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A B S T R A C T   

Background: Nurses are essential for assessing and managing acute pain in hospitalized patients, especially those 
who are unable to self-report pain. Given their role and subject matter expertise (SME), nurses are also essential 
for the design and development of a supervised machine learning (ML) model for pain detection and clinical 
decision support software (CDSS) in a pain recognition automated monitoring system (PRAMS). Our first step for 
developing PRAMS with nurses was to create SME-friendly data labeling software. 
Purpose: To develop an intuitive and efficient data labeling software solution, Human-to-Artificial Intelligence 
(H2AI). 
Method: The Human-centered Design for Embedded Machine Learning Solutions (HCDe-MLS) model was used to 
engage nurses. In this paper, HCDe-MLS will be explained using H2AI and PRAMS as illustrative cases. 
Findings: Using HCDe-MLS, H2AI was developed and facilitated labeling of 139 videos (mean = 29.83 min) with 
3189 images labeled (mean = 75 s) by 6 nurses. OpenCV was used for video-to-image pre-processing; and 
MobileFaceNet was used for default landmark placement on images. H2AI randomly assigned videos to nurses for 
data labeling, tracked labelers’ inter-rater reliability, and stored labeled data to train ML models. 
Conclusions: Nurses’ engagement in CDSS development was critical for ensuring the end-product addressed 
nurses’ priorities, reflected nurses’ cognitive and decision-making processes, and garnered nurses’ trust for 
technology adoption.   

1. Introduction 

Within healthcare organizations, clinical decision support software 
(CDSS) operates as integral components of complex sociotechnical sys
tems profoundly influenced by social (people and environment) and 
technical (technology and tasks) subsystems [1]. Understanding this 
dual influence is essential for effective CDSS design. The Human- 
Centered Design for Embedded Machine Learning Solutions (HCDe- 
MLS) model provides a systematic approach (Fig. 1) to developing 
innovative CDSS solutions for complex healthcare challenges. HCDe- 
MLS uses automation, human factors, machine learning (ML), and 

systems engineering to advance human–machine interactions and 
human-systems integration [2]. Although HCDe-MLS first focuses on 
users and stakeholders, it is a holistic systems approach because human- 
centered solutions designed at the micro-system level to assist health
care professionals perform specific tasks, also influence the larger meso- 
systems (healthcare teams and information technology integration) and 
macro-systems (for example, healthcare organizations, healthcare 
standards and policies, and healthcare financing) [3]. In other words, 
CDSS designed to support patient monitoring tasks influence physical, 
cognitive, behavioral, and organizational processes, as well as outcomes 
of healthcare systems over time. 

Abbreviations: CDSS, clinical decision support software; H2AI, Human-to-Artificial Intelligence; HCDe-MLS, Human Centered Design for Embedded Machine 
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The three core characteristics of human-centered design are under
standing users, stakeholder engagement, and a systems approach [3]. 
Understanding nurses and nursing workflows are essential for designing 
CDSS that meets nurses’ needs. Engaging nurses throughout the design 
and development lifecycle ensures that the end-product addresses 
nurses’ priorities and solves pragmatic problems [4]. By prioritizing 
nurses’ needs and human–machine interactions, CDSS can be designed 
to efficiently accomplish tasks, while ensuring nurses’ experiences are 
intuitive and meaningful. Ideally, CDSS reflects nurses’ actual cognitive 
and decision-making processes [5]. 

1.1. HCDe-MLS and software quality 

According to the System and Software Quality Requirements and 
Evaluation (sQuaRE) standards, software evaluation should include five 
quality-in-use and eight product quality characteristics [6,7]. Usability 
is the sQuaRE characteristic most often evaluated [8]; however, indi
vidual factors are most important for influencing perceptions of software 
quality [9]. The HCDe-MLS model ensures user’s perceptions of software 
quality are influenced by individual, technological, and organizational 
factors. 

Trust, or the certainty that a system will not fail, is a critical driver of 
technology usage behaviors and is essential for user adoption of tech
nology [10]. Product-related factors, such as perceived usefulness, 
helpfulness, functionality, reliability, and ease of use, as well as 
security/service-related and social factors influence trust and CDSS 
adoption. Design elements of the user interface are an important pre
dictor of users’ trustworthiness in CDSS [11]. Thus, the HCDe-MLS 
model of including users in software development is critical for influ
encing nurses’ involvement, training, knowledge, competency, resis
tance to change, and overall perceptions of CDSS quality. 

1.2. Purpose 

The purpose of this study was to develop an intuitive and efficient 
data labeling software solution, Human-to-Artificial Intelligence (H2AI). 
This paper describes the HCDe-MLS model and its use to develop the 
H2AI software solution. H2AI facilitates data labeling by subject matter 
experts (SMEs), enables tracking of data labeling progress, and allows 
monitoring of data labeling quality with inter-rater reliability (IRR) 
dashboards. We leveraged the HCDe-MLS model to maximize neonatal 
intensive care (NICU) nurses’ engagement, experience, and productivity 
to develop H2AI, an intuitive ML model data labeling software solution. 
In this case, H2AI was developed and used to train a ML neonatal pain 
classification model, a Pain Recognition Automated Monitoring System 
(PRAMS). 

2. Methods: HCDe-MLS model 

The HCDe-MLS model combines human thinking and ML lifecycles 
(Fig. 1). 

2.1. Human thinking lifecycle 

The human thinking lifecycle seeks to understand human needs 
(Table 1). Human thinking requires imagination, logic, and systematic 
reasoning to artfully create user-focused outcomes [12]. The ML life
cycle seeks to find patterns in existing data, apply these patterns to new 
data, and embed ML in solutions. ML lifecycle follows the standard agile 
and iterative software development stages [13]. 

2.1.1. Empathize 
In the human thinking lifecycle, empathizing focuses on learning 

about target users. The purpose of empathizing is to set aside assump
tions and instead gain insights into users’ actual physical, cognitive, and 
emotional needs to complete tasks [3,14]. However, Boy [2] clarifies 

Fig. 1. Human-Centered Design for Embedded Machine Learning Solutions (HCDe-MLS): Human thinking (Left side of diagram) from Empathize to Test, and then the 
Machine Learning lifecycle (Right side of diagram) from Analyze to Evaluate. When both are complete, the solution is deployed (Bottom of diagram). Reprinted with 
permission from ©2019 Kavi Global. 

N.A. Kaduwela et al.                                                                                                                                                                                                                           



International Journal of Medical Informatics 183 (2024) 105337

3

that tasks, such as pain assessment, are technology-centered pre
scriptions to humans, and activities are what humans really do. Empa
thizing requires listening, engaging, observing, and understanding users 
to gain insight into human activities [12,15]. 

2.1.2. Define 
Empathizing is followed by defining the problem and user re

quirements. Through qualitative research methods, insights are syn
thesized, and user personas are developed. Personas are detailed 
descriptions of target users developed from highly specific data about 
real people [16]. The aim of using personas is to create the users’ point 
of view, reframe the problem, and effectively focus design efforts on 
users’ needs and preferences. Defining the problem brings clarity to 
ensure the solution solves the true problem in the best way [12]. 

2.1.3. Ideate 
Engaging users in brainstorming. Mind-mapping or co-creation ses

sions initiates ideation [3]. The aim of the ideate stage is to channel 
empathy, familiarity, creativity, and collective situational awareness to 
address the shared purpose by developing a broad range of possible 
solutions that are unbounded by the limitations and status quo of the 
current state [2]. Then, all the possibilities must be evaluated against the 
constraints of resources and context to prioritize and finalize the most 
feasible solution [12,15]. 

2.1.4. Prototype 
The best idea is then built as a prototype. Prototypes may range from 

low-fidelity sketches to high-fidelity working artifacts [3,4]. Effective 
prototypes communicate concepts and test ideas through iterative 
feedback from users and stakeholders. Prototypes are important for 
implementing possibilities and for maintaining a solution-building 
approach [12]. 

2.1.5. Test 
The final stage of the human thinking lifecycle involves testing and 

refining of the software created in the prototype stage [12]. Essential 
components of testing include representative users, stakeholders, tasks, 
and environments. Qualitative and quantitative methods are used to 
identify problems, capture recommendations for improvement, and 
statistically support qualitative concerns [15]. Tangible metrics should 
be developed with users and stakeholders to improve the assessment of 
complex system interoperability [2]. 

2.2. Machine learning lifecycle 

The first stage of the ML lifecycle is to analyze user needs and 
translate needs into requirements. 

2.2.1. Analyze 
The analyze stage advances tasks to activity and complexity analysis 

[2]. The scope and boundaries of software, the functional and technical 

requirements, the nonfunctional requirements, data sources, data 
collection, and integration in a format that can later be consumed by the 
ML model, application, and user are defined [17]. Functional re
quirements, including inputs, calculations, and processes, are then 
translated into technical requirements of how the software performs its 
actions. Nonfunctional requirements are the look and feel of the product, 
the user interface and experience. A core focus in this stage is data 
management, including obtaining data essential for the process of 
training, testing, and validating the ML model [13]. Data collection re
quires gathering data samples of real-world system, process, or phe
nomenon for which the ML model is being built. The data collected may 
be heterogeneous because of various disparate sources; thus, pre- 
processing the data to ensure consistency is inevitable. When data 
samples are unavailable or their collection is too costly, time consuming, 
unethical or dangerous, augmentation methods are used to add these 
critical data samples to collected data sets [18]. 

2.2.2. Design 
The design stage is the most creative in the ML lifecycle. Here, focus 

transitions from the problem to the solution to design optimal solution 
architecture leveraging technologies to solve problems efficiently and 
effectively. The goal is to transform the requirement specifications into 
structure. Creativity, system thinking, risk taking, agile approaches, and 
knowledge of human systems integration architecture is required [2]. 
An outline of the solution is generated, including the technical 
approach, solution architecture, ML models, evaluation metrics, capa
bility of the team, project constraints, risks, timeline, and budget. So
lution features are prioritized based on complexity, speed to value, and 
cost to determine the optimal minimal viable product. Buy versus build 
decisions are made for technology and components, as well as 
leveraging accelerators, for example, existing pre-trained models like 
Convolutional Architecture for Fast Feature Embedding (Caffe)-based 
convolutional neural network (CNN). CNN is a feed-forward neural 
network that uses filters to effectively extract information from images. 
Hsu et al. [19] introduced a CNN-based model to detect 68 facial 
landmarks on facial images. 

Visual appeal and usability can override trust in information quality; 
however, accuracy is one factor that stimulates reflection and motiva
tion for information quality [11]. CDSS performance requires access to 
data sets and multimodal healthcare data that can be assessed cogni
tively and longitudinally to make dynamic predictions and reflect timing 
of clinical decision making [5]. Predictive models must know the 
dimensionality of the data, for example, the strong predictive value of 
International Classification of Disease codes (ICD-10-CM) and 
Diagnosis-Related Groups (DRGs) and a priori interactions of clinical 
data. When large de-identified data sets are used to train predictive ML 
models, historical mistakes in datasets, known as “historical decision 
bias,” are carried forward in model [5,13]. ML model performance im
proves when temporal changes and trends of repeated measurements are 
considered. For dynamic predictions of clinical outcomes, models can be 
trained “on-the-fly” [5]. Unfortunately, on-the-fly training of Bayesian 

Table 1 
Human Thinking Lifecycle Stages and Respective Toolbox.  

Lifecycle 
stages 

Empathize Define Ideate Prototype Test 

Description  • Collect 
information  

• Gather insights  

• Synthesize insights  
• Microtheory of user 

problem and needs  
• Validate with users  

• Generate ideas for possible 
solutions to defined problems and 
needs  

• Build low- and high-fidelity tactile 
representations of solutions  

• Generate performance 
data  

• Gather feedback from 
users and stakeholders 

Tools  • Interviews  
• Focus groups  
• Surveys  
• Storytelling  
• Generative 

technique  

• Empathy mapping  
• User persona  
• Journey mapping  

• Brainstorming  
• Mind-mapping  
• Affinity diagram  
• Co-creation  

• Feature v1/v2 sketches  
• Visual prototypes  

• Feedback grid  
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models results in reduced model performance, and on-the-fly training of 
computationally expensive complex algorithms (e.g., support vector 
machines [SVM] and CNN) result in slow responses and limited CDSS 
utility. Thus, to manage performance, most clinical decision support 
models are trained in nightly or weekly batches and only scoring of a 
new patient record is done on-the-fly in real time. 

2.2.3. Build 
Model building is the process of implementing ML models (e.g., lo

gistic regression, SVM, random forest, and deep learning models like 
CNN) to solve the identified problem. Model building follows data pre- 
processing, and encompasses feature engineering, splitting of data into 
training data and test data, and running various models on the training 
set. ML models are broadly classified as supervised and unsupervised; 
the learning process is defined as classification or regression [20]. Su
pervised learning algorithms learn to map inputs to outputs based on 
labeled input–output training data pairs. Supervised learning may 
define outputs by classification (resulting in a finite set of output cate
gories) or by regression (defining the probability of the output based on 
the input). Model selection is based on the type of problem, volume, and 
availability of training data, as well as the need for model transparency 
and explain-ability [13,18,21]. 

2.2.4. Tune 
Some ML models have hyperparameters, which are used to control 

the learning process and can be iteratively tuned to optimize model 
performance and results. Tuning is the stage of improving ML model 
performance by choosing and optimizing the hyperparameters of the 
training algorithm to control for overfitting, underfitting, and model 
complexity [13,18,21]. ML models lack design specifications; instead, 
algorithms are developed by learning parameters from mathematically 
derived data. With models that do not require hyperparameter tuning, i. 
e., pre-trained models like Caffe-based CNN and MobileFaceNet, the 
tuning stage is unnecessary. However, in general, model performance 
can be improved by iterating on the features fed into the model. 

2.2.5. Evaluate 
The performance of the chosen model is then evaluated against the 

original use requirements and acceptance criteria on previously unseen 
test data [13]. Model evaluation demonstrates the robustness and 
generalizability of the model and enables comparison to other existing 
methods. Performance metrics should be quantifiable and reflect data 
characteristics and the CDSS [13,22]. For supervised models, perfor
mance metrics typically include accuracy, precision, recall, and speed. 
Especially in the healthcare context, it is important to evaluate tradeoffs 
between types of error (i.e., false positives and false negatives) to ensure 
patients are not misclassified or incorrectly treated. Evaluation metrics 
must also consider human interpretation of what the algorithm does and 
means [22]. 

2.2.6. Deploy 
The last stage of the HCDe-MLS model is deployment to the pro

duction environment. Deployment refers to configuring the CDSS for 
integration with other applications to serve as designed at scale. Built-in 
mechanisms to integrate feedback and support CDSS may be required 
[13]. Human-machine interfaces must enhance operator automation- 
related situational awareness [23]. Failing to attend to the knowledge, 
expertise, and training to optimize human–machine interactions results 
in automation errors. In addition, deviation from test data to operation 
data must be monitored to identify covariance shift or concept drift 
[13,21]. Therefore, it is essential that, in safety–critical systems like 
healthcare, any deployed model is transparent, explainable, interpret
able, and continuously monitored to meet clinical decision support 
needs [21]. 

3. Stakeholders and setting 

After receiving approval from the Institutional Review Board, study 
#2021-4348, small focus groups were conducted by video calls for 1 h 
each week from February to May in 2021 to empathize and identify user 
needs. Stakeholders included NICU nurses (n = 6), nurse scientists (n =
2) with expertise in neonatal development and pain management, 
human-centered design specialists, architects, data scientists, and 
product managers. Nurses had a mean of 18.7 years of NICU nursing 
experience (ranging from 5 to 42 years) and worked in a 64-bed level IV 
NICU, part of a 364-bed, free-standing, university-affiliated, not-for- 
profit urban children’s hospital in Illinois that cares for neonates with 
complex medical needs. 

4. Results: H2AI development case 

Our cross-functional team identified an opportunity to train a variety 
of ML models by labeling data. Models could then be compared against 
the nurses’ benchmark to gain clinical trust and encourage CDSS 
adoption. We developed user personas to define user tasks and needs 
through thematic analysis by the human-centered design specialists and 
verification from all focus group members (Table 2). These personas 
provided real-life context to reframe the problem and focus design ef
forts toward efficiently leveraging nurses’ expertise for data labeling; 
and eventually, development of an effective PRAMS. 

Then, our cross-functional team identified novel ideas and disruptive 
innovations to optimize user workflows, maximize productivity, and 
minimize user burden. Our resulting mind map (Fig. 2) illustrates the 
key H2AI product features identified. 

4.1. Data labeling tasks 

Six Data Labeling Tasks were defined based on clinical neonatal pain 
assessment standards [24], a review of the literature [25,26], and ML 
modeling needs [6,7,13,18,21]. First, nurses used the Neonatal Facial 
Coding System (NFCS) to label each video frame. NFCS is a valid and 
reliable objective measure of pain [24,27,28]. Second, nurses rated their 
perception of pain intensity on a Visual Analog Scale (VAS) of 0–100, 
with 0 indicating no pain and 100 indicating the worst possible pain. 
Third, nurses identified and labeled facial landmarks to help the com
puter vision model identify facial action units from movement of facial 
features. Fourth, nurses identified occlusions, where neonates’ hands or 
blankets obstruct facial landmarks. Fifth, nurses classified pain by frame 
image, and sixth, at the video level. 

4.2. User workflows 

Four User Workflows were developed. 

4.2.1. Practice workflow 
The purpose of the Practice workflow was to educate nurses in the 

tasks and features of the application. Since users had identified that they 
would need to access the application from a variety of computers, the 
Practice workflow was also used to test their equipment. 

4.2.2. Training workflow 
The Training workflow was created to ensure consistency of labeling 

among nurses. A nurse scientist labeled five random frames in parallel 
with each nurse, then the two met to reconcile any labeling differences. 
If agreement thresholds were reached before meeting, the nurse was 
“passed” on to the Labeling workflow. If thresholds were not attained, 
parallel labeling continued in repeated sets of five additional frames 
until the thresholds were reached. 

4.2.3. Labeling and review workflows 
The Labeling workflow was identical to the Training workflow, except 
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the generated data labels were stored for later use to train the ML pain 
classification model. To ensure nurses consistently met IRR thresholds 
throughout the labeling of thousands of video frames, the nurse scien
tists were randomly assigned to label up to 10 % of the videos each nurse 
labeled. Given the volume of frames to be labeled, the Review workflow 
was created to allow real-time monitoring of data labeling progress (i.e., 
how many frames/videos were labeled, how long each task takes, and 
IRR for each nurse). 

4.3. H2AI prototype 

When ready to create a prototype, the data scientist first conducted a 
buy versus build comparison to determine if the data labeling capabil
ities already existed in the market. Image annotation solutions already 
existed. Common features were pixel identification, bounding box, re
gion detection, text tagging/object, however, none provided the ability 
to upload data based on human interactions with video images. Mid- and 
high-fidelity prototypes were then built (Fig. 3) and tested by nurses. 
Our feedback grid both itemizes improvement opportunities and posi
tive feedback (Table 3). 

4.4. H2AI machine learning lifecycle 

Feedback was analyzed and mapped to the product backlog to 
optimize functionality, user experience, and productivity. Data security 

agreements required user authentication and secondary verification. 
This greatly influenced the architectural design and ML modeling 
approach. This solution was funded on a time-limited grant which 
required a software solution be in production in three months. User 
requirements were translated into technical requirements, mapped to 
the appropriate technology and ML model solution (Table 4), and then 
consolidated into a single cohesive solution. The solution architecture 
(Fig. 4) encompasses a holistic software solution from front-end user 
interface to the embedded ML models output, back-end data storage, 
and service calls to pass data between the front and back ends. 

4.4.1. H2AI build 
To build the ML model, neonatal pain and no pain video images from 

the iCOPEvid Neonatal Pain Video Database was obtained with 
permission and used for this study [25]. Videos and images needed to be 
labeled by nurses in the data labeling solution. H2AI utilizes pre-trained 
models that are optimized to extract facial features from video frames 
with high efficiency and capture labels at the lowest level of granularity. 
Intel’s open-source framework, OpenCV, has a built-in Face Detector 
that is reliable in 90–95 % of clear, forward- and camera-facing human 
photos ([29], Open CV). OpenCV was selected to convert video to im
ages, crop the face, and put the bounding box on the face to position 
facial landmarks within the acceptable level of confidence (Fig. 5). The 
default OpenCV model cropped the outline of the face, especially by the 
ears and chin; thus, additional padding of 20 pixels were added before 

Table 2 
User Personas.  

We are… We are trying to… But… Because… We need to create solutions that… 

Nurse 
Scientists 

Automate pain 
classification in neonates 

We need a ML model that 
healthcare professionals will trust 

In healthcare, risk from false positives and 
false negatives is high 

Innovate and involve direct care nurses in the 
rigorous development of a continuous pain 
monitoring system for vulnerable neonates 

Architects & 
Data 
Scientists 

Build a supervised ML 
model to automate pain 
classification 

We need nurse-labeled data and a 
method to collect the data labels to 
train the ML model 

We want the model to be trustworthy, and 
therefore comparable to SME benchmarks 
and validated methods of pain 
classification 

Inspire and partner with healthcare 
professionals to develop an efficient solution 
for ML modeling 

NICU nurses Label neonatal facial 
landmarks and facial action 
data to train the ML model 

Variability in assessments among 
nurses are normal; documenting 
each assessment and decision is 
time-consuming 

There are so many landmark points and 
NCSF pain classification results, pain 
intensity, and overall pain classification to 
capture for each frame 

Empower nurses to engage in designing the 
labeling system and the development of a 
clinical decision support solution to provide 
better care for my patients 

ML, machine learning; NCSF, Neonatal Facial Coding System; NICU, neonatal intensive care unit.; SME, subject matter expert. 

Fig. 2. Mind map of key features for embedded ML solutions development. AI, artificial intelligence; API, application programming interface.  
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cropping the image. This ensured that all facial features were available 
for landmarks that might otherwise be lost. 

4.4.2. H2AI landmark model comparison 
Two pre-trained facial landmark models were implemented, and 

precision of their respective landmark placements were compared. First, 
a Caffe-based CNN model was implemented. Caffe is a deep learning 
framework that defines a net layer-by-layer in its own model schema. 
The network defines the model in a bottom-to-top approach from input 
data to loss. The model was composed of 24 layers: 8 convolutional 
layers, 4 pooling layers, 2 dense layers, 9 batch-normalization layers, 
and 1 flatten layer. Using Keras Functional Application Programming 
Interface (API), the pre-processed frames of images were fed into the 
model. 

The second model, MobileFaceNet, uses a more streamlined archi
tecture with depthwise separable convolutions [30]. Chen et al. [31] 

developed MobileFaceNet, using ArcFace [30] loss to achieve > 99.5 % 
accuracy for the face detection task on the Labeled Faces in the Wild 
Home (LFW) dataset [32]. MobileFaceNet is also effective as a general 
facial feature extractor [33]. MobileFaceNet is specifically designed for 
the face recognition task by replacing the global average pooling layer 
with a global depthwise convolution (GDConv) layer, which enhances 
the discriminative ability of the model. The first layer of each sequence 
uses a stride s, and all other layers use stride = 1 to preserve the same 
output feature map size as the original layer. All spatial convolutions in 
the bottlenecks use 3 × 3 kernels. The expansion factor t is always 
applied to the input size and GDConv7×7 denotes GDConv of 7 × 7 
kernels. A downsampling strategy is used at the beginning of the 
network, and a linear 1 × 1 convolution layer follows a linear global 
depth-wise convolution layer as the feature output layer. During 
training, batch normalization is used, and batch normalization folding is 
applied before deployment. 

Fig. 3. Mid-fidelity App (top) and high-fidelity App in production (bottom).  
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Since Caffe-based CNN and MobileFaceNet are pre-trained models, 
we did not tune hyperparameters for landmark detection. However, we 
adjusted the size and color tone of input images to achieve the best re
sults. Models were then compared and evaluated using visual inspec
tion across several images, including challenging images with 
occlusions. As seen in Fig. 6, the Caffe-based CNN model lacked preci
sion; and MobileFaceNet better captured the outline of the upper lip 
(versus the tongue), nose, and eyes. Users agreed that MobileFaceNet 
was the better solution for default facial landmarking and was more 
robust at handling occlusions and blurry images from movement. 
Therefore, we integrated and deployed this pre-trained model into the 
production environment; and nurses, who had met IRR thresholds, then 
began data labeling workflows. 

4.4.3. H2AI efficiency evaluation 
Using HCDe-MLS, H2AI was developed and facilitated labeling of 

139 videos with 3189 images labeled by 6 nurses. Nurses began labeling 
data after meeting IRR thresholds of 88 % agreement were attained on 
NFCS items and binary pain classification, and when agreement on pain 
intensity scores were ±10 points across 5 random test frames [34]. NFCS 
labeling took nurses a mean of 12.23 s per image and 4.67 min per video. 

Landmark labeling took nurses a mean of 51.24 s per image and 20.36 
min per video. In total, NFCS and landmark labeling took nurses a mean 
of 75 s per image and 29.83 min per video. The best performing ML 
model from nurses’ labeling of this data in H2AI had 97.7 % precision, 
98 % accuracy, 98.5 % recall, and Area Under the receiver operating 
characteristic Curve (AUC) of 0.98 [34]. HCDe-MLS and development of 
H2AI was a critical first step in the development of a trustworthy 
PRAMS. 

5. Discussion 

Our cross-functional team leveraged the HCDe-MLS model to 
develop the H2AI solution. H2AI is a data labeling solution that facili
tates efficient labeling of video image data by SMEs and stores the user 
generated data labels for later development of and access by ML models. 
In this case, data labeled by nurses was used to train a highly precise and 
accurate model with excellent recall. With further refinement, H2AI will 
now be used to train an ML model to continuously monitor neonatal 
facial actions for pain, a Pain Recognition Automated Monitoring Sys
tem (PRAMS). 

5.1. ML models and efficacy comparison for pain classification 

With 98 % accuracy, 97.7 % precision, 98.5 % recall, and AUC of 
0.98, our supervised ML pain classification model far exceeded previ
ously reported models developed with the same video dataset (highest 

Table 3 
Feedback Grid.  

Feedback Nurses’ current 
human–machine 
interaction paradigm 

Solution Feature 
Enhancement 

We need the data labeling 
to be more efficient 

Medical records allow 
nurses to copy forward 

Copied forward 
previously selected 
results from tasks across 
frames 

Increase size of dots on 
user interface  

• Facial landmarking 
dots are too small to 
see, select, and move  

• Pain VAS slider is too 
small 

Nurses use a variety of 
computer brands, 
monitor sizes, trackpads, 
mouse, etc.  

• Increased (Task 2 & 3) 
dot size  

• Increased (Task 4) 
pain intensity slider 
granularity 

Need fine-grain control to 
move facial landmark 
dot(s) 

Enabled single select, 
multi-select, rotation, 
space expansion, and 
space contraction of a 
group of landmarks dots 
at once 

Limit risk of user pain 
intensity score bias  

• Numeric pain scales 
have inherent bias  

• VAS is a valid pain 
intensity measure with 
more rigor 

Hid numbers on pain 
intensity slider 

Need practice and 
training workflows for 
training nurse data 
labelers and ensuring 
data quality 

Goal is to maximize IRR Created workflows: 
practice, training, and 
labeling, with user- 
specified IRR thresholds 
that need to be passed in 
training before entering 
labeling workflows 

Cannot identify chin 
quivering due to use of 
still image 

May negatively influence 
IRR 

Removed chin quiver 
from NFCS 

Need a way to monitor 
nurses’ progress in 
training and labeling  

• Variable schedules due 
to patient demands  

• Encourage and reward 
efforts  

• Track paid time  
• Need to identify data 

drift 

A Power BI dashboard 
was embedded into the 
user interface to 
summarize the progress 
of nurses 

Need better default 
landmark placement at 
the start of each 
labeling task 

To improve efficiency by 
having to move fewer 
landmark points into 
place 

Updated pre-trained 
facial landmarking 
default placement AI 
model from OpenCV to 
MobileFaceNet 

AI, artificial intelligence; BI, business intelligence; IRR, inter-rater reliability; 
NFCS, Neonatal Facial Coding System; VAS, visual analog scale. 

Table 4 
Technical Requirements and Appropriate Technology and ML Model Solution.  

User Requirement Technical Requirement Solution 

User needs to provide 
data labels for six 
tasks on each image 
frame from each 
video. 

Video data needs to be 
pre-processed into images 
and made available in the 
data labeling solution for 
users to label. 

Video data can be stored in 
a blob format. OpenCV is 
the most popular image 
processing library to 
capture images from 
videos and detect faces. 

User wants landmarks 
to be as precise as 
possible for optimal 
landmarking 
efficiency. 

Pre-trained landmark 
models can be run in the 
back end to place default 
landmarks as close as 
possible to outline facial 
features. There are several 
options: Caffe Model and 
MobileFaceNet can be 
compared. 

Image and default 
landmark positions need 
to be made available in 
the user interface. 

Image path and default 
landmark positions can be 
sent via Restful API call via 
JSON file to the user 
interface, which can then 
display the coordinates on 
the UI, over the image file. 

Users want to automate 
pain detection using 
the validated NFCS 
pain scale measures. 

Labeled data from the 
users needs to be collected 
and stored in a format that 
can later be used to train 
the supervised computer 
vision pain detection 
model. 

User labels are stored in a 
relational Azure SQL 
database to be accessed 
easily from Python when 
doing model training and 
benchmarking. 

Users want to track 
labeling process. 

Reporting on top of the 
SQL relational data store 
of labeled data needs to be 
reported and visualized. 

Power BI can be used to 
provide reporting on data 
labeling progress by 
displaying counts 

Users want to see the 
IRR across users. 

IRR is required at each 
frame level. 

IRR calculations can use 
Python code on Azure 
Cloud Databricks to 
compute. 

Funding allows a 30-day 
timeline. 

Users require 
functionality, security, 
and authentication. 

Cloud Native solution 
architecture can enable 
rapid delivery by 
leveraging pre-built 
components.  
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AUC = 0.93) and was better performing than all except one model 
developed with a smaller (AUC = 0.98, 15 videos) dataset [25,26,34]. As 
Zamzmi, et al. suggested [26] incorporating clinical and contextual in
formation is necessary to refine and develop a context-sensitive PRAMS. 
Using HCDe-MLS and H2AI, we have demonstrated a method to effec
tively incorporate nurses’ clinical and contextual knowledge to advance 
development of effective pain recognition models and PRAMS [34]. 

Using HCDe-MLS and H2AI also improved data labeling efficiency. 
Researchers using other methods in their attempt to automate pain 
assessment based on facial expressions have reported that data labeling 

was time and labor-intensive, taking up to 3 h for every minute of video 
[35]. Brahnam et al. [25] used iCOPEvid video images and Gaussian of 
Local Descriptors (GOLD) approach to extract facial features. This is a 
time-consuming four-step process that involves dense scale-invariant 
feature transform (SIFT) descriptors and probability density estima
tion. SIFT is computed based on the histogram of the gradient, making it 
mathematically complicated and computationally heavy. 

Ashraf et al. [36] utilized the Active Appearance Model (AAM) to 
identify shape and appearance variations of adult faces but identified a 
lack of ground truth at the individual frame level. Also in contrast to our 

Fig. 4. H2AI solution architecture.  

Fig. 5. Converting video images to frames for labeling tasks.  
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approach, Brahnam et al. [25] achieved ground truth at the frame level 
and validated their neonatal pain classification ML model based on as
sessments by 185 college students with no appreciable healthcare or 
neonatal pain assessment experience. By having a frame-level ground 
truth based on data labeled by nurse SMEs, our model can learn and 
improve in its performance. This level of data labeling granularity is 
needed to ensure nurses will trust PRAMS, a CDSS solution for pain 
detection. 

5.2. Limitations 

H2AI and our best performing ML model was developed using the 
iCOPEvid neonatal pain database. This database is small and lacks racial 
and ethnic diversity [25] that may influence MobileFaceNet detection of 
facial landmarks [33]. Therefore, time required for data labeling by SME 
may be longer with a more diverse dataset. Recent federal data sharing 
requirements may facilitate access to more diverse video and clinical 
datasets that may accelerate further development of models that pro
mote healthcare equity in CDSS and PRAMS. 

The iCOPEvid database contained video that we then converted to 
frame images for data labeling granularity [25,26]. However, the 
resulting ML model may fail to capture dynamic patterns of facial ex
pressions that may be important for discriminating pain or other con
ditions. To date, only one novel multimodal spatiotemporal approach 
for assessing neonatal postoperative pain has been reported with an AUC 
of 0.87 and 79 % accuracy, exceeding many other unimodal facial 
coding approaches [37]. 

5.3. 5.3 Future potential H2AI applications 

H2AI can be utilized to label data and develop ML models to detect 
pain in other vulnerable patients who cannot provide self-report [24], to 
detect other human conditions associated with facial actions, such as 
depression and anxiety [38], and to detect potential threats by differ
entiating anger from hostility using micro-expressions [39]. With cus
tomization, H2AI can also be extended to Natural Language Processing 
(NLP) models, where the model is trained to deliver sentiment analysis, 
entity name recognition, and optical character recognition. Audio 
tagging is also a potential area of development for H2AI, such that in
formation pertaining to the sound bites from the videos, such as cry, 
could assist in the model’s learning process. We are moving forward to 
develop PRAMS with a clinical trial of continuous video facial moni
toring for pain. Determining the latency of alert, specifically, the length 
of time or number of consecutive images that classify a condition before 
a clinician is alerted, is a feature we must add to H2AI. 

6. Conclusions 

When training computer vision algorithms for healthcare CDSS, ML 
models must be explainable and validated against the expertise of 
healthcare professionals. We have demonstrated that HCDe-MLS can be 
used to generate a user-centric software solution with embedded ML. We 
engaged nurses in the design, building, and deployment of H2AI, a first 
step in our development of a PRAMS. To meet nurses’ needs and deliver 
the best user experience, we used Cloud Native, a serverless architecture 
to accelerate time to solution delivery. OpenCV provided efficient video- 
to-image data pre-processing for data labeling. MobileFaceNet demon
strated superior results for default landmark placement on neonatal 
video images. We found that H2AI facilitates efficient data labeling and 
stores labeled training data for future access to train ML models. H2AI 
also tracks IRR and compares ML model performance to SMEs. The H2AI 
solution can be generalized to other industry uses. 

Summary Table: 
What is already known on the topic:  

• Individual factors are most important for influencing perceptions of 
software quality. 

• User-interface design, perceived usefulness, helpfulness, function
ality, reliability, and ease of use, as well as security/service-related 
and social factors influence trust and clinical decision support soft
ware adoption. 

What this study added to our knowledge: 

• The Human-Centered Design for Embedded Machine Learning So
lutions (HCDe-MLS) model provides a systematic approach for 
engaging nurses to develop patient monitoring clinical decision 
support software solutions. 

• Nurses informed the development of Human-to-Artificial Intelli
gence (H2AI), an intuitive and efficient data labeling software so
lution for healthcare professionals’ use. 
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