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Background: Nurses are essential for assessing and managing acute pain in hospitalized patients, especially those
who are unable to self-report pain. Given their role and subject matter expertise (SME), nurses are also essential
for the design and development of a supervised machine learning (ML) model for pain detection and clinical
decision support software (CDSS) in a pain recognition automated monitoring system (PRAMS). Our first step for
developing PRAMS with nurses was to create SME-friendly data labeling software.

Purpose: To develop an intuitive and efficient data labeling software solution, Human-to-Artificial Intelligence
(H2AID).

Method: The Human-centered Design for Embedded Machine Learning Solutions (HCDe-MLS) model was used to
engage nurses. In this paper, HCDe-MLS will be explained using H2AI and PRAMS as illustrative cases.
Findings: Using HCDe-MLS, H2AI was developed and facilitated labeling of 139 videos (mean = 29.83 min) with
3189 images labeled (mean = 75 s) by 6 nurses. OpenCV was used for video-to-image pre-processing; and
MobileFaceNet was used for default landmark placement on images. H2AI randomly assigned videos to nurses for
data labeling, tracked labelers’ inter-rater reliability, and stored labeled data to train ML models.

Conclusions: Nurses’ engagement in CDSS development was critical for ensuring the end-product addressed
nurses’ priorities, reflected nurses’ cognitive and decision-making processes, and garnered nurses’ trust for
technology adoption.

1. Introduction systems engineering to advance human-machine interactions and

human-systems integration [2]. Although HCDe-MLS first focuses on

Within healthcare organizations, clinical decision support software
(CDSS) operates as integral components of complex sociotechnical sys-
tems profoundly influenced by social (people and environment) and
technical (technology and tasks) subsystems [1]. Understanding this
dual influence is essential for effective CDSS design. The Human-
Centered Design for Embedded Machine Learning Solutions (HCDe-
MLS) model provides a systematic approach (Fig. 1) to developing
innovative CDSS solutions for complex healthcare challenges. HCDe-
MLS uses automation, human factors, machine learning (ML), and

users and stakeholders, it is a holistic systems approach because human-
centered solutions designed at the micro-system level to assist health-
care professionals perform specific tasks, also influence the larger meso-
systems (healthcare teams and information technology integration) and
macro-systems (for example, healthcare organizations, healthcare
standards and policies, and healthcare financing) [3]. In other words,
CDSS designed to support patient monitoring tasks influence physical,
cognitive, behavioral, and organizational processes, as well as outcomes
of healthcare systems over time.

Abbreviations: CDSS, clinical decision support software; H2AI, Human-to-Artificial Intelligence; HCDe-MLS, Human Centered Design for Embedded Machine
Learning; IRR, inter-rater reliability; NCSF, Neonatal Facial Coding System; NICU, neonatal intensive care unit; PRAMS, Pain Recognition Automated Monitoring
System; SME, subject matter expert; sQuaRE, System and Software Quality Requirements and Evaluation; VAS, visual analog scale.
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The three core characteristics of human-centered design are under-
standing users, stakeholder engagement, and a systems approach [3].
Understanding nurses and nursing workflows are essential for designing
CDSS that meets nurses’ needs. Engaging nurses throughout the design
and development lifecycle ensures that the end-product addresses
nurses’ priorities and solves pragmatic problems [4]. By prioritizing
nurses’ needs and human-machine interactions, CDSS can be designed
to efficiently accomplish tasks, while ensuring nurses’ experiences are
intuitive and meaningful. Ideally, CDSS reflects nurses’ actual cognitive
and decision-making processes [5].

1.1. HCDe-MLS and software quality

According to the System and Software Quality Requirements and
Evaluation (sQuaRE) standards, software evaluation should include five
quality-in-use and eight product quality characteristics [6,7]. Usability
is the sQuaRE characteristic most often evaluated [8]; however, indi-
vidual factors are most important for influencing perceptions of software
quality [9]. The HCDe-MLS model ensures user’s perceptions of software
quality are influenced by individual, technological, and organizational
factors.

Trust, or the certainty that a system will not fail, is a critical driver of
technology usage behaviors and is essential for user adoption of tech-
nology [10]. Product-related factors, such as perceived usefulness,
helpfulness, functionality, reliability, and ease of use, as well as
security/service-related and social factors influence trust and CDSS
adoption. Design elements of the user interface are an important pre-
dictor of users’ trustworthiness in CDSS [11]. Thus, the HCDe-MLS
model of including users in software development is critical for influ-
encing nurses’ involvement, training, knowledge, competency, resis-
tance to change, and overall perceptions of CDSS quality.

Empathize

Understand the user’s needs,

&9

thoughts, emotions, and motivations
Define
Defining the problem and '@‘

interpreting the results

Ideate .
Brainstorm possible Q
solutions
Prototype 9@
Model one or more ideas By

Test
Share prototype for

testing and feedback — :’-:

X/

Deploy

International Journal of Medical Informatics 183 (2024) 105337

1.2. Purpose

The purpose of this study was to develop an intuitive and efficient
data labeling software solution, Human-to-Artificial Intelligence (H2AI).
This paper describes the HCDe-MLS model and its use to develop the
H2AI software solution. H2AI facilitates data labeling by subject matter
experts (SMEs), enables tracking of data labeling progress, and allows
monitoring of data labeling quality with inter-rater reliability (IRR)
dashboards. We leveraged the HCDe-MLS model to maximize neonatal
intensive care (NICU) nurses’ engagement, experience, and productivity
to develop H2AI, an intuitive ML model data labeling software solution.
In this case, H2AI was developed and used to train a ML neonatal pain
classification model, a Pain Recognition Automated Monitoring System
(PRAMS).

2. Methods: HCDe-MLS model

The HCDe-MLS model combines human thinking and ML lifecycles
(Fig. 1).

2.1. Human thinking lifecycle

The human thinking lifecycle seeks to understand human needs
(Table 1). Human thinking requires imagination, logic, and systematic
reasoning to artfully create user-focused outcomes [12]. The ML life-
cycle seeks to find patterns in existing data, apply these patterns to new
data, and embed ML in solutions. ML lifecycle follows the standard agile
and iterative software development stages [13].

2.1.1. Empathize

In the human thinking lifecycle, empathizing focuses on learning
about target users. The purpose of empathizing is to set aside assump-
tions and instead gain insights into users’ actual physical, cognitive, and
emotional needs to complete tasks [3,14]. However, Boy [2] clarifies
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Fig. 1. Human-Centered Design for Embedded Machine Learning Solutions (HCDe-MLS): Human thinking (Left side of diagram) from Empathize to Test, and then the
Machine Learning lifecycle (Right side of diagram) from Analyze to Evaluate. When both are complete, the solution is deployed (Bottom of diagram). Reprinted with

permission from ©2019 Kavi Global.
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Table 1
Human Thinking Lifecycle Stages and Respective Toolbox.
Lifecycle Empathize Define Ideate Prototype Test
stages
Description e Collect e Synthesize insights e Generate ideas for possible e Build low- and high-fidelity tactile =~ e Generate performance
information e Microtheory of user solutions to defined problems and representations of solutions data
e Gather insights problem and needs needs e Gather feedback from
e Validate with users users and stakeholders
Tools o Interviews e Empathy mapping e Brainstorming o Feature v1/v2 sketches e Feedback grid
o Focus groups e User persona e Mind-mapping e Visual prototypes
e Surveys e Journey mapping o Affinity diagram
e Storytelling e Co-creation
o Generative
technique

that tasks, such as pain assessment, are technology-centered pre-
scriptions to humans, and activities are what humans really do. Empa-
thizing requires listening, engaging, observing, and understanding users
to gain insight into human activities [12,15].

2.1.2. Define

Empathizing is followed by defining the problem and user re-
quirements. Through qualitative research methods, insights are syn-
thesized, and user personas are developed. Personas are detailed
descriptions of target users developed from highly specific data about
real people [16]. The aim of using personas is to create the users’ point
of view, reframe the problem, and effectively focus design efforts on
users’ needs and preferences. Defining the problem brings clarity to
ensure the solution solves the true problem in the best way [12].

2.1.3. Ideate

Engaging users in brainstorming. Mind-mapping or co-creation ses-
sions initiates ideation [3]. The aim of the ideate stage is to channel
empathy, familiarity, creativity, and collective situational awareness to
address the shared purpose by developing a broad range of possible
solutions that are unbounded by the limitations and status quo of the
current state [2]. Then, all the possibilities must be evaluated against the
constraints of resources and context to prioritize and finalize the most
feasible solution [12,15].

2.1.4. Prototype

The best idea is then built as a prototype. Prototypes may range from
low-fidelity sketches to high-fidelity working artifacts [3,4]. Effective
prototypes communicate concepts and test ideas through iterative
feedback from users and stakeholders. Prototypes are important for
implementing possibilities and for maintaining a solution-building
approach [12].

2.1.5. Test

The final stage of the human thinking lifecycle involves testing and
refining of the software created in the prototype stage [12]. Essential
components of testing include representative users, stakeholders, tasks,
and environments. Qualitative and quantitative methods are used to
identify problems, capture recommendations for improvement, and
statistically support qualitative concerns [15]. Tangible metrics should
be developed with users and stakeholders to improve the assessment of
complex system interoperability [2].

2.2. Machine learning lifecycle

The first stage of the ML lifecycle is to analyze user needs and
translate needs into requirements.

2.2.1. Analyze
The analyze stage advances tasks to activity and complexity analysis
[2]. The scope and boundaries of software, the functional and technical

requirements, the nonfunctional requirements, data sources, data
collection, and integration in a format that can later be consumed by the
ML model, application, and user are defined [17]. Functional re-
quirements, including inputs, calculations, and processes, are then
translated into technical requirements of how the software performs its
actions. Nonfunctional requirements are the look and feel of the product,
the user interface and experience. A core focus in this stage is data
management, including obtaining data essential for the process of
training, testing, and validating the ML model [13]. Data collection re-
quires gathering data samples of real-world system, process, or phe-
nomenon for which the ML model is being built. The data collected may
be heterogeneous because of various disparate sources; thus, pre-
processing the data to ensure consistency is inevitable. When data
samples are unavailable or their collection is too costly, time consuming,
unethical or dangerous, augmentation methods are used to add these
critical data samples to collected data sets [18].

2.2.2. Design

The design stage is the most creative in the ML lifecycle. Here, focus
transitions from the problem to the solution to design optimal solution
architecture leveraging technologies to solve problems efficiently and
effectively. The goal is to transform the requirement specifications into
structure. Creativity, system thinking, risk taking, agile approaches, and
knowledge of human systems integration architecture is required [2].
An outline of the solution is generated, including the technical
approach, solution architecture, ML models, evaluation metrics, capa-
bility of the team, project constraints, risks, timeline, and budget. So-
lution features are prioritized based on complexity, speed to value, and
cost to determine the optimal minimal viable product. Buy versus build
decisions are made for technology and components, as well as
leveraging accelerators, for example, existing pre-trained models like
Convolutional Architecture for Fast Feature Embedding (Caffe)-based
convolutional neural network (CNN). CNN is a feed-forward neural
network that uses filters to effectively extract information from images.
Hsu et al. [19] introduced a CNN-based model to detect 68 facial
landmarks on facial images.

Visual appeal and usability can override trust in information quality;
however, accuracy is one factor that stimulates reflection and motiva-
tion for information quality [11]. CDSS performance requires access to
data sets and multimodal healthcare data that can be assessed cogni-
tively and longitudinally to make dynamic predictions and reflect timing
of clinical decision making [5]. Predictive models must know the
dimensionality of the data, for example, the strong predictive value of
International Classification of Disease codes (ICD-10-CM) and
Diagnosis-Related Groups (DRGs) and a priori interactions of clinical
data. When large de-identified data sets are used to train predictive ML
models, historical mistakes in datasets, known as “historical decision
bias,” are carried forward in model [5,13]. ML model performance im-
proves when temporal changes and trends of repeated measurements are
considered. For dynamic predictions of clinical outcomes, models can be
trained “on-the-fly” [5]. Unfortunately, on-the-fly training of Bayesian
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models results in reduced model performance, and on-the-fly training of
computationally expensive complex algorithms (e.g., support vector
machines [SVM] and CNN) result in slow responses and limited CDSS
utility. Thus, to manage performance, most clinical decision support
models are trained in nightly or weekly batches and only scoring of a
new patient record is done on-the-fly in real time.

2.2.3. Build

Model building is the process of implementing ML models (e.g., lo-
gistic regression, SVM, random forest, and deep learning models like
CNN) to solve the identified problem. Model building follows data pre-
processing, and encompasses feature engineering, splitting of data into
training data and test data, and running various models on the training
set. ML models are broadly classified as supervised and unsupervised;
the learning process is defined as classification or regression [20]. Su-
pervised learning algorithms learn to map inputs to outputs based on
labeled input-output training data pairs. Supervised learning may
define outputs by classification (resulting in a finite set of output cate-
gories) or by regression (defining the probability of the output based on
the input). Model selection is based on the type of problem, volume, and
availability of training data, as well as the need for model transparency
and explain-ability [13,18,21].

2.2.4. Tune

Some ML models have hyperparameters, which are used to control
the learning process and can be iteratively tuned to optimize model
performance and results. Tuning is the stage of improving ML model
performance by choosing and optimizing the hyperparameters of the
training algorithm to control for overfitting, underfitting, and model
complexity [13,18,21]. ML models lack design specifications; instead,
algorithms are developed by learning parameters from mathematically
derived data. With models that do not require hyperparameter tuning, i.
e., pre-trained models like Caffe-based CNN and MobileFaceNet, the
tuning stage is unnecessary. However, in general, model performance
can be improved by iterating on the features fed into the model.

2.2.5. Evaluate

The performance of the chosen model is then evaluated against the
original use requirements and acceptance criteria on previously unseen
test data [13]. Model evaluation demonstrates the robustness and
generalizability of the model and enables comparison to other existing
methods. Performance metrics should be quantifiable and reflect data
characteristics and the CDSS [13,22]. For supervised models, perfor-
mance metrics typically include accuracy, precision, recall, and speed.
Especially in the healthcare context, it is important to evaluate tradeoffs
between types of error (i.e., false positives and false negatives) to ensure
patients are not misclassified or incorrectly treated. Evaluation metrics
must also consider human interpretation of what the algorithm does and
means [22].

2.2.6. Deploy

The last stage of the HCDe-MLS model is deployment to the pro-
duction environment. Deployment refers to configuring the CDSS for
integration with other applications to serve as designed at scale. Built-in
mechanisms to integrate feedback and support CDSS may be required
[13]. Human-machine interfaces must enhance operator automation-
related situational awareness [23]. Failing to attend to the knowledge,
expertise, and training to optimize human-machine interactions results
in automation errors. In addition, deviation from test data to operation
data must be monitored to identify covariance shift or concept drift
[13,21]. Therefore, it is essential that, in safety—critical systems like
healthcare, any deployed model is transparent, explainable, interpret-
able, and continuously monitored to meet clinical decision support
needs [21].
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3. Stakeholders and setting

After receiving approval from the Institutional Review Board, study
#2021-4348, small focus groups were conducted by video calls for 1 h
each week from February to May in 2021 to empathize and identify user
needs. Stakeholders included NICU nurses (n = 6), nurse scientists (n =
2) with expertise in neonatal development and pain management,
human-centered design specialists, architects, data scientists, and
product managers. Nurses had a mean of 18.7 years of NICU nursing
experience (ranging from 5 to 42 years) and worked in a 64-bed level IV
NICU, part of a 364-bed, free-standing, university-affiliated, not-for-
profit urban children’s hospital in Illinois that cares for neonates with
complex medical needs.

4. Results: H2AI development case

Our cross-functional team identified an opportunity to train a variety
of ML models by labeling data. Models could then be compared against
the nurses’ benchmark to gain clinical trust and encourage CDSS
adoption. We developed user personas to define user tasks and needs
through thematic analysis by the human-centered design specialists and
verification from all focus group members (Table 2). These personas
provided real-life context to reframe the problem and focus design ef-
forts toward efficiently leveraging nurses’ expertise for data labeling;
and eventually, development of an effective PRAMS.

Then, our cross-functional team identified novel ideas and disruptive
innovations to optimize user workflows, maximize productivity, and
minimize user burden. Our resulting mind map (Fig. 2) illustrates the
key H2AI product features identified.

4.1. Data labeling tasks

Six Data Labeling Tasks were defined based on clinical neonatal pain
assessment standards [24], a review of the literature [25,26], and ML
modeling needs [6,7,13,18,21]. First, nurses used the Neonatal Facial
Coding System (NFCS) to label each video frame. NFCS is a valid and
reliable objective measure of pain [24,27,28]. Second, nurses rated their
perception of pain intensity on a Visual Analog Scale (VAS) of 0-100,
with 0 indicating no pain and 100 indicating the worst possible pain.
Third, nurses identified and labeled facial landmarks to help the com-
puter vision model identify facial action units from movement of facial
features. Fourth, nurses identified occlusions, where neonates’ hands or
blankets obstruct facial landmarks. Fifth, nurses classified pain by frame
image, and sixth, at the video level.

4.2. User workflows
Four User Workflows were developed.

4.2.1. Practice workflow

The purpose of the Practice workflow was to educate nurses in the
tasks and features of the application. Since users had identified that they
would need to access the application from a variety of computers, the
Practice workflow was also used to test their equipment.

4.2.2. Training workflow

The Training workflow was created to ensure consistency of labeling
among nurses. A nurse scientist labeled five random frames in parallel
with each nurse, then the two met to reconcile any labeling differences.
If agreement thresholds were reached before meeting, the nurse was
“passed” on to the Labeling workflow. If thresholds were not attained,
parallel labeling continued in repeated sets of five additional frames
until the thresholds were reached.

4.2.3. Labeling and review workflows
The Labeling workflow was identical to the Training workflow, except
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Table 2
User Personas.
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We are... We are trying to... But... Because... We need to create solutions that...
Nurse Automate pain We need a ML model that In healthcare, risk from false positives and Innovate and involve direct care nurses in the
Scientists classification in neonates healthcare professionals will trust false negatives is high rigorous development of a continuous pain

We need nurse-labeled data and a
method to collect the data labels to
train the ML model

Architects & Build a supervised ML
Data model to automate pain
Scientists classification

NICU nurses Label neonatal facial

landmarks and facial action

data to train the ML model

Variability in assessments among
nurses are normal; documenting
each assessment and decision is
time-consuming

We want the model to be trustworthy, and
therefore comparable to SME benchmarks
and validated methods of pain
classification

There are so many landmark points and
NCSF pain classification results, pain
intensity, and overall pain classification to
capture for each frame

monitoring system for vulnerable neonates
Inspire and partner with healthcare
professionals to develop an efficient solution
for ML modeling

Empower nurses to engage in designing the
labeling system and the development of a
clinical decision support solution to provide
better care for my patients

ML, machine learning; NCSF, Neonatal Facial Coding System; NICU, neonatal intensive care unit.; SME, subject matter expert.
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Data Labeling Solution

User Interface

e Complete Labeling tasks
Train Labelers
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. Data Access
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Technical Architecture

e Cloud Native Architecture

. Data
o  Relational Storage for label
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Images

e Secure
o User login authentication
o  De Identified data

Fig. 2. Mind map of key features for embedded ML solutions development. Al, artificial intelligence; API, application programming interface.

the generated data labels were stored for later use to train the ML pain
classification model. To ensure nurses consistently met IRR thresholds
throughout the labeling of thousands of video frames, the nurse scien-
tists were randomly assigned to label up to 10 % of the videos each nurse
labeled. Given the volume of frames to be labeled, the Review workflow
was created to allow real-time monitoring of data labeling progress (i.e.,
how many frames/videos were labeled, how long each task takes, and
IRR for each nurse).

4.3. H2AI prototype

When ready to create a prototype, the data scientist first conducted a
buy versus build comparison to determine if the data labeling capabil-
ities already existed in the market. Image annotation solutions already
existed. Common features were pixel identification, bounding box, re-
gion detection, text tagging/object, however, none provided the ability
to upload data based on human interactions with video images. Mid- and
high-fidelity prototypes were then built (Fig. 3) and tested by nurses.
Our feedback grid both itemizes improvement opportunities and posi-
tive feedback (Table 3).

4.4. H2AI machine learning lifecycle

Feedback was analyzed and mapped to the product backlog to
optimize functionality, user experience, and productivity. Data security

agreements required user authentication and secondary verification.
This greatly influenced the architectural design and ML modeling
approach. This solution was funded on a time-limited grant which
required a software solution be in production in three months. User
requirements were translated into technical requirements, mapped to
the appropriate technology and ML model solution (Table 4), and then
consolidated into a single cohesive solution. The solution architecture
(Fig. 4) encompasses a holistic software solution from front-end user
interface to the embedded ML models output, back-end data storage,
and service calls to pass data between the front and back ends.

4.4.1. H2AI build

To build the ML model, neonatal pain and no pain video images from
the iCOPEvid Neonatal Pain Video Database was obtained with
permission and used for this study [25]. Videos and images needed to be
labeled by nurses in the data labeling solution. H2AI utilizes pre-trained
models that are optimized to extract facial features from video frames
with high efficiency and capture labels at the lowest level of granularity.
Intel’s open-source framework, OpenCV, has a built-in Face Detector
that is reliable in 90-95 % of clear, forward- and camera-facing human
photos ([29], Open CV). OpenCV was selected to convert video to im-
ages, crop the face, and put the bounding box on the face to position
facial landmarks within the acceptable level of confidence (Fig. 5). The
default OpenCV model cropped the outline of the face, especially by the
ears and chin; thus, additional padding of 20 pixels were added before
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Task 1/3: NFCS Classification
I N (1) brow lowering

(6) horizantal mouth stretch
Yes

(7) taut tongue
Yes

(8) chin quiver
Yes

(9) lip pursing
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Fig. 3. Mid-fidelity App (top) and high-fidelity App in production (bottom).

cropping the image. This ensured that all facial features were available
for landmarks that might otherwise be lost.

4.4.2. H2AI landmark model comparison

Two pre-trained facial landmark models were implemented, and
precision of their respective landmark placements were compared. First,
a Caffe-based CNN model was implemented. Caffe is a deep learning
framework that defines a net layer-by-layer in its own model schema.
The network defines the model in a bottom-to-top approach from input
data to loss. The model was composed of 24 layers: 8 convolutional
layers, 4 pooling layers, 2 dense layers, 9 batch-normalization layers,
and 1 flatten layer. Using Keras Functional Application Programming
Interface (API), the pre-processed frames of images were fed into the
model.

The second model, MobileFaceNet, uses a more streamlined archi-
tecture with depthwise separable convolutions [30]. Chen et al. [31]

developed MobileFaceNet, using ArcFace [30] loss to achieve > 99.5 %
accuracy for the face detection task on the Labeled Faces in the Wild
Home (LFW) dataset [32]. MobileFaceNet is also effective as a general
facial feature extractor [33]. MobileFaceNet is specifically designed for
the face recognition task by replacing the global average pooling layer
with a global depthwise convolution (GDConv) layer, which enhances
the discriminative ability of the model. The first layer of each sequence
uses a stride s, and all other layers use stride = 1 to preserve the same
output feature map size as the original layer. All spatial convolutions in
the bottlenecks use 3 x 3 kernels. The expansion factor t is always
applied to the input size and GDConv7x7 denotes GDConv of 7 x 7
kernels. A downsampling strategy is used at the beginning of the
network, and a linear 1 x 1 convolution layer follows a linear global
depth-wise convolution layer as the feature output layer. During
training, batch normalization is used, and batch normalization folding is
applied before deployment.
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Table 3 Table 4
Feedback Grid. Technical Requirements and Appropriate Technology and ML Model Solution.
Feedback Nurses’ current Solution Feature User Requirement Technical Requirement Solution

human-machine
interaction paradigm

Enhancement

We need the data labeling
to be more efficient

Increase size of dots on
user interface

e Facial landmarking
dots are too small to
see, select, and move

e Pain VAS slider is too
small

Need fine-grain control to
move facial landmark
dot(s)

Limit risk of user pain
intensity score bias

Need practice and
training workflows for
training nurse data
labelers and ensuring
data quality

Cannot identify chin
quivering due to use of
still image

Need a way to monitor
nurses’ progress in
training and labeling

Need better default
landmark placement at
the start of each
labeling task

Medical records allow
nurses to copy forward

Nurses use a variety of
computer brands,
monitor sizes, trackpads,
mouse, etc.

Numeric pain scales
have inherent bias
VAS is a valid pain
intensity measure with
more rigor

Goal is to maximize IRR

May negatively influence
IRR

Variable schedules due

to patient demands

Encourage and reward

efforts

Track paid time

e Need to identify data
drift

To improve efficiency by

having to move fewer

landmark points into

place

3

Copied forward

previously selected

results from tasks across

frames

e Increased (Task 2 & 3)
dot size

e Increased (Task 4)
pain intensity slider
granularity

Enabled single select,
multi-select, rotation,
space expansion, and
space contraction of a
group of landmarks dots
at once

Hid numbers on pain
intensity slider

Created workflows:
practice, training, and
labeling, with user-
specified IRR thresholds
that need to be passed in
training before entering
labeling workflows
Removed chin quiver
from NFCS

A Power BI dashboard
was embedded into the
user interface to
summarize the progress
of nurses

Updated pre-trained
facial landmarking
default placement Al
model from OpenCV to

User needs to provide
data labels for six
tasks on each image
frame from each
video.

User wants landmarks
to be as precise as
possible for optimal
landmarking
efficiency.

Users want to automate
pain detection using
the validated NFCS
pain scale measures.

Users want to track
labeling process.

Users want to see the
IRR across users.

Funding allows a 30-day
timeline.

Video data needs to be
pre-processed into images
and made available in the
data labeling solution for
users to label.

Image and default
landmark positions need
to be made available in
the user interface.

Labeled data from the
users needs to be collected
and stored in a format that
can later be used to train
the supervised computer
vision pain detection
model.

Reporting on top of the
SQL relational data store
of labeled data needs to be
reported and visualized.
IRR is required at each
frame level.

Users require
functionality, security,
and authentication.

Video data can be stored in
a blob format. OpenCV is
the most popular image
processing library to
capture images from
videos and detect faces.
Pre-trained landmark
models can be run in the
back end to place default
landmarks as close as
possible to outline facial
features. There are several
options: Caffe Model and
MobileFaceNet can be
compared.

Image path and default
landmark positions can be
sent via Restful API call via
JSON file to the user
interface, which can then
display the coordinates on
the U, over the image file.
User labels are stored in a
relational Azure SQL
database to be accessed
easily from Python when
doing model training and
benchmarking.

Power BI can be used to
provide reporting on data
labeling progress by
displaying counts

IRR calculations can use
Python code on Azure
Cloud Databricks to
compute.

Cloud Native solution
architecture can enable
rapid delivery by
leveraging pre-built
components.

MobileFaceNet

Al artificial intelligence; BI, business intelligence; IRR, inter-rater reliability;
NFCS, Neonatal Facial Coding System; VAS, visual analog scale.

Since Caffe-based CNN and MobileFaceNet are pre-trained models,
we did not tune hyperparameters for landmark detection. However, we
adjusted the size and color tone of input images to achieve the best re-
sults. Models were then compared and evaluated using visual inspec-
tion across several images, including challenging images with
occlusions. As seen in Fig. 6, the Caffe-based CNN model lacked preci-
sion; and MobileFaceNet better captured the outline of the upper lip
(versus the tongue), nose, and eyes. Users agreed that MobileFaceNet
was the better solution for default facial landmarking and was more
robust at handling occlusions and blurry images from movement.
Therefore, we integrated and deployed this pre-trained model into the
production environment; and nurses, who had met IRR thresholds, then
began data labeling workflows.

4.4.3. H2AI efficiency evaluation

Using HCDe-MLS, H2AI was developed and facilitated labeling of
139 videos with 3189 images labeled by 6 nurses. Nurses began labeling
data after meeting IRR thresholds of 88 % agreement were attained on
NFCS items and binary pain classification, and when agreement on pain
intensity scores were +10 points across 5 random test frames [34]. NFCS
labeling took nurses a mean of 12.23 s per image and 4.67 min per video.

Landmark labeling took nurses a mean of 51.24 s per image and 20.36
min per video. In total, NFCS and landmark labeling took nurses a mean
of 75 s per image and 29.83 min per video. The best performing ML
model from nurses’ labeling of this data in H2AI had 97.7 % precision,
98 % accuracy, 98.5 % recall, and Area Under the receiver operating
characteristic Curve (AUC) of 0.98 [34]. HCDe-MLS and development of
H2AI was a critical first step in the development of a trustworthy
PRAMS.

5. Discussion

Our cross-functional team leveraged the HCDe-MLS model to
develop the H2AI solution. H2AI is a data labeling solution that facili-
tates efficient labeling of video image data by SMEs and stores the user
generated data labels for later development of and access by ML models.
In this case, data labeled by nurses was used to train a highly precise and
accurate model with excellent recall. With further refinement, H2AI will
now be used to train an ML model to continuously monitor neonatal
facial actions for pain, a Pain Recognition Automated Monitoring Sys-
tem (PRAMS).

5.1. ML models and efficacy comparison for pain classification

With 98 % accuracy, 97.7 % precision, 98.5 % recall, and AUC of
0.98, our supervised ML pain classification model far exceeded previ-
ously reported models developed with the same video dataset (highest
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1. SQL Database: All applications writable data for operational purposes. Data is synced to storage.

2.DevOps: Git-based code repository storing all the metadata required by the application.

3. Authentication & Authorization: Admin & User role confirmation within the application, based on group designation in the directory.

4. Service Bus: Queue and Notification Services that control communication to Databricks as well as asynchronous notifications to the front
end. Controls access to data storage, code repository, analytics services, operational database and endpoints.

5. Function Apps: Python serverless functions that can be scaled on demand. Middleware functions: (1) Front end services: support the front
web application; (2) Repository Services: interact with the metadata; and (3) Analytics Services: interact with the Analytics backend.

6. APl Management: Controls access to data storage, code repository, analytics services, operational database and endpoints using the

authentication token.

7. App Services: Web App front end user interface built using Angular version 9. Communicates to components using Web Services.

8. Databricks: All analytics and data processing requirements of the application are performed by Azure Databricks. Analytic instances are
created on demand, based on job submissions, and terminated once the job is completed. Jobs are invoked by middleware services, which
are triggered by submissions to the job queue. Middleware services uses Databricks AP| to communicate. Storage: All application input and

output data (csv, json, and other media files)

Fig. 4. H2AI solution architecture.
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Fig. 5. Converting video images to frames for labeling tasks.

AUC = 0.93) and was better performing than all except one model
developed with a smaller (AUC = 0.98, 15 videos) dataset [25,26,34]. As
Zamzmi, et al. suggested [26] incorporating clinical and contextual in-
formation is necessary to refine and develop a context-sensitive PRAMS.
Using HCDe-MLS and H2AI, we have demonstrated a method to effec-
tively incorporate nurses’ clinical and contextual knowledge to advance
development of effective pain recognition models and PRAMS [34].
Using HCDe-MLS and H2AI also improved data labeling efficiency.
Researchers using other methods in their attempt to automate pain
assessment based on facial expressions have reported that data labeling

was time and labor-intensive, taking up to 3 h for every minute of video
[35]. Brahnam et al. [25] used iCOPEvid video images and Gaussian of
Local Descriptors (GOLD) approach to extract facial features. This is a
time-consuming four-step process that involves dense scale-invariant
feature transform (SIFT) descriptors and probability density estima-
tion. SIFT is computed based on the histogram of the gradient, making it
mathematically complicated and computationally heavy.

Ashraf et al. [36] utilized the Active Appearance Model (AAM) to
identify shape and appearance variations of adult faces but identified a
lack of ground truth at the individual frame level. Also in contrast to our
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Fig. 6. Facial landmarking comparison by model: Caffe-based CNN (left) and MobileFaceNet (right).

approach, Brahnam et al. [25] achieved ground truth at the frame level
and validated their neonatal pain classification ML model based on as-
sessments by 185 college students with no appreciable healthcare or
neonatal pain assessment experience. By having a frame-level ground
truth based on data labeled by nurse SMEs, our model can learn and
improve in its performance. This level of data labeling granularity is
needed to ensure nurses will trust PRAMS, a CDSS solution for pain
detection.

5.2. Limitations

H2AI and our best performing ML model was developed using the
iCOPEvid neonatal pain database. This database is small and lacks racial
and ethnic diversity [25] that may influence MobileFaceNet detection of
facial landmarks [33]. Therefore, time required for data labeling by SME
may be longer with a more diverse dataset. Recent federal data sharing
requirements may facilitate access to more diverse video and clinical
datasets that may accelerate further development of models that pro-
mote healthcare equity in CDSS and PRAMS.

The iCOPEvid database contained video that we then converted to
frame images for data labeling granularity [25,26]. However, the
resulting ML model may fail to capture dynamic patterns of facial ex-
pressions that may be important for discriminating pain or other con-
ditions. To date, only one novel multimodal spatiotemporal approach
for assessing neonatal postoperative pain has been reported with an AUC
of 0.87 and 79 % accuracy, exceeding many other unimodal facial
coding approaches [37].

5.3. 5.3 Future potential H2AI applications

H2AI can be utilized to label data and develop ML models to detect
pain in other vulnerable patients who cannot provide self-report [24], to
detect other human conditions associated with facial actions, such as
depression and anxiety [38], and to detect potential threats by differ-
entiating anger from hostility using micro-expressions [39]. With cus-
tomization, H2AI can also be extended to Natural Language Processing
(NLP) models, where the model is trained to deliver sentiment analysis,
entity name recognition, and optical character recognition. Audio
tagging is also a potential area of development for H2AI, such that in-
formation pertaining to the sound bites from the videos, such as cry,
could assist in the model’s learning process. We are moving forward to
develop PRAMS with a clinical trial of continuous video facial moni-
toring for pain. Determining the latency of alert, specifically, the length
of time or number of consecutive images that classify a condition before
a clinician is alerted, is a feature we must add to H2AIL

6. Conclusions

When training computer vision algorithms for healthcare CDSS, ML
models must be explainable and validated against the expertise of
healthcare professionals. We have demonstrated that HCDe-MLS can be
used to generate a user-centric software solution with embedded ML. We
engaged nurses in the design, building, and deployment of H2Al, a first
step in our development of a PRAMS. To meet nurses’ needs and deliver
the best user experience, we used Cloud Native, a serverless architecture
to accelerate time to solution delivery. OpenCV provided efficient video-
to-image data pre-processing for data labeling. MobileFaceNet demon-
strated superior results for default landmark placement on neonatal
video images. We found that H2AI facilitates efficient data labeling and
stores labeled training data for future access to train ML models. H2AI
also tracks IRR and compares ML model performance to SMEs. The H2AI
solution can be generalized to other industry uses.

Summary Table:

What is already known on the topic:

Individual factors are most important for influencing perceptions of
software quality.

User-interface design, perceived usefulness, helpfulness, function-
ality, reliability, and ease of use, as well as security/service-related
and social factors influence trust and clinical decision support soft-
ware adoption.

What this study added to our knowledge:

e The Human-Centered Design for Embedded Machine Learning So-
lutions (HCDe-MLS) model provides a systematic approach for
engaging nurses to develop patient monitoring clinical decision
support software solutions.

Nurses informed the development of Human-to-Artificial Intelli-
gence (H2AI), an intuitive and efficient data labeling software so-
lution for healthcare professionals’ use.
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