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Abstract: This paper provides a simple yet effective approach to improve direction-of-arrival (DOA)
estimation performance in extreme signal-to-noise-ratio (SNR) conditions. As an example, a multiple
signal classification (MUSIC) algorithm with a deep learning (DL) approach is used. First, brief
research into the existing DOA estimation techniques is provided, followed by a demonstration of a
simulation environment created on the MATLAB platform to generate and resolve signals from a
uniform rectangular array of antenna elements. Following that is an attempt to improve the estimation
accuracy of these signals by training various DL approaches, including multi-layer perceptron and
one- and two-dimensional convolutional neural networks, using the generated dataset. Key findings
include the cases where the developed DL approach can resolve signals and provide accurate DOA
estimations that the MUSIC algorithm cannot.

Keywords: DOA estimation; multi-layer perceptron; MUSIC algorithm; one- and two-dimensional
convolutional neural networks

1. Introduction

Massive multiple-input multiple-output (MIMO) is now an established technology for
the next generation of wireless communications [1,2]. It historically has been found to bring
vast improvements over earlier methods in radio link systems in terms of spectral efficiency,
energy efficiency, data rate, user tracking, robustness, and reliability [3-5]. However, the
fundamental challenge of existing massive MIMO systems is that high computational
complexity and complicated spatial structures bring difficulties in exploiting the charac-
teristics of the channel and sparsity of these multi-antennae systems. To acquire channel
state information in massive MIMO systems, extracting accurate angle parameters using
direction-of-arrival (DOA) estimation algorithms plays a vital role [6,7]. This constitutes a
need for simple and effective DOA estimation enhancement techniques which improve the
accuracy even in extreme signal-to-noise-ratio (SNR) conditions, and at the same time, do
not put any more pressure from the computational complexity point. Various techniques
can be found to solve the DOA estimation problem along the same lines [8-12]. Among
them, subspace-based techniques are capable of providing high spectrum resolution [13,14].
Multiple signal classification (MUSIC) is a superresolution DOA estimation algorithm
based on the eigendecomposition of the spatial covariance matrix observed at an array;,
and belongs to the family of subspace-based direction-finding algorithms [15,16]. It can
simultaneously measure multiple signals to high precision. Despite the satisfactory perfor-
mance of the MUSIC algorithm in terms of estimation accuracy and resolution, it requires
intensive calculations, which limits its real-time application [17]. This problem becomes
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more acute when the goal is a multi-dimensional estimation (such as joint estimation of
both azimuth and elevation angles).

To address the aforementioned computational issues, this paper explores an approach
that integrates the DOA estimation problem in deep learning (DL). DL is a subset of
machine learning (ML) and a branch of artificial intelligence whose purpose is to train
machines using data, without direct programming [18]. It is a type of neural network
consisting of several layers of artificial neurons, which is trained using large datasets. These
layers allow DL models to learn complex data and make accurate predictions. In this paper,
specifically, the MUSIC algorithm is chosen as the DOA estimation method because of
the following advantages [19,20]: the ability to simultaneously measure multiple signals,
capacity for high precision measurement, high resolution for antenna beam signals, and
insensitivity to array geometry.

Contributions—the primary novelty of this work stems from the basic idea of the
MUSIC algorithm to conduct characteristic decomposition for the covariance matrix of
any array output data, resulting in a signal subspace orthogonal with a noise subspace
corresponding to the signal components. The signal components, as described above, are
created in a simulation to generate this covariance matrix along with a generated noise
subspace. These orthogonal subspaces are used to create a spectrum function from which a
peak search can detect the DOA of the signal or signals.

*  First, the structure of the model and simulation for training the DL approach is defined.

*  Then, the implemented deep learning methods are described, along with key design
decisions unique to them.

¢  Finally, the performance of the DL-based system is compared with the conventional
MUSIC algorithm using quantitative evaluation criteria. As a result, the proposed
approach can resolve signals and provide accurate DOA estimations that the MUSIC
algorithm cannot.

The rest of this article is organized as follows. In Section 2, first, the system and data
models are described; then, the implementation details of the proposed approach are stated.
In Section 3, the results of the simulations are given along with the discussion to evaluate
the performance of the proposed approach. Finally, Section 4 is devoted to providing
conclusions and suggestions for future work.

2. Data Model and Implementation

The system considered in this paper consists of two major parts: a simulator and a DL
approach. The simulator generates the sinusoidal waveform from a massive MIMO antenna
element and combines it with white Gaussian noise to produce a realistic, resolvable signal.
The noise is generated as an array of equal size to that of the generated waveform based on
the calculation: to simulate a 0 dB SNR condition, multiple noise power values were given
based on manual tests against all sizes of antenna arrays used, such that the incremental
change in noise power sufficiently distorted the signal and kept it within usable bounds for
the future DL. The simulation can be considered successful if (1) the peaks of the spatial
spectrum generated from the MUSIC estimator match the actual DOA; (2) increasing the
number of antenna elements in the array leads to spatial spectra with higher resolution
and more accurate DOA estimation; (3) larger values of noise power lead to less accurate
DOA estimation; and (4) it can generate multiple signals, and then resolve them by the
MUSIC estimator [17,19]. In addition to the simulator, a DL approach must be devised. The
approach must be well-defined and demonstrate learning across multiple epochs.

Below are the descriptions and design details of the simulator and the DL approach.
They will be a general guide for implementations and will be adjusted appropriately during
the evaluation and testing phases.
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2.1. MUSIC Algorithm

The 2D MUSIC algorithm pseudospectrum, P(6, ¢), as a function of the azimuth angle
6 and elevation angle ¢, is given by:

1
P(0,¢) = 216, 0)00a(6,9)’ @

where a(0, ¢) is the 2D steering vector, which represents the spatial response of the array
to a signal arriving at f and ¢. Qy is the noise subspace matrix. a'l and Q, denote
the conjugate transpose of a and Q. The peaks in the MUSIC pseudospectrum P(6, ¢)
correspond to the signals’ arrival angles in both the azimuth and elevation planes. The
algorithm is particularly effective in scenarios where the number of signals is less than the
number of array elements in both dimensions.

2.2. Simulation Framework

For the implementations done in this paper, a specific dataset has been generated
because no convenient dataset can be exploited for the DL models that will be defined
later. This dataset has been produced from a simulation campaign performed based on the
following assumptions and specifications:

* A uniform rectangular array (URA) consisting of isotropic antenna elements, the
number of which is adjustable (array size selection is based on computational resources
available). To avoid the appearance of grating lobes, the inter-element spacing is
considered smaller than A /2, where A is the wavelength.

* Anarray signal generated by collecting the plane wave impinging the antenna array,
the azimuth and elevation DOAs (i.e., pairs of (6, ¢)), and the sampling frequency.

*  Noise data defined according to the size of the antenna array with the appropriate
power. Although a central frequency is selected in the simulator, the investigation is
frequency agnostic.

* A two-dimensional (2D) MUSIC algorithm estimator which will estimate the DOA in
the range of —90° to 90° in both elevation and azimuth angles.

* A peak finder method to identify the peaks corresponding to the estimated DOAs in
the spectrum plot generated from the 2D MUSIC estimator.

This simulation produces a covariance matrix that can be decomposed into magnitude
and phase for training DL models. Figure 1 shows an example of a spatial spectrum
produced by the simulation for three incoming signals with limited noise on an 8 x 8 URA.

30

-16.5
-17
-17.5
. 0 -18
Elevation Angle -30  Azimuth Angle

(degrees) Rt (degrees) A2|muth Angle degrees

(a) (b)
Figure 1. An example of the pseudospectrum produced by the simulator for three noisy signals with
azimuth and elevation DOAs of (6, ¢)=(17°, —45°), (0°, 0°), and (55°, 30°) with an 8 x 8 URA; (a) 3D
view, (b) 2D view when red indicate the peaks.
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2.3. DL Framework

In mathematical optimization, a loss function or cost function is a function that maps
an event or value of one or more variables onto a real number. An optimization problem
seeks to minimize a loss function. The selection has been made that an objective function
is equivalent to a loss or cost function. This, therefore, applies to the MUSIC algorithm
function as it takes in combined signals and noise. It then outputs an estimation of DOA. In
the case of the MUSIC algorithm, optimisation variables must be created of the combined
signal and noise, such that it can be passed to an optimisation function of MUSIC with
upper and lower bounds and a specified number of function evaluations.

DL approaches will be implemented using the Keras deep learning framework [21].
Artificial neural networks will be trained and validated with data generated from the
simulation. As previously stated and shown in Figure 1, the simulation can handle multiple
signals and resolve their directions of arrival successfully. However, in the following, the
neural networks will only be tested against samples consisting of one signal. This will
allow for more simple and rapid development of neural networks.

Approaches have been explored using the Adam optimiser [22] with standard learning
rate, varying batch sizes and epochs, mean squared error (MSE) loss function, and rectified
linear unit (ReLU) activation function (linear for final layer). Multi-layer perceptron (MLP),
1D convolutional neural networks (1D-CNN), and 2D-CNN have been developed. Initially,
MLP was chosen as the most basic form of neural network to support rapid development,
and to initially prove the validity of a deep learning approach. Following this, CNN’s were
chosen to try and spot spatial features (peaks) within the array data by using convolutions
of varying filters. We are faced with a MIMO regression problem because the aim is to
learn from the values of magnitude and phase for each sample to predict two values for the
DOA as azimuth and elevation angles. Figure 2, as an example, shows a representation of
the structure of one of these neural networks (2D-CNN).

K Batch
E CNN + Relu ilisati
normilisation Relu

Max pooling
Conv2 Q% Dropout
Linear
Conv3 Flatten

Dense

N

Dense

Mone, 2

None, 16 Mone, 4

Mone, 6144

None, 25, 16, 64

None, 50, 32, 32

Figure 2. A concept example of a 2D-CNN structure, in this case for a two-by-two antenna array with
initial shape corresponding to the array size generated by these elements [23].
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2.4. DL Approaches Description

The MLP is a type of feedforward NN that consists of multiple layers of interconnected
neurons. Given an input vector x € RY, the output y € R¢ of a MLP with L hidden layers
can be computed as follows:

h() = o0 (Wx + p(D) @
h® = cOWORED 1Dy for1=2,3,...,L 6)
y = softmax(W(L“)h(L) + b(LH)), 4)

where W() and b(") are the weight matrix and bias vector for the I-th layer, respectively.
o) is the activation function applied element-wise at the [-th layer, and softmax is the
softmax function that converts the final layer output to a probability distribution.

The 1D-CNN is a type of convolutional neural network designed to process one-
dimensional sequential data. Given an input sequence x € R, the outputy € R° of a
1D-CNN with N filters of size F can be computed as follows:

F
w]--xi+j1+b> fori=1,2,..., T—F+1, (5)
j=1

yi = ReLU<

where y; is the i-th element of the output vector y, ReLU(x) = max(0, x) is the rectified
linear unit activation function, and w; and b are the filter weights and bias, respectively.
Similarly, 2D-CNN can process two-dimensional data. Given an input X € R?*W, the
output feature map Y € RH*W' of a 2D-CNN with N filters of size F x F can be computed
as follows:

F F : !
i=1,2,..., H—-F+1
Y;; = ReLU E Ew X1 (ian_1) + b for 6
1 <mlnl mn (i+m-1),(j+n—1) ) {]'21,2,...,W’—F+1. ()

where Yj; is the element at position (i, j) in the output feature map Y, ReLU(x) = max(0, x)
is the rectified linear unit activation function, and w,, and b are the filter weights and bias,
respectively. MLP, 1D-CNN, and 2D exhibit distinct computational complexities. MLP is
comparatively straightforward, comprising multiple fully connected layers.

2.5. Implementation

Keras is a DL application programming interface (API) written in Python, running on
top of the ML platform TensorFlow [24]. It was developed with a focus on enabling fast
experimentation. In this study, Keras was chosen for the deep learning approach because it
effectively allowed for rapid experimentation against different approaches consisting of
different neural network architectures. Keras offers consistent and simple APIs, such that it
minimises the number of user actions required for the most common use cases [24,25].

Before the investigation into and development of the neural networks, a dataset for
training and validation needed to be created. As previously stated, no dataset was available
within the scope of this project. Therefore, all data for this section had to be generated by
simulation. The designed simulation allows for data for any antenna array size. The data
generation approach is as follows:

*  Specify multiple noise power values. The models will need to be tested against signals
in a spectrum of different noise conditions.

*  For each noise power value, generate a signal for every angle 1° apart in the range of
—60° to 60° in both azimuth and elevation angles.

¢  For the covariance matrix generated, take both the magnitude and phase values
separately (as complex numbers). Absolute value and angle value are taken for
magnitude and phase, respectively.
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¢  Perform the conventional MUSIC algorithm estimation for each signal for later com-
parison. The MSE and mean absolute error (MAE) between estimates and true angles
will be compared to the MSE and MAE achieved from the best neural networks. This
will be the way to evaluate the success of the approach.

* Insert magnitude, phase and true angles into separate comma-separated value files
inside the true angle file and save the MUSIC algorithm’s estimated values.

First, data are generated for a 2 X 2 antenna array. This allows for the fastest exper-
imentation with different neural network architectures and structures. Then, data were
also generated for an 8 x 8 antenna array. This produces the largest array size that could
be feasibly used in training based on our hardware specifications. The implementation is
shared as supplementary information. The computational complexity of a MLP depends
on the number of layers and neurons in each layer. Training a MLP involves matrix multi-
plications and activation functions, resulting in a time complexity of L x N2, where L is the
number of layers and N is the average number of neurons per layer. Despite their simplicity,
MLPs might struggle to capture complex spatial relationships in data due to the absence of
convolutions. In contrast, 1D-CNN introduces convolutional layers that operate along one
dimension, typically suited for sequential data. The computational complexity of 1D-CNN
is influenced by the kernel size, number of filters, and sequence length. Convolution opera-
tions in 1D-CNN involve a sliding window over the input sequence. This leads to a time
complexity of approximately F x K x N, where F is the number of filters, K is the kernel
size, and N is the sequence length. While 1D-CNN can effectively capture local patterns, its
limitation to a single dimension can hinder its performance on data with intricate spatial
structures. The 2D-CNN architecture extends convolution to two dimensions, making
it well-suited for 2D data. The computational complexity of 2D-CNN is determined by
kernel size, number of filters, image dimensions, and strides. Convolution operations in
2D-CNN involve sliding a filter over 2D space, resulting in a time complexity of roughly
F x K? x H x W; H is the data height and W is the data width. The 2D-CNN excels at
capturing spatial hierarchies and patterns within data, making it a staple in field-of-view
tasks.

2.6. Testing Keras DL

The approach to testing Keras DL methods is detailed below to ensure ease in repeata-
bility of the experimentation:

e  For data preprocessing methods (e.g., dimensionality reduction and splitting training
and test sets), provide mock data to the methods and make assertions on the properties
of the returned data. For example, assert that the correct shape and size of the data are
returned, or that the correct split sizes on the data are returned.

¢  For neural network generation methods (e.g., generating MLP, 1D-CNN, combining
models, etc.) test that parameterised creation of networks works as expected. Create a
standard neural network from methods and then create an equivalent model using
the Keras functional API in the test. Finally, assert that the output shapes of the layers
and the number of layers are equal.

*  For testing metrics methods (e.g., generating MUSIC metrics) test that metric values
are returned as expected. For example, mock output data and calculate MSE and
MAE, and calculate the number of out-of-range values (NaN). Finally, assert that these
values are the same as those returned from the metrics methods.

Only the methods for generating the DL approaches will be tested. The Jupyter
Notebook will include multiple implementations of these data generation methods, but
they themselves do not require testing. Testing them would involve extensive modifications
and would only verify the usage of already tested methods. Furthermore, the continuous
regression outputs of these methods make their feasibility for testing impractical.
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3. Simulation Results and System Evaluation

In this Section, the results from each of the attempted DL approaches will be evaluated.
Because a large amount of experimentation with different structures was attempted only
the final results from each design are included here. To limit the workload, an optimum NN
has been determined using a set of standard parameters and activation functions (learning
rate: 0.001, activation function: ReLU, batch size: 32). Each approach has been trained and
tested against three datasets generated from the simulation. These are:

¢ Data generated from a 2 x 2 URA. This array generates raw data that can contain complex
patterns and information related to signal sources, interference, and spatial relationships.

*  The same 2 x 2 URA data, this time with principal component analysis (PCA) dimen-
sion reduction [26] has been applied to it. PCA works by transforming the original
dataset into a new set of orthogonal variables called principal components. These
components capture the most significant variance present in the data. By applying
PCA to the 2 x 2 URA data, one aims to reduce the complexity of the dataset while
retaining the most critical information. PCA can potentially enhance the SNR, sup-
press noise, and highlight important patterns, which may lead to more accurate and
robust analysis outcomes. However, there is a trade-off between the reduction in
dimensionality and the retention of information. It is important to carefully examine
how much variance is retained after dimension reduction and whether the reduction
in complexity leads to a significant loss of critical information.

¢ Data generated from an 8 x 8 URA with applying PCA. Expanding upon the exploration
of URAs and PCA, we now consider a larger array configuration. The data generated
from an 8 x 8 URA represents a more complex and richer dataset compared to the pre-
vious 2 x 2 URA scenario, potentially capturing a more diverse range of signal sources
and spatial patterns. The goal remains consistent: to determine whether the reduction
in dimensionality through PCA enhances or diminishes the analytical outcomes, and to
strike a balance between complexity reduction and information preservation.

It should be noted here that the studied URA architectures can be scaled to include a
larger number of antenna elements without loss of generality. However, such a choice will
require more advanced computing resources due to the increased computational complexity.
In this work, an HP Inc. desktop machine (intel-i7 3.4 GHz with 32 GB RAM with SSD) was
used in the studied scenarios. Before presenting the final results, here is a summary of the
findings of the initial tests:

¢  The combination approach provides better accuracy than any approach against only
magnitude or phase.

¢ The MLP approach works better against dimensionally reduced data. This is expected
as it allows for a simpler neural network design with fewer connections which also
helps to reduce overfitting.

¢ The 1D-CNN approach works better against non-reduced data. This makes sense
as a CNN works by extracting features that may be reduced or distorted when PCA
is performed.

*  The best results are generated from the 2D-CNN approach. This is also expected as this
approach allows for the structure of the originally generated data (two dimensions)
to be maintained and thus features can be more accurately defined. However, this
approach can only be achieved against the non-dimensionally reduced data in our
current hardware.

In Table 1, the final simulation results for each DL approach is compared with the
pure MUSIC algorithm. Moreover, the corresponding MSE and MAE graphs are shown
in Figure 3. As can be seen, the graphs show a large decrease in the MAE and the MSE
across the epochs, indicating that the training was successful. The models are also not
overfitting as the validation curves are keeping in line with the training curves shown for
each approach in Figure 3. In the case of 2D-CNN, the validation values are approaching
that of the original MUSIC algorithm. It is important to note that not every approach has
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outperformed the conventional MUSIC algorithm, however, the closeness to the original
algorithm, in this case, proves the validity of the DL model replacement.

Table 1. Outputs of the best simulation results for different DL approaches compared to the pure
MUSIC algorithm (all MSE and MAE figures are rounded off to two decimal places for compari-
son consistency).

Approach Dataset MSE MAE
MLP-based 8 x 8 URA with PCA 497.03 10.86
1D-CNN-based 8 x 8 URA with PCA 443.59 13.21
MUSIC 8 x 8 URA with PCA 1375.57 21.15
2D-CNN-based 2 x 2 URA 223.35 7.92
MUSIC 2 x 2URA 75.58 5.15
MLP MLP
= 1200 T T T « 30 T T T
S Validation g Validation
(o 1000 ——Training || w 25 ——Training |
2 g0 " {2
5 800 =P
& 600 2
c <5t
S 400+ S
= 10l
200 : : : : ‘ = : : :
0 50 100 150 200 250 300 0 50 150 250 300
Epochs Epochs
(@) (b)
1D-CNN 1D-CNN
= 1200 T T T « 30 T T T
S —»— Validation e —»— Validation
(o 1000 ——Training || w25 H ——Training |
2 g0 {2
5 800 =Pk
& 600 2
s <15t
S 400+ g
= 10l
200 : : : : = : : : :
0 20 40 60 80 100 0 20 40 60 80 100
Epochs Epochs
(c) (d)
2D-CNN 2D-CNN
= 1000 T T T . 25 T T T
S —+— Validation e —+— Validation
o 800 ——Training |1 W 5 f ——Training |1
2 E
g 600 215
Q
@ <
c L L 4
§ 400 § 10 |
200 : : : : =5 : : : :
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(e) )

Figure 3. Graphs of accuracy across epochs. (a) MSE and (b) MAE for MLP-based 8 x 8 URA with
PCA. (c) MSE and (d) MAE for 1D-CNN-based 8 x 8 URA with PCA. (e) MSE and (f) MAE for
2D-CNN-based, 2 x 2 URA.

A major advancement of the proposed DL approach, when compared with the con-
ventional MUSIC algorithm, relates to its extended capability in predicting a broader range
of angles. It is noteworthy that the conventional MUSIC algorithm, when confronted with
an angle falling outside the range of —90° to 90°, yields no prediction, leading to a return of
“NaN"”. In contrast, the DL approach exhibits proficiency in handling such angles. Moreover,
it is imperative to monitor and account for the instances in which “NaN" values arise,
as angles may indeed extend beyond the —90° to 90° range due to the pervasive impact
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of heightened noise power. This oversight is an integral aspect of data processing and
analysis, underpinning the reliability of the DL approach. For example, the conventional
MUSIC algorithm encounters challenges when predicting angles within the scope of high
noise power conditions for a 2 x 2 URA. Specifically, scenarios such as [-55°, 23°] prove
problematic for the conventional MUSIC algorithm to resolve, yet the DL approach adeptly
overcomes this limitation, successfully determining the DoA as [—23.98°, 29.89°].

Upon examination of the data generated from the 2 x 2 URA and subsequent results
(Figure 3), a notable observation emerges: the conventional MUSIC approach grapples
with the resolution of a substantial count of 211 values within the entire validation set
comprising 46,852 samples. Conversely, the 2D-CNN effectively resolves all of these chal-
lenging samples with a MSE of 407.94 and a MAE of 12.45. It is prudent to acknowledge
that these error metrics register values higher than the overall average for the validation
set, which is to be anticipated. The rationale for this deviation is that the noise values
accompanying these samples are comparatively large and sufficiently substantial to prevent
the conventional MUSIC algorithm’s ability to provide accurate estimates. This contextual
understanding underscores the rationale behind the comparatively increased error margin
exhibited by the DL approach in this specific subset of the validation dataset. While this
subset represents a fraction of the complete validation set, it undeniably signifies a promis-
ing stride towards enhanced performance. Furthermore, it is worth highlighting that the DL
approach’s introduction into the DoA estimation is an original avenue of inquiry. This dis-
tinctive exploration establishes the proposed approach as a self-contained and innovative
investigation, warranting an independent evaluation without direct comparison to other
studies within the existing literature. Moreover, it is worth mentioning that the optimal
parameters associated with the approach are not presented, and this omission stems from
the parameters’ inherent hardware-specific nature, thus recognizing the distinctiveness of
the proposed approach associated with hardware configurations.

4. Conclusions and Future Works

In this paper, a DL approach for DOA estimation was proposed and implemented.
First, a framework for the simulations was defined in such a way that signals can be
generated that, when combined with noise, produce a covariance matrix that can be
decomposed and used to train a DL method. The validity of this framework was shown in
the relevant criteria. The simulation framework also provides a benchmark of a standard
DOA estimation algorithm (in this paper MUSIC) against which the results of the designed
DL approach can be compared. Then, several DL methods were explored with key design
decisions for each of the identified cases. Finally, systems approaching the accuracy of the
MUSIC algorithm for resolving a noisy signal were obtained, and in some better detection
ranges even outperformed the conventional MUSIC algorithm.

Although the results of this paper are considered promising, the implemented ap-
proach still faces the following limitations, which will be considered for further develop-
ment in future works:

¢ Based on the experimental data, the results will be further validated.

¢ The DL approach has currently only been tested on a maximum antenna size of 8 x 8
antennas when a real-world computation for a massive MIMO system would tend to
be 64 x 64. This was due to the limited hardware capabilities available for this work.
Moreover, analysis around computational time needs further study.

*  The DL approach currently only makes predictions for single signal data. However,
the MUSIC algorithm can resolve high numbers of signals with high accuracy. It
would therefore be necessary that the DL models be adapted to allow for multiple
signal classifications.
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