pushing Gk inside F' while preserving its boundary, G U G is the
boundary of an oriented compact three-manifold M diffeomorphic to a handelbody
and embedded in F'. We choose the tubular neighborhood Ny, r (K) to be transversal
to M . Therefore, the intersection 0op Nawp r(K) N M is a section of the circle bundle
Otop N, F (K) — K. Slightly turning this intersection inside each fiber yields another
section G’ which is disjoint from M . Therefore, its boundary K’ := G’ N 0yop F —
diop I is disjoint from Gg = M N dyop F. This implies that Lk, F (K',K) =0, as we
wanted to show. [

Definition 2.45 allows us to present a more precise version of Neumann and
Wahl’s Milnor fiber conjecture of [63, Section 6] than the one given in Section 1.

Conjecture 2.47. Let X be a splice type singularity whose splice diagram T" is not
star-shaped. Fix an internal edge [a,b] of I'. Let 'y and Ty, be the rooted splice
diagrams obtained by cutting I" at an interior point of [a, b]. Denote by X, and X}
the splice type singularities associated to I'y and 1'y. Let F, F, and Fy be Milnor
fibers of X, X, and Xp, respectively. Consider a surface G, — F, obtained as above
from the open book defined on 0(X,, 0) by the variable associated to the root of T'.
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Consider an analogous surface Gp — Fy. Then, F is homeomorphic to the result of
splicing F, and Fp along G, and Gy,

As was mentioned in Section 1, the formulation of this conjecture was motivated
by the Casson invariant conjecture from [60]. In [63, Section 6], Neumann and Wahl
proved that the Casson invariant conjecture for splice type singularities follows from
the Milnor fiber conjecture. So far, the latter has only been confirmed in special cases.
Indeed, Neumann and Wahl [63, Section 8] showed it for hypersurface singularities
defined by equations of the form z” 4+ f(x, y) = 0, whereas Lamberson work [42]
discusses a generalization of this class of singularities, whose links are obtained from
S3 by iterated cyclic branched covers along suitable links.

Note that Conjecture 2.47 presumes that all splice type singularities with a fixed
splice diagram have homeomorphic Milnor fibers, since for a fixed X, the singularity
X, can be chosen to be any splice type singularity with diagram I',. Remarkably,
this subtle yet previously unknown fact is a direct consequence of the proof of the
conjecture outlined in this paper. More precisely, we have the following result.

Theorem 2.48. The Milnor fibers of any two splice type singularities arising from
the same splice diagram are diffeomorphic.

Proof. The proof outline of the Milnor fiber conjecture discussed in Section 7 allows
us to reduce to the case when the splice diagram I" is star-shaped. For such dia-
grams, our description of Milnor fibers through roundings shows that the Milnor fiber
of such a splice type singularity does not depend of the higher order terms of the
defining splice type system, but only on the initial Pham—Brieskorn-Hamm system
(see Remark 2.15).

It remains to check that the Milnor fibers of those singularities do not depend
on the matrix of coefficients satisfying the Hamm determinant condition. But this
is a consequence of the fact that those singularities are quasi-homogeneous. Indeed,
quasi-homogeneity ensures that any Euclidean ball centered at the origin becomes a
Milnor ball for all such systems simultaneously. This proves the statement. |

3 The main ideas of our proof

In this section we give an informal description of the main ideas involved in our
proof of Conjecture 2.47. In Subsection 3.1, we explain how to canonically decom-
pose Milnor fibers into pieces using real oriented blowups of embedded resolutions of
smoothings. In Subsection 3.2 we extend this construction to quasi-toroidalizations
of suitable smoothings using the notion of rounding of a complex log space and
explain how to construct quasi-toroidalizations using tropical geometry techniques.
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Finally, Subsection 3.3 gives some basic intuitions about local tropicalization and
Newton non-degeneracy, two notions which are key players in our construction of
quasi-toroidalizations of smoothings.

3.1 Canonical Milnor fibrations through real oriented blowups

In this subsection we explain how A’Campo’s notion of real oriented blowup yields
canonical representatives of the Milnor fibrations over the circle of a given smoothing
of an isolated singularity, once an embedded resolution of the smoothing is fixed.

Throughout, we let (X, 0) be an isolated singularity of arbitrary dimension and we
let f:(Y,0) = (C,0)bea smoothing of (X, 0). Consider an embedded resolution of
£, that is, a modification 7: Y — Y which restricts to an 1som0rphlsm outside o, such
that Y is smooth and the zero level set Z( f ) of the lifting f fomof ftoY isa
normal crossings divisor. It is natural to ask how the non-zero levels of f degenerate
to Z( f ). By definition, these levels are identified via 7 with the Milnor fibers of f.
This produces a decomposition of those Milnor fibers into compact pieces, each piece
consisting of the points which degenerate to a fixed irreducible component of Z( f ).
These pieces are manifolds with corners, whose boundaries degenerate to the singular
locus of Z(f).

This decomposition into pieces is analogous to Mumford’s plumbed decomposi-
tion of the link of an isolated surface singularity obtained by looking at the way the
link degenerates onto the exceptional divisor of a good resolution (see [53, Section
1]). As in that prototypical case, the decomposition of a given Milnor fiber of f is
not canonical, because it depends on the choices of embedded resolution, of suitable
coordinate systems near the singular locus of the exceptional divisor and also of a
level f~1(A) of f with0 < |A| < 1.

Once the embedded resolution is fixed, the non-canonical aspect of the con-
struction can be repaired via the operation of real oriented blowup, introduced by
A’Campo in his study of monodromies of germs f: (C"*! 0) — (C,0) [1, Sec-
tion 2]. This operation may be performed starting from any normal crossings divisor
D (seen as a reduced hypersurface) in a complex manifold W'. Its effect is to determ-
ine a canonical cut of W along D, which contrasts with the dependency of a classical
cut (see Definition 2.18) on the choice of a tubular neighborhood. This canonical cut
produces a real analytic manifold with corners Wp, together with a map

Tw,D: WD — W.

This real oriented blowup map is proper and a homeomorphism on W \ D. It sends
the topological boundary 9., Wp of Wp onto D and, furthermore, the corner locus of
Wp is the preimage of the singular locus of D under T, p. In this way, the algebro-
geometric boundary D of the pair (W, D) (in algebraic geometry it is customary to
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Figure 8. Real analog of A’Campo’s real oriented blowup of W along the divisor D.

say that a boundary is a divisor) is replaced by the topological boundary 0.,z Wp of
the piecewise-smooth manifold Wp. Figure 8 shows a “real analog” of this procedure
for a divisor D with two components in a smooth surface.

Example 3.1. When W = C and D is the origin, the real oriented blowup is the map
¢ {0y [0, +00) x S! — C obtained through the use of polar coordinates (r, e) —
re'?. The origin of C, seen as an algebro-geometric boundary, is replaced by the
topological boundary circle S! of the cylinder [0, +00) x S!. This example will be
thoroughly discussed in Subsection 4.2. o

Let us come back to the lifted morphism f :Y — C defined earlier. Performing
both the real oriented blowup of ¥ along Z( f ) and of C at the origin allows us to
lift the function f in a canonical way to those new spaces. Moreover, the restriction
a( f~ ): 8172 )~ S! of this lift to the boundaries of the source and target spaces gives
a canonical representative of the Milnor fibration of f above a circle, relative to
its embedded resolution 7 (see A’Campo’s [1, Section 2] and Corollary 4.56 of a
theorem of Nakayama and Ogus).

Since the source space 8172( 3 is endowed with a canonical surjection

% 20 a?z(f) — Z(f), (3.1)

we see that it inherits a canonical decomposition into pieces that are manifolds with
corners. Each piece lies above an irreducible component of Z( f). This yields the
desired decomposition of all fibers of the canonical Milnor fibration d( /).

3.2 Quasi-toroidalizations

In this subsection we introduce a class of maps called quasi-toroidalizations, asso-
ciated to smoothings of isolated singularities, which are more general than the
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embedded resolutions 77: ¥ — Y considered in Subsection 3.1, and which play a cent-
ral role in our proof of Conjecture 2.47. They may have mildly singular total spaces
and special fibers which are not crossing normally. Remarkably, the construction of
canonical Milnor fibrations from modifications explained in Subsection 3.1 can be
applied to quasi-toroidalizations as well. This extension uses the operation of round-
ing, a generalization of real oriented blowups introduced by Kato and Nakayama
[34] in the context of logarithmic geometry (in the sense of Fontaine and Illusie),
or log geometry for short. The latter will be reviewed in Subsection 4.3. Quasi-
toroidalizations are relevant for us, as the modifications induced by the natural fans
used to subdivide the local tropicalizations of our germs are quasi-toroidalizations.
We could of course subdivide those fans even further, in a non-canonical way, until
we reach an embedded resolution morphism. However, this process would fail to
describe our morphisms explicitly in terms of the given splice diagrams.
Let us start with the notions of toroidal varieties and morphisms.

Definition 3.2. Let (W, 0W) be a pair consisting of an equidimensional complex
analytic space W and a reduced complex hypersurface dW in it. We say that (W, dW)
is a toroidal variety or a toroidal pair if it is locally analytically isomorphic to the pair
consisting of a toric variety and its toric boundary, i.e., the complement of its dense
algebraic torus. Such a local isomorphism is a foric chart of the toroidal pair. The
hypersurface W is called a roroidal boundary for W.

If (W, W) is a toroidal pair, then the toroidal stratification of W is obtained by
gluing together the preimages of the various torus orbits using the toric charts.

A toroidal morphism is a complex analytic morphism (V, dV) — (W, W)
between toroidal varieties that is locally analytically a monomial map when restricted
to convenient toric charts.

Remark 3.3. The notion of toroidal variety generalizes that of a toric variety, since
every pair consisting of a toric variety and its toric boundary is automatically toroidal.
Note that (W, dW) is a toroidal pair if and only if W \ 0W < W is a toroidal embed-
ding in the sense of [37].

Definition 3.4. Fix an isolated singularity (X, o) of arbitrary dimension and a
smoothing f: (Y,0) — (C,0) of it. A quasi-toroidalization of f is a modification
.Y — Y satisfying the following conditions:
(1) there exists a reduced hypersurface dY in Y such that the lifting f (Y,9Y) -
(C,0) of f toY is atoroidal morphism,
(2) the zero-locus Z( f ) of f in Y is included in the toroidal boundary Y, and

(3) locally around each point x of dY, we can find a (local) toroidal stratum
S for which the (local) irreducible components of dY containing x that are
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not components of Z( f ) are exactly those irreducible components of Y
containing S.

The third condition may seem strange at first sight. It originates in the observa-
tion that, unlike normal crossing divisors in manifolds (or smooth varieties), closed
subdivisors of toroidal boundaries are not necessarily toroidal (see Examples 4.6
and 4.7). Its exact formulation is explained in Remark 4.8.

Remark 3.5. The relevance of quasi-toroidalizations for our work lies in the fol-
lowing crucial observation. Mimicking the real oriented blowup construction of the
previous subsection in this more general context via Kato and Nakayama’s rounding
operation (see Subsection 4.5) and restricting to Z( f ), produces a morphism

A(f): le(f) — S! (3.2)

which is a representative of the Milnor fibration of f. This is a consequence (see
Corollary 4.56) of a more general local triviality theorem for roundings proved by
Nakayama and Ogus [54, Theorem 3.7], stated as Theorem 4.53 below.

In order to use quasi-toroidalizations to determine the topology of the Milnor
fiber of a splice type singularity (X, 0) — (C", 0), we must first pick an appro-
priate smoothing f: (Y, 0) — (C, 0). Notice that, unlike the quasi-toroidalization
n:Y — Y, the Milnor fiber is independent (up to diffeomorphism) of the choice
of f because X is an isolated complete intersection, which implies by an important
result of Tjurina [80, Theorem 8.1] (see also [45, Chapter 6] or [22, Theorem 1.16])
that its miniversal deformation has an irreducible (even smooth) base. Thus, we may
pick a smoothing that is well-adapted to proving Conjecture 2.47. We construct such
a smoothing by deforming the splice type system defining X in a way compatible
with the given internal edge [a, b] (see Definition 6.3). The deformed system defines
a three-dimensional germ (Y, 0) — (C**1,0).

The local tropicalization of this deformed system (a notion discussed in Subsec-
tion 3.3 and Section 5) is supported on a three-dimensional fan ¥ contained in the
cone of weights (Rx¢)"*! defining C**1 as an affine toric variety. This fan has the
following crucial property.

Proposition 3.6. Consider the toric birational morphism wg: X5 — C"t! defined
by the fan ¥ and let : Y — Y be its restriction to the strict transform of Y by .
Then, the map 7 is a quasi-toroidalization of f. Furthermore, the dual complex of
the exceptional divisor E = m~1(0) is naturally isomorphic to a subdivision of the
splice diagram I of (X,0) — (C",0), obtained by adding an interior point r of the
edge [a, b] as an extra node and subdividing [a, b] accordingly.
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The second part of Proposition 3.6 confirms that the quasi-toroidalization r: Y -
Y of f is adapted to the proof of Conjecture 2.47. As we discuss in Step (8) of Sec-
tion 7, this property yields a decomposition of the exceptional divisor E into three
pieces: two divisors D, and Dj coming from the a- and b-sides, respectively, and an
irreducible central divisor D, correspondmg to the new vertex r. Moreover, the spe-
cial fiber Z( f ) of f is reduced, making f analogous to a semistable degeneration in
the sense of [37]. Its component D, is a cartesian product of two projective curves.
In turn, this last fact then allows us to prove that the central piece of the Milnor fiber
which connects the a-side and b-side has the desired product structure. This central

piece is obtained by intersecting the preimage t-! _ (D,) of the analog in our con-

Y.Z(f)
text of the map (3.1) with a fiber of the restriction map d( f ) from (3.2). The product

structure results from the reducedness of the special fiber Z( ) combined with a
result of Achinger and Ogus [3, Corollary 4.1.9].
In a similar way, the a-side piece of any Milnor fiber of (X, 0) is recovered by

intersecting the preimage s Z(f)(D a) and the fibers of the restriction map d( f )

from (3.2). This piece can then be identified with a Milnor fiber of a smoothing
fa: (Y4,0) — (C,0) of a convenient splice type singularity (X, 0) associated to the
a-side rooted subtree I'; of I', cut (as explained in Subsection 2.4) along a pushed
page of the Milnor open book defined by the root coordinate x,,. The total space
Y, is determined from the system defining (Y, 0) by its pullback under a suitable
monomial map ¢,: C"*et! — C"*1 (see Steps (3) and (4) of Section 7). In turn, the
smoothing f, is obtained by restricting f o ¢, to Y,. This identification of portions
of Milnor fibers of smoothings of distinct singularities is done using log geometry
techniques. More concretely, we prove that the corresponding pieces of the canon-
ical Milnor fibrations obtained through rounding are homeomorphic (see Steps (23)
through (26) of Section 7).

Central to the proof of this homeomorphism is the following reinterpretation of
cutting the Milnor fibers of (X, 0) in the direction of the root r, of I',. It can be
achieved by cutting a level of the smoothing f,: (Y,,0) — (C,0) of (X,,0) along the
coordinate hypersurface Z(x;,) associated to the root of I';. In order to perform such
a cut in the logarithmic setting via rounding we must cut a suitable modification Y, of
Y, along Z( f; Xr,)- Note that the latter is precisely the total transform of the intersec-
tion of Y, with the coordinate hypersurface Z( f;x;,). This construction is illustrated
in Figure 9. The map (fa);rog: (Yy. (9;;0 (=Z(faXr)og = (D, Op(—{0}))10e in the

figure is the rounding of a log enhancement of fa (see Definitions 4.36 and 4.46).



The Milnor fiber conjecture and an overview of its proof 661

Z(fa)

L Z(Xr,)

A
-

A I i, Z(fukrg)

—_— 9 e —-= > *—e D
St ™, {0} 0

Figure 9. Local drawing of the rounding operation away from X,. The canonical representative
of the Milnor fiber (in red) has been cut using Z(X,,). The special fiber Z( fa) is drawn in
blue. The origin has been replaced by the circle S! under the real oriented blowup D, {0y Of
Subsection 4.2. This circle is depicted on the left as a pair of points. The two remaining fibers
(in purple) indicate the local triviality of the Milnor fibration.

3.3 Local tropicalization and Newton non-degeneracy

In this subsection we discuss the essential role played in our proof of Conjecture 2.47
by both the local tropicalizations of analytic subgerms of (C"*!, 0) and the Newton
non-degeneracy condition. More details on these two notions can be found in Sec-
tion 5.

Let (Y,0) < (C"*1,0) be a proper equidimensional subgerm, without irreducible
components contained in the toric boundary of C**1. Given any fan ¥ of (R>¢)" 1,
we can consider the toric morphism ¢ : X — C"*! defined by ¥ and its restriction

Y > Y

to the strict transform ¥ of ¥ by ng. Note that the map 7 is not proper if the
support of ¥ is strictly included in (R>o)"*!. However, the restricted map 7 is
proper whenever the support of ¥ contains the local tropicalization of the embedding
(Y,0) < (C"*1 0) (see Proposition 3.7).

Local tropicalizations were developed by the last two authors in [71] as a tool
to study singularities. They are a local version of global tropicalizations (or “non-
Archimedean amoebas”) of subvarieties of the algebraic torus (C*)"*1. Namely, the
local tropicalization of a subgerm of (C"*1,0) is the support of a fan contained
in (R>0)"™!. We used this notion in [12] to prove several properties of splice type
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surface singularities, including their Newton non-degeneracy property and the first
tropical interpretation of splice diagrams, whenever they satisfy the determinant and
semigroup conditions.

The statement regarding the properness of 7: Y >Yisa consequence of the
following local analog of Tevelev’s result [79, Proposition 2.3]. For a proof, we refer
the reader to [12, Proposition 3.19 (1)].

Proposition 3.7. Let (Y, 0) be any reduced complex analytic subgerm of C"T1
without irreducible components contained in the toric boundary 0C" 1. Let ¥ be
a fan whose support is contained in (Ro)" 1. Then, the strict transform morphism
w:Y —» Y is proper if, and only if, the support of ¥ contains the local tropicaliza-
tion of Y.

As in the global setting (see [48, Theorem 3.2.3]), local tropicalizations admit
an alternative more algebraic description using initial ideals relative to non-negative
weight vectors. Namely, as discussed in Definition 5.2, the local tropicalization
Trop Y of a germ (Y, 0) — (C"*! 0) defined by an ideal I of the local ring
C{zo,...,zn} of (C"*1,0) is the closure of the set of non-negative weight vectors w
such that the w-initial ideal iny, (/) contains no monomials.

This viewpoint is particularly useful when working with explicit equations defin-
ing (Y, 0) inside (C"*!, 0). For instance, it allowed us to determine the local
tropicalizations of splice type singularities in [12]. Similar methods can be used to
compute the local tropicalization of an edge-deformation (Y, 0) < (C"*1,0) in the
sense of Definition 6.3. Namely, the support of the fan ¥ alluded to in Proposition 3.6
is Trop Y.

Remark 3.8. Notice that Trop ¥ has no canonical fan structure. Particularly useful to
us are those fan structures where the initial ideals of / are constant along the relative
interiors of all its cones. A fan ¥ with this property and support equal to Trop Y is
called a standard tropicalizing fan (see Definition 5.4).

The use of standard tropicalizing fans is convenient when dealing with Newton
non-degenerate germs (see Definition 5.8).

Proposition 3.9. Assume that ¥ is a standard tropicalizing fan of a Newton non-
degenerate germ (Y,0) — (C"*1,0), and let Y be the strict transform of Y under
the toric morphism wg: X% — C"*1, Then, Y is transversal to the toric boundary
0X ¢ of X in the sense of Definition 4.1.

Remark 3.10. Proposition 3.9 is the crucial ingredient allowing us to prove Propo-
sition 3.6, concerning our special smoothings f: (Y, 0) — (C, 0) of splice type
singularities (see Theorem 5.12). As explained in Subsection 3.2, once we know that
7 is a quasi-toroidalization of f, a consequence (see Corollary 4.56) of a general
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local triviality theorem of Nakayama and Ogus applied to f o 7 yields a canonical
representative of the Milnor fibration of f.

4 Logarithmic ingredients

In this section we give an overview of the logarithmic tools needed to prove Conjec-
ture 2.47. Subsection 4.1 discusses the notion of quasi-toroidalization of a smoothing
in further detail than in Subsection 3.2. Subsection 4.2 provides a first glimpse of both
the rounding operation and the notion of a log structure by means of the classical pas-
sage to polar coordinates. Subsection 4.3 reviews basic definitions of log spaces and
morphisms between them that are needed to introduce the rounding operation of Kato
and Nakayama. The latter is the subject of Subsection 4.5. Subsection 4.6 discusses
Nakayama and Ogus’ local triviality theorem. This result allows us to get canon-
ical representatives of Milnor fibrations over the circle using quasi-toroidalizations of
smoothings.

4.1 Quasi-toroidal subboundaries and quasi-toroidalizations of smoothings

We begin this subsection by defining boundary-transversal subvarieties of toroidal
varieties. Then, we introduce the notions of quasi-toroidal subboundaries of toroidal
varieties and of quasi-toroidalizations of smoothings. These last two notions play a
central role in both Corollary 4.55 and the local triviality theorem of Nakayama and
Ogus (see Theorem 4.53).

Recall that foroidal varieties were introduced in Definition 3.2. We define now a
special type of complex analytic subvarieties of toroidal varieties, that are relevant for
proving Conjecture 2.47.

Definition 4.1. Let (W, 0W) be a toroidal variety. A reduced closed equidimen-
sional subvariety V of W is called boundary-transversal, or d-transversal for short,
if the following conditions are satisfied for each stratum S of the toroidal stratifica-
tion of W:

(1) the analytic space V' N S is a (possibly empty) equidimensional complex
manifold;

(2) if VNS # @, then codimy (V' N S) = codimy (S).
As Theorem 5.12 below shows, our main example of d-transversal subvarieties are

strict transforms of Newton non-degenerate germs (X, 0) < C” by toric birational
morphisms defined by standard tropicalizing fans of (X, 0) — C”.
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Remark 4.2. Notice that when W is a complex manifold and S is a submanifold
of it, then conditions (1) and (2) of Definition 4.1 recover in a neighborhood of §
the classical notion of transversality of two submanifolds of an ambient manifold
(meaning that at each of their intersection points, the sum of their tangent spaces is
equal to the tangent space of the ambient manifold). Indeed, assume that S is a sub-
manifold of W and V is a reduced subvariety of W such that V' N S is smooth and
codimy (V N S) = codimy (). Then, V is smooth in a neighborhood of S and trans-
versal to it. Condition (1) regarding the smoothness of the intersection is essential, as
shown by the example of the pair (W, S) := (C2, Z(x)) and V := Z(y? — x3): the
analytic space V' N § is the doubled origin Spec(C[y]/(y?)), therefore it is not a man-
ifold. Condition (2) regarding equality of codimensions is also crucial, as shown by
the example of the pair (W, S) := (C2,0) and V := Z(x), since codimy (V N §) =1
and codimpy (§) = 2.

Remark 4.3. The notion of d-transversality in the toric case is closely related to that
of schon compactifications of subvarieties of tori, a concept introduced by Tevelev
in [79, Definition 1.3]. An equivalent definition, more suitable for our purposes was
given by Maclagan and Sturmfels in [48, Definition 6.4.19] (see also [48, Proposition
6.4.7]).

Let V be an equidimensional subvariety of an algebraic torus 7', and let X ¢
be a normal toric variety with dense torus 7. The compactification V C X
is schon if, and only if, V intersects each orbit @, of X # and, furthermore,
these intersections are smooth with codimv(v N @) = codimy, (O-).

Notice that the equality of codimensions in this last definition agrees with condition
(2) of Definition 4.1. In particular, if V' C X is a schon compactification, then V is
o-transversal in the toroidal variety (X #, 90X #). Moreover, a d-transversal subvariety
of a toric variety is a schon compactification of its intersection with the dense torus
if, and only if, it meets each torus orbit.

Boundary-transversal subvarieties of toroidal varieties admit an inherited toroidal
structure whose associated toroidal stratification is compatible with the ambient one.
This is summarized in the following folklore result that can be easily established by
working locally in toric charts.

Proposition 4.4. Let (W, 0W) be a toroidal variety and let V be a 0-transversal
subvariety of W. Consider the set oV :=V N 0W. Then the following properties
hold.

(1) The pair (V, V) is a toroidal variety.
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Da Dy :=Z(x,z); D;:=Z(y,1)
Dy := Z(x,1); Dy:=Z(y,z)

D,
D3

Figure 10. Boundary strata of the toroidal variety (W, W), where W := Z(xy — zt) C C*.
The toric boundary dW has four irreducible components (see Example 4.7).

(2) The strata of the toroidal stratification of (V, dV') are the connected com-
ponents of the intersections V N S, where S varies among the strata of the
toroidal stratification of W.

(3) The embedding (V, V) — (W, dW) is a toroidal morphism of toroidal vari-
eties.

Of particular interest to us are special subvarieties of toroidal boundaries obtained
by taking unions of certain irreducible components satisfying a special condition, as
we now describe.

Definition 4.5. Let (W, dWW) be a toroidal variety and let Dy be a subdivisor of
the toroidal boundary 0W of W. We say that Dy is a quasi-toroidal subboundary
of (W, dW) if in the neighborhood of any point of W, the complementary divisor
W — Dw = W \ Dw consists of the local irreducible components of dW con-
taining a fixed stratum of the toroidal stratification.

We illustrate this definition with two examples.

Example 4.6. Consider the quadratic cone W := Z(z2 — xy) < C i,y,z. It is a nor-

mal affine toric surface, whose boundary 0W is the union Z(z, xy) of the x-axis L’
and the y-axis L. Then, L is a quasi-toroidal subboundary of the toroidal surface
(W, L + L'). However, (W, L) is not a toroidal pair, because the boundary of a toric
variety is always locally reducible at a singular point. o

Example 4.7. We consider the normal affine toric hypersurface W := Z(xy — zt) —
(Cf;’ y,z,x Whose boundary W is the union of the coordinate subspaces Dy := Z(x, z),
Dy :=Z(x,t), D3 := Z(y,t), Dy := Z(y, z), as seen in Figure 10. Then, D1 + Dy
is a quasi-toroidal subboundary because D, and D3 are the only components of dW
containing Z(¢) N W.In turn, Dy 4+ D3 is not a quasi-toroidal subboundary since the
only stratum contained in both D, and D4 is the origin, but this point is contained in
both D; and D3 as well. o
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Remark 4.8. We were led to Definition 4.5 by trying to determine which sub-
divisors of boundaries of toroidal spaces produce associated divisorial log structures
that are relatively coherent in the sense of Nakayama and Ogus [54, Definition 3.6]
(see Proposition 4.44).

Quasi-toroidal subboundaries are essential ingredients to define quasi-toroidali-
zations of smoothings.

Definition 4.9. Let f: (Y,0) — (C,0) be a smoothing. A guasi-toroidalization of f
is a modification 7: Y — Y such that there exists a divisor dY of Y satisfying the
following properties:

(1) the pair (f’, oY ) is a toroidal variety;

(2) the morphism f :(Y,dY) — (C,0) is toroidal;

(3) the zero-locus Z ( f ) of the lifting of f to Y is a quasi-toroidal subboundary
(Y,aY).

Note that Definitions 4.5 and 4.9 are reformulations of parts of Definition 3.4.

Quasi-toroidalizations of smoothings feature in Steps (7) and (11) of our proof of the
Milnor fiber conjecture.

4.2 Introduction to logarithmic structures and rounding through polar
coordinates

In this subsection we introduce log structures in the sense of Fontaine and Illusie [33]
and the operation of rounding due to Kato and Nakayama [34] by ways of a unifying
example, namely, the standard morphism of passage to polar coordinates

[TC {03 ]: [0, +00) x s! > C (r,e'%) — re'?. 4.1)

We do not claim that this was the original motivation behind the development of these
two notions. The reader interested in learning how Fontaine and Illusie discovered log
structures may consult [28].

Our first objective is to define the map ¢ oy from (4.1) in a coordinate-free fash-
ion, in order to extend it to any pair consisting of a complex space and a hypersurface
in it, rather than solely for (C, 0).

Since tc {0y 1s @ homeomorphism outside the circle St ~ 17a ’1{0}(0) bounding
[0, +00) x S, we may view T, {0} as an analog of the usual blowup of the real plane
C at the origin. While in the usual blowup the origin is replaced by the set of real lines
passing through it, in the passage to polar coordinates this point is replaced by the set
of oriented lines (which may be canonically identified with the set of half-lines, see
Figure 11). For this reason, the map tc (o) 1s known also under the name of a real
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oriented blowup. The analogy between the two blowups may be enhanced by seeing
them both as closures of graphs of maps which are undetermined at the origin. While
for the usual blowup the map is the real projectivization C = R? --> P(R?), it is the
argument function for the real oriented blowup.

Definition 4.10. Let z be the standard coordinate function on C. The argument func-
tion [argl: C* — S! is defined by arg(z) := z/|z|.

Remark 4.11. The argument function given above is a variant of the standard notion
of argument of a non-zero complex number, which takes values in R/27Z, and is
defined by re’® — 6 mod 2. Our notation follows the choice made by Ogus in [64,
Section V.1.2].

N

Figure 11. The left arrow is the real oriented blowup while the right one is the usual blowup of
the center of a disc. The horizontal arrow is the natural factorisation of the left arrow through
the second one.

Remark 4.12. The construction of real blowups or real oriented blowups was exten-
ded by A’Campo [1, Section 2] to arbitrary normal crossings divisors in complex
manifolds (see also [36, pages 404—405], [49, Section 1.3], [69, Section 2.2] and [68]).
It was later extended by Kawamata [35, Section 2] to toroidal boundaries of special
types of toroidal varieties and by Hubbard, Papadopol and Veselov [27, Section 5]
to arbitrary closed analytic subsets of real analytic manifolds. In another direction,
A’Campo’s definition was extended by Kato and Nakayama to arbitrary log complex
spaces (see Definition 4.46 below). It is this last viewpoint which is of interest for us,
therefore we explain now how to see the simplest real oriented blowup ¢ (o} above
as an operation performed on a log complex space.
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Note first that the lift ¢ {0}(arg) of the argument function to (0, +00) x S! can
be uniquely extended by continuity to [0, +00) x S!. The resulting map

7.0y (arg): [0, +-00) x st - st

is simply the second projection. Therefore, each point P € ST = 8,0, ([0, +00) x S)
may be seen as a possible place to compute the limit of arg(z) as z converges to 0.
As we will now explain, the choice of such a point also allows to define the limit of
arg(h(z)) as z converges to 0, for all non-zero germs of holomorphic functions / at
the origin.

Let be the local ring of the complex curve C at 0, consisting of the germs
of holomorphic functions on C at 0. Then Oc o \ {0} is a commutative monoid for
multiplication, in the following sense.

Definition 4.13. A monoid is a set endowed with an associative binary operation
which has a neutral element. The monoid is commutative if the operation is so.

Denote by (96’0 the subgroup of units of the monoid Oc o \ {0}, consisting of
the germs of holomorphic functions which are non-zero at 0.

Any germ h € Oc o \ {0} can be written in a unique way as 4 = z" - v for some
m € N and v € O¢ . Thus, the following relation holds in a sufficiently small punc-
tured neighborhood of 0 in C:

h m
arg(h) = m = (é_|) % = arg(z)mi.

As a consequence of the fact that 7. {0}(arg) extends by continuity to [0, +00) x S!,
we see that the same is true for the lift {0}(arg(h)). By abusing notation, we denote
this extension also by 7. o) (arg(h)) as seen in the following commutative diagram:

[0, +00) x S!
J T 0y Cre(h))
.10}
C———=-~—-- 3 St
arg(h)

If h1,hy € Oc,o \ {0}, then on any punctured neighborhood of the origin on which
they are both non-zero, we have

arg(hy) - arg(hz) = arg(hy - ha).
As a consequence, the relation

T(;,{O}(arg(hl)) : T(é’{()} (arg(hZ)) = ‘Cé,{o}(arg(hl . hz))
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is true over a neighborhood of the boundary S' = 9,0, ([0, +00) x S1) of the cylinder
[0, +00) x S!. This yields the following result.

Proposition 4.14. Consider a point P € S = 8,0,([0, +00) x S'). Then, the map

(Oc.o\{0},) — (8",
h = & oy @rg() (P)

is a morphism of multiplicative monoids extending the standard morphism of groups
(OF o.-) = (S1,-) given by h — arg(h(0)).

That is, each point of the topological boundary of the real oriented blowup
[0, +00) x ST of C at 0 may be seen as a morphism of monoids from (Oc,o \ {0}, )
to (S1,-). This statement yields the promised intrinsic, “coordinate-free”, extension
of the map t¢ o) from (4.1) to arbitrary pairs of complex varieties and hypersurfaces
in them.

Definition 4.15. Let (W, D) be a pair consisting of a reduced complex variety W,
and a hypersurface D C W (which may be also seen as a reduced Weil divisor). For
every point x € W, denote by Mw, p . the multiplicative monoid of germs at x of
holomorphic functions on W which are non-zero outside D. Consider the set

Wp :={(x,P):x € W and P: (Mw,px,") — (S',)
1s a morphism of monoids such that

P(v) = arg(v(x)) for every v € Oy, . }.
The rounding map tw,p: Wp — W is given by the first projection.

Example 4.16. When (W, D) = (C, {0}), the rounding map 7¢c (0}: Cyop — C
becomes the change to polar coordinates map tc oy from (4.1). When (W, D) =
(C2, Z(xy)), the rounding map

7c2, 2y Coay) = €
is simply the cartesian product of the rounding maps tc,o}: Coy — C of the fac-

tors of C2

[0, +00) x S! x [0, +00) x St — C2,

6>

(r1, e’el,rz,elez) — rlelelrze’ o

Each monoid (Mw,p,x, ) from Definition 4.15 is the stalk at the point x € W
of the sheaf of monoids Mw, p on W whose sections on an open subset U of W
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containing x are the holomorphic functions on U which are non-zero outside D.
Note that the sheaf M, p comes with a canonical morphism of sheaves of monoids

(Mw,p,") = (Ow,*)

to the sheaf )y of germs of holomorphic functions on W': it is simply the inclusion
morphism. This morphism identifies the corresponding subgroups of units. This is
precisely the defining property of a log structure in the sense of Fontaine and Illusie
[33] (see Definition 4.19 below). The previous log structure is called the divisorial
log structure induced by D (see Definition 4.33 below).

The notations of Definition 4.15 will not be used any further. We chose them
because they were sufficiently simple not to hinder the understanding of the mean-
ing of a divisorial log structure. We will introduce other notations for divisorial log
structures and for rounding maps in Definitions 4.33 and 4.46, believing that they are
more adapted for a functorial manipulation of log structures.

(QI;/(_D) = MW,D, T@;V(_D) = Tw,D.

Remark 4.17. It is worth pointing out some differences between scheme-theoretic
algebraic geometry and log geometry in the sense of Fontaine and Illusie. First, the
algebraic basis of algebraic geometry consists of the study of rings, their ideals and
modules, whereas the algebraic basis of log geometry involves monoids, and the cor-
responding notions of ideals and modules (see [64, Sections 1.1.2 and 1.1.4]). Second,
assume we are given an algebraic variety W and a hypersurface D on it. Then,

(1) Algebraic geometry assigns to this pair a sheaf of ideals, whose sections on
an open subset of W consist of the regular functions vanishing at least on D.

(2) Fontaine and Illusie’s log geometry assigns to (W, D) a sheaf of monoids,
whose sections on an open subset of W consists of the regular functions van-
ishing at most on D.

Remark 4.34 is a consequence of this observation.

4.3 Complex log spaces and their morphisms

In Section 4.2 we motivated the concept of a divisorial log structure through a
coordinate-free version of the classical change to polar coordinates in C. In this sub-
section, we explain basic general definitions about log spaces and their morphisms,
including pre-log and log structures (see Definition 4.18), pullbacks and pushfor-
wards of log structures (see Definitions 4.26 and 4.27), divisorial log structures (see
Definition 4.33), toroidal log structures (see Definition 4.35), strict log morphisms
(see Definition 4.32) and log enhancements of suitable analytic morphisms of pairs
(see Definition 4.36). For further details, we refer the reader to Ogus’ textbook [64].



The Milnor fiber conjecture and an overview of its proof 671

Kato’s foundational paper [33] on the subject develops log structures in the cat-
egory of schemes, inspired by ideas of Fontaine and Illusie (see also [64, Definition
III.1.1.1]). Log structures in the complex analytic setting are discussed in [34, Sec-
tion 1]. We will give the definitions for arbitrary ringed spaces, which will be assumed
to be locally ringed.

The starting point for defining log structures is the notion of a pre-logarithmic
structure (recall that monoids were introduced in Definition 4.13).

Definition 4.18. A pre-logarithmic space W is a ringed space [W| (called the under-
lying ringed space of the pre-logarithmic space), endowed with a sheaf of monoids
Mw and a morphism of sheaves of monoids

|Otwl Mw — (Ow, )|

The pair is called a pre-logarithmic structure on W, or pre-log struc-
ture for short. To simplify notation, we often write Oy instead of Ow . The pre-

logarithmic space W is called complex (respectively, complex analytic) if the under-
lying ringed space W is complex (respectively, complex analytic).

A log structure is a pre-log structure satisfying a supplementary condition.

Definition 4.19. A pre-logarithmic space (W, My, aw) is called a logarithmic
space, or a log space for short (and the associated pre-log structure is then called a log
structure) if the morphism oy induces an isomorphism aﬁ,l (Oy) ~ Oy, . Here,
denotes the sheaf of units of (W, Ow ). A complex (analytic) space endowed with a
logarithmic structure is called a log complex (analytic) space.

Remark 4.20. The condition that oy induces an isomorphism ay;! (95,) =~ O3, is
equivalent to the condition that it induces an isomorphism My, ~ Oy, between the
sheaves of unit subgroups of the sheaves of monoids My and Oy .

Remark 4.21. If a log structure on a complex space W can be inferred from the
context, we simplify notation and write for the corresponding log space. The
notation “W T is borrowed from the book [23], which surveys the Gross-Siebert pro-
gram to study mirror symmetry with log geometry techniques.

Remark 4.22. Fontaine and Illusie’s main motivations for introducing the notion of
a log space (in the context of schemes) can be found in [28]. The terminology refers
to the fact that a log structure gives rise to a canonical notion of a sheaf of differential
forms with logarithmic poles. The term “logarithmic” hints also to the fact that the
composition law in My can be viewed additively, i.e., o becomes an exponential
map turning sums into products.
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Every ringed space can be endowed with two canonical log structures, which we
now describe.

Definition 4.23. Let (W, Ow) be a ringed space. Its tautological log structure is
given by the identity morphism on Ow and its trivial log structure by the embedding
Oy — Ow.

Remark 4.24. Log structures on a fixed ringed space form a category. More pre-
cisely, morphisms ¢: (M, o) — (N, B) are morphisms of sheaves of monoids
@: M — N compatible with the morphisms « and g, i.e., @ = B o ¢. The trivial log
structure is the initial object in this category, whereas the tautological log structure is
its final object.

By definition, any log structure on a ringed space (W, Ow) is a pre-log structure.
Thus, we have a natural inclusion functor

t: {log structures on W} — {pre-log structures on W'}.

Furthermore, ¢ admits a left adjoint j by [64, Proposition III.1.1.3]. More precisely,
given a pre-log structure (M, o) on W, its image under j (“a” being the
initial of “associated”, see Definition 4.25 below) is the push-out of the diagram of
sheaves over W

aﬁ,l Op) —— Mw

-

Ow

where a;VI (Oyy) is the inverse image sheaf under oy . It comes with a natural map
ajy | M§, — Ow sending (s, 1) to aw (s)t for each s € My and t € O}, Thus, any
pre-log structure on W comes with a natural log structure, namely, its image under j
(see [33, (1.3)] and [64, Proposition III.1.1.3] for details).

Definition 4.25. We call (M7, , ay;,) the log structure associated to the pre-log struc-
ture (Mw, aw).

Log structures may be pulled back and pushed forward (see [33, Section 1.4] and
[64, Definition III.1.1.5]).

Definition 4.26. Let f: V — W be a morphism of ringed spaces. Fix a log struc-
ture (M, aw) on W. The pullback of My by f is the log structure on

V associated to the pre-log structure obtained as the composition f (M) aw,
71 (Ow) = Oyp.Here, f~1(My) is the inverse image sheaf, i.e., the sheafification
of the presheaf U +— limy/5 sy My (U’) on V where U" C W and U C V are open.
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Definition 4.27. Let f: 1V — W be a morphism of ringed spaces. Fix a log structure

(My,ay) on V. The pushforward of My by f is the fiber product of the
morphisms of sheaves of monoids O — f4(Oy) and f4(My) — f+(Oyp) on W,

endowed with the projection [p2]: fx My — Ow

SeMy 2 > Ow

| |

J+(My) ——— f+(Oy).

Here, f4+(My) and f4(Oy) denote the direct image sheaves of My and Oy by f.
The pair ( fx My, p2) is a log structure on W

Remark 4.28. If f:V < W is a closed immersion of analytic spaces, we say that
[ My is the restriction of My to V. For this reason, we often denote it by [My|y|.
This operation of restriction is thoroughly used in our proof of the Milnor fiber

conjecture (see Steps (13), (17), (19), (21) and (24) of Section 7). In turn, the opera-
tion of pushforward is used in Definition 4.33 below.

In order to turn pre-log and log spaces into categories, morphisms must be appro-
priately defined. We start with morphisms between pre-log spaces, which are defined
using inverse image sheaves.

Definition 4.29. A morphism ¢:V — W between pre-log spaces is a pair
(¢:V — W.¢": ¢~ (Mw) — My),
where ¢ is a morphism of ringed spaces and ¢” is a morphism of sheaves of monoids

onV, Elaking the following diagram commute

6 (M)~ My

¢’_1an laV

¢~ (Ow) — Oy.

The pre-log structure on Q‘l (Mw) is given by the composition

ay o ¢b:9_1(¢MW) — Oy.

Definition 4.30. A morphism of log spaces, or log morphism for short, is simply a
morphism between the underlying pre-log spaces. That is, the category of log spaces
is the full subcategory of the category of pre-log spaces whose objects are the log
spaces.
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Example 4.31. If two ringed spaces V' and W are endowed with their trivial log
structures in the sense of Definition 4.23, then a log morphism ¢: V' — W is simply
a morphism of ringed spaces. o

Next, we define special morphisms of log spaces, namely, those that can be
obtained by restricting log structures (see [64, Section III.1.2]). They play a central
role in the construction of roundings, as we will see in Theorem 4.48 below.

Definition 4.32. A morphism of log spaces f:V — W is called strict if it establishes
an isomorphism f*Mpy >~ My.

As we saw in Subsection 4.2 through the example of the passage to polar coordin-
ates, special types of log structures on complex analytic varieties may be built using
reduced divisors (see Definition 4.15). We reformulate now that definition using the
operation of pushforward.

Definition 4.33. If D is a reduced divisor on a complex analytic variety W, its asso-
ciated divisorial log structure is the pushforward of the trivial log structure
on W\ D by the inclusion W \ D < W. More precisely, its monoid of sections on
an open set U of W consists of the holomorphic functions defined on U which do not
vanish outside D. If V < W is an embedding, then we write I’,‘VW(—D) for the
restriction of Oy, (—=D) to V, following Remark 4.28.

For the role of divisorial log structures in the proof of Conjecture 2.47, we refer
to Steps (16) and (17) of Section 7.

Remark 4.34. The notation “Oy, (—D)” is not standard. We chose it by analogy to
the classical notation “Oyw (—D)” for the sheaf of holomorphic functions vanishing
at least along D (keeping in mind that, as we emphasized in Remark 4.17, sections of
Oy (—=D) are not allowed to vanish outside D, unlike for Oy (—D)). Other notations
used in the literature are “M\ p)|v” (see [64, Section I11.1.6]) and “M gy, py” (see
[23, Example 3.8] or [4, Example 1.6]). It is worth pointing out that, unlike what
happens to the sheaf Ow (—D), no new object arises from Oy, (—D) if we consider
non-reduced divisors. In short, @}, (—D) depends only on the support of D.

Toroidal varieties (see Definition 3.2) can be equipped with canonical divisorial
log structures as follows.

Definition 4.35. A toroidal log structure is a divisorial log structure of the form
O (W), where (W, dW) is a toroidal variety. A variety endowed with a toroidal
log structure is called log toroidal.

In the same way as divisors determine log structures, particular kinds of morph-
isms between varieties endowed with divisors determine log morphisms. Indeed, let
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V and W be two complex analytic varieties and let Dy and Oy be two reduced
divisors on them. Let f:V — W be a complex morphism such that the following
inclusion holds:

1 (Dw) € Dy.

This implies that the pullback by f of any section of Oy, (—Dw) is a section of
Oy, (—Dy ). Since this pullback commutes with the tautological inclusion morphisms
Oy (=Dy) — Oy and Oy, (—Dw) — Ow, it induces a log morphism between the
corresponding log toroidal varieties. The following terminology summarizes this con-
struction.

Definition 4.36. Let V, W be two complex analytic varieties and Dy, Dw be
two reduced divisors on them. Let f:V — W be a complex morphism such that
71 (Dw) € Dy. Then, the log morphism

T (V. 08 (=Dy)) — (W, 03 (—~Dw))

obtained by pullback via f is called the log enhancement of f associated to the
divisors Dy and Dw .

Remark 4.37. In our proof of Conjecture 2.47 we consider log enhancements of
morphisms of the form f~ :Y — D, where f:Y — D is a smoothing of a splice type
singularity, 7: Y >Yisa quasi-toroidalization of f in the sense of Definition 4.9
and f~ := f om. Such log enhancements feature in Steps (13), (14), (17), (19), (21)
and (23) of our proof.

Proposition 4.4 has the following important consequence: d-transversal subvari-
eties of toroidal varieties acquire log-theoretic properties when intersecting the input
subvariety with a quasi-toroidal subboundary of the ambient space. Indeed, we prove
the following statement.

Proposition 4.38. Let (W, dW) be a toroidal variety and let Dy be a quasi-toroidal
subboundary of it. Consider a 0-transversal subvariety V of (W, dW) as in Defini-
tion 4.1 and write OV .=V N oW and Dy =V N Ow. Then

(1) The subvariety Dy of V is a quasi-toroidal subboundary of (V, dV).

(2) The log enhancement of the embedding V <— W as in Definition 4.36 relative
to the divisors Dy and Dy is strict in the sense of Definition 4.32.

4.4 Types of monoids and charts of log structures

In this subsection we introduce terminology for various types of commutative mon-
oids and we explain the notion of chart for a log structure, which is an analog of the
usual notion of chart in differential geometry.
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Definition 4.39. Let (P, +) be a monoid. The Grothendieck group |(P&?, +)| gen-
erated by it is the set of formal differences m; — m, of elements of P modulo the
equivalence relation

my —my =ny —ny < there exists p € P satisfyingm; +n, +p=my+n;+p
and endowed with the obvious addition
(my —my) + (my —m}) := (my + m’) — (mz + m}).

The group of units of the monoid P is its maximal subgroup.

The group P87 is also called the groupification or the group hull of P. It
is endowed with a natural morphism of monoids P — P&7. The nature of this
morphism determines special classes of monoids (see [64, Definition 1.1.3.1]). More
precisely, we have the following terminology.

Definition 4.40. A monoid (P, +) is called

(1) integral or cancellative if the natural monoid morphism P — P&? is inject-
ive, that is, if the implication

m_+_m/:m+m//:>m/:m//

holds for every m,m’,m"” € P;
(2) unit-integral if the natural group morphism P* — P87 is injective;

(3) saturated if it 1s integral and the implication

qgqme P —=— meP

holds wh € P82 andg € N* (h = ;
olds whenever m and g € N* (here, [gm]:= m + + m);
g times

(4) fine if it is integral and finitely generated;

(5) toricifitis fine and P#? is a lattice, that is, a free abelian group of finite rank.

Remark 4.41. Note that the toric monoids are exactly the monoids of characters of
affine toric varieties. Those varieties are normal if, and only if, the toric monoid is
saturated.

Just as local charts are essential to do computations in differential geometry, the
notion of a chart of a log structure is crucial to study log structures locally. The
definition of a chart is based on the construction of log structures associated to pre-
log structures (see Definition 4.25). A chart depends on the choice of a monoid.
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Before formally defining charts of a log space (W, My ) (following [33, Defini-
tion (2.9)] and [64, Sections I1.2.1, III.1.2]), we need some auxiliary notation. For any
monoid P, giving a morphism of monoids P — I'(W, My/) from P to the monoid
of global sections of the sheaf My is equivalent to giving a morphism of sheaves of
monoids Py — Myw . Here, denotes the constant sheaf associated to P, that is,
the sheaf associated to the presheaf that takes each open set of W to P and whose
restriction maps are identities. Strictly speaking, it should be called the locally con-
stant sheaf associated to P, but tradition established the shorter name. By composing
this morphism of sheaves with the structure map o : My — Ow of the log space W
we get a pre-log structure Py — Ow . Its associated log structure in the sense
of Definition 4.25 comes equipped with a morphism of log structures Py, — My .

Definition 4.42. Let (W, My ) be alog space and P a monoid. A chart for W subor-
dinate to P is a morphism Py — My of sheaves of monoids such that the induced
morphism Py, — My of log structures is an isomorphism.

If the monoid P is finitely generated, then the chart is called coherent. If P is
fine/toric (in the sense of Definition 4.40), then the chart is called fine/toric.

A log space which admits a coherent chart in a neighborhood of every point is
called coherent. If, moreover, such charts may be chosen to be fine/toric, then the log
space or structure is called fine/toric.

Remark 4.43. A simple check confirms that toroidal log structures in the sense
of Definition 4.35 are toric, therefore coherent. As with toric varieties, charts in neigh-
borhoods of distinct points can be subordinate to different monoids. Indeed, if W is
a complex affine toric variety associated to a toric monoid P, whose set of closed
points is Hom( P, C), then the natural morphism of monoids P — I'(W, Oy, (—dW))
is a chart whose domain is the whole variety W. Furthermore, the monoid P/P*
can be reconstructed from the toric log space (W, Oy, (—dW)) as the quotient of the
monoid of germs of sections Oy, (—dW), at the unique closed orbit 0 of W by its
subgroup of units (O, (—0W),)*.

Our proof of Conjecture 2.47 involves divisorial log structures which are defined
by quasi-toroidal subboundaries in the sense of Definition 4.5. The associated divi-
sorial log structures are not necessarily coherent, but they are relatively coherent as
defined by Nakayama and Ogus in [54, Definition 3.6]. In the context of toroidal vari-
eties, relatively coherent divisorial log structures correspond exactly to quasi-toroidal
subboundaries, as our next result asserts.

Proposition 4.44. Let (W,0W) be a toroidal variety and Dw be a subdivisor of oW .
Then, (W, Oy, (—=Dw)) is relatively coherent in (W, Oy, (—0W)) if, and only if, Dw
is a quasi-toroidal subboundary of (W, 0W).
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Remark 4.45. Relative coherence plays a crucial role in Nakayama and Ogus’ local
triviality theorem (see Theorem 4.53 below), as the source of a relatively log smooth
morphism is relatively coherent by hypothesis. We use this local triviality and Corol-
lary 4.55 to produce canonical representatives of the Milnor fibrations over the
circle associated to the quasi-toroidalizations of a given smoothing (see Steps (14)
and (18)).

4.5 Kato and Nakayama’s rounding operation

In Subsection 4.2 we introduced rounding maps by analogy with the classical passage
to polar coordinates (see Definition 4.15). In this subsection we give further details
on this construction and discuss its functoriality properties. Throughout, a cartesian
diagram of topological spaces denotes a pullback or fiber product diagram in the
topological category.

The following definition of the rounding of a log space is a slight reformulation
of Kato and Nakayama’s generalization of the real oriented blowup operation given
in [34, Section 1] for log complex analytic spaces (see also [64, Definition V.1.2.4]).
Alternative descriptions of this operation can be found in [29, Section 1.2] and [4,
Section 1.1]. A useful example to keep in mind is the passage to polar coordinates
on the log space (C, @*(—{0})), discussed in Subsection 4.2. For a comparison with
A’Campo’s classical real oriented blowups we refer the reader to [18].

Definition 4.46. Let (W, My, aw) be a log complex space in the sense of Defini-
tion 4.19. We identify the sheaves My, and Oy, via the map aw (see Definition 4.20).
The rounding of W is the set

[Wiog| 1= {(x,u),x € W,u € Hom(My x,S?),
u(aw,x(f)) = arg(f(x)),Vf € My, = Op .},

where arg(s) = s/|s| for each s € C* (see Definition 4.10). The rounding map is the
function

W] Wieg = W
(x,u) — x.

The rounding W, is endowed with the weakest topology making continuous the
rounding map 7y and the set of maps

{arg(m) € Hom(rv_Vl(U), SYHY:U c W open,m € My (U)},
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where

: rﬁ,l(U) — St

(x,u) — u(my).

Remark 4.47. The terminology “rounding” was coined by Ogus (see [2, 54]) and
refers to the fact that whenever W is a fine log space in the sense of Definition 4.42,
the fibers of the rounding map 7y are finite disjoint unions of compact tori, which
are product of circles, and thus, prototypical “round” geometric objects (see The-
orem 4.48). Alternative names in the literature are “Kato—Nakayama Space” (see
[4,77]) or “Betti realization”, again a terminology due to Ogus (see [64]).

The next result discusses functoriality properties of the rounding operation. For a
proof when W is a log complex analytic space, we refer to [64, Proposition V.1.2.5].
The same proof is valid for arbitrary log complex spaces.

Theorem 4.48. Assume that (W, My, aw) is a log complex space.

(1) The rounding map tw is continuous. It is a homeomorphism whenever the log
structure of W is trivial.

(2) Let x be a point of W and consider the abelian group
:= Hom(Myw,x/ My . S). (4.2)

Then, Ty acts naturally on the fiber ‘L"E,l (x) by extending the natural action
on Hom(Mwy ,St), i.e.,

(B - w)(m) = B(m)u(m) for B € Tx, u € Hom(Mw,,S"'), m € Mw,x,

where m is the coset of m in My x/ 'MI*/V,x' This action defines a torsor if the
monoid My  is unit-integral in the sense of Definition 4.40. In particular, Ty
is surjective if My has only unit-integral stalks. This occurs, for instance, if
W is a fine log space.

(3) The construction of Wi is functorial and the morphism tw is natural. More
precisely, a morphism f:V — W of complex log spaces induces a morphism
of topological spaces : Viog = Wiog, called the rounding of f, which fits
in a commutative diagram

Sio
Viog —— Wiog (4.3)

Wl th

V— W,
!
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Thus, the rounding operation is a covariant functor from the category of log
spaces to the category of topological spaces.

(4) The diagram (4.3) is cartesian (in the topological category) whenever the log
morphism [ is strict in the sense of Definition 4.32.

Remark 4.49. Note that whenever (W, My, aw) is a fine log space in the sense
of Definition 4.42, the monoid My x/ M;V,x appearing in Theorem 4.48 (2) is fine.
Consequently, its Grothendieck group (Mw,x/ My, )7 is finitely generated, thus a
direct sum of a finite abelian group and a lattice. Therefore, the group 7 from (4.2)
is a finite disjoint union of compact tori (that is, of groups isomorphic to (S!)* for
some n € N). As a consequence of Theorem 4.48, the fiber rv}l (x) is connected (that
is, it is a single torus) if, and only if, the group (Mw, /My, )& is a lattice. This is
always the case when (W, My ) is a toric log space in the sense of Definition 4.42
(see [64, Proposition 11.2.3.7]). Notice that even if the toric monoid is not saturated,
its associated group is still a lattice: it is the lattice of exponents of monomials.

Theorem 4.48 (4) has an important consequence.

Corollary 4.50. Let W be a complex log space and let V. — W be a subspace of the
underlying topological space. Endow V with a log structure obtained by restricting
the log structure of W. Then, ty is the restriction of Tw to the subspace V.

The next result characterizes topological boundaries of roundings of log toroidal
varieties in the sense of Definition 4.35.

Proposition 4.51. Assume that W is a log toroidal variety. Then, Wy, is a real
semi-analytic variety homeomorphic to a topological manifold with boundary. Its
topological boundary 0iop(Wiog) is the preimage of the toroidal boundary 0W of W
under the rounding map ty .

Furthermore, it can be shown that W, is a “manifold with generalized corners” in
the sense of Joyce [31] (see also [19,40]). The statement can be proven locally since
open sets of affine toric varieties serve as local models for toroidal varieties. The
topological part of the statement can be found in [32, Lemma 1.2], and its extension
to the semi-analytic category is straightforward. Theorem 4.53 in the next subsection
complements this result by extending it to morphisms.

The next result is a slight generalization of Theorem 4.48 (4). It can be proved
using the classical pullback lemma of abstract category theory (see [6, Lemma 5.8]
or [47, Exercise 111.4.8]). It plays a crucial role in Steps (14) and (19) of the proof
of Conjecture 2.47.
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Proposition 4.52. Fix the following commutative diagram of log morphisms between

log complex spaces
X——Y (4.4)

|

V——W.

Assume that either its two vertical or its two horizontal arrows are strict and that
the underlying commutative diagram of topological spaces is cartesian. Then, the
commutative diagram

Xlog — Ylog

!

Vlog E— VVlog

obtained by rounding (4.4) is cartesian in the topological category.

4.6 Nakayama and Ogus’ local triviality theorem

In this subsection, we discuss Nakayama and Ogus’ local triviality theorem (see The-
orem 4.53) and two of its consequences (see Corollaries 4.55 and 4.56), expressed in
the language of quasi-toroidal subboundaries. As stated in Remark 4.45, these results
are essential to confirm that quasi-toroidalizations of smoothings of the input splice
type surface singularities yield canonical representatives of Milnor fibrations over a
compact two-dimensional disk D centered at the origin of C.

Using Siebenmann’s topological local triviality theorem from [75, Corollary
6.14], Nakayama and Ogus proved the following log version of Ehresmann’s theo-
rem (see [54, Theorems 3.5 and 5.1]). We will not give precise definitions of several
terms involved in the statement (relative coherence, separated, exact and relatively
log smooth morphisms, points where a morphism is vertical), since our interest in this
result lies in one of its consequences, namely, Corollary 4.56 discussed below.

Theorem 4.53. Let f:V — W be a morphism of log complex analytic spaces, where
W is fine and V is relatively coherent. Assume that f is proper, separated, exact
and relatively log smooth. Then, its rounding fiog: Viee — Wiog is a locally trivial
fibration whose fibers are oriented topological manifolds with boundary. The union
of the boundaries of the fibers consists of those points of Vieg Sent by the rounding
map ty: Vieg — V to points of V where f is not vertical.

Remark 4.54. Theorem 4.53 generalizes earlier work of Kawamata concerning the
structure of real oriented blowups of proper surjective toroidal and equidimensional
morphisms of quasi-smooth toroidal varieties (see [35, Theorem 2.4]). Kawamata’s
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definition of a real oriented blowup is a generalization of A’Campo’s notion with the
same name (see Remark 4.12). But while A’Campo’s original construction for nor-
mal crossings divisors in smooth complex varieties uses line bundles, Kawamata’s
approach is to glue local models for quasi-smooth toroidal varieties built from sim-
plicial affine toric varieties, thus avoiding the use of log structures altogether.

The next corollary to Theorem 4.53 can be proved by translating the notions of
relative coherence, separatedness, exactness, log smoothness, relative log smoothness
and verticality into the toroidal language when the target is the standard log disk
(D, Op(—10})), and by using Proposition 4.44.

Corollary 4.55. Let f : V. — D be a proper complex analytic morphism from a com-
plex analytic variety V to an open disk D of C centered at the origin. Let Dy
be a reduced divisor on V such that the complement V \ Dy is smooth and with
f~ ~1(0) € Dy. Choose the following log enhancement of ¢, in the sense of Defini-
tion 4.36:

f1(V, 05 (D)) — (D, O3 (—{0})).

Assume that there exists a reduced divisor dV of V with the property that (V, V') is
toroidal, Dy is a quasi-toroidal subboundary of (V,dV) in the sense of Definition 4.5
and the morphism f:(V,dV) — (D, 0) is toroidal. Then, the morphism of topological
spaces

flOg (V’ (9;(_:01/))105; - (D, (9]6) (_{O}))log

obtained by taking the rounding of f~ T, is a locally trivial topological fibration whose
fibers are manifolds with boundary. The union of the boundaries of the fibers consists
of those points of (V, O}, (—Dy ))1og sent by the rounding map (V, Oy, (— JDV))log -V
to points x of V for which the germ (Dvy )y strictly contains the germ ( f ~1(0)),.

Corollary 4.55 can be used as a tool to study Milnor fibers of smoothings of isol-
ated complex singularities. More precisely, if f: (Y,0) — (C, 0) is such a smoothing,
we consider a quasi-toroidalization r: Y — Y of it in the sense of Definition 4.9, and
we aim to apply Corollary 4.55 to the triple V := Y, fi:=fom and Dy := f~1(0).
In order to achieve properness of f , we work with a Milnor tube representative of f .
Such a representative is obtained by first considering the part of a representative of
(Y, 0) contained in a Milnor ball, and then restricting this set further to the preimage
by f of a sufficiently small Euclidean disk D centered at the origin of C. There is a
slight difference between this setting and that of Corollary 4.55, as Y hasa topological
boundary. However, since f is locally trivial near that boundary, it is straightforward
to show that Corollary 4.55 generalizes to this slightly broader context.

Corollary 4.56. Let f:Y — D be a Milnor tube representative of a smoothing. Let
n:Y — Y be a quasi-toroidalization of it and f = fom betheliftof f 10 Y.
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Fix Dy = f ~1(0) and consider the following log enhancement of f , in the sense
of Definition 4.36:

TV, 05(=Dy)) — (D, 045(—{0})).

Assume that there exists a reduced divisor 3Y of Y with the property that (f’ , 3)7) is
toroidal, Dy is a quasi-toroidal subboundary of (Y ,0Y) in the sense of Definition 4.5
and the morphism f:(Y ,0Y ) — (DD, 0) is toroidal. Then, the morphism of topological
spaces

S (V05 (=D))iog = (D, OF (—{0))1og

obtained by taking the rounding of f T is a locally trivial topological fibration
whose fibers are manifolds with boundary homeomorphic to the Milnor fibers of
the smoothing f. Moreover, the restriction of this fibration to the boundary circle

(0,04 I0( {0})10g of the cylinder (D, Op (—{0}))10g is isomorphic to the Milnor fibra-
tion of f over the circle.

In the context of the Milnor fiber conjecture, we apply Corollary 4.56 to smooth-
ings of three different singularities: the input splice type surface singularity, and the
a- and b-side singularities, whose associated splice diagrams are obtained by cut-
ting the starting splice diagram at an internal point of the edge [a, b] (see Steps (13)
and (19) of Section 7). In this case, dY is the intersection of ¥ with the toric bound-
ary of its ambient toric variety, and similarly for the a and b sides. In addition,
in order to get representatives of the cut Milnor fibers appearing in the definition
of the four-dimensional splicing operation (see Definition 2.45), we use an analog
of Corollary 4.56 in which Dy strictly contains f ~1(0) (see the last paragraph of
Subsection 3.2).

5 Tropical ingredients

In this section we elaborate on the tropical techniques used in our proof of the
Milnor fiber conjecture, discussed already in Subsection 3.3. We explain the notions
of (positive) local tropicalization (see Definition 5.2), (standard) tropicalizing fan
(see Definition 5.4) and Newton non-degeneracy (see Definitions 5.8, 5.10). In partic-
ular, we state a local analog of global theorems of Tevelev, Luxton and Qu showing
that the strict transform of a Newton non-degenerate germ by a tropicalizing fan is
boundary transversal inside the ambient toric variety (see Theorem 5.12).
Throughout this section, we view C” as an affine toric variety, whose toric bound-
ary dC" consists of the union of all coordinate hyperplanes. We let [a] := (R>¢)"” be
the cone of non-negative weight vectors. A vector w = (wy, ..., w,) € 0 endows
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each variable z; of C” with weight w;. Any fan & with support |¥ | contained in o
determines a birational toric morphism

g Xg — C".

This morphism is proper (and, therefore, a modification of C”) if, and only if, | ¥ | =
lo] = (R>0)".

Fix a germ (X, 0) < (C",0) of an irreducible complex analytic space not con-
tained in the toric boundary of C”. Even if ¢ is not proper, its restriction

X > X (5.1)

to the strict transform X of X by m# may very well be. Properness is controlled by a
cone (i.e., a set closed under scaling by Rx¢) inside o, called the local tropicalization
Trop X of (X, 0) < (C",0). This is the content of the next proposition, which we
view as a local version of [48, Proposition 6.4.7] inspired by Tevelev’s work [79] (see
Remark 4.3). More details (including a proof) can be found in [12, Proposition 3.19].

Proposition 5.1. With the previous notations and hypotheses, the following proper-
ties hold.

(1) The morphism m from (5.1) is proper if, and only if, the support |¥ | contains
the local tropicalization Trop X.

F| = Trop X if, and only if, X intersects

every orbit S of the toric variety X ¢ along a non-empty pure-dimensional

subvariety with codimy (Y N S) = codimy . (S).

(2) Assume that 1 is proper. Then,

Proposition 5.1 (1) gives a complete characterization of the local tropicalization
of an irreducible germ not contained in the toric boundary. This construction extends
readily to any finite union of germs of this type by setting its local tropicalization to
be the union of the local tropicalizations of its irreducible components. The formal
definition of local tropicalizations, provided below, follows the construction of global
tropicalization for subvarieties of tori from [48, Theorem 3.2.3] and it implies this
additivity property.

Definition 5.2. Let (X,0) < C” be a germ of a complex analytic space defined by
an ideal / of the power series ring (O] := C{zy,...,z,}. If w € o, the w-initial ideal
of I is the ideal of O generated by the w-initial forms of all elements in /.

The local tropicalization of X 1is the set of all vectors w € o such that the w-
initial ideal in, (/)@ € O of I is monomial-free. We denote it by [Trop X|. In turn,
the positive local tropicalization of X is the intersection of the local tropicalization

with the positive orthant (R~¢)"”. We denote it by [Trop. o X]|.
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The two previous notions of local tropicalization depend on the embedding
(X,0) = (C™,0). For simplicity, we do not include this embedding in the notation
of Trop X since it can be inferred from context.

Remark 5.3. Local tropicalizations were introduced by the last two authors in a
slightly different form [71], i.e., for germs of analytic or formal spaces contained
or even mapped to germs of arbitrary affine toric varieties. In that paper, the two ver-
sions Trop X and Trop X~ ¢ of local tropicalization contained also strata ““at infinity”,
corresponding to the local tropicalizations of the intersections of (X, 0) with various
torus-orbit closures.

Definition 5.2, combined with the existence of standard bases for ideals of O,
ensures that Trop X is the support of a fan (see [71, Theorem 11.9]). However, Trop X
has a priori no preferred fan structure. Any fixed structure on Trop X can be further
refined to satisfy desired properties (e.g., regularity). Of particular interest to us are
fan structures for which the initial ideals in, (/)@ are constant along the relative
interiors of all cones of Trop X. More precisely, we have the following notion (see
[12, Definition 3.17]).

Definition 5.4. Let (X,0) — (C",0) be a germ of a complex analytic space defined
by an ideal I of O. A tropicalizing fan for (X, 0) is a fan ¥ whose support is the local
tropicalization Trop X . In turn, a standard tropicalizing fan for (X, 0) is a tropicaliz-
ing fan such that in,, (/) is constant when w varies along the relative interior of any
cone of ¥ .

The adjective “standard” makes reference to “standard bases”, which are used in
[71, Section 9] to define local tropicalizations, in analogy with the use of Grobner
bases to study global tropicalizations of subvarieties of tori. Note that when (X, 0)
is defined by polynomial equations, the Grobner complex of X determines a tropic-
alizing fan for (X, 0), as was shown by Aroca, Gémez-Morales and Shabbir in [5].
Standard tropicalizing fans always exist in the holomorphic context, as we proved in
[12, Proposition 3.15].

Remark 5.5. If (X, 0) < (C",0) is a hypersurface singularity defined by a series
f € O, then Trop X admits a coarsest fan structure which, in addition, is a standard
tropicalizing fan for (X, 0). Indeed, we can describe Trop X as the subfan of the New-
ton fan of f supported on cones dual to bounded edges of the Newton polyhedron
of f. The duality between the Newton fan and the Newton polyhedron of f (i.e., the
convex hull of the union of o-translates of the space of exponents of monomials in
the support of f) confirms this fact.
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(O’Oa 5) <
(15,10, 6) A3

(0,3,0) 5 3
(2,0,0)

A

Figure 12. The Newton polyhedron, the local tropicalization and the splice diagram of the Eg
surface singularity (see Example 5.6).

Example 5.6. Let (X,0) < (C?3,0) be the Eg surface singularity from Example 2.12.
As Figure 12 shows, its standard tropicalizing fan consists of the faces of the two-
dimensional cones spanned by w := (3:5,2-5,2-3) and each of the coordinate
weight vectors. Note that w is orthogonal to the unique compact two-dimensional
face of the Newton polyhedron of f := x2 + y3 4 z° because f is w-homogeneous.
Note that a transversal section of the standard tropicalization of X is isomorphic to
its associated splice diagram. As explained in Remark 2.42, this property holds for
any splice type singularity. o

The positive local tropicalization of a germ determines its local tropicalization, as
the next statement confirms (see [12, Proposition 3.13] for details).

Proposition 5.7. Consider a germ (X,0)— (C",0). The local tropicalization Trop X
is the topological closure of the positive local tropicalization Trop. X inside the
cone 0.

This result was heavily used in [12] to compute local tropicalizations of splice
type singularities. The same method determines the local tropicalization of edge
deformations of these germs, as we discuss in Section 6.

The second main result in [12] confirms that splice type surface singularities are

Newton non-degenerate. Such property characterizes the simplest germs from the
toric perspective. More precisely, we have the following terminology.

Definition 5.8. Let (X, 0) < C” be a reduced germ defined by an ideal / of 0.
We say that X is Newton non-degenerate if for any w € (R~ ()", the w-initial ideal
ing (1) C Clzy,...,z,] defines a smooth subscheme of the algebraic torus (C*)”.
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Remark 5.9. An alternative (yet equivalent) formulation of Newton non-degeneracy
was proposed by Aroca, Gomez-Morales and Shabbir in [5, Definition 11.2]. They
require that for each w € o, the extended initial ideal iny, (/)@ C O defines a smooth
subscheme of the algebraic torus (C*)”. Therefore, any potential singularity of the
germ defined by / is contained in the toric boundary.

For hypersurfaces, Definition 5.8 coincides with the prototypical definition of
Newton non-degeneracy given by Kouchnirenko [41, Definition 1.19]. It was exten-
ded to complete intersections by Khovanskii in [38, Section 2.4] (see also Oka’s
book [65, page 112]). Here, we use a slight variation of it, in agreement with the
setting from [12].

Definition 5.10. Let (X,0) — C” be a reduced germ defined by a regular sequence
(f1,---, fx) of elements of (). We say that this sequence is a Newton non-degenerate
complete intersection presentation of (X, 0) if for any w € (R~¢)", the sequence
of w-initial forms (iny ( f1), ..., iny (fx)) defines either the empty set or a smooth
complete intersection of the algebraic torus (C*)”.

The difference with Khovanskii’s definition lies in the requirement of regularity
of the sequence (f1,..., fr), i.e., it must define (X, 0) as a complete intersection
in the standard sense. Note that if ( f1,..., fx) is a Newton non-degenerate com-
plete intersection presentation in the sense of Definition 5.10 and if each series f; is
multiplied by a suitable monomial such that all those monomials contain a common
variable, then the resulting sequence is no longer regular, but it nevertheless defines a
Newton non-degenerate complete intersection singularity in Khovanskii’s sense.

Definition 5.10 is more restrictive than Definition 5.8. More precisely, we have
the following result.

Proposition 5.11. Let (fi,..., fx) be a Newton non-degenerate complete intersec-
tion presentation of a germ (X, 0) — C". Then, (X, 0) is Newton non-degenerate.

Proof. Let ¥ be a standard tropicalizing fan of X as in Definition 5.4. The relative
interior of each cone of ¥ contains at least one primitive integral weight vector. This
vector is unique if, and only if, the cone is a ray. The constancy of initial ideals
along relative interiors of cones of ¥ ensures that it is enough to prove that for every
primitive integral vector w € (R-¢)”, the subscheme Z(iny (7)) of (C*)" defined
by iny, (/) is smooth. Here, I denotes the ideal of O generated by ( fi,..., fx). By
hypothesis, I defines the germ X.

Let us fix a primitive integral vector w € (R~¢)". Consider the codimension one
orbit Oy, inside the toric variety XRr. ,w. There is a natural morphism of algebraic
tori @: (C*)" — Oy, corresponding to the quotient morphism of the weight lattice
7" of (C*)" by the sublattice Zw. The scheme Z(iny, (1)) is the preimage under ¢
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of the scheme-theoretic intersection Oy, N X , where X is the strict transform of X by
the toric birational morphism Xgr_ ., — C”. Thus, it suffices to prove that O, N X
is smooth. B

As X is a complete intersection germ, it is of pure dimension, say d > 0. There-
fore, X is also of pure-dimension d, and so Oy, N X is pure of dimension d — 1.
Since ( f1,..., fr) is a Newton non-degenerate complete intersection presentation of
(X,0), we know from Definition 5.10 that the strict transforms ZTf;) of the hypersur-
face germs Z( f;) defined by the holomorphic germs f; intersect the orbit Oy, along
hypersurfaces which form a normal crossings divisor in a neighborhood of their inter-
section. Therefore the scheme-theoretic intersection Oy, N ﬂle ZE) is smooth of
pure dimension d — 1. Since Oy, N XCOpn ﬂle ZTf;) is an inclusion of schemes
of pure dimension d — 1, we deduce that O,, N X is a union of irreducible compon-
ents of Oy, ﬂle Z(\ﬁ). Thus, it is smooth.

We claim that, furthermore, the equality Oy N X = Op N ﬂle ZTﬁ) holds.
To show the missing inclusion, pick a point p € Oy N ﬂle ZE) and let g, €
O, be a defining function of Oy, in the local ring @, at p of the complex analytic
variety XR_ ,w. For every i € {1,...,k}, we pick a defining function ]7; € O, of
the strict transform ZE). Such functions exist because Xg_ 4w is smooth. As Oy, N
ﬂf;l Z(\fi) is pure of codimension k in Oy, we see that (g, fl, el fk) is a regular
sequence in the local ring @,. Therefore, the sequence ( fl ye - fk gw) is also regular.
Thus, p lies in the closure of the intersection (C*)" N ﬂz—l Y4 ( fi). The latter equals
(C*)" N X by the complete intersection hypothesis. Thus, p € Oy, N X, as desired. m

The next result confirms the close interplay between Newton non-degeneracy,
tropicalizing fans and toroidal varieties. It reinforces Teissier’s suggestions from [78,
Section 5] to take the 0-transversality of a strict transform of a subgerm of (C™,0)
by a toric modification of the ambient space as a general definition of Newton non-
degeneracy for arbitrary germs in (C",0). More precisely, we have the following
statement.

Theorem 5.12. Let (X, 0) < C”" be a Newton non-degenerate germ in the sense
of Definition 5.8, and let ¥ be a standard tropicalizing fan for it. Denote by X the
strict transform of X by the toric birational morphism wg: X — C". Then, X is
d-transversal in the toroidal variety (X ¢ ,0X ¢ ) in the sense of Definition 4.1. Fur-
thermore, the pair (X, X N 30X ) and the morphism (X, X N 3Xg) — (X#,3X5)
are toroidal.

We view Theorem 5.12 as a local version of Luxton and Qu’s result [46, Theorem
1.5] regarding schon subvarieties of algebraic tori (C*)". Such subvarieties satisfy
the conditions from Definition 5.8, but in the global setting (see Remark 4.3).
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When (X, 0) is a Newton non-degenerate hypersurface germ and ¥ is a regular
fan (that is, its associated toric variety is smooth), Theorem 5.12 is a consequence
of Varchenko’s results from [81, Section 10] (see also Merle’s work [50]). In turn,
if (X, 0) is a Newton non-degenerate complete intersection and ¥ is a regular fan,
the statement follows from [65, Theorem II1.3.4]. The last claim in the statement is
obtained by combining the 0-transversality of X with Proposition 4.4.

6 Edge deformations of splice type systems

In this section, we define the special smoothings of splice type singularities which
we use to prove the Milnor fiber Conjecture (see Definition 6.3). They depend on the
choice of an internal edge of the associated splice diagram I" and on a triple of pos-
itive integers. The smoothings are constructed by adding scalar multiples of suitable
powers of a new deformation variable zo to each series Fy, ; from (2.9) defining the
associated splice type system S (I").

Throughout, we let I" be a splice diagram satisfying the determinant and semig-
roup conditions (see Definitions 2.26 and 2.32). We fix two adjacent nodes a, b of I".
As illustrated in Figure 4, we let r be any point in the interior of [a, b] and [I"] be the
rooted tree obtained by subdividing [a, b] along r, and fixing its root at r. In order
for T to be a splice diagram (in a slightly more general sense than we allowed in
previous sections since the vertex r has valency two), we must endow it with weights
around r. This is done via the following lemma, whose proof is a direct consequence
of the positivity of the determinant of the edge [a, b].

Lemma 6.1. There exist positive coprime integers ko and kyp, satisfying the inequal-
ities
da (db a)2
— < <
(da b) db

In particular, the decorated diagram T seen on the right of Figure 13, which is
obtained from T by subdividing [a, b] using r and setting = kg, = kp,
satisfies the edge determinant condition.

The welghts on T yield a well-defined notion of linking number ¢,, ,, of any two
vertices u, v of T. In turn, we use this to write a weight vector for each node of T,
including the root r, by analogy with the construction of welght vectors for the nodes
of I' (see (2.5)). Since T has the same leaves as I', that is, 0 T =9 I', we view the
lattices N(0I') and M (9I") from Subsection 2.3 also as the weight lattice and lattice
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Figure 13. From left to right: a splice diagram I" and a subdivision of it induced by a point r
in the relative interior of an internal edge [a, b] (in red) producing a new splice diagram I" after
decorating the edges around r with appropriate integers k, and kj (see Lemma 6.1).

of exponent vectors of T.In particular, we set

= Y Lyawy € N@T).
Aedll

As was mentioned above, edge deformations of splice type systems depend on a
triple of positive integers. Here is the precise definition.

Definition 6.2. A triple|(ky, kp, D)|of positive integers is adapted to the edge [a, b]
of I' if kg, kp satisfy the inequalities of Lemma 6.1 and D is divisible by all decora-

tions dy, , of f, when u varies among the nodes of I'. An enrichment of T relative to
the edge [a, b] is a choice of a triple (k,, kp, D) adapted to [a, b], or equivalently, the
datum of the splice diagram I" together with the integer D.

Such triples (kq, kp, D) always exist, by Lemma 6.1. In order to build a deform-
ation of the system §(I') for a fixed triple, we introduce a new variable z( (the
deformation parameter) and define two extended lattices

:= Z{wo) ® N(T') ~ Z"*!  and = Z(wy) & M(dT) ~ Z"*+1,

(6.1)
where and denote the basis vectors corresponding to zo in N (dT") and
M (3T"), respectively. Analogously, for each A in 9 T", we let be the image in
N (3T of the basis vector w, from N(dT"). Similar notation applies to each vector
[wY|from M (3T). We let [N (9T )g|:= N (9T") ®z R and [M (d1)g|:= M (3T) ®z R
be the R-vector spaces associated to the lattices in (6.1).

The triple (kq, kp, D) adapted to [a, b] allows us to build new weight vectors in
N(@TI), ie.,

D¢t — ~
= wo + dr’u w, € N(aT) for each node u of T". (6.2)

u

In particular,
wr = wo + Dwr.
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Notice that w, € N (dI') since the divisibility constraint d, ,|D imposed on D
implies that D¢, ,/d, € Z. The relevance of the weight vectors w,, is discussed
in Remark 6.4 below.

Edge deformations of splice type systems adapted to an internal edge are con-
structed by analogy with Definition 2.38, as we now explain.

Definition 6.3. Let $(I') = (Fy.i(2))y,; be a splice type system. Fix an internal edge
e = [a,b] of T and a triple (k,, kp, D) adapted to it. We view D as a supplementary
decoration of the splice diagram I'.

* An edge-deformation JD() of §(I') associated to the previous data is a finite
family of formal power series of the form

— Dt
Fu,i(20,2)|:= Fy,i(2) —[Cv.i]zg "

foralli € {1,...,8, — 2} and each node v of T, (6.3)

where ¢, ; € C* and F,; are as in (2.9).

* An edge-deformation of the splice type singularity defined by the system §(I")
and associated to the previous data is the subgerm at the origin of the affine space
C™*1, which is defined by an edge deformation system i)(F). The deformation
parameter is the new variable z.

Remark 6.4. By analogy with Remark 2.39 (1), we can show that our choice of

exponents D/, , guarantees that the polynomials f, ;(z) — cv,iz(l,) v are Wy, -homo-

geneous, where w,, is the weight vector from (6.2).

Remark 6.5. As we shall see in Step (3) of Section 7, our proof of Conjecture 2.47
requires an extension of Definition 6.3 to the case where the edge [a, b] is not internal,
but connects a node to a leaf. We do not discuss this generalization here, to simplify
the exposition.

Example 6.6. We let [a, b] be the unique internal edge of the splice diagram I’
from Figure 3, where @ = u and b = v. We have multiple choices for the pairs (k,, kp)
satisfying 6/49 < k,/kp < 11/70. For an illustration, we pick (kq, kp) = (1,7). In
particular, £, , = 42 and £, , = 70. Thus, w, = (21, 14,10, 14,35) € 7. Moreover,
w, = (147,98, 60, 84,210) and wp, = (210, 140, 110, 154, 385).

The integer D must be divisible by both 49 and 11, so we take D = 539. A pos-
sible edge-deformation (f) of a strict splice type system S (I') satisfying the Hamm
determinant condition of Definition 2.38 is

7.2 3 22638
Sfa1 =21 =225 + 2425 + 2 ,
7. 4, .7, .5 2, 37730
S =212 + 23 + 25 — 215525 + z5" 7,

7b,2 = 33212;t + Zg + 222 — 2123Z§ _ 237730_
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In particular, the three relevant extended weight vectors are

w, = (1,11319, 7546, 5390, 7546, 18865),
w, = (1, 11319, 7546, 4620, 6468, 16170)
and wp = (1, 10290, 6860, 5390, 7546, 18865). o

In order for the germ defined by i)(f‘) to have a prescribed local tropicalization,
we must impose further genericity constraints on the coefficients ¢, ;. To this end,
given any w € (Rx¢)"*! € N(dI')gr we consider the map

[Ful C" = C"2  Fy(2) = (iny(Fy,i)(2))w,i

whose entries are determined by the set of initial forms of all equations F; ; defining
the system S (I"). When restricted to codimension two coordinate subspaces of C”,
the map Fy, satisfies the following key property.

Proposition 6.7. For each w € Trop. X and any pair of distinct leaves A, p of T,
the restriction map : C"=2 — C"2 to the coordinate subspace Z(z;,z,,) of
C™ is generically finite, hence dominant.

This result allows us to specify explicit genericity conditions on the coeffi-
cients ¢,,; from (6.3) that are suitable for proving Conjecture 2.47. Under such
genericity conditions, we can verify that the vanishing sets of both §(I') and the
edge-deformation SO(F) have similar behavior. More precisely,

Theorem 6.8. Assume that (cy,;)v,i are generic and let ‘!/(F) be the vanishing set of
the edge-deformation O (T") in C"T1. Then,

(1) the germ (y(F), 0) is a three-dimensional reduced and irreducible isol-
ated complete intersection singularity not contained in the toric boundary
0an+1,'

(2) the series defining the edge-deformation {l)(i:) determine a Newton non-
degenerate complete intersection presentation of its vanishing set Y (I");

(3) the local tropicalization Trop y(fl:) C (R>0)"*! is independent of @(F) and
its coarsest fan structure is a standard tropicalizing fan for Y(I").

Remark 6.9. The description of the top-dimensional cones of the standard tropical-
ization fan of Zy(f”) mentioned above is a bit more cumbersome than for the splice
type system S (I") discussed in Remark 2.42. The explicit construction of this fan is
used in Step (8) of Section 7 as well as in the proof of Theorem 6.8 (2) under explicit
genericity conditions. The rays of Trop iy(F) are easy to list: they are generated by the
weight vectors w,, indexed by all vertices u of the enriched splice diagram T plus one
more ray corresponding to the deformation variable. The fan is non-simplicial and its
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unique non-simplicial top-dimensional cone is spanned by wg, w,, wp and w,. The
presence of this last cone reveals the product structure of the central component of
the Milnor fiber of the germ defined by S (I") (see Step (27)).

7 Proof outline of the Milnor fiber conjecture

In this section, we outline our proof of Neumann and Wahl’s Milnor fiber conjecture
(see Conjecture 2.47) through a sequence of 28 steps. Each step has a title, describing
it briefly. The main statements proved at each step are written with italic characters.
The first four steps set up the deformations and smoothings of various splice type sys-
tems. The tropical techniques are used in Steps (5) through (12), whereas logarithmic
geometry features from Step (13) onwards. This decomposition into steps is much
more detailed than the decomposition into stages explained in Section 1. The corres-
pondence between them is as follows: Stage (i) corresponds to Steps (1) and (2); Stage
(i1) to Steps (3) and (4); Stage (iii) to Steps (5), (6) and (9); Stage (iv) to Steps (7)
and (11); Stage (v) to Steps (13), (14), (15) and (19); Stage (vi) to Steps (8), (10),
(12), (16), (17), (18), (20), (21), (22), (23), (24) and (25); Stage (vii) to the remaining
Steps (26), (27) and (28).

We start from a splice diagram I' (see Definition 2.23) with n leaves and at least
two nodes, which satisfies the edge determinant condition of Definition 2.26 and the
semigroup condition of Definition 2.32. We let < (C™,0) be a splice type
singularity defined by a splice type system as in Definition 2.38. Fixing an
internal edge [a, b] of " determines a partition of § (I") into two systems: an a-side
system , combining the series associated to all the nodes seen from b in the
direction of @, and a b-side system involving the series associated to all the
nodes of I" seen from a in the direction of b.

(1) We enrich the splice diagram T'.

We subdivide the splice diagram I" using an interior point [7] of the edge [a, b] and
we let [I'] be the resulting tree, rooted at the vertex r. We choose a triple
adapted to [a, b] in the sense of Definition 6.2 and we view Tasa splice diagram
(with weights d, , = k, and d, , = kp) enriched by D.

(2) We perform an edge deformation of the starting splice type system.

We consider an edge deformation of the system § (I') in the sense of Defin-
ition 6.3 with deformation parameter [Zg]. We assume that the coefficients (cy i)y, €
(C*)"~2 satisfy the genericity constraints mentioned in Section 6. We write oT)(ff‘/) as
the disjoint union of a deformed a-side system and a deformed b-side system

D)
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We let <> C"*1 be the singularity defined by D(T) and denote by
: Y — C the restriction of the linear form zo: C"*! — C to Y. We prove that f is
a smoothing of the splice type singularity (X, 0) and incorporate it into the following
commutative diagram:

Xy« , Ol (7.1)
| |-
0¢ CcC s C.

(3) We define the notion of an a-side morphism associated to the given edge deform-
ation.

Let u be a node of the rooted tree I'y, seen as a subtree of T in Figure 4. We prove
that the wy-initial forms of the series of the system i)(f)b are independent of the
choice of u. We let be the system determined by the vanishing of these
(np — 1) initial forms.

We prove that the system ing (D (F) p) defines a torus-translated toric subvariety
of C" 1 of dimension n, + 1. Furthermore, this subvariety admits a normalization
morphism

[@a]: CMe ! — C"H, (7.2)

where ¢, is a monomial map (i.e., a torus-translated toric morphism). Moreover, we
have

¥aZo = Xo, (7.3)
where [Xg] is one of the variables of C"« 1, We call ¢, the a-side morphism.

(4) We define an a-side deformation by a coordinate change of C" ysing the
a-side morphism ¢, from (7.2).

We define a system by pulling back the system éD(f‘)a via the a-side
morphism ¢,. We let < C"a*! be the singularity defined by the system
D(T,). Analogously, we let be the pullback of the system §(I') via ¢,.
By construction, $(I';) does not involve the variable xo. We identify the coordin-
ate hyperplane Z(xo) of C"«*1 with C"¢, and denote by < (C"«,0) the
singularity defined by the system §(I'y).

We show that $(I'y) is a splice type system with splice diagram Ty, and that
the system D(I'y) is an edge deformation of S (I'y) associated to the edge |a, rg],
with deformation variable x (see Figure 4). Notice that this last point requires us to
extend our definition of edge deformations to non-internal edges of splice diagrams.
As a consequence, the restriction of the linear map xo: C**+t! — C to (Y,,0) is a
smoothing of (X4, 0). We denote it by f,: (Y,,0) — C. The above data fit into the
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following commutative diagram analogous to (7.1):

X, C » Y, C y Catl (7.4)
T
0¢ > C ¢ C.

As expected, we perform analogous constructions on the b-side, denoting by
the corresponding deformation variable and by the b-side morphism. Since the
construction is symmetric in a and b, we restrict our exposition to matters concerning
only the a-side.

(5) We build a standard tropicalizing fan for (X, 0) and prove that (X, 0) is Newton
non-degenerate.

We construct a standard tropicalizing fan for the embedding (X, 0) — C"
in the sense of Definition 5.4 and use it to prove that the system S(I') is a Newton
non-degenerate complete intersection presentation of (X, 0), in the sense of Defini-
tion 5.10. Complete proofs for these assertions can be found in [12].

We prove that the fan Fx is a cone over a suitable embedding of the splice dia-
gram I in the standard simplex A,—; C R" (see [12, Theorem 1.2]). Its rays are in
bijection with the vertices of I" and its two-dimensional cones are spanned by pairs
of rays corresponding to adjacent vertices of I'. Thus, the splice diagram appears as
a transversal section of the local tropicalization of (X, 0) < C”. This gives the first
tropical interpretation of splice diagrams, in the case when both the determinant and
the semigroup conditions are satisfied.

(6) We build a standard tropicalizing fan for (Y, 0) and prove that this germ is New-
ton non-degenerate.

Using the results of Step (5), we describe a standard tropicalizing fan for
the embedding (Y,0) < C"*! and prove that the system .SD(’IV’) is a Newton non-
degenerate complete intersection presentation of (Y, 0). The genericity conditions on
D(T) are essential to determine  , as discussed in Theorem 6.8. A partial description
of ¥ is given in Remark 6.9. Our proof uses results and techniques from [12]. In
particular, we show that the 2-dimensional fan ¥y introduced at Step (5) is the union
of strata at infinity of ¥ corresponding to the vanishing of the deformation parameter
zo (see Remark 5.3).

(7) We describe a quasi-toroidalization of the smoothing f of (X, 0) from Step (2).
We let [Tz ]: X5 — C"*1 be the toric birational morphism defined by the fan %
of Step (6) and we denote by []: Y — Y the restriction of 7# to the strict transform
Y of Y by mg. Since ¥ is a tropicalizing fan for (¥, 0) < C"*1, Proposition 5.1
ensures that 77 1s a modification, unlike the case of the non-proper toric birational map
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g . These data fit into the commutative diagram

7=1(0) =: <—> = 7:1(0)

~
M
~-

X

T T

N

Y C y Cntl

Using Theorem 5.12, we prove that v is a quasi-toroidalization of f (see Defin-
ition 4.9). This statement follows from the fact that the deformed system D (I") is a
Newton non-degenerate complete intersection presentation of (Y, 0), as discussed in
Step (6).

(8) We prove that the dual complex of the exceptional divisor of 1 is a subtree of T.

The structure of the fan ¥ introduced in Step (6) allows to prove that the dual
complex of the (compact) exceptional divisor doY of m: Y > Y is canonically iso-
morphic to the unique connected subtree of T with vertex set equal to the set of nodes
of [. This induces a decomposition of dg Y as a sum of three reduced divisors, namely,

307 = [0a7 | +[0,7]+[05 7] (7.5)

Here, 9,Y is the sum of irreducible components of doY corresponding to the nodes
of ', and similarly for b. In turn, 9, Y is an irreducible variety corresponding to the
root r of I.

(9) We perform the a-side analog of Step (6).

We determine a standard tropicalizing fan ¥, for (Ya,0) — C"¢1 and we use
it to prove that the system D (I'y) introduced in Step (4) is a Newton non-degenerate
complete intersection presentation of (Y4, 0).

The rays of the fan ¥, correspond bijectively to the vertices of the rooted tree I',,
excepted for a single ray, which is the coordinate ray associated to the deformation
variable x¢. The cones spanned by pairs of rays corresponding to adjacent vertices of
I'; belong to the set of two-dimensional cones of ¥, . There are extra two-dimensional
cones of ¥, not included in this list. The three-dimensional cones are spanned by
some triples of rays of ¥,.

(10) We compare objects associated to X and their counterparts on the a-side singu-
larity X,.

Consider the torus-translated toric morphism ¢,: C"¢*! — C"*1 introduced in
Step (3). We prove that the associated linear map ¢4: N(I'g)r — N(I')r between
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weight spaces almost embeds the fan ¥, inside the fan ¥ . More precisely, it is an
embedding when restricted to the subfan of ¥, spanned by the rays associated to any
vertex of [', other than the root r,. Furthermore, the ray of ¥ associated to the
root r of T lies in the relative interior of the image under ¢, of the two-dimensional
cone of ¥, spanned by the rays corresponding to the vertices a and r, of I',.

We write = ¢, ({l;}) € N(T,)Rr and let be the fan obtained by
performing the stellar subdivision of ¥, along [, ,. Since it refines the standard
tropicalizing fan %, for (¥,,0) < C"«*! from Step (9), ,, is also a standard
tropicalizing fan for Y.

(11) We perform the a-side analog of Step (7).

Let [Ta,r| 17‘, — Y, be the restriction of the toric birational morphism 7, .
Xg,, — Cratl to the strict transform of Y, by ng,,. As ¥4, is a tropical-
izing fan for (Y,,0) < C"*1 by Step (10), the morphism 7, , is a modification.
This determines the commutative diagram

7, H(0) = % =7 (0)

I3y

~N

Y&( > Xﬁ@r
n'a.r ﬂ?a,r
Y, © » Cratl

Since the deformed system D (I'y) is a Newton non-degenerate complete intersection
presentation of (Y,,0) by Step (9), Theorem 5.12 confirms that n, , is a quasi-
toroidalization of f,.

(12) We continue comparing objects associated to X with their counterparts on the
a-side singularity X,.

We let be the subfan of ¥, , consisting of all cones not containing the ray
associated to the root r, of I';. By construction, the linear map ¢, from Step (10)
embeds ¥, into ¥ . Therefore, we can lift ¢o to a torus-translated morphism

[Pu|: X5, — Xg fitting into the following commutative diagram

P,
X, Xy

ﬂﬁa—,,l lﬂ?

ng+1 n+1
C —C
Pa ’
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with the additional property that the morphism ®, is a toric embedding, that is, a
toric morphism which is an embedding of algebraic varieties.

(13) We build the log special fiber of a log enhancement of the lifting f = fom,
where 1 is the quasi-toroidalization of f from Step (7).

Following the discussion preceding Corollary 4.56, we choose a Milnor tube rep-
resentative f:Y — D of the smoothing f and we consider its lift| f |:= f o7 Y ->D
to the modified space Y introduced in Step (7). Recall that 7 is a quasi-toroidalization
of f'. We consider the log enhancement of f relative to the divisors Z( f ) and {0} in
the sense of Definition 4.36, i.e.,

f YT — DT,

where = (Y, (9;7 (—Z(f))) and := (D, Op(—10})) are log complex slziaces.
At the level of sheaves of monoids, f T is simply the pulll3ack of functions by f.
Consider now the log special fiber of the morphism f T

o)'tz(H| - lof] (7.6)

obtained by restricting the log structures of the source and target spaces to the special
fiber of f and to {0} — D, respectively (see Remark 4.28). The construction yields
the following commutative diagram in the log category:

Z(Hf ——— ¥ (7.7)
(fNO)Tl Jf”*
of » DT,

Note that both horizontal arrows are strict, in the sense of Definition 4.32.

(14) We show that the rounding of the log enhancement of f is a representative of the
Milnor fibration of f.
Consider the rounding of the diagram (7.7) in the sense of Definition 4.46

Z(Hfy— 1, (7.8)
(fo)f[,gl lf];“g
t t
0f, » Dy

Note that ();rOg

one through the use of polar coordinates. As both horizontal arrows in (7.7) are

is a circle, identified canonically with complex numbers of modulus

strict, Proposition 4.52 implies that the diagram (7.8) is cartesian in the topological
category.
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Using Corollary 4.55, which is a direct consequence of Nakayama and Ogus’
local triviality theorem (see Theorem 4.53), we conclude that the left vertical arrow
of (7.8) is a representative of the circular Milnor fibration of f.

(15) We build a new representative of the Milnor fibration of f by removing a collar
neighborhood of the boundary of the total space of the fibration gf Step (14).
We consider the rounding map of the complex log space Z( f)*

Ty 2k = Z(F).
We build a new representative of the circular Milnor fibration of f using the restriction
7T .1 % i

of the leftmost vertical arrow from (7.8) to the preimage t (0oY) of the excep-

(f F)f
tional divisor 3oY = 77 1(0) of m under the rounding map T2yt Note that the
divisor doY already featured in Step (7) and that the complement of rZ(f) + (0o Y)in
Z( f )log is a collar neighborhood of the topological boundary of Z( f )log The latter

fact is crucial to prove the claim.

(16) We prove that rounding yields a canonical decomposition of the source of the
Milnor fibration of f.

The decomposition (7.5) induces the following decomposition of the source space
of the representative (7.9) of the circular Milnor fibration of f:

@oF) = 15 . (0, V) U sl (8, V) Uil . (9,7).

Z(f)Jr zZ(Hf zZ(Hf zZ(Hf

We prove that when restricted to the three parts of this decomposition, the rounding
morphism ( fo);rOg is isomorphic to the roundings of the log morphisms
T
0a7. 03, (~Z(f)) >0

; ) . (110)
(0,7, 03, 3 (~Z(f)) = 0T and 057,05, 5 (=Z(f)) =0

obtained by~ restricting the log special fiber (7.6) to the subdivisors 3.Y,9,Y and
Y of Z(f), respectively.

(17) We prove that the three log morphisms from (7.10) can be obtained by restrictions
from the ambient toric varieties.
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Using the functoriality of restriction of log structures, we prove that the log
morphisms of (7.10) are isomorphic to the log morphisms

Ba¥. 0% | 5(=Z(Z0)) — 0",

7.11
(—Z(20))) = 0" and (3,Y, O* 1D

0,Y,0* (—Z(Zp))) — OF

X510, Y X5 0,Y

obtained by restricting the logarithmic enhancement Zot: X; — CT of the linear
map 7o: X3 — C to the subdivisors 3,Y ,3,Y and 8,Y of Z(f), respectively. Here,
X; denotes the divisorial complex log space (X, O} - (—Z(20))).

(18) We describe the a-side parts of the Milnor fibers of f.
Using the results of Steps (13) through (17), we deduce that the fibers of the
rounding

0aY. 0% 0 5(=Z(20))iog = Oy

of the first arrow of (7 11) are homeomorphic to the parts of the fibers of the repres-
entative ( fo);rog' Z(f )log — Of;g of the circular Milnor fibration of f contained inside

Z(J')J“(a Y)

(19) We perform an a-side analog of Steps (13), (14) and (15).

We choose a Milnor tube representative f;:Y, — I of the smoothing f, of
(X4, 0) appearing in diagram (7.4) and we consider its lift = fq oMy, Y,—>D
to the modified space l?a introduced in Step (11). Recall that m,, is a quasi-
toroidalization of f,.

Consider the log enhancement of f, relative to the divisors Z( f2) and 0

faT: ~J — DT,

In turn, we build the log special fiber of the morphism f:r and its rounding, i.e.,
o) Z(f)t = of d ot 2 Z(f)f = of 7.12
(fa,O) . (fa) - an (fa,O)]og- (fa)log_) log* (7.12)

Let 7,74 Z(fa);rog — Z(f:,) be the rounding map of the complex log space
Z(fa)T. We show that the restriction of the rounding morphism ( f~a O)Lg Sfrom (7.12)
f )i (00Y2,) of the exceptional divisor a_} 0) of mq r

under the rounding map T2(Ft gives a representative of the czrcular Milnor fibra-

tion of f,.
(20) We perform an a-side analog of Step (16).

to the preimage 1’
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We prove that when restricted to ‘L’Z( 7t (aoY ), the rounding morphism ( fa O)IOg
from (7.12) is isomorphic to the rounding of the log morphism

B0¥a. O3 o & (=Z(fa))) = 0 (7.13)

obtained by restricting the log special fiber map ( fa 0)T from (7.12) to the subdivisor
aOY OfZ(fa)

(21) We perform an a-side analog of Step (17).
Recall that the variable xo of C"@ ! introduced in Step (3), denotes the deform-
ation variable of the a-side system D (I";) of Step (4). Consider the tropicalizing fan

Fa,r for Y, introduced in Step (10). Let X;ﬂ . denote the divisorial complex log
space (X, ,, (D;CN (—Z()EO))) and let

: X;a,r — Df

be the logarithmic enhancement of X relative to the divisors Z(Xy) and 0. We prove
that the log morphism (7.13) is isomorphic to the log morphism

%0'lgo5,: (Bo¥a, OF o 5 (~Z(%0)) > OF (7.14)

obtained by restricting X" to the subdivisor d¢Y, of Z( fa).

(22) We perform an a-side analog of Step (18).
Using the results of Steps (19), (20) and (21), we deduce that the fibers of the
rounding

(BO?LI ’ (9.;:.?&1 |80?a (_Z()EO)))Iog - OITOg

of the log morphism (7.14) are homeomorphic to the fibers of the representative

(fa O)IOg Z(f )T (aOY ) - O]og

of the circular Milnor fibration of the smoothing f, of X,.

(23) We compare the objects associated to the starting singularity X and to the a-side

singularity X, as a sequel to Steps (10) and (12), by constructing a natural map from

an a-side log morphism to a log morphism associated with the initial smoothing.
Recall the fan ¥, . and the torus-translated toric morphism ®g: Xy, — Xg

introduced in Step (12). The relation (7.3) ensures that the following triangle of torus-
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translated toric morphisms commutes:

X}’a—’r >x$.

In turn, we obtain the following commutative triangle in the logarithmic category

@)

Xz, O, (~Z(%0)) (X5 0%, (~Z(20)))

fcg\) %
(C,0¢(—0})
(7.15)
in which the log enhancement CIDZ of ®, associated to the divisors Z(Xo) and Z(Zy)

is strict in the sense of Definition 4.32.

(24) We compare the objects associated to the starting singularity X and to the a-side
singularity X, by establishing an isomorphism of log morphisms.
Denote by |0, Y,| the subdivisor of d¢Y, obtained by removing the irreducible

toric divisor corresponding to the ray I, , from Step (10). By construction, d; Y,
equals the sum of all components of d Y, which are contained in the open set Xz,
of X#, .. We prove that the embedding ®, identifies 0, Y, with 3, .

By restricting the commutative triangle (7.15) to those compact subspaces of the
source and target of the embedding ®,, we get the following commutative triangle in
the logarithmic category:

570 O30y (~Z(F0)) (07, 0% (~Z(Z)

X510, 7
(7.16)

As CIDZ is strict by Step (23), the horizontal arrow from (7.16) is an isomorphism.
Therefore, this diagram allows us to factor the first log morphism in (7.11) through
the log morphism from (7.14).

of.

(25) We continue comparing objects associated to X and X4, by looking at the round-
ing of the previous commutative diagram of log morphisms.
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Consider the rounding of the diagram (7.16)

@5 ¥ar O3, g, (~Z(F0) oy 07,03 o (20

X 0a ¥
(7.17)

By Step (18), the fibers of the rightmost arrow of (7.17) are homeomorphic to the
Milnor fibers of X. By Step (22), the fibers of the topological morphism

(00Ya. O3 1305, (“Z(F0))iog — O (7.18)

T
Olog .

are homeomorphic to the Milnor fibers of X,,.

Note that the previous topological morphism is not the leftmost arrow of (7.17). In
fact, by its definition in Step (24), 9, I7a is a subdivisor of d¢ f’a. Thus, the map (7.18)
is the composition of the leftmost map on (7.17) with the canonical strict log morph-
ism

(aa ?a ’ (9‘;6\(Fa,r |aafa (_Z()’Z‘O))) - (80 Ya ) (9‘;"$a,r |80}7(1 (_Z()‘EO)))

obtained by restriction.

(26) We give a rounding presentation of the a-side cut Milnor fibers.

We prove that the fibers of the leftmost arrow from (7.17) are homeomorphic to
the Milnor fibers of X, cut by the variable corresponding to the root of I';. We have
an analogous fact concerning the b-side.

(27) We prove the product structure of the central pieces.

We prove that the fibers of (f;));fog: Z(f);fOg — O;rog contained in r;(lfﬁ 9,7)

have the desired product structure. This comes from the fact that the divisor 3, Y
is the cartesian product of two smooth projective curves which are one-point com-
pactifications of affine curves diffeomorphic to the Milnor fibers of f,:Y, — C and
f b- Yb — C.

(28) We prove that the gluing agrees with the prediction of Conjecture 2.47 done by
Neumann and Wahl.

Combining the results of the last two steps (26) and (27), we get a decomposition
of the Milnor fibers of f into three pieces which have the expected structure described
in the Milnor fiber conjecture. Moreover, we prove that they are glued together as
predicted by Neumann and Wahl. This establishes the conjecture.
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